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Abstract - Early identification of Diabetic Retinopathy (DR) is crucial for preserving vision in individuals with diabetes, as this 

condition is a leading cause of sight loss among diabetic patients. Timely detection enables effective treatment interventions. 

Hence, we proposed a Minimal Convolutional Neural Network (MCNN) model for detecting mild DR symptoms using fundus 

images. Utilizing publicly available datasets from Kaggle and Messidor, the research applies Contrast Limited Adaptive 

Histogram Equalization (CLAHE) preprocessing to enhance image quality. The MCNN is then trained on both CLAHE-

processed and unprocessed versions of the same images. The research evaluates CLAHE preprocessing's effect on mild DR 

detection by analyzing the model's performance across both datasets, seeking to quantify any accuracy improvements. This 

approach leverages modern machine learning techniques to potentially improve early diagnosis of DR, addressing a critical 

need in ophthalmological practice and diabetic care. 
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1. Introduction  
Diabetes patients may experience diabetic retinopathy, an 

eye condition. The biggest global cause of vision loss in adults 

is diabetic retinopathy. Early detection is necessary to slow the 

disease's progression. One of the most widespread chronic 

diseases in developed nations, diabetic retinopathy is the main 

factor in middle-aged people losing their eyes. Small 

alterations in the retinal capillaries are the first signs of DR. 

Micro aneurysms, which are small disturbances of the retinal 

capillary, are the first identifiable abnormalities. Intraregional 

bleeding is caused by deformed micro aneurysms. This causes 

the initial stage of diabetic retinopathy, often known as mild 

non-proliferative diabetic retinopathy [1-3].  

Fundus image is most suitable for screening purposes 

because the eye fundus responds to a list of vascular diseases. 

Indeed, the ability to extract fundus images, as well as 

methods of efficiently processing images in order to identify 

pathologies, have a clear link to the screening approach’s 

outcome [4-6]. However, clinical diagnosis of DR might be 

challenging in low-resource settings because there are not 

enough ophthalmologists to treat every diabetes patient. 

Frequent fundus checks can prevent DR-related blindness. 

Manual diagnosis takes a lot of time and is not precise [7]. As 

a result, several computer vision approaches for automatically 

detecting diabetic retinopathy and its phases from retinal 

images have been developed. Deep Neural Networks (DNNs) 

are frequently referred to as brain-inspired systems of deep 

learning [8-10]. It may create a distributed depiction of data 

by becoming familiar with a variety of high-level attributes or 

attribute types that are directly extracted from the massive 

original data. Despite this, there are still issues with using 

neural networks in medical research. For starters, adequate 

real-world medical photographs, particularly for some 

specialized disorders, are difficult to come by. In addition, the 

accessibility of labelled medical data is usually constrained.  

Secondly, because DR characteristics are so complicated, 

they are probably to interact with other lesions, and DR's 

minute lesions are difficult to detect if picture quality is 

inadequate. Fundus pictures are labelled by a human operating 

technique that is vulnerable to subjectivity, according to 

medical publications. Furthermore, utilizing a single model 

that is trained with a limited collection of medical imaging 

data and unavoidable image noise makes it difficult to 

successfully achieve high illness detection accuracy. Transfer 

learning is, hence, the primary method used in deep learning 

[11-13]. Furthermore, utilizing a single model that is trained 
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with a limited collection of medical imaging data and 

unavoidable image noise makes it difficult to successfully 

achieve high illness detection accuracy. Aside from deep 

learning approaches, several image-processing techniques 

have been created. Complex characteristics are manually 

detected in image processing algorithms [14, 15]. Diabetic 

retinopathy may be recognized early, which can significantly 

lower the chance of blindness. However, because of the 

variable morphology of diabetic retinopathy at different 

stages, automated diabetic retinopathy detection is a difficult 

process. However, to enhance the efficiency and effectiveness 

of feature extraction and detection, it is necessary to develop 

a novel solution.  

