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Abstract - Attacks against information systems have been sharply increasing recently. Cyberattacks are becoming less detectable 

by the normal antiviruses and firewalls. Various security systems have been deployed to protect information systems; Network 
Intrusion Detection Systems (NIDS) are among the most widely used security systems in the networking industry. IDS can be an 

anomaly-based or signature-based system. Signature-based NIDSs are effective against known attacks but futile against zero-

day attacks. To detect novel attack techniques, anomaly-based IDS has proven to be more useful than signature-based IDS. This 

study used six Machine Learning algorithms to detect network intrusion incidents. The CSE-CIC-IDS2018 dataset is employed 

to train and test the algorithms. The dataset is cleared of defects, and important features are selected using the Random Forest 

Regressor algorithm. A sample of the dataset with selected key features is applied to six machine learning algorithms (Gradient 

Boosting, AdaBoost, ID3, KNN, MLP, and Random Forest). Within a short period of time, the algorithms achieved the following 

F1-Scores: Gradient Boosting (0.95), AdaBoost (0.94), K-Nearest Neighbors (0.93), ID3 (0.93), Random Forest (0.93), and 

MLP (0.78). 

Keywords - AdaBoost, CSE-CIC-IDS2018, Machine Learning, MLP Network Intrusion Detection, Random Forest. 

1. Introduction 
According to the International Telecommunications Union 

(ITU), only 0.4% of the world population had internet access in 

1995. Now, more than 53% of the people around the world are 

connected to the internet [1]. The internet is one of the most 

significant technological achievements the world has ever seen 

in the 21st century.  

However, the proliferation of this technological 

advancement came with immense security problems. The 

industry of computing is exposed to an exponentially growing 

likelihood of unexpected downtime because of various cyber-

attacks and breaches. These violations are from cybercriminals 

and online terrorist operations [2].  

Tother with the rise of the Internet of Things (IoT), and 5G 

mobile network, more devices will become interconnected. Our 

internet dependency will rapidly increase in our daily lives, 

leading to new threats as well [3]. For any given communication 

to be secure, it must have the following characteristics: 

confidentiality, integrity, and availability. Network intrusion is 

any set of activities that aims to compromise the pillars of 

network security.  

To monitor systems for suspicious activity or policy 

infringements, a device or software application called the 

Network Intrusion Detection System (NIDS) is used [4]. NIDSs 

can be of two kinds based on their detection techniques: 

Signature-based NIDSs (SNIDS) and Anomaly-based NIDSs 

(ANIDS).  

Signature-based NIDSs detect attacks by searching for 

specific patterns in network traffic or predefined, well-known, 

suspicious instruction tactics used by attackers. Signature-based 

NIDS performs well in detecting any known attack. However, 

for unknown attacks or cases where an anomaly is present in the 

network traffic, the performance of Signature-based NIDS 

sharply decreases [4]. 

Anomaly-based NIDSs detect unusual network activities 

by examining the general patterns of network traffic flow 

without the need to inspect each packet. ANIDSs have been 
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successful in detecting previously unseen (novel) attacks, 

making them more efficient against zero-day attacks (unknown 

and unaddressed vulnerability) [5]. With the reality of ever-

changing attack scenarios, ANIDSs have become the most 

appropriate intrusion detection technology. Any given 

operational IDS must be able to conduct the following three 

steps: track and collect network flow data, clean raw data and 

convert it to an input format, and classify network traffic into 

normal or malicious traffic. 

In many studies, machine learning algorithms have been 

used to enhance IDS performance, specifically in achieving the 

most accurate detection rate and lowest false positive rates. The 

quality of the dataset used to train machine learning models 

contributes to its effectiveness; however, publicly available 

datasets contain more records and features, which will 

contribute to a longer training and testing time, an issue most of 

the studies did not address adequately.  

To bridge that gap, this study aims to improve time 

efficiency in the training and testing of machine learning 

algorithms used for intrusion-detecting purposes. To shorten the 

training and testing times of the algorithms, the most important 

features are selected, and using only a few of the most important 

features, six machine learning models are trained and tested. 

The study achieved substantial improvement in detecting 

intrusion fast. 

Another obstacle that the studies on intrusion detection face 

is the use of an old dataset; new attack types have emerged, and 

the old datasets do not reflect well on the newer attack types. 

This paper presents an anomaly-based network intrusion 

detection technique using machine learning algorithms trained 

with a sample of a benchmark dataset (CSE-CIC-IDS2018) 

with its features greatly reduced. The goal of this study is to 

contribute to the time efficiency enhancement of machine 

learning algorithms in the intrusion detection domain. 

The rest of the paper is organized as follows. Section 2 

explains the characteristics of the dataset used. Section 3 

reviews several previous research on NIDS. Sections 4 and 5 

discuss the details of the implementation method as well as the 

results, respectively. Section 6 concludes this paper lastly. 

2. The Dataset  
The CSE-CIC-IDS2018 dataset was developed by 

Canada’s national cryptologic agency called the 

Communications Security Establishment (CSE), together with 

the Canadian Institute for Cybersecurity (CIC). It contains 

fourteen distinct attacks grouped under six separate attack 

cases: DoS, DDoS, Brute-force, Infiltration, Web attacks, and 

Botnet. During the dataset development phase, an attacking 

infrastructure and a victim organization were developed. The 

attacking side had fifty machines, and the attacked 

organization being targeted had five departments with 30 

servers and 420 machines in total.  

