
SSRG International Journal of Electronics and Communication Engineering Volume 12 Issue 1, 44-71, January 2025

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12I1P104 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

An Efficient CoRXGB Approach to Estimate Effort of

Scrum Projects

Shivali Chopra1, Arun Malik2

1,2Lovely Professional University, Punjab, India.

1Corresponding Author : shivalichopra100@gmail.com

Received: 08 November 2024 Revised: 14 December 2024 Accepted: 05 January 2025 Published: 30 January 2025

Abstract - In agile software development, Story Point Estimation (SPE) is at the core of project planning, resource planning,

and project timeline management. During the last ten years, many researchers have reasonably attempted to propose methods

for estimating story points or tasks in agile projects. Expert judgment, planning poker, and analogy are some traditional

approaches that have been widely applied but criticized because of the inherent subjectivity, vulnerability to biases, and

inability to handle intrinsic complexities in user stories. Eventually, these lead to inaccurate estimates, misaligned stakeholder

expectations, and suboptimal sprint outcomes. The research direction has also shifted more in recent times to machine

learning-based and deep learning-based approaches that try to present more systematic estimation models driven by the data

itself. However, these also face difficulties while fully capturing the nuances involved with the multifaceted nature of user

stories. This paper proposes a new hybrid model for software effort estimation entitled CoRXGB. This will help through

synergistically combine CNN, RNN, and XGBoost and take the strength of all: CNN for extracting contextual and textual

features, the Bi-LSTM for extracting sequential and temporal relations, and XGBoost is superior at classifications. Among the

key originalities of the research approach, the most important may become the strategy for hyperparameter optimization that

involves Bayesian Optimization integrated with the Learning Gain Matrix. This strategy thus systematically analyzes and

optimizes performance gains from various configurations of hyperparameters and hence effectively removes inefficiencies that

are associated traditionally with the tuning process. This indeed lets one make better-informed and selective adjustments in

reaching high performance. Then, the resultant CoRXGB model has been applied extensively to a wide array of data sourced

from different Agile projects that included user stories amounting to more than 23,000 stories. The results showed a significant

improvement in the accuracy after hyperparameter tuning, with Appcelerator Studio increasing its accuracy to 90.55% from

82.47% and Aptana Studio increasing from 82.57% to 90.82%, reflecting an increase of 6.44%. In different data sets, CoRXGB

outperformed traditional classifiers like Logistic Regression, Support Vector Classifier, and K-Nearest Neighbors, and also

outperformed advanced models like RNN-CNN and DEEP-SE. These results underpin the efficiency of the CoRXGB model in

story point estimation. It not only outperforms baselines by substantial margins in precision, recall, and F1-score but also

holds immense promise to improve Agile project planning processes toward more reliable and efficient software development

practices.

Keywords - Agile, CNN, Deep Learning, Effort Estimation, Machine Learning, RNN, Scrum, XGB.

1. Introduction
Story points serve as a significant metric for estimating

the effort required to implement a user story in agile project

management, focusing on its complexity instead of its size

[1-2]. Traditional estimation methods, including expert

judgement, planning poker, and analogy-based techniques

[3], often result in inconsistencies and inaccuracies due to

heavy dependencies on the subjective judgement of team

members, which impact the project timelines and resource

allocation [4]. To overcome these challenges, there is a need

for a more objective and reliable technique to estimate story

point complexity. Over the past decade, several Machine

Learning (ML) [5-13], deep learning [14-16], fuzzy [17-18]

and regression techniques [19] have been explored to

overcome these limitations and enhance the story point

estimation accuracy. Earlier, Abrahamsson et al. (2011) [20]

implemented regression models and Support Vector

Machines using priority ad-specific keywords as features

which were extracted from user stories. The SVM models

show significant potential to address human bias and errors

in manual estimations. Porru et al. (2016) [21] further

expanded this approach using textual features and metadata

taken from Jira issue reports to classify user stories,

confirming the importance of user story text and length as key

predictors for estimating story points. Moving further,

developer-related features (e.g., developer reputation and

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025

45

workload) alongside textual features were included by Scott

and Pfahl (2018) [22] for the estimation of story points using

SVM models, which outperformed traditional textual

analysis. The incorporation of deep learning resulted in the

development of models like Deep-SE (Choetkiertikul et al.,

2019) [23] and GPT2SP [24]. Deep-SE leverages word

embeddings and deep learning architectures to map raw user

story text into a representation that aids story point

estimation.

The CoRXGB model performs better than various other

algorithms like TF/IDF, SVM, etc. The model can work on

the semantic relationships between user stories. A

transformer-based model, GPT2SP, has also been developed

in recent times, which offers improvements in cross-project

scenarios. However, the existing methods still face

challenges in capturing user stories’ intricate and sequential

nature. These research gaps have been addressed by

CoRXGB, combining CNN, RNN and XGBoost [25]. The

CNN layer extracts features from user stories by detecting

local patterns and identifying key phrases and combinations

of words frequently associated with specific story points.

This layer captures the spatial hierarchies in data, deriving

higher-level features from lower-level ones. The output from

the CNN is fed into the RNN layer, which is used for

processing sequences and, therefore, handles the contextual

nature of user stories. The RNN layer understands the

complexity embedded in the sequence of words and preserves

the context of the story points. Finally, the extracted features

are sent to an XGBoost classifier, which utilizes these refined

features to predict story points.

The CorXGB model incorporates an innovative

hyperparameter tuning strategy that combines Bayesian

Optimization [26] with a Learning Gain Matrix (LGM). This

approach captures performance gains while exploring the

hyperparameter space [27]. The proposed CoRXGB model

was trained and evaluated on a dataset containing more than

23000 user stories taken from open-source projects and

repositories. This performance demonstrates the model’s

efficacy in delivering a consistent estimation process. It also

aids in better sprint planning and resource management.

Section 2 reviews related work in story point estimation,

highlighting current trends and gaps in the field. Section 3

details the methodology of the CoRXGB model. Section 4

depicts the setup, datasets, and performance metrics. Section

5 presents the results, comparing the CoRXGB model with

existing approaches. Section 6 outlines the conclusion and

future research.

2. Related Work
The estimation of SPs in Agile software development has

increasingly drawn attention from researchers due to the

dynamic nature of Agile projects, where the estimation of

effort with good accuracy. The current research landscape of

Agile story point estimation indeed reflects a considerable

evolution in methodologies, focusing on enhancing

estimation accuracy with new machine learning and NLP

techniques [33-34]. Vali Towasi et al. (2022) [35] extended

the DEEP-SE framework by incorporating a larger dataset

from open-source projects. However, the expanded dataset

did not significantly improve estimation accuracy, which

may indicate that greater volume does not necessarily lead to

higher-quality predictions in this context.

On the other hand, Hung Phan et al. (2022) [36] applied

the Text-Level Graph Neural Network with an accuracy of

80%. Due to the above approach beating or attaining

traditional approaches such as TF-IDF [37], its demonstration

has opened up newer sets with a greater potential GNN and

in extracting complex associations presented between user

stories than most previous traditional methods may stand in

the way. Michael Fu et al. applied (Deep) transformer models

in support of an Agile story point estimates’ implementation

and were certain about accuracy improvements with

estimations of 6 percent up to 47 percent on the DEEP-SE

method. This also underscores a significant need that already

leading-edge deep learning methodologies could play in

estimating story points.