The field of Diabetic Retinopathy (DR) detection using 

deep learning faces several critical challenges that hinder its 

effectiveness in clinical settings. Current preprocessing 

methods often compromise image quality by overemphasizing 

edges while eliminating crucial fine details, leading to 

suboptimal feature extraction. The arbitrary scaling of images 

necessitates increasingly complex models, raising concerns 

about overfitting and generalization errors.  

Additionally, existing approaches struggle with accurate 

multi-class grading of DR severity, which is essential for 

timely intervention and personalized treatment. These 

limitations collectively point to a need for innovative solutions 

that can preserve important retinal details during 

preprocessing, balance model complexity with generalization 

capability, and improve the precision of DR severity 

classification. Such advancements would need to be clinically 

viable, integrating seamlessly with existing healthcare 

systems while offering improved accuracy and efficiency. 

Addressing these challenges could significantly enhance the 

early detection and management of DR, potentially reducing 

vision loss among diabetic patients worldwide. This objective 

of the study involves the following processes. 

1. This study introduces a Minimal Convolutional Neural 

Network (MCNN) approach for analyzing retinal fundus 

images. The proposed model aims to detect and classify 

early signs of diabetic retinopathy, distinguishing 

between cases with mild symptoms and those without any 

indications of DR. By focusing on a streamlined neural 

network architecture, the research seeks to process ocular 

images for accurate diabetic retinopathy screening 

efficiently. 

2. Utilize a mixture of Kaggle and Messidor publicly 

available datasets. Before passing the dataset to the 

proposed MCNN, we preprocessed the data using the 

CLAHE method. 

3. The MCNN is trained using both CLAHE-processed and 

unprocessed datasets. We evaluate the model's 

performance by comparing accuracy, precision, recall, 

and F1 scores. To further assess the classification model's 

effectiveness, we also generate a ROC curve for analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 a) Normal Fundus image, and b) Fundus image showing mild 

Diabetic Retinopathy (DR). 

2. Literature Survey 
Different deep learning models exist today to classify and 

predict Diabetic Macula Edema (DME) and Diabetic 

Retinopathy (DR). Various researchers are working on it, and 

fruitful results are coming to solve the DR patient’s problems 

automatically. It also helps the clinical practitioners do their 

jobs easily. However, the limitations of dataset availability 

and credibility still exist. Deep learning techniques have 

recently enhanced the precision and speed of identifying 

diabetic retinopathy, marking a notable improvement in 

diagnostic capabilities.  

Researchers have developed more sophisticated 

convolutional neural network architectures that can analyze 

retinal images with greater precision, often incorporating 

attention mechanisms to focus on subtle features indicative of 

the disease. There has been a shift towards multi-modal 

approaches, combining various imaging techniques like 

fundus photography and optical coherence tomography for a 

more comprehensive analysis. Explainable AI models have 

gained traction, providing transparency in the decision-

making process and increasing trust among clinicians. 

Transfer learning and few-shot learning techniques have 

addressed the challenge of limited labeled data, while real-

time screening systems have made deployment in resource-

constrained settings more feasible. Integration with electronic 

health records has enabled more personalized risk 

assessments, and advancements in severity grading have 

improved treatment planning. These innovations collectively 

signify a major advancement in the timely identification and 

treatment of diabetic retinopathy, offering the potential to 

minimize vision impairment risks for a vast number of 

individuals across the globe. 

S. Qummar et al. [16] introduced an ensemble model for 

detecting all DR stages using the Kaggle dataset. They resized 

3888×2951 images to 786×512 and employed up-sampling 

1 (a) 

1 (b) 
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and down-sampling to balance the data. The data was divided 

into three sets: 64% for training, 20% for testing, and 16% for 

validation. The learning parameters were fine-tuned using 

Nesterov-accelerated Adaptive Moment Estimation. An 

NVIDIA Tesla k40 GPU was employed, resulting in 80.8% 

model accuracy. The highest recall (0.97) was observed in 

class 0, while class 1 had the lowest (0.54). With 113 samples, 

class 4 achieved the highest AUC of 0.97. Marginal 

improvements were noted when using a 0.0001 learning rate. 