Using the CICFlowMeter-V3 tool [6], eighty features 

were chosen to represent the characteristics of the traffic 

generated in the network (system logs and network traffic of 

all machines). The end product is a diverse, inclusive, and 
world-class dataset in the intrusion detection domain. It was 

made to reflect on complete user profiles to represent events 

and behaviors observed in the network.  

2.1. FTP-Brute Force 

According to Kaspersky [7], a brute force attack aims to 

break a password or username, discover a web page, or obtain 

the encryption key of a message [7]. It ultimately relies on trial 

and error. Depending on the complexity, the length of the 

victim’s password or username, and the technical level of the 

attacker, a brute-force attack may take anywhere from 

milliseconds to years. It is one of the most popular attack 

methods that hackers use despite being an old technique that 
existed before the internet in the form of a cryptanalytic attack 

[8]. 

Metasploit modules, Hydra, Ncrack, Nmap NSE scripts, 

and Medusa are some of the most popular tools used for 

password-cracking and brute-force attacks. Other tools, such as 

Hashpump and Hashcat, are used in password hash cracking. 

To create the CSE-CIC-IDS2018 dataset, Patator was utilized 

since it is among the most complete multithreaded, reliable, and 

flexible tools written in Python. Two modules of brute-force 

attacks are present in this dataset: FTP and SSH. A Kali Linux 

machine was set to be the machine to execute the attack and a 
machine running Ubuntu 14.0  operating system was the target 

machine [8]. 

FTP is a network protocol intended to facilitate the 

transfer of files between client and server in a network. For 

any file transfer to occur through FTP, verified credentials 

(username and password) are mandatory. The FTP-Patator 

attack aims to illegally acquire this username and password, 

thus compromising the victim’s system [8].  

2.2. SSH-Brute Force 

SSH is a network security protocol that encrypts and 

decrypts the operations of various services throughout the 

network. SSH had overtaken Telnet (which is not encrypted) in 

remote access aspects. That popularity makes SSH a vital target 

for cybercriminals, especially SSH Brute-force attacks [9,10].  

SSH brute force is one of the most popular forms of attacks 

waged to access a remote machine by performing repetitive 

authentication credential guessing trails using all possible 

password combinations until the correct one is reached [11]. 

The SSH-Brute-force data in the CSE-CIC-IDS2018 dataset 

was created using the same Patator tool [12] used in the FTP 

Brute-force attack.  
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2.3. Brute Force-XSS 

Cross Site Scripting attacks are in the list of well-known 

web attack techniques. It all begins with the injection of a 

malicious piece of code into the targeted webpage. When a 

legitimate user visits this webpage, the code is immediately 

executed without being noticed. The results can be very 
devastating to the extent that they may include identity theft, 

impersonation, and arbitrary code execution [13]. 

2.4. Botnet 

The word ‘Bot’ originates from the word “Robot.” It is a 

common term for describing an automated process, such as a 

Google bot, that collects information from the internet. Bots 

were created with good intentions; however, they can also be 

used for malicious activities (such as information theft) or as 

launching pads for distributed attacks. Malicious software is 

stealthily installed on the targeted machine to infect it. Control 

of the machine is then passed to a remote attacker, who will then 

have direct command. Infected machines taken hold by 
attackers are referred to as zombie machines. They are primarily 

used to wage Distributed Denial of Service attacks (DDoS) [14]. 

Botnets use a level command and control mechanism with 

a wide range of protocols. Such diversity makes botnet 

detection difficult. During passive mode, limited or no activities 

are present in the network, making Botnet detection even more 

challenging [15]. In the active mode, the packet flow and packet 

size with the TCP Push (PSH) flag used to speed up packet flow 

help IDSs detect Botnets [16].  

A Trojan horse malware package was applied for the CSE-

CIC-IDS2018 dataset. It runs on the version of Microsoft 
Windows called Zeus, used to simulate many malicious and 

criminal acts such as banking information theft by form 

grabbing and man-in-the-browser keystroke logging. It can also 

be used to install Crypto-Locker ransomware. During dataset 

generation, an open-source botnet (called Ares botnet) was 

utilized. Ares has the following abilities: File upload/download, 

Keylogging and Remote cmd.exe shell Persistence Screenshot. 

During the execution scenario, target machines were infected 

with Zeus and Ares botnets, and screenshots were requested 

from the zombies every 400 seconds [17].  

2.5. DOS-GOLDEN-EYE 

 DoS attacks directly aim at blocking legitimate users’ 
rights to access the system by reducing system availability. DoS 

attacks flood networks with malicious loads consisting of 

superfluous network datagrams or normal packets that fill more 

CPU processing capabilities, network buffers, and overall 

network bandwidth. As system resources form a bottleneck, 

performance drops, and the targeted system may eventually 

crash [18]. Although DoS attacks consist of various types, four 

DoS attack types were applied on the CSE-CIC-IDS2018 

dataset: DoS-Hulk, DoS-GoldenEye, DoS-SlowHTTPTest, and 

DoS-Slowloris. GoldenEye is a multithreaded Python-based 

HTTP DoS Tool used to test site vulnerabilities during DoS 

attacks. It allows numerous parallel connections to a given 

URL. It applies the Keep-Alive method to substantially increase 

the size of files transmitted over a given TCP connection. It also 

deactivates HTTP-Cache-Control using the NoCache message 

feature. By using an attack vector containing ‘HTTP Keep-

Alive and NoCache’, GoldenEye’s attack can immediately 
deplete system resources. Attack packets of this attack type are 

unencrypted. They do not support fabricated IP (spoofed) 

addresses [19].   