SLRs also contribute to this domain. Indra Kharisma

Raharjana et al. (2021) [40] performed an SLR on user stories

and NLP, analyzing 38 studies out of a pool of 718 papers

published between 2009 and 2020. Their work provides an

overall overview of the intersection between NLP and user

story analysis, highlighting trends and gaps in the literature.

Julliano Trindade Pintas et al. (2021) [41] presented a related

SLR on feature selection methods in text classification;

hence, effective feature selection must also be performed to

achieve better performance. Morakot Choetkiertikul et al.

(2019) [23] presented a model of LSTM [42] networks with

RHNs for story point prediction. Their end-to-end DEEP-SE

system, training raw data without any feature engineering,

tended to outperform methods such as Doc2Vec and Bag-

ofWords.

Most recent studies have combined deep learning models

with other machine learning approaches, such as

SentenceBERT with gradient-boosted trees. The work of

Burcu Yalçıner et al. (2024) [43] is a very good example of

this. Their model outperformed the best-performing state-of-

theart models by about 18%, demonstrating how effectively

DLbased feature extraction works coupled with advanced

ML algorithms. These studies together point to the direction

that Agile story point estimation research has taken so far—

from using traditional NLP techniques to more advanced

deep learning models. The challenge is how these models are

further refined, which can achieve high accuracy and be

interpretable and practical in real-world Agile environments.

A summary is provided in Table 1.

Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025

46

Table 1. Summary of the related work

Author(s) Year Methodology Key contributions

Burcu Yalçıner

et al. [43]
2024

Deep Learning, Machine

Learning, NLP (SBERT,

Gradient Boosting)

Introduces an integrated approach using SBERT

and GBT, improving story point estimation by 18%

over state-of-the-art models. Addresses

subjectivity and variability in traditional methods.

Sánchez,

Santacruz [44]
2023

Autoencoders, Deep Neural

Networks, Ensemble Learning

Combines traditional Agile estimation with

advanced ML models to improve estimation

accuracy.

Younisse, Azzeh

[45]
2023 NLP and Machine Learning

Surveys the application of NLP in Agile SPE,

highlighting the benefits of integrating ML and DL

techniques for more accurate estimations.

Vali Towasi et

al. [35]
2022

Deep Learning (DEEP-SE

Framework)

Extended DEEP-SE framework with a dataset of

thousands of user stories. Found that merely

increasing dataset size does not necessarily

improve estimation accuracy.

Hung Phan et al.

[36]
2022 Graph Neural Network (GNN)

Used Text-Level GNN to estimate story points,

achieving 80% accuracy. Demonstrated the

superiority of GNNs in capturing complex

relationships within user stories over traditional

methods.

Michael Fu et al.

[24]
2022 Transformer Models (GPT2SP)

Applied transformer models to Agile story point

estimation, significantly improving accuracy (6%

to 47%) over DEEP-SE. Highlighted the potential

of advanced deep learning architectures.

Haithem Kassem

et al. [46]
2022

Hierarchical Attention Neural

Network (HAN)

Proposed Hierarchical Attention Neural Network

(HAN), focusing on the hierarchical nature of

textual information in user stories. The authors

selected 7 projects out of 16 and formed a new

dataset of 7459 issues. The proposed HAN model

was tested on this subset, achieving an accuracy of

87%.

Indra Kharisma

Raharjana et al.

[40]

2021
Systematic Literature Review

(SLR)

Conducted an SLR on user stories and NLP,

providing an extensive overview of trends and gaps

in the intersection of NLP and user story analysis.

Reviewed 38 studies out of 718 papers published

from 2009 to 2020.

Julliano

Trindade Pintas

et al. [41]

2021
Systematic Literature Review

(SLR)

Conducted an SLR on feature selection methods in

text classification, emphasizing the importance of

effective feature selection in improving accuracy,

including Agile story point estimation.

Morakot

Choetkiertikul et

al. [23]

2019 Deep Learning

Proposed the DEEP-SE model, an end-to-end

system combining LSTM and RHN. Trained on

raw data without feature engineering,

outperforming methods like Doc2Vec and Bag-of-

Words.

Porru et al. [21] 2018
Textual Features, Metadata,

Classification

Confirmed the significance of user story text and

length in story point classification, highlighting the

feasibility of automated tools in Agile estimation.

Abrahamsson et

al. [20]
2011

Regression Models and Neural

Networks (NN)

Explored various models for story point estimation,

finding SVM to be the most effective in reducing

human bias in manual estimation.

Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025

47

3. Methodology
The CoRXGB model is a hybrid deep learning model

that integrates CNN, RNN (Bi-LSTM), and XGB to classify

story points based on the complexity of user stories. It

predicts the complexity of the given user story based on

historical data of previously estimated tasks. Our model

classifies the user stories into 3 categories – easy, medium

and complex. The steps of the proposed research

methodology are given below.

3.1. Data Preprocessing

• Data Loading: Load the dataset containing user stories,

their corresponding descriptions, and assigned story

points.

• Class Balancing: Group the user stories into three

classes—easy, medium, and complex—to manage class

imbalance in the dataset.

• Feature Creation: Concatenate the attributes of each user

story to form an input feature representing the textual

data.

• Data Cleaning: The stop words, HTML tags, and null

values have been removed from the user stories.

• Text Normalization: A Porter stemmer has been used to

reduce dimensionality.

• Tokenization: A Count Vectorizer is used on cleaned

user stories, which further splits the text into tokens.

• TF-IDF Vectorization: A TF-IDF is used to convert the

textual information into a numerical format. It captures

the relevance of words in the user stories.

• Padding: It has been ensured that the input sequences are

of uniform length for better model training and that

padding is used for this task.

• Normalization: A standard scaler has been used to

standardize numerical features. It ensured consistency in

scaling across all data points.

3.2. CoRXGB Model Architecture

• Input Layer: In this layer, the shape of the TF-IDF vector

and padded sequences have been taken together.

• Embedding Layer: This layer captures the semantic

meaning of the user stories. It transforms the word

indices into dense vectors of a fixed size.

It is defined with input dimensions corresponding to the

vocabulary size and output dimensions suitable for the

subsequent convolutional layer.

• Convolutional Layer: This layer incorporates a 1D

Convolutional Layer from user stories. It is defined in

Equation (1) with input size (𝑁, 𝐶𝑖𝑛, 𝐿𝑖𝑛), output size

(𝑁, 𝐶𝑜𝑢𝑡, 𝐿𝑜𝑢𝑡), and ReLU activation function using

Equation (2):

 (1)

 (2)

The output size of the Convolution 1D Layer can be

calculated using Equation (3):

 (3)

• Max-Pooling Layer: Use a MaxPooling1D layer to

simplify the model and reduce computational

complexity. Define the Max Pooling 1D Layer using

Equation (4) with input size (𝑁, 𝐶𝑖𝑛, 𝐿𝑖𝑛) and output

size (𝑁, 𝐶𝑜𝑢𝑡, 𝐿𝑜𝑢𝑡):

 (4)

The output size of the Max Pooling 1D Layer can be

calculated using Equation (4):

• Bidirectional LSTM Layers: Add Bidirectional LSTM

layers to capture long-term dependencies, increasing the

model’s understanding of the context within the user

stories. Define the Bidirectional LSTM Layer using

Equations (5) and (6)

 (5)

 (6)

Each cell in the LSTM is calculated using Equations (7)-

(12):

 (7)

 (8)

 (9)

 (10)

 (11)

 (12)

Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025

48

• Dropout Layer: Apply the Dropout layer using Equation

(13):

 (13)

• Dense Layer: Introduce a dense layer with ReLU

activation followed by batch normalization to improve

non-linearity and stabilize the training process. Define

the Dense layer using Equation (14) with ReLU

activation function Equation (2):

 (14)

Where 𝑤𝑖 is the weight of neuron 𝑖, 𝑥𝑖 is the input to

neuron 𝑖 and 𝑏 is the bias. Also, Define the Batch

Normalization layer using Eq. (15):

 (15)

Where 𝑥𝑖 is the input feature, 𝜇𝐵 is the mean of the input

features, 𝜎𝐵
2

 is the variance of the input features, 𝜀 is a small

constant, and 𝛾 & 𝛽 are the scalable parameters for selecting

and shifting the normalized input.

