
SSRG International Journal of Electronics and Communication Engineering Volume 11 Issue 3, 195-208, March 2024
ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V11I3P118 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Implementation of Six Single Classifiers and Feature

Selection for Performance Enhancement in Anomaly-

Based Intrusion Detection

Abdisalam A. Mohamed1, Ibraheem Shayea2, Fadi Al-Turjman3

1Hormuud University, Mogadishu, Somalia.
2Istanbul Technical University, Istanbul, Turkey.

3Near East University, Mersin, Turkey.

1Corresponding Author : aam@hu.edu.so

Received: 17 January 2024 Revised: 19 February 2024 Accepted: 18 March 2024 Published: 31 March 2024

Abstract - Attacks against information systems have been sharply increasing recently. Cyberattacks are becoming less detectable

by the normal antiviruses and firewalls. Various security systems have been deployed to protect information systems; Network
Intrusion Detection Systems (NIDS) are among the most widely used security systems in the networking industry. IDS can be an

anomaly-based or signature-based system. Signature-based NIDSs are effective against known attacks but futile against zero-

day attacks. To detect novel attack techniques, anomaly-based IDS has proven to be more useful than signature-based IDS. This

study used six Machine Learning algorithms to detect network intrusion incidents. The CSE-CIC-IDS2018 dataset is employed

to train and test the algorithms. The dataset is cleared of defects, and important features are selected using the Random Forest

Regressor algorithm. A sample of the dataset with selected key features is applied to six machine learning algorithms (Gradient

Boosting, AdaBoost, ID3, KNN, MLP, and Random Forest). Within a short period of time, the algorithms achieved the following

F1-Scores: Gradient Boosting (0.95), AdaBoost (0.94), K-Nearest Neighbors (0.93), ID3 (0.93), Random Forest (0.93), and

MLP (0.78).

Keywords - AdaBoost, CSE-CIC-IDS2018, Machine Learning, MLP Network Intrusion Detection, Random Forest.

1. Introduction
According to the International Telecommunications Union

(ITU), only 0.4% of the world population had internet access in

1995. Now, more than 53% of the people around the world are

connected to the internet [1]. The internet is one of the most

significant technological achievements the world has ever seen

in the 21st century.

However, the proliferation of this technological

advancement came with immense security problems. The

industry of computing is exposed to an exponentially growing

likelihood of unexpected downtime because of various cyber-

attacks and breaches. These violations are from cybercriminals

and online terrorist operations [2].

Tother with the rise of the Internet of Things (IoT), and 5G

mobile network, more devices will become interconnected. Our

internet dependency will rapidly increase in our daily lives,

leading to new threats as well [3]. For any given communication

to be secure, it must have the following characteristics:

confidentiality, integrity, and availability. Network intrusion is

any set of activities that aims to compromise the pillars of

network security.

To monitor systems for suspicious activity or policy

infringements, a device or software application called the

Network Intrusion Detection System (NIDS) is used [4]. NIDSs

can be of two kinds based on their detection techniques:

Signature-based NIDSs (SNIDS) and Anomaly-based NIDSs

(ANIDS).

Signature-based NIDSs detect attacks by searching for

specific patterns in network traffic or predefined, well-known,

suspicious instruction tactics used by attackers. Signature-based

NIDS performs well in detecting any known attack. However,

for unknown attacks or cases where an anomaly is present in the

network traffic, the performance of Signature-based NIDS

sharply decreases [4].

Anomaly-based NIDSs detect unusual network activities

by examining the general patterns of network traffic flow

without the need to inspect each packet. ANIDSs have been

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:aam@hu.edu.so

Abdisalam A. Mohamed et al. / IJECE, 11(3), 195-208, 2024

196

successful in detecting previously unseen (novel) attacks,

making them more efficient against zero-day attacks (unknown

and unaddressed vulnerability) [5]. With the reality of ever-

changing attack scenarios, ANIDSs have become the most

appropriate intrusion detection technology. Any given

operational IDS must be able to conduct the following three

steps: track and collect network flow data, clean raw data and

convert it to an input format, and classify network traffic into

normal or malicious traffic.

In many studies, machine learning algorithms have been

used to enhance IDS performance, specifically in achieving the

most accurate detection rate and lowest false positive rates. The

quality of the dataset used to train machine learning models

contributes to its effectiveness; however, publicly available

datasets contain more records and features, which will

contribute to a longer training and testing time, an issue most of

the studies did not address adequately.

To bridge that gap, this study aims to improve time

efficiency in the training and testing of machine learning

algorithms used for intrusion-detecting purposes. To shorten the

training and testing times of the algorithms, the most important

features are selected, and using only a few of the most important

features, six machine learning models are trained and tested.

The study achieved substantial improvement in detecting

intrusion fast.

Another obstacle that the studies on intrusion detection face

is the use of an old dataset; new attack types have emerged, and

the old datasets do not reflect well on the newer attack types.

This paper presents an anomaly-based network intrusion

detection technique using machine learning algorithms trained

with a sample of a benchmark dataset (CSE-CIC-IDS2018)

with its features greatly reduced. The goal of this study is to

contribute to the time efficiency enhancement of machine

learning algorithms in the intrusion detection domain.

The rest of the paper is organized as follows. Section 2

explains the characteristics of the dataset used. Section 3

reviews several previous research on NIDS. Sections 4 and 5

discuss the details of the implementation method as well as the

results, respectively. Section 6 concludes this paper lastly.

2. The Dataset
The CSE-CIC-IDS2018 dataset was developed by

Canada’s national cryptologic agency called the

Communications Security Establishment (CSE), together with

the Canadian Institute for Cybersecurity (CIC). It contains

fourteen distinct attacks grouped under six separate attack

cases: DoS, DDoS, Brute-force, Infiltration, Web attacks, and

Botnet. During the dataset development phase, an attacking

infrastructure and a victim organization were developed. The

attacking side had fifty machines, and the attacked

organization being targeted had five departments with 30

servers and 420 machines in total.

Using the CICFlowMeter-V3 tool [6], eighty features

were chosen to represent the characteristics of the traffic

generated in the network (system logs and network traffic of

all machines). The end product is a diverse, inclusive, and
world-class dataset in the intrusion detection domain. It was

made to reflect on complete user profiles to represent events

and behaviors observed in the network.

2.1. FTP-Brute Force

According to Kaspersky [7], a brute force attack aims to

break a password or username, discover a web page, or obtain

the encryption key of a message [7]. It ultimately relies on trial

and error. Depending on the complexity, the length of the

victim’s password or username, and the technical level of the

attacker, a brute-force attack may take anywhere from

milliseconds to years. It is one of the most popular attack

methods that hackers use despite being an old technique that
existed before the internet in the form of a cryptanalytic attack

[8].

Metasploit modules, Hydra, Ncrack, Nmap NSE scripts,

and Medusa are some of the most popular tools used for

password-cracking and brute-force attacks. Other tools, such as

Hashpump and Hashcat, are used in password hash cracking.

To create the CSE-CIC-IDS2018 dataset, Patator was utilized

since it is among the most complete multithreaded, reliable, and

flexible tools written in Python. Two modules of brute-force

attacks are present in this dataset: FTP and SSH. A Kali Linux

machine was set to be the machine to execute the attack and a
machine running Ubuntu 14.0 operating system was the target

machine [8].

FTP is a network protocol intended to facilitate the

transfer of files between client and server in a network. For

any file transfer to occur through FTP, verified credentials

(username and password) are mandatory. The FTP-Patator

attack aims to illegally acquire this username and password,

thus compromising the victim’s system [8].

2.2. SSH-Brute Force

SSH is a network security protocol that encrypts and

decrypts the operations of various services throughout the

network. SSH had overtaken Telnet (which is not encrypted) in

remote access aspects. That popularity makes SSH a vital target

for cybercriminals, especially SSH Brute-force attacks [9,10].