2.6. DOS-HULK 

HULK, short for HTTP Unbearable Load King, is a multi-

purpose attack tool that can be utilized to launch both DDoS and 

DoS attacks. It can take down servers in a very short duration 

of time by generating HTTP GET flood requests and TCP SYN 

flood. Another extremely dangerous trait is that it can 

completely obscure the real user platform and instead employ a 

dissimilar sample for separate attack execution [20].   

2.7. DOS-SLOWLORIS 
Slowloris is a tool developed using Perl programming 

language where both the GUI and command line interfaces are 

used to generate an attack. It floods the victim with TCP SYN 

requests to the target machine. When this type of attack targets 

a web server, incomplete and smaller-sized TCP packets with 

SYN flags can be observed [20].  

2.8. DOS-SLOWHTTPTEST 

Slow Read DoS attack was created by Sergey Shekyan 

[21]. In this scenario, a hacker typically sends a legitimate 

HTTP request to the victim’s Web server and then reads the 

response very slowly. The attacker sends a legitimate request 
after the normal TCP three-way handshake. Next, the attacker 

advertises a window size smaller than the average size and 

slows down the HTTP response operation.  

Upon advertising a window size of 0, the Web server stops 

sending data despite maintaining an open connection. 

Receiving more authentic requests makes the Web server 

quickly reach maximum capacity and stop serving legitimate 

clients. Since this attack uses legitimate HTTP requests, it is 

extremely difficult to segregate normal traffic from malicious 

ones. To safeguard networks against this type of attack, the 

network layer must be continuously monitored with more focus 

on small-sized packets [20].  

2.9. DDOS-LOIC (UDP/HTTP) 

DDoS is an organized attack directed to stop authentic 

users from accessing network resources, even causing systems 

to crash from extraordinary load. It can be executed with a 

massive number of compromised hosts. At the preliminary 

stage, attackers spot vulnerabilities in a given network and 

infect a vast number of machines with malware to remotely 

control them eventually. In the second phase, attackers exploit 

the infected machines (Zombies) to spread malicious packets to 

the attacked machine(s) without the infected machines realizing 



Abdisalam A. Mohamed et al. / IJECE, 11(3), 195-208, 2024 

198 

their participation in these harmful activities. Depending on the 

concentration of attack packets and the number of zombies used 

to launch the attack, subsequent damage will be inflicted on the 

victim’s network and machines [22].  

LOIC is a free network testing platform created by Praetox 

technologies for the network stress test. It is a Graphic User 
Interface-based DDoS attack platform that can run on Windows 

and macOS operating systems. Its ease of use and widespread 

availability allow criminals to efficiently conduct coordinated 

and severe DDoS attacks without the need for more knowledge 

or experience [23].  

2.10. DDOS-HOIC 

High Orbit Ion Cannon (HOIC) is a free, BASIC-written, 

speedy, multithreaded, network stress testing tool that can take 

down hundreds of websites at once through HTTP flood and 

POST requests sent to the target server. HOIC has the ability to 

drain the resources of the victim’s server [24]. 

2.11. SQL Injection  
Uncontrolled input fields at the user interface of 

applications with bugs help attackers alter the SQL commands 

and queries directed to the database. Such attacks are known as 

SQL injection attacks. These attacks are prevalent since finding 

vulnerabilities and exploiting them is extremely easy.  

The damages inflicted on the victim are phenomenal due to 

direct database access. A successfully executed SQL injection 

attack provides the hacker with unauthorized executive 

command over data, access to privileged database accounts, 

imitate a legitimate user, and access the web server [25]. 

2.12. Infiltration 

Network infiltration is a network attack from the inside. 

It is mainly accomplished by exploiting vulnerable software 

such as Adobe Acrobat Reader. After successfully completing 

the exploitation phase, a backdoor is set up on the targeted 

machine to allow different attacks to be waged on the victim’s 

network (such as IP sweep, service enumerations using Nmap, 

and port scan) [26]. 

3. Related Work 
In recent years, numerous research that apply machine 

learning in the intrusion detection domain have been 

published. This section summarizes the key discoveries. In 

2005, Chebrolu et al. [27] defined computationally useful 

features for IDS applications using two popular algorithms: 

Classification and Regression Trees (CART) and Bayesian 
Networks (BN).  

The researchers established a hybrid model of ensemble 

classifiers for intrusion detection purposes. After training the 

model on the KDD CUP99 dataset, the study achieved an 

impressive 100% accuracy for Normal (Benign) traffic, Probe, 

and DOS attack detection. They also acquired an average 

accuracy of 84% for detecting U2R and R2L scenarios. 

Weiming Hu et al. [28] presented an AdaBoost algorithm-

based IDS using decision stumps as weak classifiers. The 

weak classifiers are simultaneously applied with continuous 

and categorical features, forming a strong classifier. An 
adaptable initial weights strategy was employed for minimum 

overfitting, leading to enhanced performance.  