• XGBoost Layer: Integrate an XGBoost classification

layer to utilize the extracted features from the CNN-Bi-

LSTM part of the model for final classification. Define

the XGBoost classifier using Eq. (16) – Eq. (18):

 (16)

Where �̂� is the predicted class, K is the number of trees,

𝑓𝑘 is the kth tree in the ensemble, which is part of the model,

and 𝑥 is the input feature vector.

Each tree 𝑓𝑘 is defined as follows –

 (17)

Where 𝑞(𝑥) is a function that assigns the input 𝑥 to one

of the leaves and 𝑤𝑞(𝑥) is the weight of the leaf to which 𝑥

is assigned.

The objective function for the XGBoost is defined as

follows:

 (18)

Where 𝑙 is the multiclass cross-entropy loss, and Ω(𝑓𝑘)

is the regularization term for the kth tree, which controls the

complexity of the model.

3.3. Model Training and Configuration

• Data Splitting: Divide the dataset into training,

validation, and testing sets. Stratified k-fold cross-

validation has also been used.

• Model Compilation: Compile the CoRXGB model with

sparse categorical cross-entropy and an ADAM

optimizer.

• Training: Train the model using the training set,

evaluating performance on the validation set to tune

parameters and prevent overfitting.

3.4. Hyperparameter Tuning via Bayesian Optimization

• Hyperparameter Selection: Identify key

hyperparameters (e.g., learning rate, number of layers,

and XGBoost-specific parameters) for optimization.

• Objective Function: Define the objective function to

maximize accuracy while also taking into account the

Learning Gain Matrix (LGM) to ensure model

improvements.

• Optimization Process: Use Bayesian Optimization to

find the optimal hyperparameter settings over multiple

iterations.

• Learning Gain Matrix (LGM) Evaluation: Apply LGM

to evaluate how changes in hyperparameters affect

model performance, optimizing for both accuracy and

efficiency.

3.5. Model Evaluation

• Performance Metrics: Evaluate the CoRXGB model

using evaluation metrics across all Agile projects.

• Confusion Matrix and ROC Curve: Construct confusion

matrices and AUC-ROC curves before and after

hyperparameter tuning to assess improvements in

classification.

• Gain Analysis: Plot line graphs showing the relationship

between CoRXGB gains and score over iterations for

each Agile project, highlighting areas of improvement.

• Hyperparameter Impact Visualization: Visualize the

effects of various hyperparameters using scatter

matrices, heat maps, and bar charts to understand their

influence on the model’s performance.

• Stability Assessment: Use radar graphs to assess the

stability of the model across multiple iterations, ensuring

that the model remains robust.

• Statistical Comparison: Perform statistical hypothesis

testing to compare CoRXGB’s performance against

Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025

49

other baseline classifiers, ensuring that improvements

are statistically significant.

• Comparative Analysis: Conduct a comparative analysis

of CoRXGB to showcase its effectiveness in the context

of Agile software development.

The flowchart of the CoRXGB model is given in Figure

1.

Fig. 1 Flowchart of CoRXGB

4. Results and Discussions
4.1. The Dataset

The CoRXGB model has taken datasets from various

open-source projects [23]. A typical issue consists of an issue

key, issue title, issue description, and actual story points. A

total of 23313 issues have been used. The descriptive

characteristics of the dataset have been given in Table 2. It

contains the name of the open-source repository, open-source

project name, number of issues, minimum SPs, maximum

SPs, mean SPs, median SPs, mode SPs, SP variance, SP

standard deviation, and mean TD length of the project.

START

Step 1: Define the Input Layer with the shape

S=[Shape of TF-IDF vector + Shape of Padded Sequences)

Step 2: Define the Embedding Layer with the input dimension
as the size of word vocabulary, input length as the maximum

length of a sequence and the output dimension as the
dimension of the dense embedding for the Convolution Layer

Step 3: Define the Convolution ID

Layer using Eq. (1) and ReLU
activation function using Eq. (2)

Step 4: Define the Max Pooling 1D Layer
using Eq. (4)

Step 5: Define the Bidirectional LSTM
Layer using Eq. (5) and Eq. (6)

Step 6: Define the Dropout layer

using Eq. (13)

Step 7 and Step 8: Perform step 5 and step

6 again

Step 9: Define the Dense layer using Eq.

(14) with ReLU activation function using
Eq. (2)

Step 10: Define the Batch Normalization

layer using Eq. (15)

Step 11: Configure the model with sparse

categorical cross-entropy loss, Adam
optimizer and performance metric as

accuracy

Step 12: Train the model on the input data

to update the parameters of the
intermediate layers

Step 13: Extract the features from the deep
learning model by fetching the predictions
using the training and testing features set

Step 14: Define the XGBoost classifier
using Eq. (16), Eq. (17) and Eq. (18)

Step 15: Train the XGBoost classifier on

the extracted features and actual labels of
the training set

Step 16: Output the predictions from the

extracted features of the testing set

END

dl_model

Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025

50

Table 2. Descriptive characteristics of the dataset

Repo. Project
No. of

Issues

min

SP

max

SP

mean

SP

median

SP

mode

SP
var SP std SP

Mean TD

length

Apache

Mesos 1,680 1 40 3.09 3 3 5.87 2.42 181.12

Usergrid 482 1 8 2.85 3 3 1.97 1.4 108.6

Appcelerator

Appcelerator

Studio
2,919 1 40 5.64 5 5 11.07 3.33 124.61

Aptana

Studio
829 1 40 8.02 8 8 35.46 5.95 124.61

Titanium

SDK/CLI
2,251 1 34 6.32 5 5 25.97 5.1 205.9

DuraSpace DuraCloud 666 1 16 2.13 1 1 4.12 2.03 70.91

Atlassian

Bamboo 521 1 20 2.42 2 1 4.6 2.14 133.28

Clover 384 1 40 4.59 2 1 42.95 6.55 124.48

JIRA

Software
352 1 20 4.43 3 5 12.35 3.51 114.57

Moodle Moodle 1,166 1 100 15.54 8 5 468.5 21.6 88.86

Lsstcorp
Data

Management
4,667 1 100 9.57 4 1 275.7 16.6 69.41

Mulesoft

Mule 889 1 21 5.08 5 5 12.24 3.5 81.16

Mule Studio 732 1 34 6.4 5 5 29.01 5.39 70.99

Spring Spring XD 3,526 1 40 3.7 3 1 10.42 3.23 78.47

Talendforge

Talend Data

Quality
1,381 1 40 5.92 5 8 26.96 5.19 104.86

Talend ESB 868 1 13 2.16 2 1 2.24 1.5 128.97

Total 23313

Fig. 2 Distribution of story points in Appcelerator Studio

1 2 3 1 4

148 112

571

1126

751

1

137

2
0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11

Story point Count

Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025

51

Fig. 3 Architecture of the CoRXGB model

The actual story points in the Appcelerator Studio dataset

before pre-processing are given in Figure 2. It can be inferred

that the number of occurrences is not uniform throughout the

different story point categories. We have resolved the

problem of the imbalanced dataset by generating new

artificial entries using SMOTE (Synthetic Minority

Oversampling Technique) [47] as defined in Equation (19).