SSH brute force is one of the most popular forms of attacks

waged to access a remote machine by performing repetitive

authentication credential guessing trails using all possible

password combinations until the correct one is reached [11].

The SSH-Brute-force data in the CSE-CIC-IDS2018 dataset

was created using the same Patator tool [12] used in the FTP

Brute-force attack.

Abdisalam A. Mohamed et al. / IJECE, 11(3), 195-208, 2024

197

2.3. Brute Force-XSS

Cross Site Scripting attacks are in the list of well-known

web attack techniques. It all begins with the injection of a

malicious piece of code into the targeted webpage. When a

legitimate user visits this webpage, the code is immediately

executed without being noticed. The results can be very
devastating to the extent that they may include identity theft,

impersonation, and arbitrary code execution [13].

2.4. Botnet

The word ‘Bot’ originates from the word “Robot.” It is a

common term for describing an automated process, such as a

Google bot, that collects information from the internet. Bots

were created with good intentions; however, they can also be

used for malicious activities (such as information theft) or as

launching pads for distributed attacks. Malicious software is

stealthily installed on the targeted machine to infect it. Control

of the machine is then passed to a remote attacker, who will then

have direct command. Infected machines taken hold by
attackers are referred to as zombie machines. They are primarily

used to wage Distributed Denial of Service attacks (DDoS) [14].

Botnets use a level command and control mechanism with

a wide range of protocols. Such diversity makes botnet

detection difficult. During passive mode, limited or no activities

are present in the network, making Botnet detection even more

challenging [15]. In the active mode, the packet flow and packet

size with the TCP Push (PSH) flag used to speed up packet flow

help IDSs detect Botnets [16].

A Trojan horse malware package was applied for the CSE-

CIC-IDS2018 dataset. It runs on the version of Microsoft
Windows called Zeus, used to simulate many malicious and

criminal acts such as banking information theft by form

grabbing and man-in-the-browser keystroke logging. It can also

be used to install Crypto-Locker ransomware. During dataset

generation, an open-source botnet (called Ares botnet) was

utilized. Ares has the following abilities: File upload/download,

Keylogging and Remote cmd.exe shell Persistence Screenshot.

During the execution scenario, target machines were infected

with Zeus and Ares botnets, and screenshots were requested

from the zombies every 400 seconds [17].

2.5. DOS-GOLDEN-EYE

 DoS attacks directly aim at blocking legitimate users’
rights to access the system by reducing system availability. DoS

attacks flood networks with malicious loads consisting of

superfluous network datagrams or normal packets that fill more

CPU processing capabilities, network buffers, and overall

network bandwidth. As system resources form a bottleneck,

performance drops, and the targeted system may eventually

crash [18]. Although DoS attacks consist of various types, four

DoS attack types were applied on the CSE-CIC-IDS2018

dataset: DoS-Hulk, DoS-GoldenEye, DoS-SlowHTTPTest, and

DoS-Slowloris. GoldenEye is a multithreaded Python-based

HTTP DoS Tool used to test site vulnerabilities during DoS

attacks. It allows numerous parallel connections to a given

URL. It applies the Keep-Alive method to substantially increase

the size of files transmitted over a given TCP connection. It also

deactivates HTTP-Cache-Control using the NoCache message

feature. By using an attack vector containing ‘HTTP Keep-

Alive and NoCache’, GoldenEye’s attack can immediately
deplete system resources. Attack packets of this attack type are

unencrypted. They do not support fabricated IP (spoofed)

addresses [19].

2.6. DOS-HULK

HULK, short for HTTP Unbearable Load King, is a multi-

purpose attack tool that can be utilized to launch both DDoS and

DoS attacks. It can take down servers in a very short duration

of time by generating HTTP GET flood requests and TCP SYN

flood. Another extremely dangerous trait is that it can

completely obscure the real user platform and instead employ a

dissimilar sample for separate attack execution [20].

2.7. DOS-SLOWLORIS
Slowloris is a tool developed using Perl programming

language where both the GUI and command line interfaces are

used to generate an attack. It floods the victim with TCP SYN

requests to the target machine. When this type of attack targets

a web server, incomplete and smaller-sized TCP packets with

SYN flags can be observed [20].

2.8. DOS-SLOWHTTPTEST

Slow Read DoS attack was created by Sergey Shekyan

[21]. In this scenario, a hacker typically sends a legitimate

HTTP request to the victim’s Web server and then reads the

response very slowly. The attacker sends a legitimate request
after the normal TCP three-way handshake. Next, the attacker

advertises a window size smaller than the average size and

slows down the HTTP response operation.

Upon advertising a window size of 0, the Web server stops

sending data despite maintaining an open connection.

Receiving more authentic requests makes the Web server

quickly reach maximum capacity and stop serving legitimate

clients. Since this attack uses legitimate HTTP requests, it is

extremely difficult to segregate normal traffic from malicious

ones. To safeguard networks against this type of attack, the

network layer must be continuously monitored with more focus

on small-sized packets [20].

2.9. DDOS-LOIC (UDP/HTTP)

DDoS is an organized attack directed to stop authentic

users from accessing network resources, even causing systems

to crash from extraordinary load. It can be executed with a

massive number of compromised hosts. At the preliminary

stage, attackers spot vulnerabilities in a given network and

infect a vast number of machines with malware to remotely

control them eventually. In the second phase, attackers exploit

the infected machines (Zombies) to spread malicious packets to

the attacked machine(s) without the infected machines realizing

Abdisalam A. Mohamed et al. / IJECE, 11(3), 195-208, 2024

198

their participation in these harmful activities. Depending on the

concentration of attack packets and the number of zombies used

to launch the attack, subsequent damage will be inflicted on the

victim’s network and machines [22].

LOIC is a free network testing platform created by Praetox

technologies for the network stress test. It is a Graphic User
Interface-based DDoS attack platform that can run on Windows

and macOS operating systems. Its ease of use and widespread

availability allow criminals to efficiently conduct coordinated

and severe DDoS attacks without the need for more knowledge

or experience [23].

2.10. DDOS-HOIC

High Orbit Ion Cannon (HOIC) is a free, BASIC-written,

speedy, multithreaded, network stress testing tool that can take

down hundreds of websites at once through HTTP flood and

POST requests sent to the target server. HOIC has the ability to

drain the resources of the victim’s server [24].

2.11. SQL Injection
Uncontrolled input fields at the user interface of

applications with bugs help attackers alter the SQL commands

and queries directed to the database. Such attacks are known as

SQL injection attacks. These attacks are prevalent since finding

vulnerabilities and exploiting them is extremely easy.

The damages inflicted on the victim are phenomenal due to

direct database access. A successfully executed SQL injection

attack provides the hacker with unauthorized executive

command over data, access to privileged database accounts,

imitate a legitimate user, and access the web server [25].

2.12. Infiltration

Network infiltration is a network attack from the inside.

It is mainly accomplished by exploiting vulnerable software

such as Adobe Acrobat Reader. After successfully completing

the exploitation phase, a backdoor is set up on the targeted

machine to allow different attacks to be waged on the victim’s

network (such as IP sweep, service enumerations using Nmap,

and port scan) [26].

3. Related Work
In recent years, numerous research that apply machine

learning in the intrusion detection domain have been

published. This section summarizes the key discoveries. In

2005, Chebrolu et al. [27] defined computationally useful

features for IDS applications using two popular algorithms:

Classification and Regression Trees (CART) and Bayesian
Networks (BN).

The researchers established a hybrid model of ensemble

classifiers for intrusion detection purposes. After training the

model on the KDD CUP99 dataset, the study achieved an

impressive 100% accuracy for Normal (Benign) traffic, Probe,

and DOS attack detection. They also acquired an average

accuracy of 84% for detecting U2R and R2L scenarios.

Weiming Hu et al. [28] presented an AdaBoost algorithm-

based IDS using decision stumps as weak classifiers. The

weak classifiers are simultaneously applied with continuous

and categorical features, forming a strong classifier. An
adaptable initial weights strategy was employed for minimum

overfitting, leading to enhanced performance.