T. Li et al. [17] developed a Convolutional Attention 

Block (CAB) for area-wise feature detection in imbalanced 

DR data and a Global Attention Block (GAB) for small lesion 

information. These were combined to create CABNet for DR 

grading. The model comprises a backbone, GAB, CAB, and 

classifier, with various backbones tested. MobileNet 1.0 

performed best, achieving 0.8569 accuracy and 0.8794 Kappa 

score. The study utilized Messidor, EyePACS, and DDR 

datasets, employing 512x512 input resolution and data 

augmentation to prevent overfitting. Adam optimizer trained 

each module over 70 epochs, with an initial 0.005 learning 

rate, 16 batch size, and cross-entropy loss function. 

T. Araújo et al. [18] proposed the neovessel (NV) 

generation algorithm for augmenting Proliferative Diabetic 

Retinopathy (PDR) images. This algorithm generates DR-

labeled datasets to enhance model training. NVs were placed 

near the Optic Disc (OD) with 0.15 probability, never at 0.40, 

and 0.45 for both locations. The Region of Interest (ROI) was 

set to 25% of the image size. Vessel segmentation used Otsu 

thresholding on the green channel, while OD segmentation 

employed the UOLO framework, validated across public 

datasets. Color assignment considered nearby surroundings. 

The DR Graduate model assessed the augmentation's 

effectiveness, showing improved no vessel detection capacity. 

L. Qiao, Y. Zhu, and H. developed a framework to 

identify micro aneurysms in ocular fundus images [19]. They 

employed a semantic segmentation algorithm to categorize 

fundus images as normal or affected and detect micro 

aneurysms. The team focused on recognizing Non-

Proliferative DR (NPDR) using deep CNN, with eye fundus 

images as input. They sourced their dataset from Ieee-

Dataport.org. The initial preprocessing phase enhances dark 

lesion borders, facilitating background separation. 

Subsequently, an optimized wideband pass filter is applied to 

improve exudate contrast. Their lesion detection system 

comprises four key stages: vessel extraction, optical disc 

elimination, potential lesion identification, and pre/post-

processing procedures. This approach enables comprehensive 

analysis of fundus images for early DR detection. 

K. Shankar et al. [5] introduced a novel approach for 

identifying and categorizing diabetic retinopathy stages. Their 

study utilized the MESSIDOR dataset, employing CLAHE for 

contrast enhancement while avoiding unwanted noise 

amplification. Image segmentation was performed using a 

histogram-based model, followed by feature extraction with 

HPTI-v4. The experiment parameters included a 0.9 velocity, 

500 epochs, and a 0.001 learning rate. Bayesian optimization 

was applied to determine the optimal hyperparameter 

combination. The HPTI-v4 method achieved impressive 

results: 99.49% accuracy, 98.83% sensitivity, and 99.68% 

specificity. This comprehensive approach demonstrates 

significant potential for improving diabetic retinopathy 

detection and classification in clinical settings. 

N. Barhate et al. [20] developed a model combining an 

Auto Encoder (AE) with a VGG network (VGG AE) to 

address overfitting issues during architecture testing. Their 

approach utilizes the AE's dual-component structure: the 

encoder learns to compress input images into concise 

representations, while the decoder is trained to reconstruct 

these representations back into full images. This innovative 

design aims to enhance model robustness and generalization 

capabilities, potentially improving the accuracy and reliability 

of diabetic retinopathy detection systems in clinical 

applications. The encoder network is enjoying the VGG 

network. For training, EyePACS datasets are used, and the 

images are resized to 256×256 size in the preprocessing stage. 

Rotation and flipping methods were used to augment the data. 

Sigmoid, tanh, and ReLU activation functions are used, and 

the researchers found that the ReLU activation function gives 

more accuracy and the best result. The proposed architecture, 

VGG AE, shows the test accuracy at 76.27% and reduces the 

overfitting effectively. 

Researchers developed a novel architecture called the 

Cross-disease Attention Network (CANet) to assess DR and 

DME severity while examining their interconnections [21]. 