From the KDD CUP99 dataset, four attack types were 

examined in the experiments with and without handling 

overfitting techniques: DOS, U2R, R2L, and Probe. A 

99.159% detection rate was accomplished without handling 

overfitting, and a 99.166% accuracy was achieved with 

handling overfitting.  

The researchers proposed that their algorithm has a lower 

error rate and computational complexity in comparison to 

other algorithms tested on the same dataset. The 

aforementioned studies presented Machine Learning models 
trained on old intrusion detection datasets, making the 

detection of new attack types challenging; in this study, 

however, the CSE-CIC-IDS 2018 dataset, which is a newer 

and more diverse dataset, is used to train the machine learning 

models. 

In 2013, Warusia Yassin et al. [29] created a new model 

that combines the Naïve Bayes Classifier and K-Means 

Clustering algorithms to prevent false alarm constraints. The 

IDS model was implemented on the ISCX 2012 dataset. The 

researchers accomplished a high-performing IDS of 99% 

accuracy using their algorithm combination and a 98.8% 
accuracy using Naïve Bayes alone. 

In 2017, Sharafaldin et al. [26] implemented seven popular 

machine learning algorithms on the CICIDS2017 dataset to 

detect more than thirteen attack types: Multilayer perceptron, 

AdaBoost, Quadratic Discriminant Analysis (QDA), K-Nearest 

Neighbors (KNN), Random Forest (RF), ID3 and Naïve-Bayes 

(NB). The Random Forest Regressor was used to operate with 

the minimum but the most important features. The study 

achieved the following results for each algorithm: ID3 (98%), 

KNN (96%), RF (97%), Naïve-Bayes (84%), AdaBoost (77%), 

MLP (76%), and QDA (92%). 

Kanimozhi and Jacob [30] proposed an IDS model for 
Botnet attack detection that targets the financial sector. The IDS 

model was created using artificial intelligence trained with the 

IDS2018 dataset. The model developed in this paper is 

presented as a real-life applicable system with a superb 99.97% 

accuracy, 0.999 average area under the ROC curve, and a 

minimal false-positive rate of 0.03. To ensure an even more 

powerful, the study suggested the use of a GPU-based 

framework instead of a CPU-based one. 
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Zhou & Pezaros [31] implemented six algorithms (MPL, 

QDA, Random Forest, ID3, Naïve Bayes and KNN ) with the 

CSE-CICIDS2018 dataset to protect against Zero-Day attacks. 

In the training phase, the models were trained with fourteen 

attack scenarios in the dataset. During the testing phase, eight 

novel (Zero-Day) attack types and regular traffic were used. The 
model accuracy was evaluated under the following parameters: 

Recall, Precision, F1-Score, and time overhead. Decision tree 

algorithms outperformed all other algorithms. The model has 

100% accuracy on Zero-Day attacks and normal data only and 

96% accuracy for scrambled Zero-Day attacks and benign data, 

with 5% false-positive rates. 

Lin et al. [32] presented a robust anomaly detection system 

using deep learning methods. The study adopted Long Short-

Term Memory (LSTM) to create a deep neural network 

architecture. An Attention Mechanism (AM) was also 

employed to improve the output of the model. To overcome the 

class imbalance issue in the CSE-CICIDS2018 dataset, 
SMOTE and an improved loss function algorithm were 

deployed. The model achieved a 96.2% accuracy. 

D’hooge et al. [34] investigated the efficiency of 

supervised machine learning algorithms trained on separate 

normal traffic from various types of attack traffic. Botnet and 

DoS/SSL attack types, represented in two popular datasets 

(CIC-IDS2017 and CSE-CIC-IDS2018), were used to train 

and test twelve supervised learning algorithms. The credibility 

of inter-dataset generalization of the trained models was also 

examined. The study saw reduced effectiveness of machine 

learning algorithms used for intrusion detection systems with 
dataset(s) other than those they were trained with. Therefore, 

further experimentation on the same domain was suggested. 

Fitni & Ramli [35] suggested an ensemble learning 

method which combines the advantages of individual 

detection algorithms. The study compared seven classifiers 

and presented the best suitable basic algorithms for ensemble 

learning. Logistics regression, Gradient Boosting, and 

Decision trees were selected for the ensemble model, which 

was later trained and tested with the IDS2018 dataset. For the 

feature engineering steps, Spearman’s rank correlation 

coefficient was used for important feature identification. With 

the reduced number of features (23 of 80 features), the model 
achieved 98.8% precision, 98.8% accuracy, 97.9% F1-Score 

and 97.1% recall. 

Karatas et al. [36] used Gradient Boosting, RF, k-NN, 

Adaboost, Linear Discriminant Analysis, and DT to 

differentiate attack traffic and benign traffic in the 

CICIDS2018 dataset. The Synthetic Minority Oversampling 

Technique (SMOTE) technique was applied to the dataset to 

solve class imbalance. The models were built on a Python 

environment utilizing Scikit-learn TensorFlow, Keras, and. 

The dataset was preprocessed to tackle the computational 

problems arising from some empty values and “Infinity”. One-

hot encoding was also employed. Five-fold cross-validation 

was used with 80% of the samples in the training session. The 

other 20% of instances were used as a test dataset; after 

implementing SMOTE, the overall size of the dataset 

expanded by around 17%. The study found that Adaboost was 

found as the best-performing algorithm, with an average 
precision score of 99.70%, an accuracy level of 99.69%, and 

a recall score of 99.69%. 