From the KDD CUP99 dataset, four attack types were

examined in the experiments with and without handling

overfitting techniques: DOS, U2R, R2L, and Probe. A

99.159% detection rate was accomplished without handling

overfitting, and a 99.166% accuracy was achieved with

handling overfitting.

The researchers proposed that their algorithm has a lower

error rate and computational complexity in comparison to

other algorithms tested on the same dataset. The

aforementioned studies presented Machine Learning models
trained on old intrusion detection datasets, making the

detection of new attack types challenging; in this study,

however, the CSE-CIC-IDS 2018 dataset, which is a newer

and more diverse dataset, is used to train the machine learning

models.

In 2013, Warusia Yassin et al. [29] created a new model

that combines the Naïve Bayes Classifier and K-Means

Clustering algorithms to prevent false alarm constraints. The

IDS model was implemented on the ISCX 2012 dataset. The

researchers accomplished a high-performing IDS of 99%

accuracy using their algorithm combination and a 98.8%
accuracy using Naïve Bayes alone.

In 2017, Sharafaldin et al. [26] implemented seven popular

machine learning algorithms on the CICIDS2017 dataset to

detect more than thirteen attack types: Multilayer perceptron,

AdaBoost, Quadratic Discriminant Analysis (QDA), K-Nearest

Neighbors (KNN), Random Forest (RF), ID3 and Naïve-Bayes

(NB). The Random Forest Regressor was used to operate with

the minimum but the most important features. The study

achieved the following results for each algorithm: ID3 (98%),

KNN (96%), RF (97%), Naïve-Bayes (84%), AdaBoost (77%),

MLP (76%), and QDA (92%).

Kanimozhi and Jacob [30] proposed an IDS model for
Botnet attack detection that targets the financial sector. The IDS

model was created using artificial intelligence trained with the

IDS2018 dataset. The model developed in this paper is

presented as a real-life applicable system with a superb 99.97%

accuracy, 0.999 average area under the ROC curve, and a

minimal false-positive rate of 0.03. To ensure an even more

powerful, the study suggested the use of a GPU-based

framework instead of a CPU-based one.

Abdisalam A. Mohamed et al. / IJECE, 11(3), 195-208, 2024

199

Zhou & Pezaros [31] implemented six algorithms (MPL,

QDA, Random Forest, ID3, Naïve Bayes and KNN) with the

CSE-CICIDS2018 dataset to protect against Zero-Day attacks.

In the training phase, the models were trained with fourteen

attack scenarios in the dataset. During the testing phase, eight

novel (Zero-Day) attack types and regular traffic were used. The
model accuracy was evaluated under the following parameters:

Recall, Precision, F1-Score, and time overhead. Decision tree

algorithms outperformed all other algorithms. The model has

100% accuracy on Zero-Day attacks and normal data only and

96% accuracy for scrambled Zero-Day attacks and benign data,

with 5% false-positive rates.

Lin et al. [32] presented a robust anomaly detection system

using deep learning methods. The study adopted Long Short-

Term Memory (LSTM) to create a deep neural network

architecture. An Attention Mechanism (AM) was also

employed to improve the output of the model. To overcome the

class imbalance issue in the CSE-CICIDS2018 dataset,
SMOTE and an improved loss function algorithm were

deployed. The model achieved a 96.2% accuracy.

D’hooge et al. [34] investigated the efficiency of

supervised machine learning algorithms trained on separate

normal traffic from various types of attack traffic. Botnet and

DoS/SSL attack types, represented in two popular datasets

(CIC-IDS2017 and CSE-CIC-IDS2018), were used to train

and test twelve supervised learning algorithms. The credibility

of inter-dataset generalization of the trained models was also

examined. The study saw reduced effectiveness of machine

learning algorithms used for intrusion detection systems with
dataset(s) other than those they were trained with. Therefore,

further experimentation on the same domain was suggested.

Fitni & Ramli [35] suggested an ensemble learning

method which combines the advantages of individual

detection algorithms. The study compared seven classifiers

and presented the best suitable basic algorithms for ensemble

learning. Logistics regression, Gradient Boosting, and

Decision trees were selected for the ensemble model, which

was later trained and tested with the IDS2018 dataset. For the

feature engineering steps, Spearman’s rank correlation

coefficient was used for important feature identification. With

the reduced number of features (23 of 80 features), the model
achieved 98.8% precision, 98.8% accuracy, 97.9% F1-Score

and 97.1% recall.

Karatas et al. [36] used Gradient Boosting, RF, k-NN,

Adaboost, Linear Discriminant Analysis, and DT to

differentiate attack traffic and benign traffic in the

CICIDS2018 dataset. The Synthetic Minority Oversampling

Technique (SMOTE) technique was applied to the dataset to

solve class imbalance. The models were built on a Python

environment utilizing Scikit-learn TensorFlow, Keras, and.

The dataset was preprocessed to tackle the computational

problems arising from some empty values and “Infinity”. One-

hot encoding was also employed. Five-fold cross-validation

was used with 80% of the samples in the training session. The

other 20% of instances were used as a test dataset; after

implementing SMOTE, the overall size of the dataset

expanded by around 17%. The study found that Adaboost was

found as the best-performing algorithm, with an average
precision score of 99.70%, an accuracy level of 99.69%, and

a recall score of 99.69%.

Li et al. [37] employed feature selection and clustering to

the CSECIC-IDS2018 dataset, including live real-time

detection using an autoencoder classifier. In the preprocessing

phase, “Infinity” and “NaN” instances were converted to 0.

The dataset was first grouped into sparse and dense matrices

and then normalized using L2 regularization.

The model was developed using Python, and important

features were chosen using the Random Forest algorithm. 85%

of the dataset was applied for training, while 15% was used

for testing. The popular Affinity Propagation clustering
algorithm was implemented on 25% of the training data to

collect features into subgroups and, in turn, fed to the

autoencoder. The recall rates of the developed model and that

of another autoencoder model (named Kitnet) were compared.

The two compared models achieved a recall of 100% for

several attack types. The researchers proposed that their

proposed model achieved a faster detection than that of

KitNet.

Ramos et al. [38] assessed a group of five learners using

the CSE-CIC-IDS2018 dataset with the ISOT HTTP Botnet

[39], a Botnet dataset containing normal and malicious records
of DNS traffic. Several machine learning algorithms were

used, including Random Forest, Decision Tree, Naive Bayes,

k-Nearest Neighbor (k-NN) [31], and SVM. Different Feature

engineering techniques with the feature importance method of

Random Forest were used. Nineteen important features were

selected for the IDS2018 dataset, while twenty features were

chosen for the ISOT HTTP dataset.

The models were developed using Scikit-learn. 80% of

the sample was used for training and 20% for testing. A five-

fold cross-validation was subsequently implemented, and the

Grid Search technique was deployed for optimization

purposes. For the CSE-CIC-IDS2018 dataset, the Random
Forest and Decision Tree algorithms scored 99.99% accuracy,

100% precision, and 99.99% recall. Similarly, Decision Tree

and Random Forest learners achieved the best accuracy for

ISOT HTTP.

Zuech et al. [40] highlighted the effects of class

imbalance in machine learning applications regarding

cybersecurity. Seven classifiers were trained and tested on the

CSE-CIC-IDS2018 dataset to detect web attacks and normal

traffic: CatBoost (CB), Decision Tree (DT), XGBoost (XGB),

Random Forest (RF), Naive Bayes (NB), Logistic Regression

Abdisalam A. Mohamed et al. / IJECE, 11(3), 195-208, 2024

200

(LR) and LightGBM (LGB). Several Random Undersampling

(RUS) steps were made.

Both the Area Under the Precision-Recall Curve

(AUPRC) and the Area Under the Receiver Operating

Characteristic Curve (AUC) were used as performance

matrices. The study found that different random
undersampling ratios statistically lead to varied performances

in separating web attacks from normal traffic. Distinct

classifiers also statistically achieve different accuracy levels.