This model incorporates specialized attention modules for 

each condition and their interdependencies, capturing unique 

characteristics and inter-disease relationships. These 

components are embedded within a deep neural framework for 

feature extraction. The system utilizes ResNet50 to generate 

feature maps, with the coarsest resolution map feeding into 

condition-specific attention modules. The disease-dependent 

module then analyzes intrinsic connections between disorders, 

generating features for DMR and DR. Two loss functions are 

applied for grading, with additional values to comprehend 

disease-related features. During training, images were resized 

to 350×350 and augmented. Adam optimizer was used with a 

0.0003 initial learning rate, training for 1000 epochs with 40 

batch sizes. Backbone model selection involved joint training 

for DR and DME grading, comparing ResNet34 (81.4%), 

Resnet50 (82.0%), and DenseNet161 (78.9%) on the Messidor 

dataset. CANet achieved 96.3% AUC for DR and 92.4% for 

DME, with accuracies of 92.6% (DR) and 91.2% (DME). 

Z. Khan et al. [22] developed a multi-class classification 

model combining VGG16 and spatial pyramid pooling. The 

SPP layer reduces input images from 1024x1024 to 224x224, 
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creating a fixed-size output vector between the last 

convolution and the first connected layer. A Network-in-

Network (NiN) tops the SPP layer to detect nonlinear data 

patterns. Transfer learning modifies VGG's fully connected 

layer while freezing convolution layers. Training used 8 batch 

sizes for 50 epochs, resulting in 52% fewer parameters and 

95% micro AUC. 

F. Saeed [23] proposed an intelligent DR grading system 

without image preprocessing. It employs a two-stage fine-

tuning approach: first, a pre-trained CNN model embeds DR 

lesion structure using lesion ROIs. Second, fully connected 

layers are replaced by a Principal Component Analysis (PCA) 

layer to mitigate overfitting. The study utilized EyePACS and 

Messidor datasets for validation, demonstrating the model's 

effectiveness on challenging public datasets. The two data 

augmentation methods are employed in which they extract the 

ROIs around the lesion with distinct sizes and resize them to 

the same size, 64×64. Again, rotate each ROI in four different 

directions and flip horizontally. The ResNet152 with CONV1 

and Gradient Boosting (GB) layer achieved the best result. 

The proposed method gave 99.73% accuracy. The Kappa 

scores are 98.45% and 96.67%, respectively. 

C-H. Hua et al. [24] proposed a CNN having a two-fold 

feature augmentation capability, which provides more 

generalization at the feature level. The model is validated 

using a small-scale data set from Kyung Hee University 

Medical Center (KHUMC). The model uses ResNet residual 

blocks as the primary feature extractor. The two-fold feature 

augmentation contains weight sharing convolution kernels 

and reverses cross-stream. The RCA stream contains three 

components by itself. The first one is Self-Contest 

Aggregation (SCA), the second one is Pairwise Reverse 

Attention (PRA), and the final one is Multi-Level Fusion 

(MLF). All the images are rescaled to different sizes, like 

224×224, 448×448 and 600×600. RCA is evaluated by the 

Messidor dataset, which achieves 94.8% accuracy. 

According to Kaushik, Singh et al. [25], the dataset of eye 

images that is currently available has several color aberrations 

and unnecessary illuminations, which affect the model's 

accuracy. The study developed a stacking deep learning model 

and an image-processing framework for diagnosis. The gray 

world color constancy algorithm improves brightness 

normalization and image quality. The stack generalization 

model is prepared using three distinct CNNs. The dataset used 

is EyePACS, and to enrich the dataset, data augmentation is 

applied, including horizontal and vertical flips, width shift, 

height shift, fill mode, and zoom range. Test accuracy for 

binary classification using the stack model was 97.92%, and 

for multiclass classification, it was 87.45%. 

Rajkumar et al. [26] employed transfer learning with 

ResNet-50 to classify diabetic retinopathy stages. They used a 

Kaggle-derived dataset, resized to 512x512 and labeled 0-4 by 

severity. The model, utilizing ReLU activation, ran on a DGX 

server with two Tesla V100 GPUs. It achieved 89.4% 

accuracy, 97% specificity, and 57% sensitivity. Comparisons 

with ResNet18, VGG19, Inception V3, AlexNet, and VGG19 

showed ResNet 50's superior performance in all metrics. 