Li et al. [37] employed feature selection and clustering to 

the CSECIC-IDS2018 dataset, including live real-time 

detection using an autoencoder classifier. In the preprocessing 

phase, “Infinity” and “NaN” instances were converted to 0. 

The dataset was first grouped into sparse and dense matrices 

and then normalized using L2 regularization.  

The model was developed using Python, and important 

features were chosen using the Random Forest algorithm. 85% 

of the dataset was applied for training, while 15% was used 

for testing. The popular Affinity Propagation clustering 
algorithm was implemented on 25% of the training data to 

collect features into subgroups and, in turn, fed to the 

autoencoder. The recall rates of the developed model and that 

of another autoencoder model (named Kitnet) were compared. 

The two compared models achieved a recall of 100% for 

several attack types. The researchers proposed that their 

proposed model achieved a faster detection than that of 

KitNet. 

Ramos et al. [38] assessed a group of five learners using 

the CSE-CIC-IDS2018 dataset with the ISOT HTTP Botnet 

[39], a Botnet dataset containing normal and malicious records 
of DNS traffic. Several machine learning algorithms were 

used, including Random Forest, Decision Tree, Naive Bayes, 

k-Nearest Neighbor (k-NN) [31], and SVM. Different Feature 

engineering techniques with the feature importance method of 

Random Forest were used. Nineteen important features were 

selected for the IDS2018 dataset, while twenty features were 

chosen for the ISOT HTTP dataset.  

The models were developed using Scikit-learn. 80% of 

the sample was used for training and 20% for testing. A five-

fold cross-validation was subsequently implemented, and the 

Grid Search technique was deployed for optimization 

purposes. For the CSE-CIC-IDS2018 dataset, the Random 
Forest and Decision Tree algorithms scored 99.99% accuracy, 

100% precision, and 99.99% recall. Similarly, Decision Tree 

and Random Forest learners achieved the best accuracy for 

ISOT HTTP. 

Zuech et al. [40] highlighted the effects of class 

imbalance in machine learning applications regarding 

cybersecurity. Seven classifiers were trained and tested on the 

CSE-CIC-IDS2018 dataset to detect web attacks and normal 

traffic: CatBoost (CB), Decision Tree (DT),  XGBoost (XGB), 

Random Forest (RF), Naive Bayes (NB), Logistic Regression 
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(LR) and LightGBM (LGB).  Several Random Undersampling 

(RUS) steps were made.  

Both the Area Under the Precision-Recall Curve 

(AUPRC) and the Area Under the Receiver Operating 

Characteristic Curve (AUC) were used as performance 

matrices. The study found that different random 
undersampling ratios statistically lead to varied performances 

in separating web attacks from normal traffic. Distinct 

classifiers also statistically achieve different accuracy levels. 

Most of the previous IDS papers had little intent in 

reducing the number of features in the dataset, Therefore, 

reducing the number of dataset features to a few but important 

features should be considered as an important factor.  

4. Methodology 
Several pre-processing steps are made to clean the dataset 

from the defects observed before implementing machine 

learning algorithms that classify benign and malicious traffic. A 

cleaned sample of the dataset is selected and divided into two 

parts: a set for training and a set for testing. Since the dataset 

contains 80 features, the most important features are selected to 

be applied to the algorithms. The experiments in this study have 

been conducted in two approaches: single specific attack type 

detection and overall attack and benign classification. Figure 1 

illustrates the implementation process. 

Machine learning experiments are implemented on a 

machine with 8GB RAM and Intel (R) Core (TM) i7-4712HQ 

CPU @ 2.30 GHz using the Microsoft Windows 10 operating 

system. We used the Sklearn module in Python 3.8 to 

implement the algorithms. Six machine learning algorithms are 

implemented: Adaboost, Decision Tree (ID3), Random Forest, 

Gradient Boosting, K-Nearest Neighbors (KNN), and 

Multilayer Perceptron (MLP) [41-43].  

Table 1.  ML Algorithms hyperparameter values 

ML Algorithms Hyperparameters 

Adaboost 
Estimator = 50, Learning Rate 

=1.0, Algorithm = “samme R” 

Random Forest 
Minimum Samples split =2, 

minimum samples leaf =1 

Decision Tree 

Sample split =2, Minimum 

samples leaf =1, Estimator = 

“warn”, Criterion = “Gini” 

Gradient Boosting 
Estimator = 100, Maxi Depth =3, 

Validation =0.1 

MLP 
Hidden Layer size =(13,13,13), 

Max inter =500 

KNN 
Class =5, Weight = “Uniform”, 

Distance = “Minkowski” 

4.1. Dataset Cleaning  

The IDS 2018 dataset contains network traffic in Packet 

Capture (Pcap) format, logs, and ten pre-processed and 

labelled CSV files. The CSV files contain more than 16 

million records. Only a sample of those records (around 9 

million) were used in this research.  

Defects in the selected dataset that require cleaning have 

been addressed. Missing and infinite values were replaced 

with 0 and 1, respectively. Records with more redundant or 

missing values were deleted. Benign and malicious labels 

were encoded with 0 and 1, respectively. To address the class 

imbalance in the original dataset, samples representing each 

attack type together with normal traffic samples were 

collected in a separate file with a 30:70 ratio. 