Before oversampling, the story points have been grouped

together into 3 different categories – easy, medium and

complex, to reduce the imbalanced data.

 (19)

input_2

InputLayer

float32

input:

output:

[(None, 5385)]

[(None, 5385)]

embedding_1

Embedding

float32

input:

output:

(None, 5385)

(None, 5385,100)

max_pooling1d_1

MaxPooling 1D

float32

input:

output:

(None, 5381, 128)

(None, 2690, 128)

conv1d_1

float32

input:

output:

(None, 5385, 100)

(None, 5381, 128)

Conv1D relu

bidirectional_2(1stm_2)

Bidirectional (LSTM)

float32

input:

output:

(None, 2690, 128)

(None, 2690, 200)

dropout_2

Dropout

float32

input:

output:

(None, 2690, 200)

(None, 2690, 200)

dropout_3

Dropout

float32

input:

output:

(None, 200)

(None, 200)

dense_1

float32

input:

output:

None, 200)

(None, 100)

Dense relu

bidirectional_3(1stm_3)

Bidirectional (LSTM)

float32

input:

output:

(None, 2690, 200)

(None, 200)

batch_normalization_1

BatchNormalization

float32

input:

output:

(None, 100)

(None, 100)

Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025

52

Where 𝑥𝑛𝑒𝑤 is the synthetic sample, 𝑥𝑖 is the original

minority class sample, 𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 is k-nearest neighbors of

𝑥𝑖 , 𝛿 is the random number between 0 and 1.

Figure 3 illustrates the architecture of the CoRXGB

model used for story point classification in Agile projects.

The model employs a hybrid deep learning approach, starting

with an input layer that accepts the concatenated TF-IDF

vector and padded sequence of the user stories. These inputs

are then processed through an embedding layer that

transforms word indices (with a vocabulary size of 5385) into

dense vectors of size 100, capturing the semantic meaning of

the text. Following this, a Conv1D layer extracts important

local patterns. Dropout layers are introduced between the

LSTMs to prevent overfitting during training. A dense layer

with 100 neurons applies a non-linear transformation, and a

batch normalization layer ensures stable and efficient training

by normalizing the input to the dense layer. Although not

shown in the figure, the final step involves passing the

extracted features to an XGBoost classifier, which performs

the classification of user stories into categories such as

“easy,” “medium,” or “complex.” This architecture

effectively combines the strengths of CNNs for feature

extraction and Bidirectional LSTMs for capturing sequential

relationships, followed by XGBoost for improved

classification performance. Initial Hyperparameter setting of

CoRXGB: Table 3 defines the hyperparameters and their

values for the CoRXGB model. These hyperparameters are

carefully chosen to balance the model’s complexity and

performance.

Table 3. Initial Hyperparameters setting of the CoRXGB model

Hyperparameter Name Value

Filters 32

kernel_size 5

Conv 1D Activation (Input) ReLU

Dropout 0.5

LSTM input 128 neurons

Optimizer Adam

Number of epochs 10

Early stopping

Monitor – val_accuracy

Min_delta = 1e-2

Patience = 5

Loss type Categorical cross-entropy

min_lr 0.001

No. of folds 5

Seed 250

The hyperparameters selected for the XGB model are

given in Table 4.

The specified ranges for these hyperparameters allow the

Bayesian Optimization process to explore a wide space of

possible model configurations. In the context of story point

classification using the CoRXGB algorithm, this helps find

an optimal balance between model complexity, accuracy, and

generalization capability.

Table 4. Hyperparameters of the XGBoost model

Hyperparameter Significance

max_depth (MD)

Controls the maximum depth of trees. A range of (3, 10) balances complexity

and generalization, capturing intricate dependencies between story attributes

without overfitting.

learning_rate(LR)

Controls the step size during each iteration. A range of (0.01, 0.3) ensures subtle

learning and avoids aggressive updates, which is essential for precise story point

classification.

n_estimators(NE)
Specifies the number of trees. The range (100, 500) ensures accurate

classification by capturing data patterns while maintaining training efficiency.

Gamma(G)
Minimum loss reduction for partitioning leaf nodes. The range (0, 0.5) balances,

making enough splits for pattern capture while avoiding over-complex models.

Subsample(SS)
Controls the fraction of samples per tree. The range (0.5, 1.0) introduces

randomness, improving robustness and reducing overfitting.

colsample_bytree

(CB)

Controls the fraction of features used for each tree. A range of (0.5, 1.0) ensures

the model captures relevant features without over-reliance on any single

attribute.

reg_lambda(RL)
Specifies the L2 regularization term to prevent overfitting. The range (0, 10)

applies varying degrees of regularization for better generalization.

reg_alpha(RA)
Specifies the L1 regularization term. A range of (0, 10) helps reduce overfitting,

encouraging simpler models that generalize better.

Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025

53

Table 5. CoRXGB performance on the Appcelerator Studio dataset

Class/Metrics precision Recall f1-score support

Class 0 (Easy)
0.941657 0.95109 0.94635 1697

Class 1 (Medium) 0.755199 0.748969 0.752071 1697

Class 2 (Complex) 0.775679 0.774308 0.774993 1697

macro avg 0.824178 0.824789 0.824471 5091

4.2. Performance Evaluation of CoRXGB on Appcelerator

Studio Project (without Hyperparameter Tuning)

The evaluation of the “Appcelerator Studio” project was

conducted using four algorithms: CoRXGB, KNN, Logistic

Regression (LR), and Support Vector Classifier (SVCLd).

This analys is included several performance metrics. Figure

4 illustrates the confusion matrix of the CoRXGB model,

which performed exceptionally well in classifying user

stories into Easy, Medium, and Complex categories. The

model’s overall classification accuracy on the Appcelerator

Studio dataset was 83%, as summarized in Table 5 for each

class.

Fig. 4 Confusion matrix of CoRXGB on Appcelerator Studio

4.3. Training and Validation Accuracy

The CoRXGB algorithm demonstrates high accuracy

across training and validation phases. The slight drop in

validation accuracy is due to the nature of the US, but overall,

the model performs well on the Appcelerator Studio dataset.

This high performance across multiple phases indicates a

robust model with good generalization capabilities. The “loss

plot” in Figure 5 shows the training and validation loss.

The training loss and the validation loss decreased,

showing significant improvement in both cases. The gap

between training and validation loss is relatively small,

indicating good generalization performance. Table 6 shows

the accuracy comparison of the CoRXGB for the appcelerator

studio project.

Fig. 5 Training and validation loss vs epochs plot of CoRXGB on

appcelerator studio project

Table 6. CoRXGB accuracy comparison for Appcelerator studio

Metric Accuracy

Training Accuracy 0.905

Validation Accuracy 0.845

4.4. ROC Curve for CoRXGB Model on Appcelerator

Studio Dataset

The ROC curve for the CoRXGB model on the

Appcelerator Studio dataset in Figure 6 indicates strong

classification performance across all three classes: Easy,

Medium, and Complex. The curve for Class 0 (Easy) is the

most prominent. Class 1 (Medium) also shows good

performance but with slightly lower accuracy compared to

Class 0. Class 2 (Complex) has the lowest curve among the

three, indicating relatively more challenges in accurately

classifying complex tasks. The AUC values for the

appcelerator studio project are given in Table 7.