Kaushik et al. [25] proposed a novel image processing 

schema and layered deep learning approach to eliminate 

unnecessary reflectance components in retinal images. They 

employed grayscale global color constancy for brightness 

normalization and image quality enhancement. The method's 

effectiveness was evaluated using the Peak Signal-to-Noise 

Ratio (PSNR) and Mean Squared Error (MSE) of normalized 

images. A layered generalization of Convolutional Neural 

Networks (CNN) was developed for a computer-aided 

diagnostic system. However, this approach is currently limited 

to binary classification of diabetic retinopathy. 

Kalyani and colleagues introduced an innovative 

approach for identifying and classifying diabetic retinopathy 

[27]. Their method employs convolutional and primary 

capsule layers to extract key features from retinal images, 

while class capsule and softmax layers assess the probability 

of an image belonging to a particular diagnostic category. 

Utilized the Messidor dataset to confirm the efficacy of the 

proposed network change on four performance metrics. But 

this approach uses a lot of computer power, which makes it 

time- and energy-consuming. The authors developed a capsule 

network (CapsNet) for diabetic retinopathy detection, 

outperforming modified AlexNet with 97.98% accuracy.  

The model uses convolutional and capsule layers for 

feature extraction and classification. Trained on the Messidor 

dataset, it identifies four stages of retinopathy. Future work 

involves expanding to five-stage classification and additional 

datasets for improved early diagnosis. The authors [28] 

developed a fast, accurate framework for detecting diabetic 

retinopathy levels from fundus images. Using CLAHE 

preprocessing and a lightweight parallel CNN, we extracted 

120 key features. An ELM model then classified DR levels. 

Our approach outperformed state-of-the-art models on two 

datasets, offering quicker processing and earlier detection to 

prevent vision loss. A novel Deep ML-FEC system was 

created, utilizing a pre-trained convolutional neural network 

to autonomously recognize and categorize retinal 

abnormalities in fundus images [29]. This model differentiates 

five stages of diabetic retinopathy, including clinically 

significant macular edema. With 94.40% accuracy and 

76.35% sensitivity, the system surpasses current alternatives, 

demonstrating the potential for both clinical implementation 

and widespread screening initiatives. The work developed by 

the researchers [30] DRCNNRB, a model using CNN and 

residual blocks to assess diabetic retinopathy severity 

automatically. It addresses performance degradation and 

vanishing gradient issues. Tested on the preprocessed DR 

2015 dataset, it improves image clarity and accuracy. 
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3. Proposed Methodology 
3.1. Dataset Preparation and Pre-processing 

The study utilized publicly accessible fundus images 

from Kaggle and Messidor databases. A rigorous data 

cleansing process was implemented to ensure high-quality 

samples for analysis. To maintain image integrity, the 

collected dataset underwent standardization, being resized to 

224x224x3 dimensions and converted to TIFF format for 

optimal preservation of visual characteristics. Table I shows 

the number of datasets used for the experiment from each 

category. The fundus images are preprocessed using the 

CLAHE method, and the output of the CLAHE preprocessed 

fundus is shown in Figure 2. 

Table 1. Used dataset 

Data Sets Number of Images Total Images 

Messidor 
337(No DR) 

101(Mild DR) 
438 

Kaggle 
1213(No DR) 

1449(Mild DR) 
2662 

The contrast is increased using the contrast-constrained 

adaptive histogram equalization method. The noise is 

frequently amplified excessively by the AHE algorithm. To 

overcome this problem, the researchers used the CLAHE 

algorithm, which prevents overamplification by limiting the 

amplification. CLAHE considers the small regions of the 

images called tiles. Utilizing bilinear interpolation, adjacent 

tiles are blended to erase the false borders. The parameter clip 

limit is a threshold for contrast limiting, normally 40, and the 

tile grid size is 8×8. The total number of images is divided, 

like 1550 for mild DR and 1550 for no DR. Overall, 3100 

quality images were selected for applying the CLAHE 

method. Image quality is one parameter to consider while 

training a model. The accuracy directly depends on the quality 

of the input images.  