Similarly, a single file containing all attack types 

represents an attack, and benign samples represent the normal 

attack dataset. The two dataset groups were utilized to train 

and test the models in different experiments. Table 3 illustrates 
the samples of each attack for the dataset utilized in this study. 

Fig. 1 Experimental setup 
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4.2. Feature Selection    
Training machine learning algorithms with a dataset that 

has many features can cause multiple problems, such as 

overfitting for instance. It may result in an apparent increase in 

the accuracy of the model at the training stage but degrades the 

effectiveness of the model on previously unseen data in the 
testing phase. It may also extend the training time of the 

algorithms. Selecting a descriptive subset of features is a good 

method to avoid overfitting and simultaneously improve the 

model’s accuracy when fed with new data.  The use of a smaller 

number of features substantially reduces the computational cost 

of training and prediction as well [44]. This study utilized the 

Random Forest Regressor algorithm, which is based on the tree 

concept for the feature selection procedure. This algorithm 

enables features that contribute even a limited number of trees 
to remain visible. In the implementation phase, the Random 

Forest Regressor class of the Sklearn library is used to calculate 

feature importance [45]. 

Table 2. Important features selected for each attack type 

Attack Type Features Attack Type Features 

Bot 

Bwd Pkt Len Mean DoS Attacks-Hulk Flow IAT Min 

Flow Pkts/s  Bwd Pkt Len Std 

Flow IAT Mean  Fwd Pkt Len Max 

Flow IAT Min  Fwd Pkt Len Std 

Fwd Pkt Len Mean  Bwd Pkt Len Max 

Brute Force -Web 

Flow Byts/s DoS Attacks-SlowHTTPTest Flow Pkts/s 

Fwd Pkt Len Mean  Flow IAT Mean 

Flow IAT Mean  Flow Duration 

Flow Duration  Flow IAT Max 

Flow IAT Max  Tot Fwd Pkts 

Brute Force -XSS 

Fwd Pkt Len Mean DoS attacks-Slowloris Fwd Pkt Len Max 

TotLen Fwd Pkts  Flow Byts/s 

Tot Bwd Pkts  Tot Bwd Pkts 

Fwd Pkt Len Max  Flow IAT Min 

Bwd Pkt Len Mean  Fwd IAT Tot 

DDOS Attack-

HOIC 

Flow Duration FTP-BruteForce Flow IAT Mean 

Flow IAT Max  Flow Duration 

Bwd Pkt Len Std  Flow IAT Max 

Fwd IAT Tot  Tot Fwd Pkts 

Tot Bwd Pkts  Flow IAT Min 

DDOS Attack-

LOIC-UDP 

TotLen Fwd Pkts Infiltration Flow Byts/s 

Flow Duration  Flow IAT Min 

Bwd Pkt Len Mean  Flow IAT Max 

Flow IAT Min  Flow Duration 

Flow IAT Max  Flow IAT Mean 

DDoS Attacks-

LOIC-HTTP 

Flow IAT Max SQL Injection Flow IAT Max 

TotLen Fwd Pkts  Flow Byts/s 

Flow Duration  Bwd Pkt Len Max 

Flow IAT Std  Bwd Pkt Len Std 

Fwd Pkt Len Std  Flow Duration 

DoS Attacks-

GoldenEye 

Fwd Pkt Len Max SSH-Bruteforce Flow IAT Mean 

Flow Duration  Flow Pkts/s 

Fwd IAT Tot  Flow Duration 

Flow IAT Max  Flow IAT Max 

Fwd Pkt Len Mean  Flow IAT Min 
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The extensive need for domain knowledge in feature 

engineering widely exists for network intrusion detection. 

Several key considerations must be made when training a 

model with a given dataset. Numerous features can be 

misleading. They may look significant; however, their 

underlying importance in identifying network anomalies can be 
relatively small or non-existent. 

Table 3. Number of records of each class in the cleaned dataset 

Traffic Type Number of Samples 

Benign 6584535 

DDOS attack-HOIC 686012 

DDoS attacks-LOIC-HTTP 576191 

DoS attacks-Hulk 461912 

Bot 286191 

FTP-BruteForce 193360 

SSH-Bruteforce 187589 

Infiltration 161934 

DoS attacks-SlowHTTPTest 139890 

DoS attacks-GoldenEye 41508 

DoS attacks-Slowloris 10990 

DDOS attack-LOIC-UDP 1730 

Brute Force -Web 611 

Brute Force -XSS 230 

SQL Injection 87 

Total Number Samples 9332770 

Total Attack Samples 2748235 (28.9%) 

Total Benign Samples 6584535 (71.1%) 

Packet inspection and network flow monitoring are 

examples of two popular network traffic monitoring methods. 

In a typical network-based anomaly detection process, the 

traffic traversing the network should be monitored for 

suspicious activity. The detection mechanism should also be 

fast and efficient. To meet these demands, flow-based analysis 
has become the preferred option since it allows attack detection 

through packet header information instead of packet payload 

information, as applied in packet inspection. 