Most of the previous IDS papers had little intent in

reducing the number of features in the dataset, Therefore,

reducing the number of dataset features to a few but important

features should be considered as an important factor.

4. Methodology
Several pre-processing steps are made to clean the dataset

from the defects observed before implementing machine

learning algorithms that classify benign and malicious traffic. A

cleaned sample of the dataset is selected and divided into two

parts: a set for training and a set for testing. Since the dataset

contains 80 features, the most important features are selected to

be applied to the algorithms. The experiments in this study have

been conducted in two approaches: single specific attack type

detection and overall attack and benign classification. Figure 1

illustrates the implementation process.

Machine learning experiments are implemented on a

machine with 8GB RAM and Intel (R) Core (TM) i7-4712HQ

CPU @ 2.30 GHz using the Microsoft Windows 10 operating

system. We used the Sklearn module in Python 3.8 to

implement the algorithms. Six machine learning algorithms are

implemented: Adaboost, Decision Tree (ID3), Random Forest,

Gradient Boosting, K-Nearest Neighbors (KNN), and

Multilayer Perceptron (MLP) [41-43].

Table 1. ML Algorithms hyperparameter values

ML Algorithms Hyperparameters

Adaboost
Estimator = 50, Learning Rate

=1.0, Algorithm = “samme R”

Random Forest
Minimum Samples split =2,

minimum samples leaf =1

Decision Tree

Sample split =2, Minimum

samples leaf =1, Estimator =

“warn”, Criterion = “Gini”

Gradient Boosting
Estimator = 100, Maxi Depth =3,

Validation =0.1

MLP
Hidden Layer size =(13,13,13),

Max inter =500

KNN
Class =5, Weight = “Uniform”,

Distance = “Minkowski”

4.1. Dataset Cleaning

The IDS 2018 dataset contains network traffic in Packet

Capture (Pcap) format, logs, and ten pre-processed and

labelled CSV files. The CSV files contain more than 16

million records. Only a sample of those records (around 9

million) were used in this research.

Defects in the selected dataset that require cleaning have

been addressed. Missing and infinite values were replaced

with 0 and 1, respectively. Records with more redundant or

missing values were deleted. Benign and malicious labels

were encoded with 0 and 1, respectively. To address the class

imbalance in the original dataset, samples representing each

attack type together with normal traffic samples were

collected in a separate file with a 30:70 ratio.

Similarly, a single file containing all attack types

represents an attack, and benign samples represent the normal

attack dataset. The two dataset groups were utilized to train

and test the models in different experiments. Table 3 illustrates
the samples of each attack for the dataset utilized in this study.

Fig. 1 Experimental setup

Start

Data

Cleaning

Combine All Data
in One Attack-

Normal File

Feature Selection

Using Random

Forest Regression

Combine All Data

in one Attack-

Normal Fil1e

Feature Selection

Using Random

Forest Regression

ML Implementation

with the Most

Important Features for

Each Attack Type

ML Implementation

with the Most

Important Features for

Each Attack Type

Results Results

Abdisalam A. Mohamed et al. / IJECE, 11(3), 195-208, 2024

201

4.2. Feature Selection
Training machine learning algorithms with a dataset that

has many features can cause multiple problems, such as

overfitting for instance. It may result in an apparent increase in

the accuracy of the model at the training stage but degrades the

effectiveness of the model on previously unseen data in the
testing phase. It may also extend the training time of the

algorithms. Selecting a descriptive subset of features is a good

method to avoid overfitting and simultaneously improve the

model’s accuracy when fed with new data. The use of a smaller

number of features substantially reduces the computational cost

of training and prediction as well [44]. This study utilized the

Random Forest Regressor algorithm, which is based on the tree

concept for the feature selection procedure. This algorithm

enables features that contribute even a limited number of trees
to remain visible. In the implementation phase, the Random

Forest Regressor class of the Sklearn library is used to calculate

feature importance [45].

Table 2. Important features selected for each attack type

Attack Type Features Attack Type Features

Bot

Bwd Pkt Len Mean DoS Attacks-Hulk Flow IAT Min

Flow Pkts/s Bwd Pkt Len Std

Flow IAT Mean Fwd Pkt Len Max

Flow IAT Min Fwd Pkt Len Std

Fwd Pkt Len Mean Bwd Pkt Len Max

Brute Force -Web

Flow Byts/s DoS Attacks-SlowHTTPTest Flow Pkts/s

Fwd Pkt Len Mean Flow IAT Mean

Flow IAT Mean Flow Duration

Flow Duration Flow IAT Max

Flow IAT Max Tot Fwd Pkts

Brute Force -XSS

Fwd Pkt Len Mean DoS attacks-Slowloris Fwd Pkt Len Max

TotLen Fwd Pkts Flow Byts/s

Tot Bwd Pkts Tot Bwd Pkts

Fwd Pkt Len Max Flow IAT Min

Bwd Pkt Len Mean Fwd IAT Tot

DDOS Attack-

HOIC

Flow Duration FTP-BruteForce Flow IAT Mean

Flow IAT Max Flow Duration

Bwd Pkt Len Std Flow IAT Max

Fwd IAT Tot Tot Fwd Pkts

Tot Bwd Pkts Flow IAT Min

DDOS Attack-

LOIC-UDP

TotLen Fwd Pkts Infiltration Flow Byts/s

Flow Duration Flow IAT Min

Bwd Pkt Len Mean Flow IAT Max

Flow IAT Min Flow Duration

Flow IAT Max Flow IAT Mean

DDoS Attacks-

LOIC-HTTP

Flow IAT Max SQL Injection Flow IAT Max

TotLen Fwd Pkts Flow Byts/s

Flow Duration Bwd Pkt Len Max

Flow IAT Std Bwd Pkt Len Std

Fwd Pkt Len Std Flow Duration

DoS Attacks-

GoldenEye

Fwd Pkt Len Max SSH-Bruteforce Flow IAT Mean

Flow Duration Flow Pkts/s

Fwd IAT Tot Flow Duration

Flow IAT Max Flow IAT Max

Fwd Pkt Len Mean Flow IAT Min

Abdisalam A. Mohamed et al. / IJECE, 11(3), 195-208, 2024

202

The extensive need for domain knowledge in feature

engineering widely exists for network intrusion detection.

Several key considerations must be made when training a

model with a given dataset. Numerous features can be

misleading. They may look significant; however, their

underlying importance in identifying network anomalies can be
relatively small or non-existent.

Table 3. Number of records of each class in the cleaned dataset

Traffic Type Number of Samples

Benign 6584535

DDOS attack-HOIC 686012

DDoS attacks-LOIC-HTTP 576191

DoS attacks-Hulk 461912

Bot 286191

FTP-BruteForce 193360

SSH-Bruteforce 187589

Infiltration 161934

DoS attacks-SlowHTTPTest 139890

DoS attacks-GoldenEye 41508

DoS attacks-Slowloris 10990

DDOS attack-LOIC-UDP 1730

Brute Force -Web 611

Brute Force -XSS 230

SQL Injection 87

Total Number Samples 9332770

Total Attack Samples 2748235 (28.9%)

Total Benign Samples 6584535 (71.1%)

Packet inspection and network flow monitoring are

examples of two popular network traffic monitoring methods.

In a typical network-based anomaly detection process, the

traffic traversing the network should be monitored for

suspicious activity. The detection mechanism should also be

fast and efficient. To meet these demands, flow-based analysis
has become the preferred option since it allows attack detection

through packet header information instead of packet payload

information, as applied in packet inspection.