Fig. 6 ROC curve of CoRXGB on appcelerator studio

Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025

54

Table 7. AUC values table for appcelerator studio

These AUC values indicate the model’s performance,

with Class 0 having the highest accuracy.

4.5. Performance Evaluation of CoRXGB across Multiple

Projects

A comprehensive analysis of the CoRXGB model’s

performance across multiple projects has been performed.

4.6. Training, Testing, and Validation Accuracy of

CoRXGB across Different Projects

The various accuracies of the CoRXGB model across

various projects are given in Table 8 and Figure 7.

It helps in understanding the model's generalizability to

new data. It also ensures consistency across different

datasets.

4.7. Performance Metrics of CoRXGB across Different

Projects

The performance matrices for each class across different

projects are given in Table 9.

Table 8. Training, Testing, and Validation Accuracy of CoRXGB across Different Projects

Project Training Accuracy Testing accuracy Validation Accuracy

Appceleratorstudio 0.84 82.47 0.80

Aptanastudio 0.75 82.57 0.80

Bamboo 0.95 89.68 0.85

Clover 0.70 75.26 0.75

Datamanagement 0.74 62.20 0.70

Duracloud 0.95 90.63 0.80

Jirasoftware 0.85 79.22 0.75

Mesos 0.90 73.64 0.70

Moodle 0.65 82.03 0.80

Mule 0.79 65.11 0.70

Mulestudio 0.78 65.31 0.75

Springxd 0.76 67.2 0.70

Talenddataquality 0.70 60 0.65

Talendesb 0.85 87.05 0.85

Titanium 0.80 76.64 0.75

Usergrid 0.85 87.48 0.80

 Fig. 7 CoRXGB accuracy comparisons across different projects

0
10
20
30
40
50
60
70
80
90

100

A
cc

u
ra

cy
 (

%
)

Projects

Training Accuracy Testing accuracy Validation Accuracy

Class AUC value

0 (Easy) 0.98

1 (Medium) 0.90

2 (Complex) 0.87

Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025

55

Table 9. Performance Metrics of CoRXGB across Different Projects

Projects Class Precision Recall F1-Score Support

Appcelerator

Studio

0 (Easy) 0.941657 0.95109 0.94635 1697

1 (Medium) 0.755199 0.748969 0.752071 1697

2 (Complex) 0.775679 0.774308 0.774993 1697

Aptana Studio

0 (Easy) 0.917927 0.925926 0.921909 459

1 (Medium) 0.792735 0.808279 0.800431 459

2 (Complex) 0.764574 0.742919 0.753591 459

Bamboo

0 (Easy) 0.848485 0.845283 0.846881 265

1 (Medium) 0.843284 0.85283 0.84803 265

2 (Complex) 1 0.992453 0.996212 265

Clover

0 (Easy) 0.697917 0.705263 0.701571 190

1 (Medium) 0.676617 0.715789 0.695652 190

2 (Complex) 0.898305 0.836842 0.866485 190

Moodle

0 (Easy) 0.917957 0.908116 0.91301 653

1 (Medium) 0.77573 0.773354 0.77454 653

2 (Complex) 0.768882 0.779479 0.774144 653

Mule

0 (Easy) 0.703349 0.744304 0.723247 395

1 (Medium) 0.574026 0.559494 0.566667 395

2 (Complex) 0.662304 0.640506 0.651223 395

Mulestudio

0 (Easy) 0.787466 0.840116 0.81294 344

1 (Medium) 0.534884 0.534884 0.534884 344

2 (Complex) 0.626168 0.584302 0.604511 344

SpringXD

0 (Easy) 0.616915 0.632653 0.624685 1372

1 (Medium) 0.547282 0.535714 0.541436 1372

2 (Complex) 0.848463 0.844752 0.846603 1372

Data

Management

0 (Easy) 0.609394 0.63654 0.622671 1549

1 (Medium) 0.621142 0.610717 0.615885 1549

2 (Complex) 0.636122 0.618464 0.627169 1549

Duracloud

0 (Easy) 0.863636 0.869281 0.86645 459

1 (Medium) 0.872807 0.867102 0.869945 459

2 (Complex) 0.982571 0.982571 0.982571 459

Jirasoftware

0 (Easy) 0.72956 0.794521 0.760656 146

1 (Medium) 0.796875 0.69863 0.744526 146

2 (Complex) 0.854305 0.883562 0.868687 146

Mesos

0 (Easy) 0.640816 0.635628 0.638211 741

1 (Medium) 0.621871 0.636977 0.629333 741

2 (Complex) 0.951989 0.936572 0.944218 741

Talenddata

quality

0 (Easy) 0.664488 0.682327 0.673289 447

1 (Medium) 0.49537 0.478747 0.486917 447

2 (Complex) 0.566667 0.57047 0.568562 447

Talendesb 0 (Easy) 0.80863 0.80863 0.80863 533

Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025

56

1 (Medium) 0.80705 0.816135 0.811567 533

2 (Complex) 0.998102 0.986867 0.992453 533

Titanium

0 (Easy) 0.868491 0.879357 0.87389 1119

1 (Medium) 0.679715 0.682752 0.68123 1119

2 (Complex) 0.75 0.737265 0.743578 1119

Usergrid

0 (Easy) 0.814516 0.852321 0.83299 237

1 (Medium) 0.834821 0.78903 0.81128 237

2 (Complex) 0.974895 0.983122 0.978992 237

4.8. AUC Values of CoRXGB across Different Projects

The AUC values for each class across different projects

are given in Table 10. The higher value of the AUC indicates

better performance. The classification of the complex user

stories showed the best performance across multiple projects.

It represents the model’s effectiveness and reliability. It also

provides a solid foundation for further improvements of

CoRXGB in real-world agile project management scenarios.

Training, Testing, and Validation Accuracy: The results

show consistency among training, testing, and validation

accuracies. Here are some observations:

• Bamboo and Duracloud: These projects show high

training and testing accuracies, depicting the good

performance of the model on these datasets.

• Talend ESB and Usergrid: These projects also show

balanced training and validation accuracies along

with testing accuracies, depicting the model's

reliability.

• Data management, Mule, Mulestudio, and

SpringXD: These projects show lower testing

accuracies, depicting a margin of improvements.

Table 10. AUC values of CoRXGB across different projects

Project Class 0 AUC Class 1 AUC Class 2 AUC

Appceleratorstudio 0.98 0.9 0.87

Aptanastudio 0.97 0.88 0.84

Bamboo 0.99 0.92 0.85

Clover 0.98 0.9 0.92

Datamanagement 0.92 0.87 0.89

Duracloud 0.96 0.91 0.94

Jirasoftware 0.95 0.85 0.89

Mesos 0.97 0.88 0.93

Moodle 0.96 0.87 0.92

Mule 0.92 0.84 0.88

Mulestudio 0.9 0.83 0.86

Springxd 0.92 0.86 0.91

Talenddataquality 0.9 0.84 0.88

Talendesb 0.92 0.88 0.94

Titanium 0.94 0.89 0.91

Usergrid 0.99 0.96 0.98

Performance Metrics (Precision, Recall, F1-Score): The

performance metrics across various projects show that

CoRXGB consistently performs well, particularly for

complex user stories:

• High Performance for Complex Stories: The model

achieves high precision and recall values for complex

stories across most projects, indicating its strong

capability to handle the most challenging classifications.

• Medium and Easy Stories: While the model generally

performs well for medium and easy stories, some

projects show a slight drop in performance for medium

complexity (e.g., Mesos and Talend Data Quality).

Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025

57

AUC Values: The AUC values across projects highlight

the model’s excellent ability to distinguish between different

classes:

• High AUC for Complex Stories: Projects such as

Duracloud, Talend ESB, and Usergrid exhibit very high

AUC values for complex stories, demonstrating the

model’s superior discrimination capability in identifying

these cases.

• Balanced Performance: Even for projects with relatively

lower AUC values (e.g., Talend Data Quality and Mule),

the model still maintains a reasonable level of

performance, suggesting its overall robustness.

4.9. Comparative Analysis of CoRXGB and Other

Classifiers

The CoRXGB model demonstrates robust performance

across various projects when compared to other classifiers

like KNN, LR, and SVCLd. The comparison is given in Table

11. The performance metrics indicate that CoRXGB excels,

particularly in classifying complex user stories. An accuracy

comparison with DEEP-SE [23] and RNN-CNN [15] is given

in Table 12.

Table 11. Comparative Performance Metrics of CoRXGB and Other Classifiers across Different Projects

Projects Algorithm Class Precision Recall F1-Score Support

Appcelerator

Studio

CoRXGB

0 (Easy) 0.941657 0.95109 0.94635 1697

1 (Medium) 0.755199 0.748969 0.752071 1697

2 (Complex) 0.775679 0.774308 0.774993 1697

KNN

0 (Easy) 0.612845 0.995286 0.75859 1697

1 (Medium) 0.737255 0.221567 0.340734 1697

2 (Complex) 0.696438 0.748969 0.721749 1697

LR

0 (Easy) 0.846071 0.926341 0.884388 1697

1 (Medium) 0.702561 0.630524 0.664596 1697

2 (Complex) 0.72807 0.733648 0.730848 1697

SVCLd

0 (Easy) 0.875327 0.984679 0.926789 1697

1 (Medium) 0.773707 0.634649 0.697313 1697

2 (Complex) 0.751397 0.792575 0.771437 1697

Aptana Studio

CoRXGB

0 (Easy) 0.917927 0.925926 0.921909 459

1 (Medium) 0.792735 0.808279 0.800431 459

2 (Complex) 0.764574 0.742919 0.753591 459

KNN

0 (Easy) 0.550602 0.995643 0.709077 459

1 (Medium) 0.696325 0.784314 0.737705 459

2 (Complex) 0.8 0.052288 0.09816 459

LR

0 (Easy) 0.909278 0.960784 0.934322 459

1 (Medium) 0.792735 0.808279 0.800431 459

2 (Complex) 0.808962 0.747277 0.776897 459

SVCLd

0 (Easy) 0.926829 0.993464 0.958991 459

1 (Medium) 0.793587 0.862745 0.826722 459

2 (Complex) 0.862694 0.72549 0.788166 459

Bamboo

CoRXGB

0 (Easy) 0.848485 0.845283 0.846881 265

1 (Medium) 0.843284 0.85283 0.84803 265

2 (Complex) 1 0.992453 0.996212 265

KNN
0 (Easy) 1 0.101887 0.184932 265

1 (Medium) 0.598916 0.833962 0.697161 265

Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025

58

2 (Complex) 0.66416 1 0.798193 265

LR

0 (Easy) 0.865854 0.803774 0.833659 265

1 (Medium) 0.822064 0.871698 0.846154 265

2 (Complex) 0.988806 1 0.994371 265

SVCLd

0 (Easy) 0.88843 0.811321 0.848126 265

1 (Medium) 0.828671 0.89434 0.860254 265

2 (Complex) 0.992509 1 0.996241 265

Clover

CoRXGB

0 (Easy) 0.697917 0.705263 0.701571 190

1 (Medium) 0.676617 0.715789 0.695652 190

2 (Complex) 0.898305 0.836842 0.866485 190

KNN

0 (Easy) 0.8 0.084211 0.152381 190

1 (Medium) 0.572 0.752632 0.65 190

2 (Complex) 0.593333 0.936842 0.726531 190

LR

0 (Easy) 0.775148 0.689474 0.729805 190

1 (Medium) 0.730769 0.8 0.763819 190

2 (Complex) 0.891192 0.905263 0.898172 190

SVCLd

0 (Easy) 0.828947 0.663158 0.736842 190

1 (Medium) 0.738318 0.831579 0.782178 190

2 (Complex) 0.897059 0.963158 0.928934 190

Moodle

CoRXGB

0 (Easy) 0.917957 0.908116 0.91301 653

1 (Medium) 0.77573 0.773354 0.77454 653

2 (Complex) 0.768882 0.779479 0.774144 653

KNN

0 (Easy) 0.621822 0.898928 0.735128 653

1 (Medium) 0.591837 0.799387 0.68013 653

2 (Complex) 0.894737 0.182236 0.302799 653

LR

0 (Easy) 0.863034 0.897397 0.87988 653

1 (Medium) 0.752656 0.759571 0.756098 653

2 (Complex) 0.79066 0.751914 0.770801 653

SVCLd

0 (Easy) 0.887798 0.969372 0.926794 653

1 (Medium) 0.799127 0.840735 0.819403 653

2 (Complex) 0.862254 0.738132 0.79538 653

Mule

CoRXGB

0 (Easy) 0.703349 0.744304 0.723247 395

1 (Medium) 0.574026 0.559494 0.566667 395

2 (Complex) 0.662304 0.640506 0.651223 395

KNN

0 (Easy) 0.491228 0.850633 0.622799 395

1 (Medium) 0.573529 0.098734 0.168467 395

2 (Complex) 0.600462 0.658228 0.628019 395

LR
0 (Easy) 0.64657 0.787342 0.710046 395

1 (Medium) 0.562112 0.458228 0.504881 395

Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025

59

2 (Complex) 0.691099 0.668354 0.679537 395

SVCLd

0 (Easy) 0.691824 0.835443 0.756881 395

1 (Medium) 0.608247 0.448101 0.516035 395

2 (Complex) 0.671463 0.708861 0.689655 395

Mule Studio

CoRXGB

0 (Easy) 0.787466 0.840116 0.81294 344

1 (Medium) 0.534884 0.534884 0.534884 344

2 (Complex) 0.626168 0.584302 0.604511 344

KNN

0 (Easy) 0.435931 0.959302 0.599455 344

1 (Medium) 0.769231 0.087209 0.156658 344

2 (Complex) 0.690678 0.473837 0.562069 344

LR

0 (Easy) 0.769231 0.843023 0.804438 344

1 (Medium) 0.60066 0.52907 0.562597 344

2 (Complex) 0.613636 0.627907 0.62069 344

SVCLd

0 (Easy) 0.79198 0.918605 0.850606 344

1 (Medium) 0.619863 0.526163 0.569182 344

2 (Complex) 0.639296 0.633721 0.636496 344

SpringXD

CoRXGB