The five most popular attributes used to define a network 

flow are Destination IP, Source IP, Destination Port, Source 

Port, and Network Protocol [8]. Attackers are noticeably 

evading these well-monitored features since more attention is 

placed on such attributes. They avoid using well-known ports 

and sidestep security apparatus by using generated/fake IP 

addresses (spoofing). Port numbers can also range from 1 to 

65535, indicating that port numbers other than those observed 

in training sessions may appear in the testing phase, thus 
disrupting the evaluation mechanism. Some applications are 

transmitted over the same port as well. Focusing on port 

numbers or any other feature related to source or destination ID 

will, therefore, be terribly misleading [46, 10]. Table 2 displays 

the five most important features of each attack type. 

4.3. Evaluation Matrices     
In the case of attack and benign classifications, the 

following four cases can occur: False Positive (FP): a benign 

sample classified as an attack sample; True Positive (TP): an 

attack sample classified as a malicious sample; False Negative 

(FN): an attack sample classified as a benign sample; True 
Negative (TN): a benign sample classified as a benign sample.   

 Accuracy: The ratio of records correctly classified to the 

total number of samples. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝐹𝑃+𝐹𝑁+𝑇𝑃+𝑇𝑁
  (1) 

 Recall: The ratio of correctly classified attack samples to 

the total number of attack samples. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝐹𝑁+𝑇𝑃
                               (2) 

 Precision: The ratio of correctly classified attack samples 

to the total number of samples classified as an attack. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃+𝑇𝑃
                         (3) 

 F1-Score: weighted average of precision and recall. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                   (4) 

5. Results 
This section illustrates the outcomes of the machine 

learning experiments. The implementation is conducted in 
two phases: individual attack classification and overall 

malicious-normal classification. The outcomes are evaluated 

in terms of the running time, precision, recall, F1 scores, and 

accuracy levels of ML algorithms. 

5.1. Individual Attack Detection  

The five features with the highest level of importance in 

the dataset for each attack are computed during the feature 

selection process, as indicated in Table 2. Machine learning 

algorithms are trained and tested using only these features to 

detect anomalies instead of training with all 80 dataset features. 

Table 4 presents the F1 scores for each algorithm. The F1-Score 

was specifically selected since it combines recall and precision. 
Therefore, it is the preferred evaluation matrix compared to 

other options. Most of the attacks are detected easily; Botnet 

and DDoS are two prominent examples of easily detected attack 

files, as shown in Tables 5 and 6. 

In this study, all machine learning algorithms couldn’t 

achieve substantial detection rates on Infiltration attacks, and 

the same is also observed in all previous works conducted on 

IDS 2017 and IDS 2018 datasets.  
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Table 4. F1-scores of classifiers for specific attack dataset 

Attack Types 

ML Algorithms 

RF KNN ID3 AdB MLP GrB 

F
1

-S
c
o
r
e 

F
1

-S
c
o
r
e 

F
1

-S
c
o
r
e 

F
1

-S
c
o
r
e 

 

F
1

-S
c
o
r
e 

F
1

-S
c
o
r
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Brute Force -Web 0.91 0.92 0.89 0.92 0.72 0.9 

Botnet 0.99 1.0 1.0 1.0 1.0 1.0 

Brute Force -XSS 0.86 0.75 0.88 0.88 0.77 0.88 

DDOS HOIC 0.98 0.99 0.98 0.98 0.93 0.98 

DDOS LOIC-UDP 1.0 1.0 1.0 1.0 0.94 1.0 

DDoS LOIC-HTTP 0.99 0.99 0.99 0.99 0.43 0.99 

DoS GoldenEye 0.97 0.98 0.97 0.97 0.41 0.98 

DoS Hulk 0.98 0.97 0.98 0.98 0.95 0.91 

DoS Slow 

HTTPTest 
0.98 0.98 0.98 0.98 0.94 0.97 

DoS Slowloris 0.94 0.99 0.98 1.0 0.88 1.0 

FTP-B-Force 0.98 0.98 0.98 0.98 0.98 0.98 

SSH-B-Force 0.99 0.99 0.99 0.99 0.9 0.99 

Infiltration 0.57 0.67 0.58 0.59 0.49 0.62 

SQL Injection 0.88 0.82 0.81 0.89 0.6 0.9 

Table 5. Botnet 

 

 

 

 

 

 

 

 

 

 

 

Table 6. DDoS HOIC 

 

 

 

 

 

 

 

ML Algorithm Accuracy Precision Recall Time (s) 

Random Forest 1 1 1 0.047354 

ID3 1 1 1 0.018748 

AdaBoost 1 1 1 0.353962 

MLP 0.99654 0.99460 0.9974 0.99602 

KNN 0.99827 0.99728 0.9987 0.156244 

GBoost 1 1 1 0.076038 

ML Algorithm Accuracy Precision Recall Time (s) 

Random Forest 0.9948 0.9927 0.9946 12.347 

ID3 0.9953 0.9921 0.9963 3.6567 

AdaBoost 0.9964 0.994 0.9961 74.740 

MLP 0.9964 0.9951 0.9961 537.52 

KNN 0.9971 0.9958 0.9970 75.725 

Gboost 0.996 0.9955 0.9967 45.971 
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Table 7. Infiltration 

ML Algorithms Accuracy Precision Recall Time (s) 

Random Forest 0.7488 0.78155 0.5824 6.72903 

ID3 0.74958 0.77807 0.5846 2.8575 

AdaBoost 0.74694 0.73492 0.5923 40.8661 

MLP 0.72507 0.77078 0.5353 99.290 

KNN 0.73532 0.67620 0.6633 21.771 

Gboost 0.75127 0.72498 0.6102 24.096 
 

 

Tables 5 and 6 above show the accuracy, precision, and 

Recall together with running times of the machine learning 

algorithms on Botnet and DDoS HOIC attack types. The 

number of Botnet samples in the dataset seems to be sufficient 

for training models well; one positive thing that is observable 

from the results achieved by the classifiers is the running times 

of the algorithms; all six algorithms completed the training and 
detection process in record time, this will be an important factor 

in detecting real attacks swiftly.  