The five most popular attributes used to define a network

flow are Destination IP, Source IP, Destination Port, Source

Port, and Network Protocol [8]. Attackers are noticeably

evading these well-monitored features since more attention is

placed on such attributes. They avoid using well-known ports

and sidestep security apparatus by using generated/fake IP

addresses (spoofing). Port numbers can also range from 1 to

65535, indicating that port numbers other than those observed

in training sessions may appear in the testing phase, thus
disrupting the evaluation mechanism. Some applications are

transmitted over the same port as well. Focusing on port

numbers or any other feature related to source or destination ID

will, therefore, be terribly misleading [46, 10]. Table 2 displays

the five most important features of each attack type.

4.3. Evaluation Matrices
In the case of attack and benign classifications, the

following four cases can occur: False Positive (FP): a benign

sample classified as an attack sample; True Positive (TP): an

attack sample classified as a malicious sample; False Negative

(FN): an attack sample classified as a benign sample; True
Negative (TN): a benign sample classified as a benign sample.

 Accuracy: The ratio of records correctly classified to the

total number of samples.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝐹𝑃+𝐹𝑁+𝑇𝑃+𝑇𝑁
 (1)

 Recall: The ratio of correctly classified attack samples to

the total number of attack samples.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝐹𝑁+𝑇𝑃
 (2)

 Precision: The ratio of correctly classified attack samples

to the total number of samples classified as an attack.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃+𝑇𝑃
 (3)

 F1-Score: weighted average of precision and recall.

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

5. Results
This section illustrates the outcomes of the machine

learning experiments. The implementation is conducted in
two phases: individual attack classification and overall

malicious-normal classification. The outcomes are evaluated

in terms of the running time, precision, recall, F1 scores, and

accuracy levels of ML algorithms.

5.1. Individual Attack Detection

The five features with the highest level of importance in

the dataset for each attack are computed during the feature

selection process, as indicated in Table 2. Machine learning

algorithms are trained and tested using only these features to

detect anomalies instead of training with all 80 dataset features.

Table 4 presents the F1 scores for each algorithm. The F1-Score

was specifically selected since it combines recall and precision.
Therefore, it is the preferred evaluation matrix compared to

other options. Most of the attacks are detected easily; Botnet

and DDoS are two prominent examples of easily detected attack

files, as shown in Tables 5 and 6.

In this study, all machine learning algorithms couldn’t

achieve substantial detection rates on Infiltration attacks, and

the same is also observed in all previous works conducted on

IDS 2017 and IDS 2018 datasets.

Abdisalam A. Mohamed et al. / IJECE, 11(3), 195-208, 2024

203

Table 4. F1-scores of classifiers for specific attack dataset

Attack Types

ML Algorithms

RF KNN ID3 AdB MLP GrB

F
1

-S
c
o
r
e

F
1

-S
c
o
r
e

F
1

-S
c
o
r
e

F
1

-S
c
o
r
e

F
1

-S
c
o
r
e

F
1

-S
c
o
r
e

Brute Force -Web 0.91 0.92 0.89 0.92 0.72 0.9

Botnet 0.99 1.0 1.0 1.0 1.0 1.0

Brute Force -XSS 0.86 0.75 0.88 0.88 0.77 0.88

DDOS HOIC 0.98 0.99 0.98 0.98 0.93 0.98

DDOS LOIC-UDP 1.0 1.0 1.0 1.0 0.94 1.0

DDoS LOIC-HTTP 0.99 0.99 0.99 0.99 0.43 0.99

DoS GoldenEye 0.97 0.98 0.97 0.97 0.41 0.98

DoS Hulk 0.98 0.97 0.98 0.98 0.95 0.91

DoS Slow

HTTPTest
0.98 0.98 0.98 0.98 0.94 0.97

DoS Slowloris 0.94 0.99 0.98 1.0 0.88 1.0

FTP-B-Force 0.98 0.98 0.98 0.98 0.98 0.98

SSH-B-Force 0.99 0.99 0.99 0.99 0.9 0.99

Infiltration 0.57 0.67 0.58 0.59 0.49 0.62

SQL Injection 0.88 0.82 0.81 0.89 0.6 0.9

Table 5. Botnet

Table 6. DDoS HOIC

ML Algorithm Accuracy Precision Recall Time (s)

Random Forest 1 1 1 0.047354

ID3 1 1 1 0.018748

AdaBoost 1 1 1 0.353962

MLP 0.99654 0.99460 0.9974 0.99602

KNN 0.99827 0.99728 0.9987 0.156244

GBoost 1 1 1 0.076038

ML Algorithm Accuracy Precision Recall Time (s)

Random Forest 0.9948 0.9927 0.9946 12.347

ID3 0.9953 0.9921 0.9963 3.6567

AdaBoost 0.9964 0.994 0.9961 74.740

MLP 0.9964 0.9951 0.9961 537.52

KNN 0.9971 0.9958 0.9970 75.725

Gboost 0.996 0.9955 0.9967 45.971

Abdisalam A. Mohamed et al. / IJECE, 11(3), 195-208, 2024

204

Table 7. Infiltration

ML Algorithms Accuracy Precision Recall Time (s)

Random Forest 0.7488 0.78155 0.5824 6.72903

ID3 0.74958 0.77807 0.5846 2.8575

AdaBoost 0.74694 0.73492 0.5923 40.8661

MLP 0.72507 0.77078 0.5353 99.290

KNN 0.73532 0.67620 0.6633 21.771

Gboost 0.75127 0.72498 0.6102 24.096

Tables 5 and 6 above show the accuracy, precision, and

Recall together with running times of the machine learning

algorithms on Botnet and DDoS HOIC attack types. The

number of Botnet samples in the dataset seems to be sufficient

for training models well; one positive thing that is observable

from the results achieved by the classifiers is the running times

of the algorithms; all six algorithms completed the training and
detection process in record time, this will be an important factor

in detecting real attacks swiftly.

Infiltration attacks are the hardest to detect, with a

maximum F1-Score of 0.67. This was followed by SQL

injection and Brute force-XSS attack types which are also

classified with low F1-Scores of around 0.88. The latter two

are underrepresented in the dataset, indicating that a few

misclassified samples may significantly degrade the overall

result. The infiltration attack samples in the dataset are more

(161934 samples), yet they remain harder to detect.

According to the dataset’s documentation [17],

unrestricted file upload is recognized as an infiltration attack
scenario. Traffic at the network level becomes difficult when

distinguishing between illegitimate and legitimate file

uploads. This attack type should be further examined to

achieve a more desirable detection accuracy.

From the above tables, it is observable that MLP achieves

the lowest performance level for all attack files and with

longer running times than all other machine learning

algorithms. In contrast, Random Forest and Decision Tree

have achieved better performance than other methods in the

shortest running time.

5.2. Attack-Normal Classification

In this section, the whole dataset is collected in a single

file. Samples of all attack samples are labeled as “attack”. Six

machine learning algorithms are applied to this dataset. The

features selected for individual attack types shown in Table 2

are combined, and sixteen unique features shown in Table 8

are used in this phase of the experiment.

Table 8. Sixteen important features were collected from all individual

attack files

Features Importance

Bwd Pkt Len Mean 1.939715e-01

Flow IAT Mean 4.710189e-02

Fwd Pkt Len Mean 1.051510e-02

Flow IAT Max 0.010301

Tot Bwd Pkts 0.028025

Flow Duration 0.100301

Fwd IAT Tot 0.000095

Fwd Pkt Len Std 2.588169e-03

Flow Pkts/s 1.7289e-01

Flow IAT Min 1.2373e-02

Flow Byts/s 0.217946

TotLen Fwd Pkts 0.035030

Fwd Pkt Len Max 1.1597e-01

Bwd Pkt Len Std 0.050883

Flow IAT Std 2.3611e-02

Bwd Pkt Len Max 0.063556

As illustrated in Figure 4, ID3 and Random Forest are the

fastest algorithms for classifying overall attacks and normal

samples. In contrast, KNN and MLP have the longest running

time. The difficulty of the MLP algorithm increases as the

number of instances increases. KNN, which is known as the

lazy learner due to its complex train time [44], is the slowest

of all algorithms used; it took close to 7000 seconds to go

through the classification process, whereas Random Forest

and ID3 completed the training and testing in less than 120

seconds. Detection time is a very crucial parameter in network
security.