0 (Easy) 0.616915 0.632653 0.624685 1372

1 (Medium) 0.547282 0.535714 0.541436 1372

2 (Complex) 0.848463 0.844752 0.846603 1372

KNN

0 (Easy) 0.573293 0.416181 0.482264 1372

1 (Medium) 0.576923 0.153061 0.241935 1372

2 (Complex) 0.458636 0.921283 0.612403 1372

LR

0 (Easy) 0.622493 0.633382 0.62789 1372

1 (Medium) 0.539405 0.44898 0.490056 1372

2 (Complex) 0.752852 0.865889 0.805424 1372

SVCLd

0 (Easy) 0.629078 0.646501 0.637671 1372

1 (Medium) 0.569982 0.451166 0.503662 1372

2 (Complex) 0.784568 0.926385 0.849599 1372

Data

Management

CoRXGB

0 (Easy) 0.609394 0.63654 0.622671 1549

1 (Medium) 0.621142 0.610717 0.615885 1549

2 (Complex) 0.636122 0.618464 0.627169 1549

KNN

0 (Easy) 0.55609 0.224015 0.319374 1549

1 (Medium) 0.400238 0.868948 0.548046 1549

2 (Complex) 0.719697 0.306649 0.430059 1549

LR

0 (Easy) 0.645266 0.64235 0.643805 1549

1 (Medium) 0.589454 0.606198 0.597708 1549

2 (Complex) 0.659392 0.643641 0.651421 1549

SVCLd
0 (Easy) 0.661806 0.615236 0.637671 1549

1 (Medium) 0.616494 0.690123 0.651234 1549

Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025

60

2 (Complex) 0.663951 0.631375 0.647253 1549

Duracloud

CoRXGB

0 (Easy) 0.863636 0.869281 0.86645 459

1 (Medium) 0.872807 0.867102 0.869945 459

2 (Complex) 0.982571 0.982571 0.982571 459

KNN

0 (Easy) 0.578313 0.104575 0.177122 459

1 (Medium) 0.633284 0.936819 0.755712 459

2 (Complex) 0.708943 0.949891 0.811918 459

LR

0 (Easy) 0.90799 0.816993 0.860092 459

1 (Medium) 0.84413 0.908497 0.875131 459

2 (Complex) 0.976596 1 0.988159 459

SVCLd

0 (Easy) 0.961735 0.821351 0.886016 459

1 (Medium) 0.853282 0.962963 0.904811 459

2 (Complex) 0.982869 1 0.991361 459

Jirasoftware

CoRXGB

0 (Easy) 0.72956 0.794521 0.760656 146

1 (Medium) 0.796875 0.69863 0.744526 146

2 (Complex) 0.854305 0.883562 0.868687 146

KNN

0 (Easy) 0.596154 0.849315 0.700565 146

1 (Medium) 1 0.089041 0.163522 146

2 (Complex) 0.640553 0.952055 0.76584 146

LR

0 (Easy) 0.759259 0.842466 0.798701 146

1 (Medium) 0.784 0.671233 0.723247 146

2 (Complex) 0.89404 0.924658 0.909091 146

SVCLd

0 (Easy) 0.79375 0.869863 0.830065 146

1 (Medium) 0.803279 0.671233 0.731343 146

2 (Complex) 0.884615 0.945205 0.913907 146

Mesos

CoRXGB

0 (Easy) 0.640816 0.635628 0.638211 741

1 (Medium) 0.621871 0.636977 0.629333 741

2 (Complex) 0.951989 0.936572 0.944218 741

KNN

0 (Easy) 0.616725 0.238866 0.344358 741

1 (Medium) 0.641791 0.232119 0.340932 741

2 (Complex) 0.443046 0.997301 0.613533 741

LR

0 (Easy) 0.659091 0.665317 0.662189 741

1 (Medium) 0.655063 0.558704 0.603059 741

2 (Complex) 0.856465 0.974359 0.911616 741

SVCLd

0 (Easy) 0.663877 0.642375 0.652949 741

1 (Medium) 0.656848 0.601889 0.628169 741

2 (Complex) 0.8948 0.99865 0.943878 741

CoRXGB

0 (Easy) 0.664488 0.682327 0.673289 447

1 (Medium) 0.49537 0.478747 0.486917 447

Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025

61

Talenddata

quality

2 (Complex) 0.566667 0.57047 0.568562 447

KNN

0 (Easy) 0.395604 0.805369 0.530582 447

1 (Medium) 0.424354 0.257271 0.320334 447

2 (Complex) 0.45 0.161074 0.237232 447

LR

0 (Easy) 0.634656 0.680089 0.656587 447

1 (Medium) 0.476998 0.440716 0.45814 447

2 (Complex) 0.550111 0.552573 0.551339 447

 SVCLd

0 (Easy) 0.654064 0.774049 0.709016 447

1 (Medium) 0.529412 0.483221 0.505263 447

2 (Complex) 0.576733 0.521253 0.547591 447

Talendesb

CoRXGB

0 (Easy) 0.80863 0.80863 0.80863 533

1 (Medium) 0.80705 0.816135 0.811567 533

2 (Complex) 0.998102 0.986867 0.992453 533

KNN

0 (Easy) 0.653061 0.180113 0.282353 533

1 (Medium) 0.658015 0.80863 0.725589 533

2 (Complex) 0.636136 0.95122 0.762406 533

LR

0 (Easy) 0.816929 0.778612 0.79731 533

1 (Medium) 0.791289 0.818011 0.804428 533

2 (Complex) 0.987037 1 0.993476 533

SVCLd

0 (Easy) 0.876333 0.771107 0.820359 533

1 (Medium) 0.799663 0.891182 0.842946 533

2 (Complex) 0.994403 1 0.997194 533

Titanium

CoRXGB

0 (Easy) 0.868491 0.879357 0.87389 1119

1 (Medium) 0.679715 0.682752 0.68123 1119

2 (Complex) 0.75 0.737265 0.743578 1119

KNN

0 (Easy) 0.509416 0.942806 0.661442 1119

1 (Medium) 0.682609 0.140304 0.232765 1119

2 (Complex) 0.703598 0.663986 0.683218 1119

LR

0 (Easy) 0.778302 0.884718 0.828105 1119

1 (Medium) 0.677149 0.577301 0.623251 1119

2 (Complex) 0.717065 0.724754 0.720889 1119

SVCLd

0 (Easy) 0.813777 0.960679 0.881148 1119

1 (Medium) 0.737209 0.566577 0.640728 1119

2 (Complex) 0.728741 0.765862 0.746841 1119

Usergrid

CoRXGB

0 (Easy) 0.814516 0.852321 0.83299 237

1 (Medium) 0.834821 0.78903 0.81128 237

2 (Complex) 0.974895 0.983122 0.978992 237

KNN
0 (Easy) 0.632353 0.907173 0.745234 237

1 (Medium) 0.84 0.088608 0.160305 237

Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025

62

2 (Complex) 0.684971 1 0.813036 237

LR

0 (Easy) 0.843882 0.843882 0.843882 237

1 (Medium) 0.84322 0.839662 0.841438 237

2 (Complex) 0.995798 1 0.997895 237

SVCLd

0 (Easy) 0.841509 0.940928 0.888446 237

1 (Medium) 0.932367 0.814346 0.869369 237

2 (Complex) 0.991632 1 0.995798 237

Table 12. Accuracy Comparison of CoRXGB with DEEP-SE and RNN-CNN across Various Projects