Infiltration attacks are the hardest to detect, with a 

maximum F1-Score of 0.67. This was followed by SQL 

injection and Brute force-XSS attack types which are also 

classified with low F1-Scores of around 0.88. The latter two 

are underrepresented in the dataset, indicating that a few 

misclassified samples may significantly degrade the overall 

result. The infiltration attack samples in the dataset are more 

(161934 samples), yet they remain harder to detect.  

According to the dataset’s documentation [17], 

unrestricted file upload is recognized as an infiltration attack 
scenario. Traffic at the network level becomes difficult when 

distinguishing between illegitimate and legitimate file 

uploads. This attack type should be further examined to 

achieve a more desirable detection accuracy. 

From the above tables, it is observable that MLP achieves 

the lowest performance level for all attack files and with 

longer running times than all other machine learning 

algorithms. In contrast, Random Forest and Decision Tree 

have achieved better performance than other methods in the 

shortest running time.  

5.2. Attack-Normal Classification   

In this section, the whole dataset is collected in a single 

file. Samples of all attack samples are labeled as “attack”. Six 

machine learning algorithms are applied to this dataset. The 

features selected for individual attack types shown in Table 2 

are combined, and sixteen unique features shown in Table 8 

are used in this phase of the experiment.  
 

Table 8. Sixteen important features were collected from all individual 

attack files 

Features Importance 

Bwd Pkt Len Mean 1.939715e-01 

Flow IAT Mean 4.710189e-02 

Fwd Pkt Len Mean 1.051510e-02 

Flow IAT Max 0.010301 

Tot Bwd Pkts 0.028025 

Flow Duration 0.100301 

Fwd IAT Tot 0.000095 

Fwd Pkt Len Std 2.588169e-03 

Flow Pkts/s 1.7289e-01 

Flow IAT Min 1.2373e-02 

Flow Byts/s 0.217946 

TotLen Fwd Pkts 0.035030 

Fwd Pkt Len Max 1.1597e-01 

Bwd Pkt Len Std 0.050883 

Flow IAT Std 2.3611e-02 

Bwd Pkt Len Max 0.063556 

As illustrated in Figure 4, ID3 and Random Forest are the 

fastest algorithms for classifying overall attacks and normal 

samples. In contrast, KNN and MLP have the longest running 

time. The difficulty of the MLP algorithm increases as the 

number of instances increases. KNN, which is known as the 

lazy learner due to its complex train time [44], is the slowest 

of all algorithms used; it took close to 7000 seconds to go 

through the classification process, whereas Random Forest 

and ID3 completed the training and testing in less than 120 

seconds. Detection time is a very crucial parameter in network 
security.  
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The earlier an attack is detected, the better the chances of 

avoiding massive damage. The main purpose of this study is to 

reduce the training time of the algorithms and, at the same time, 

keep the detection accuracy rate high. To achieve that goal, only 

a few important features are used to train the algorithms. In 

terms of detection performance, the MLP classifier attained the 
lowest F1-Score (0.78), which can be attributed to the total 

number of hidden layers used (13,13,13). Increasing the hidden 

layers of an MLP also increases the running time of the model, 

which, in turn, negatively affects the algorithm’s efficiency. 

The chart in Figure 2 presents the Accuracy and Recall of each 

ML algorithm, and in Figure 3, the F1Score and Precision levels 

of ML algorithms are illustrated. It is worth noting that only five 

features are used in detecting specific attack types. The overall 

attack and normal samples are classified with only 16 important 
features, acquiring impressive results. These features are 

mainly statistical, making them appropriate for anomaly-based 

detection.  

 

Fig. 2 Accuracy and recall levels achieved by the ML algorithms 

 

Fig. 3 F1 score and precision levels achieved by the ML algorithms 
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Fig. 4 Running times of ML algorithms 

6. Conclusion 
This study used six different machine learning algorithms 

(KNN, XGboost, ID3, MLP, Adaboost, and Random Forest) on 

the latest IDS dataset (CSE-CIC-IDS2018 dataset) to detect 
network anomalies by recognizing attack traffic from normal 

network traffic within a short period of time. The CSE-CIC-

IDS2018 dataset constitutes eighty features that explain 

network traffic flow.  

In the first phase of the experimentation process, a dataset 

sample was cleaned from minor errors. Important feature 

weights were then calculated with Random Forest Regressor 

[45]. This was to determine the discriminative features to be 

used in training machine learning models. The important 

feature weights for each attack were separately calculated. 

Next, six machine learning algorithms were trained with the 

final dataset in two different experiments.  

Five out of the six algorithms (XGboost, KNN, ID3, 

Random Forest, and Adaboost) achieved an F1-Score above 

0.93. Hyperparameter tuning can be done to the algorithms in 

the future to examine how their performance changes in 

accordance with the parameters. Also, other publicly available 

IDS datasets could be used to assess model performance. 
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