Abdisalam A. Mohamed et al. / IJECE, 11(3), 195-208, 2024

205

The earlier an attack is detected, the better the chances of

avoiding massive damage. The main purpose of this study is to

reduce the training time of the algorithms and, at the same time,

keep the detection accuracy rate high. To achieve that goal, only

a few important features are used to train the algorithms. In

terms of detection performance, the MLP classifier attained the
lowest F1-Score (0.78), which can be attributed to the total

number of hidden layers used (13,13,13). Increasing the hidden

layers of an MLP also increases the running time of the model,

which, in turn, negatively affects the algorithm’s efficiency.

The chart in Figure 2 presents the Accuracy and Recall of each

ML algorithm, and in Figure 3, the F1Score and Precision levels

of ML algorithms are illustrated. It is worth noting that only five

features are used in detecting specific attack types. The overall

attack and normal samples are classified with only 16 important
features, acquiring impressive results. These features are

mainly statistical, making them appropriate for anomaly-based

detection.

Fig. 2 Accuracy and recall levels achieved by the ML algorithms

Fig. 3 F1 score and precision levels achieved by the ML algorithms

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Random

Forest

ID3 AdaBoost MLP K Nearest

Neighbors

Gradient

Boosting

0
.9

5

0
.9

5

0
.9

5

0
.8

3

0
.9

6

0
.9

5

0
.9

3

0
.9

4

0
.9

4

0
.7

5

0
.9

5

0
.9

4

V
al

u
es

Classifiers

Accuracy Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Random

Forest

ID3 AdaBoost MLP K Nearest

Neighbors

Gradient

Boosting

0
.9

4

0
.9

4

0
.9

4

0
.7

7

0
.9

5

0
.9

5

0
.9

4

0
.9

5

0
.9

4

0
.8

5 0
.9

5

0
.9

5

V
al

u
es

Classifiers

F1Score Precision

Abdisalam A. Mohamed et al. / IJECE, 11(3), 195-208, 2024

206

Fig. 4 Running times of ML algorithms

6. Conclusion
This study used six different machine learning algorithms

(KNN, XGboost, ID3, MLP, Adaboost, and Random Forest) on

the latest IDS dataset (CSE-CIC-IDS2018 dataset) to detect
network anomalies by recognizing attack traffic from normal

network traffic within a short period of time. The CSE-CIC-

IDS2018 dataset constitutes eighty features that explain

network traffic flow.

In the first phase of the experimentation process, a dataset

sample was cleaned from minor errors. Important feature

weights were then calculated with Random Forest Regressor

[45]. This was to determine the discriminative features to be

used in training machine learning models. The important

feature weights for each attack were separately calculated.

Next, six machine learning algorithms were trained with the

final dataset in two different experiments.

Five out of the six algorithms (XGboost, KNN, ID3,

Random Forest, and Adaboost) achieved an F1-Score above

0.93. Hyperparameter tuning can be done to the algorithms in

the future to examine how their performance changes in

accordance with the parameters. Also, other publicly available

IDS datasets could be used to assess model performance.

Funding Statement
Hormuud University funded the research and publication

of this article.

References
[1] ITU, Statistics, 2024. [Online]. Available: https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx.

[2] Ali A. Ghorbani, Wei Lu, and Mahbod Tavallaee, Network Intrusion Detection and Prevention- Concepts and Techniques, 1st ed., Springer

New York, 2010. [CrossRef] [Google Scholar] [Publisher Link]

[3] James F. Kurose, and Keith W. Ross, Computer Networking: A Top Down Approach, 7th ed., Pearson, 2017. [Google Scholar] [Publisher

Link]

[4] S. Latha, and Sinthu Janita Prakash, “A Survey on Network Attacks and Intrusion Detection Systems,” 2017 4th International Conference

on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, pp. 1-7, 2017. [CrossRef] [Google Scholar]

[Publisher Link]

[5] Peter Loshin, Which is Better: Anomaly-Based IDS or Signature-Based IDS?, TechTarget, 2019. [Online]. Available:

https://searchsecurity.techtarget.com/tip/IDS-Signature-versus-anomaly-detection

[6] Canadian Institute for Cybersecurity, Applications - CICFlowMeter (Formerly ISCXFlowMeter). [Online]. Available:

https://www.unb.ca/cic/research/applications.html#CICFlowMeter

[7] Kaspersky, Brute Force Attack: Definition and Examples, Kaspersky, 2021. [Online]. Available: https://www.kaspersky.com/resource-

center/definitions/brute-force-attack

[8] Maryam M. Najafabadi et al., “Machine Learning for Detecting Brute Force Attacks at the Network Level,” 2014 IEEE International

Conference on Bioinformatics and Bioengineering, Boca Raton, USA, pp. 379-385, 2014. [CrossRef] [Google Scholar] [Publisher Link]

0

1000

2000

3000

4000

5000

6000

7000

Random

Forest

ID3 AdaBoost MLP K Nearest

Neighbors

Gradient

Boosting

1
2

5
.0

5
9

9
1
.8

6
2
8 1

5
1
6
.6

1
7
2

2
3
4
0
.7

8
4
5

6
7
8
1
.5

8
3
8

8
3
9
.9

8
2
1

T
im

e
(s

)

Classifiers

https://doi.org/10.1007/978-0-387-88771-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A.+a+Ghorbani%2C+W.+Lu%2C+and+M.+Tavallaee%2C+%E2%80%9CNetwork+Intrusion+Detection+and+Prevention&btnG=
https://link.springer.com/book/10.1007/978-0-387-88771-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=J.+Kurose%2C+Keith%2C+seventh+edition%2C+Computer+networking%3A+a+top+down+approach%2C+&btnG=
https://catalog.loc.gov/vwebv/search?searchCode=LCCN&searchArg=2016004976&searchType=1&permalink=y
https://catalog.loc.gov/vwebv/search?searchCode=LCCN&searchArg=2016004976&searchType=1&permalink=y
https://doi.org/10.1109/ICACCS.2017.8014614
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+on+network+attacks+and+Intrusion+detection+systems&btnG=
https://ieeexplore.ieee.org/abstract/document/8014614
https://searchsecurity.techtarget.com/tip/IDS-Signature-versus-anomaly-detection
https://www.kaspersky.com/resource-center/definitions/brute-force-attack
https://www.kaspersky.com/resource-center/definitions/brute-force-attack
https://doi.org/10.1109/BIBE.2014.73
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+learning+for+detecting+brute+force+attacks+at+the+network+level&btnG=
https://ieeexplore.ieee.org/document/7033609

Abdisalam A. Mohamed et al. / IJECE, 11(3), 195-208, 2024

207

[9] Daniel J. Barrett, Richard E. Silverman, and Robert G. Byrnes, SSH, The Secure Shell - The Definitive Guide, 1st ed., O’Reilly Media,

2001. [Google Scholar] [Publisher Link]

[10] Riyad Alshammari, and A. Nur Zincir-Heywood, “A Flow Based Approach for SSH Traffic Detection,” 2007 IEEE International

Conference on Systems, Man and Cybernetics, Montreal, Canada, pp. 296-301, 2007. [CrossRef] [Google Scholar] [Publisher Link]

[11] Maryam M. Najafabadi et al., “Detection of SSH Brute Force Attacks Using Aggregated Netflow Data,” 2015 IEEE 14th International

Conference on Machine Learning and Applications (ICMLA), Miami, USA, pp. 283-288, 2015. [CrossRef] [Google Scholar] [Publisher

Link]

[12] GitHub, lanjelot/patator: Patator is a Multi-Purpose Brute-Forcer, with a Modular Design and a Flexible Usage. [Online]. Available:

https://github.com/lanjelot/patator

[13] Peter Likarish, Eunjin Jung, and Insoon Jo, “Obfuscated Malicious Javascript Detection Using Classification Techniques,” 2009 4th