Contrast Limited Adaptive Histogram Equalization 

(CLAHE) improves upon traditional image enhancement 

methods by offering a more refined, context-sensitive 

approach. This technique divides an image into smaller 

sections, called tiles, and applies histogram equalization to 

each individually. By doing so, CLAHE can tailor its 

enhancement to the specific needs of different image areas, 

bringing out details in low-contrast regions while avoiding 

over-enhancement in areas that already have good visibility.  

The CLAHE method calculates intensity histograms for 

each tile, applying a clip limit to prevent over-saturation. The 

clipped histograms are then rescaled, maintaining the original 

pixel count in each tile. CLAHE uses these adjusted 

histograms to transform pixel intensities, improving local 

contrast while preserving the overall intensity distribution. 

After processing, the enhanced tiles are smoothly blended 

back into the image, with interpolation techniques ensuring 

seamless transitions between tiles. The CLAHE algorithm 

follows a structured approach, beginning with image 

segmentation into tiles and computing histograms for each. It 

then applies a threshold-free mapping to determine clip limits, 

adjusting contrast accordingly. This technique encompasses 

multiple crucial phases: first, generating a histogram; second, 

determining and allocating surplus values; third, redistributing 

these excess quantities; and lastly, employing a cumulative 

distribution function to scale and map the results. Each step 

contributes to the overall enhancement of the image quality. 

This methodical approach allows CLAHE to enhance local 

image details while maintaining overall image integrity, 

making it particularly useful in fields like medical imaging, 

where preserving subtle features is crucial. 

 
Fig. 2 Sample image before CLAHE (left) and after CLAHE (right) 

taken from Messidor 

 
Fig. 3 Sample image before CLAHE (Left) and after CLAHE (Right) 

taken from Kaggle 

4. MCNN Architecture 
The Minimum CNN (MCNN) architecture presents a 

streamlined approach to image classification, specifically 

tailored for distinguishing between No-DR and Mild-DR in 

retinal images. This model adopts a sequential structure, 

building complexity through a series of carefully designed 

layer stacks. Each stack in the MCNN contributes to the 

overall goal of efficient feature extraction and classification. 

At the foundation of the MCNN lies the first layer stack. This 

initial stage employs a convolution layer with 64 channels, 

utilizing the ReLU activation function to introduce non-
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linearity. Following this, a max pooling layer with a 2x2 filter 

helps to reduce spatial dimensions while retaining important 

features. The inclusion of a dropout layer at this early stage 

serves as a preventive measure against overfitting, enhancing 

the model's ability to generalize. Building upon this 

foundation, the second layer stack increases the model's 

capacity for feature detection. It introduces a convolution 

layer with an expanded channel size of 128, again paired with 

ReLU activation. This layer is followed by another max 

pooling operation and a dropout layer, maintaining the pattern 

established in the first stack while allowing for more complex 

feature representation. 

The third stack layer represents the deepest level of 

feature extraction in the MCNN. Here, a convolution layer 

with 256 channels is employed, significantly increasing the 

model's ability to capture intricate patterns. As with previous 

stacks, this layer is complemented by ReLU activation, max 

pooling, and dropout, ensuring consistency in the 

architecture's approach to feature learning and regularization. 

The final stages of the MCNN architecture focus on 

classification. A dense layer comprising 64 neurons processes 

the features extracted by the previous layers. This is then 

connected to a fully connected layer with two neurons, 

corresponding to the binary classification task of 

differentiating between No-DR and Mild-DR cases. The 

model employs categorical cross-entropy as its loss function, 

a choice well-suited to classification tasks, and utilizes the 

RMSprop optimizer for efficient training. This combination of 

architectural elements and training parameters aims to provide 

accurate DR detection while maintaining computational 

efficiency. The model parameters are shown in Figure 4. 