International Conference on Malicious and Unwanted Software (MALWARE), Montreal, Canada, pp. 47-54, 2009. [CrossRef] [Google

Scholar] [Publisher Link]

[14] Maryam Feily, Alireza Shahrestani, and Sureswaran Ramadass, “A Survey of Botnet and Botnet Detection,” 2009 Third International

Conference on Emerging Security Information, Systems and Technologies, Athens, Greece, pp. 268-273, 2009. [CrossRef] [Google

Scholar] [Publisher Link]

[15] Arash Habibi Lashkari et al., “A Survey Leading to a New Evaluation Framework for Network Based Botnet Detection,” Proceedings of

the 2017 7th International Conference on Communication and Network Security, pp. 59-66, 2017. [CrossRef] [Google Scholar] [Publisher

Link]

[16] Anna Sperotto, and Aiko Pras, “Flow-Based Intrusion Detection,” 12th IFIP/IEEE International Symposium on Integrated Network

Management (IM 2011) and Workshops, Dublin, Ireland, pp. 958-963, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[17] Canadian Institute for Cybersecurity, CSE-CIC-IDS2018 on AWS, A Collaborative Project between the Communications Security

Establishment (CSE) & The Canadian Institute for Cybersecurity (CIC). [Online]. Available: https://www.unb.ca/cic/datasets/ids-

2018.html

[18] G. Carl et al., “Denial-of-Service Attack-Detection Techniques,” IEEE Internet Computing, vol. 10, no. 1, pp. 82-89, 2006. [CrossRef]

[Google Scholar] [Publisher Link]

[19] GitHub, jseidl/GoldenEye: GoldenEye Layer 7 (KeepAlive+NoCache) DoS Test Tool. [Online]. Available:

https://github.com/jseidl/GoldenEye0

[20] Sunny Behal, and Krishan Kumar, “Characterization and Comparison of DDoS Attack Tools and Traffic Generators - A Review,”

International Journal of Network Security, vol. 19, no. 3, pp. 383-393, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[21] Sergey Shekyan, Tag: Slow http Attack, Qualys Community, 2011. [Online]. Available: https://blog.qualys.com/tag/slow-http-attack

[22] Saman Taghavi Zargar, James Joshi, and David Tipper, “A Survey of Defense Mechanisms against Distributed Denial of Service (DDOS)

Flooding Attacks,” IEEE Communications Surveys & Tutorials, vol. 15, no. 4, pp. 2046-2069, 2013. [CrossRef] [Google Scholar]

[Publisher Link]

[23] GitHub, NewEraCracker/LOIC: Low Orbit Ion Cannon - An Open Source Network Stress Tool, Written in C#. Based on Praetox’s LOIC

Project. [Online]. Available: https://github.com/NewEraCracker/LOIC/

[24] Roxana Papadie, and Ioana Apostol, “Analyzing Websites Protection Mechanisms against DDoS Attacks,” 2017 9th International

Conference on Electronics, Computers and Artificial Intelligence (ECAI), Targoviste, Romania, pp. 1-6, 2017. [CrossRef] [Google

Scholar] [Publisher Link]

[25] Jose Fonseca, Marco Vieira, and Henrique Madeira, “Testing and Comparing Web Vulnerability Scanning Tools for SQL Injection and

XSS Attacks,” 13th Pacific Rim International Symposium on Dependable Computing (PRDC 2007), Melbourne, Australia, pp. 365-372,

2007. [CrossRef] [Google Scholar] [Publisher Link]

[26] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani, “Toward Generating a New Intrusion Detection Dataset and Intrusion

Traffic Characterization,” Proceedings of the 4th International Conference on Information Systems Security and Privacy (ICISSP), vol. 1,

pp. 108-116, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[27] Srilatha Chebrolu, Ajith Abraham, and Johnson P. Thomas, “Feature Deduction and Ensemble Design of Intrusion Detection Systems,”

Computers & Security, vol. 24, no. 4, pp. 295-307, 2005. [CrossRef] [Google Scholar] [Publisher Link]

[28] Weiming Hu, Wei Hu, and Steve Maybank, “AdaBoost-Based Algorithm for Network Intrusion Detection,” IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 38, no. 2, pp. 577-583, 2008. [CrossRef] [Google Scholar] [Publisher Link]

[29] Warusia Yassin et al., “Anomaly-Based Intrusion Detection through K-Means Clustering and Naive Bayes Classification,” Proceedings

of the 4th International Conference on Computing and Informatics, pp. 298-303, 2013. [Google Scholar] [Publisher Link]

[30] V. Kanimozhi, and T. Prem Jacob, “Artificial Intelligence Based Network Intrusion Detection with Hyper-Parameter Optimization Tuning

on the Realistic Cyber Dataset CSE-CIC-IDS2018 Using Cloud Computing,” ICT Express, vol. 5, no. 3, pp. 211-214, 2019. [CrossRef]

[Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SH%2C+The+Secure+Shell+-+The+Definitive+Guide&btnG=
https://www.oreilly.com/library/view/ssh-the-secure/0596008953/
https://doi.org/10.1109/ICSMC.2007.4414006
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+flow+based+approach+for+SSH+traffic+detection&btnG=
https://ieeexplore.ieee.org/document/4414006
https://doi.org/10.1109/ICMLA.2015.20
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detection+of+SSH+brute+force+attacks+using+aggregated+netflow+data&btnG=
https://ieeexplore.ieee.org/document/7424322
https://ieeexplore.ieee.org/document/7424322
https://doi.org/10.1109/MALWARE.2009.5403020
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Obfuscated+malicious+javascript+detection+using+classification+techniques%2C&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Obfuscated+malicious+javascript+detection+using+classification+techniques%2C&btnG=
https://ieeexplore.ieee.org/document/5403020
https://doi.org/10.1109/SECURWARE.2009.48
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+of+botnet+and+botnet+detection&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+of+botnet+and+botnet+detection&btnG=
https://ieeexplore.ieee.org/abstract/document/5210988
https://doi.org/10.1145/3163058.3163059
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+leading+to+a+new+evaluation+framework+for+networkbased+botnet+detection&btnG=
https://dl.acm.org/doi/10.1145/3163058.3163059
https://dl.acm.org/doi/10.1145/3163058.3163059
https://doi.org/10.1109/INM.2011.5990529
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A.+Sperotto+and+A.+Pras%2C+%E2%80%9CFlow-based+intrusion+detection%2C&btnG=
https://ieeexplore.ieee.org/document/5990529
https://doi.org/10.1109/MIC.2006.5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Denial-of-service+attack-detection+techniques&btnG=
https://ieeexplore.ieee.org/document/1580418
https://doi.org/10.6633/IJNS.201703.19(3).07
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Characterization+and+comparison+of+DDoS+attack+tools+and+traffic+generators+-+a+review&btnG=
https://www.airitilibrary.com/Article/Detail/18163548-201705-201703030017-201703030017-383-393
https://doi.org/10.1109/SURV.2013.031413.00127
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+of+defense+mechanisms+against+distributed+denial+of+service+%28DDOS%29+flooding+attacks&btnG=
https://ieeexplore.ieee.org/document/6489876
https://doi.org/10.1109/ECAI.2017.8166454
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analyzing+websites+protection+mechanisms+against+DDoS+attacks&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analyzing+websites+protection+mechanisms+against+DDoS+attacks&btnG=
https://ieeexplore.ieee.org/document/8166454
https://doi.org/10.1109/PRDC.2007.55
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Testing+and+comparing+web+vulnerability+scanning+tools+for+SQL+injection+and+XSS+attacks&btnG=
https://ieeexplore.ieee.org/document/4459684
https://doi.org/10.5220/0006639801080116
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Toward+generating+a+new+intrusion+detection+dataset+and+intrusion+traffic+characterization&btnG=
https://www.scitepress.org/Link.aspx?doi=10.5220/0006639801080116
https://doi.org/10.1016/j.cose.2004.09.008
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Feature+deduction+and+ensemble+design+of+intrusion+detection+systems&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S016740480400238X
https://doi.org/10.1109/TSMCB.2007.914695
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=AdaBoost-based+algorithm+for+network+intrusion+detection&btnG=
https://ieeexplore.ieee.org/document/4454220
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Anomaly-based+Intrusion+Detection+Through+K-+Means+Clustering+and+Naive+Bayes+Classification&btnG=
https://soc.uum.edu.my/icoci/2023/icoci2013/PDF/PID49.pdf
https://doi.org/10.1016/j.icte.2019.03.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Artificial+Intelligence+based+Network+Intrusion+Detection+with+hyper-parameter+optimization+tuning+on+the+realistic+cyber+dataset+CSE-CIC-IDS2018+using+cloud+computing&btnG=
https://www.sciencedirect.com/science/article/pii/S2405959518305976

Abdisalam A. Mohamed et al. / IJECE, 11(3), 195-208, 2024

208

[31] Qianru Zhou, and Dimitrios Pezaros, “Evaluation of Machine Learning Classifiers for Zero-Day Intrusion Detection - An Analysis on

CIC-AWS-2018 Dataset,” arXiv, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[32] Peng Lin, Kejiang Ye, and Cheng-Zhong Xu, “Dynamic Network Anomaly Detection System by Using Deep Learning Techniques,”

International Conference on Cloud Computing, pp. 161-176, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[33] Laurens D’hooge et al., “Inter-Dataset Generalization Strength of Supervised Machine Learning Methods for Intrusion Detection,” Journal

of Information Security and Applications, vol. 54, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[34] Joffrey L. Leevy, and Taghi M. Khoshgoftaar, “A Survey and Analysis of Intrusion Detection Models Based on CSE-CIC-IDS2018 Big

Data,” Journal of Big Data, vol. 7, pp. 1-19, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[35] Qusyairi Ridho Saeful Fitni, and Kalamullah Ramli, “Implementation of Ensemble Learning and Feature Selection for Performance

Improvements in Anomaly-Based Intrusion Detection Systems,” 2020 IEEE International Conference on Industry 4.0, Artificial

Intelligence, and Communications Technology (IAICT), Bali, Indonesia, pp. 118-124, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[36] Gozde Karatas, Onder Demir, and Ozgur Koray Sahingoz, “Increasing the Performance of Machine Learning-Based IDSs on an

Imbalanced and Up-to-Date Dataset,” IEEE Access, vol. 8, pp. 32150-32162, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[37] XuKui Li et al., “Building Auto-Encoder Intrusion Detection System Based on Random Forest Feature Selection,” Computers & Security,

vol. 95, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[38] Katherinne Shirley Huancayo Ramos, Marco Antonio Sotelo Monge, and Jorge Maestre Vidal, “Benchmark-Based Reference Model for

Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics,” Sensors, vol. 20, no. 16, pp. 1-31, 2020. [CrossRef] [Google

Scholar] [Publisher Link]

[39] Abdelraman Alenazi et al., “Holistic Model for HTTP Botnet Detection Based on DNS Traffic Analysis,” International Conference on

Intelligent, Secure, and Dependable Systems in Distributed and Cloud Environments, pp. 1-18, 2017. [CrossRef] [Google Scholar]

[Publisher Link]

[40] Richard Zuech, John Hancock, and Taghi M. Khoshgoftaar, “Detecting Web Attacks Using Random Undersampling and Ensemble

Learners,” Journal of Big Data, vol. 8, pp. 1-20, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[41] Pierre Geurts, Damien Ernst, and Louis Wehenkel, “Extremely Randomized Trees,” Machine Learning, vol. 63, pp. 3-42, 2006. [CrossRef]

[Google Scholar] [Publisher Link]

[42] Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The Elements of Statistical Learning - Data Mining, Inference, and Prediction,

2nd ed., Springer New York, 2009. [CrossRef] [Google Scholar] [Publisher Link]

[43] Tianqi Chen, and Carlos Guestrin, “XGBoost: A Scalable Tree Boosting System,” Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pp. 785-794, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[44] Henrik Brink, Joseph W. Richards, and Mark Fetherolf, Real-World Machine Learning, Simon and Schuster, 2016. [Google Scholar]

[Publisher Link]

[45] Scikit learn, 3.2.4.3.2. sklearn.ensemble.RandomForestRegressor - scikit-learn 0.22.1 Documentation. [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

[46] William Groves, “Using Domain Knowledge to Systematically Guide Feature Selection,” Proceedings of the Twenty-Third International

Joint Conference on Artificial Intelligence, pp. 3215-3216, 2013. [Google Scholar] [Publisher Link]

https://doi.org/10.48550/arXiv.1905.03685
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evaluation+of+Machine+Learning+Classifiers+for+Zero-Day+Intrusion+Detection+--+An+Analysis+on+CIC-AWS-2018+dataset&btnG=
https://arxiv.org/abs/1905.03685
https://doi.org/10.1007/978-3-030-23502-4_12
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dynamic+network+anomaly+detection+system+by+using+deep+learning+techniques&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-23502-4_12
https://doi.org/10.1016/j.jisa.2020.102564
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Inter-dataset+generalization+strength+of+supervised+machine+learning+methods+for+intrusion+detection&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2214212619310415
https://doi.org/10.1186/s40537-020-00382-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+and+analysis+of+intrusion+detection+models+based+on+CSE-CIC-IDS2018+Big+Data&btnG=
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-020-00382-x
https://doi.org/10.1109/IAICT50021.2020.9172014
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Implementation+of+ensemble+learning+and+feature+selection+for+performance+improvements+in+anomaly-based+intrusion+detection+systems&btnG=
https://ieeexplore.ieee.org/document/9172014
https://doi.org/10.1109/ACCESS.2020.2973219
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Increasing+the+Performance+of+Machine+Learning-Based+IDSs+on+an+Imbalanced+and+Up-to-Date+Dataset&btnG=
https://ieeexplore.ieee.org/document/8993711
https://doi.org/10.1016/j.cose.2020.101851
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Building+Auto-Encoder+Intrusion+Detection+System+based+on+random+forest+feature+selection&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167404820301231
https://doi.org/10.3390/s20164501
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Benchmark-based+reference+model+for+evaluating+botnet+detection+tools+driven+by+traffic-flow+analytics&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Benchmark-based+reference+model+for+evaluating+botnet+detection+tools+driven+by+traffic-flow+analytics&btnG=
https://www.mdpi.com/1424-8220/20/16/4501
https://doi.org/10.1007/978-3-319-69155-8_1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Holistic+Model+for+HTTP+Botnet+Detection+Based+on+DNS+Traffic+Analysis&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-69155-8_1
https://doi.org/10.1186/s40537-021-00460-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detecting+web+attacks+using+random+undersampling+and+ensemble+learners&btnG=
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-021-00460-8
https://doi.org/10.1007/s10994-006-6226-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Geurts%2C+Springer%2C+Extremely+randomized+trees%2C+2006&btnG=
https://link.springer.com/article/10.1007/s10994-006-6226-1
https://doi.org/10.1007/978-0-387-84858-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hastie%2C+The+Elements+of+Statistical+Learning+Data+Mining%2C+Inference%2C+and+Prediction&btnG=
https://link.springer.com/book/10.1007/978-0-387-84858-7
https://doi.org/10.1145/2939672.2939785
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Chen+%2C+XGBoost%3A+A+scalable+tree+boosting+system&btnG=
https://dl.acm.org/doi/10.1145/2939672.2939785
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=B.+Cronin%2C+Henrik+Brink+Joseph+W.+Richards+Mark+Fetherolf+-+Machine+Learning.+2017&btnG=
https://www.manning.com/books/real-world-machine-learning
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Using+domain+knowledge+to+systematically+guide+feature+selection&btnG=
https://dl.acm.org/doi/10.5555/2540128.2540616