 
Fig. 4 Implementation of the MCNN model 

5. Results and Analysis 
The MCNN model undergoes training using two distinct 

fundus image sets: one without CLAHE processing and 

another with CLAHE applied. Prior to input, images undergo 

preprocessing. Model evaluation employs various metrics, 

including confusion matrices, precision, recall, accuracy, and 

F1 scores. Additionally, the AUC-ROC curve graphically 

illustrates MCNN performance, plotting True Positive Rate 

(TPR) against False Positive Rate (FPR) to visualize 

classification effectiveness across different thresholds. 

5.1. MCNN with Non-CLAHE Images 

Optimal results were achieved when training MCNN on 

non-CLAHE images over 20 epochs, reaching 0.9760 training 

accuracy. Figure 5 illustrates training and validation accuracy 

trends. The model ran on a local PC featuring a 4GB Nvidia 

Geforce GTX 1650Ti GPU, using Jupyter Notebook and 

Anaconda for development. Performance metrics are shown 

in Table 2, where Class 1 represents mild DR and Class 2 

indicates no DR. For mild DR, the model achieved 97% 

precision, 98% recall, and 97% F1 score. No DR 

classifications yielded 98% precision, 97% recall, and 98% F1 

score. Mathematical formulas for calculating these parameters 

are provided below. 

 
Fig. 5 Training and validation metrics for original (non-CLAHE) 

images: loss and accuracy across epochs 

Table 2. Model performance measures 

 Precision Recall F1-Score Support 

Class 1 0.97 0.98 0.97 439 

Class 2 0.98 0.97 0.98 491 

Micro Avg 0.97 0.97 0.97 930 

Macro Avg 0.97 0.97 0.97 930 

Weighted 

Avg 
0.97 0.97 0.97 930 

F1 Score = 2× (precision×recall) / (recall+ precision) 

Accuracy = TN+ TP / (TP+ FP +TN+FN) 

Recall (Sensitivity) = TP/ (FN+TP) 

Precision = TP/ (FP+TP) 
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The performance of the MCNN with the Non-CLAHE 

model is checked using the confusion matrix. The confusion 

matrix can be drawn with the help of True Positive (TP) and 

True Negative (TN) values. A confusion matrix is the 

combination of predicted and actual values in a table format, 

which helps to find precision, recall, accuracy, and AUC-

ROC. Figure 6 depicts the confusion matrix obtained and the 

normalised confusion matrix from the model MCNN with 

Non-CLAHE. 

 
Fig. 6 Confusion matrix and normalized confusion matrix for Non-

CLAHE images  

5.2. MCNN with CLAHE Images 

The MCNN is again trained with CLAHE images to 

compare the impact generated by the non-CLAHE images. 

The training with CLAHE images uses 20 epochs with the 

help of the same GPU configuration. The proposed model 

achieved a training accuracy of 0.9413. For mild DR 

classification, it demonstrated 89% precision, 90% recall, and 

an 89% F1 score. In the case of NO DR classification, the 

model showed 91% precision, 90% recall, and a 90% F1 score. 

Figure 7 shows the training validation loss and training 

validation accuracy. 

 
Fig. 7 Training and validation metrics for CLAHE-enhanced images: 

loss and accuracy over epochs 

The following table 3 shows the precision, recall, and F1 

score values obtained. 

Table 3. Model performance measures 

     Precision Recall F1-Score Support 

Class 1 0.89 0.90 0.89 439 

Class 2 0.91 0.90 0.90 491 

Micro Avg 0.90 0.90 0.90 930 

Macro Avg 0.90 0.90 0.90 930 

Weighted 

Avg 
0.90 0.90 0.90 930 

Figure 8 shows the confusion matrix and normalized 

confusion matrix that were derived from the MCNN model 

with CLAHE pictures. Out of 930 fundus images, 393 images 

are recognized as true positive and 450 images are recognized 

as true negative. 

 
Fig. 8 Confusion matrix and normalized confusion matrix for CLAHE 

images 

6. Discussions on CLAHE Impact 
The application of Contrast Limited Adaptive Histogram 

Equalization (CLAHE) as a preprocessing step demonstrates 

a significant impact on mild diabetic retinopathy detection in 

this study. By enhancing the contrast and local details of 

fundus images, CLAHE appears to improve the visibility of 

subtle retinopathy features that may be challenging to detect 

in unprocessed images.  

The comparative analysis likely reveals that the minimal 

CNN model achieves higher accuracy and improved feature 

extraction when trained on CLAHE-preprocessed images 

compared to unprocessed ones. This suggests that CLAHE 

effectively addresses some of the inherent limitations of 

fundus photography, such as non-uniform illumination and 

low contrast, which can obscure early signs of diabetic 

retinopathy.  

The enhanced performance observed with CLAHE 

preprocessing underscores the importance of image 

enhancement techniques in medical image analysis, 

particularly for conditions like mild diabetic retinopathy, 

where early detection is crucial for timely intervention and 

management.  

The result shows that the training accuracy of MCNN 

with non-CLAHE images is 0.9760, and with CLAHE images 

is 0.9413. Both trainings took 20 epochs. MCNN with non-

CLAHE shows better accuracy than MCNN with CLAHE. 

The generated feature map is shown in the following figure 

10. It is the feature detected by Minimum CNN. A feature map 

can be generated by applying the filters on the input images, 

and the output of each layer is a feature map. 

The following figure shows the ROC curve obtained 

when training with non-CLAHE images and CLAHE images. 
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(a) ROC of Non-CLAHE images 

 
(b) ROC of CLAHE images 

Fig. 9 ROC curve and its zoomed view of the MCNN model with 

CLAHE and Non-CLAHE images 

 
Fig. 10 Features detected by MCNN 

7. Limitations and Future Work 
A notable constraint in this research is the reliance on a 

single image enhancement method (CLAHE) and a basic CNN 

architecture. This narrow focus, while enabling direct 

comparisons, may not fully exploit the potential of advanced 

preprocessing and deep learning for diabetic retinopathy 

screening.  

Subsequent studies could investigate diverse image 

enhancement techniques, including alternative contrast 

adjustment algorithms, noise reduction methods, or blood 

vessel extraction processes, to potentially uncover more 

effective strategies for emphasizing subtle retinal 

abnormalities associated with diabetic retinopathy. The study 

presumably focused on mild diabetic retinopathy detection, 

which is valuable but may not provide a complete picture of 

the disease's progression. A limitation here is the potential 

lack of analysis on moderate, severe, and proliferative diabetic 

retinopathy stages. Future research could extend the 

comparison to include all stages of diabetic retinopathy, 

providing a more comprehensive evaluation of the CLAHE 

preprocessing and minimal CNN model approach across the 

full spectrum of the condition. Another potential limitation is 

the size and diversity of the dataset used. Depending on the 

study's scope, the dataset may not fully represent the variety 

of fundus images. 

Future research could address these areas by 

incorporating explainable AI techniques to provide insight 

into the model's decision-making process, optimizing the 

model for deployment on resource-constrained devices, and 

conducting clinical trials to assess the practical impact of the 

proposed approach on diabetic retinopathy screening and 

diagnosis in real-world healthcare settings encountered in 

clinical practice, including those from different ethnic groups, 

age ranges, or imaging devices. Future work should aim to 

validate the findings on larger, more diverse datasets and 

potentially explore the model's generalizability across 

different populations and imaging equipment. 

8. Conclusion  
The study proposes a simplified convolutional neural 

network for detecting and categorizing early diabetic 

retinopathy indicators, utilizing combined datasets from 

Kaggle and Messidor. The MCNN was trained on two image 

sets: one preprocessed with CLAHE and another without 

CLAHE. The preprocessing involves applying CLAHE to 

enhance image quality.  

Performance analysis revealed that the model achieved 

0.9413 accuracy with CLAHE-processed images, while non-

CLAHE images yielded a higher accuracy of 0.9760. For 

photographs that are not CLAHE, the MCNN model performs 

better than CLAHE images. Researchers are interested in 

carrying out the experiment using the current mobile net 

architecture with an SVM linear combination in the next 

investigations. Owing to the scarcity of datasets, the author 

intends to work with medical professionals to establish a 

dataset so that the inquiry can be carried out with greater 

testing accuracy. The work can be improved in future by 

comparing different works. 
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