Projects Algorithms Accuracy Projects Algorithms Accuracy

Appcelerator Studio

CoRXGB 82.47

Data Management

CoRXGB 62.2

RNN-CNN 62.29 RNN-CNN 49.92

DEEP-SE 60.26 DEEP-SE 47.87

Aptana Studio

CoRXGB 82.57

Duracloud

CoRXGB 90.63

RNN-CNN 45.62 RNN-CNN 70.94

DEEP-SE 42.58 DEEP-SE 69.92

Bamboo

CoRXGB 89.68

Jirasoftware

CoRXGB 79.22

RNN-CNN 74.28 RNN-CNN 59.64

DEEP-SE 71.24 DEEP-SE 59.52

Clover

CoRXGB 75.26

Mesos

CoRXGB 73.64

RNN-CNN 50.95 RNN-CNN 59.53

DEEP-SE 50.45 DEEP-SE 59.84

Moodle

CoRXGB 82.03

Talenddata quality

CoRXGB 60

RNN-CNN 51.32 RNN-CNN 49.06

DEEP-SE 50.29 DEEP-SE 48.28

Mule

CoRXGB 65.11

Talendesb

CoRXGB 87.05

RNN-CNN 43.17 RNN-CNN 70.57

DEEP-SE 40.09 DEEP-SE 69.67

Mulestudio

CoRXGB 65.31

Titanium

CoRXGB 76.64

RNN-CNN 18.26 RNN-CNN 58.95

DEEP-SE 17.17 DEEP-SE 55.92

SpringXD

CoRXGB 67.2

Usergrid

CoRXGB 87.48

RNN-CNN 46.93 RNN-CNN 55.16

DEEP-SE 46.82 DEEP-SE 52.66

Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025

63

Fig. 8 Accuracy comparison – CoRXGB vs DEEP-SE vs RNN-CNN

Table 13. LGM Bayesian Optimization results for CoRXGB Hyperparameters - Appcelerator Studio Project

max_

depth

learning

_rate

n_estim

ators
gamma subsample

colsample

_bytree

reg_lam

bda

reg_alph

a
score Gain

7 0.22228 162 0.47536 0.9330881 0.6872701 0.58084 1.55995 83.94 0

9 0.01597 432 0.35404 0.5917023 0.8005575 1.81825 2.12339 88.24 5.118814

5 0.13526 344 0.26238 0.6831809 0.6521211 2.92145 1.39494 86.36 -2.12968

6 0.06791 336 0.39259 0.5852621 0.728035 6.07545 0.4645 90.55 2.615584

8 0.29003 221 0.47444 0.7200762 0.5325258 6.84233 0.97672 88.92 -1.80016

9 0.0599 300 0.48058 0.9229804 0.950709 9.91947 0 86.58 -4.38296

3 0.3 100 0.5 1 1 10 10 82.87 -8.48641

7 0.06443 299 0.46991 0.8955632 0.931528 9.3424 0.20465 82.98 -8.36044

10 0.01 315 0.5 1 1 10 0 87.19 -3.71303

8 0.24072 174 0.41956 0.6154358 0.6675653 0.35628 3.95756 86.94 -3.99074

5 0.22327 151 0 0.5 0.7153427 1.37257 0.37098 86.36 -4.62615

8 0.07783 159 0.27687 0.5217279 0.6532014 9.96212 8.0399 87.61 -3.24146

8 0.28949 341 0.02785 0.7688727 0.8629891 7.85035 8.742 84.47 -6.71929

3 0.01 336 0.5 0.5 0.5 0 0 90.14 -0.4578

6 0.24158 340 0.43896 0.9370519 0.5444044 8.48533 1.39253 83.35 -7.95131

9 0.01 335 0.18557 0.5 1 8.98963 0.44258 88.82 -1.91013

8 0.01 341 0.01562 0.5 1 4.58593 0.87025 84.88 -6.26427

10 0.03863 302 0.5 1 1 7.26337 1.73721 86.64 -4.31867

6 0.2248 158 0.28334 0.7614067 0.6993633 0.77253 0.98499 85.78 -5.27052

3 0.01112 160 0.16475 0.7065307 0.7504244 2.65962 0.92076 88 -2.81323

0

10

20

30

40

50

60

70

80

90

100
A

cc
u
ra

cy
 (

%
)

Project

CoRXGB RNN-CNN DEEP-SE

Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025

64

The comparison of CoRXGB with DEEP-SE and RNN-

CNN models in Figure 8 across multiple projects reveals that

CoRXGB consistently delivers higher accuracy. For instance,

CoRXGB achieved 82.47% accuracy on the Appcelerator

Studio dataset, significantly outperforming RNN-CNN

(62.29%) and DEEP-SE (60.26%). Similarly, CoRXGB

excelled in other projects, such as Aptana Studio and

Bamboo, where it recorded accuracies of 82.57% and

89.68%, respectively, compared to much lower scores by the

other models. Notable high-performing cases for CoRXGB

include Duracloud (90.63%) and Usergrid (87.48%). These

results underscore CoRXGB’s robustness and effectiveness

in classifying complex user stories, demonstrating its

superior generalization and adaptability across diverse

datasets in agile story point classification tasks.

4.10. Performance Evaluation of CoRXGB on

Appceleratorstudio project (Post Tuning)

This section represents the results of the performance of

the CoRXGB model using hyperparameter tuning for

different projects. Each result consists of a Learning Gain

Matrix (LGM), model score, gain over iterations,

hyperparameters iterations, and confusion matrix.

Performance metrics have also been updated based on these

results. Interpretation of the same has been included, along

with comparative analysis for various projects.

The Learning Gain Matrix (LGM) Bayesian

Optimization results for CoRXGB Hyperparameters are

given in Table 13 for the Appcelerator Studio Project. The

highest score of 90.55 was achieved with a max_depth of 6,

learning_rate of 0.06791, n_estimators of 336, gamma of

0.39259, subsample of 0.5852621, colsample_bytree of

0.728035, reg_lambda of 6.07545, and reg_alpha of 0.4645.

This result indicates that the model benefits from a moderate

depth, a balanced learning rate, and a sufficient number of

estimators. Table 13 shows that lower learning rates and

higher numbers of estimators generally lead to higher

accuracy scores.

The combination of CNN and RNN is used to extract the

spatial and sequential features not done by other models.

The use of Bayesian optimization helps in achieving the

optimal configurations for the CoRXGB model.

The Appcelerator Studio project exhibited a substantial

improvement in accuracy from 82.47% to 90.55% after

hyperparameter tuning. The confusion matrix after

Hyperparameter tuning is given in Figure 9.

Fig. 9 Post-tuning confusion matrix of CoRXGB for Appcelerator

studio project

The improved performance metrics for the Appcelerator

studio project are given in Table 14.

Table 14. CoRXGB Performance Metrics after Tuning for Appcelerator Studio Project

Class/Metrics Precision Recall F1 Score Support

Class 0 (Easy) 0.973177 0.982518 0.977822 1697

Class 1 (Medium) 0.866742 0.855562 0.861114 1697

Class 2 (Complex) 0.867135 0.879141 0.873091 1697

A “Model score and gain over iterations” plot is given in

Figure 10. The Blue Line (Score) represents the model’s

score over different iterations. It indicates the performance of

the model as the iterations progress. The score fluctuates

significantly for initial iterations, indicating instability in the

model’s performance initially. There is a significant drop in

the score around iteration 5 in the middle iterations, followed

by a recovery, suggesting the model may be adjusting to the

parameters. In later iterations, the score remains somewhat

volatile but shows overall improvement, indicating potential

fine-tuning and optimization of the model. The Red Line

(Gain%) represents the gain percentage over different

iterations. It measures the change in performance relative to

the previous iteration.

The initial iterations show high fluctuations, indicating

significant changes in the model’s performance, whereas, in

middle iterations, a noticeable drop in gain around iteration 5

corresponds to the drop in the score. The gains become more

stable in later iterations, with smaller fluctuations indicating

more consistent model performance.

Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025

65

Fig. 10 Model score and gain over iterations – appcelerator studio

In Figure 11, a series of subplots shows how different

hyperparameters impact the model’s score across various

iterations.

• max_depth vs. Score: A slight positive effect, indicating

that increasing max_depth can improve the model’s

score up to a certain point. The optimal max_depth

appears to be around 9.

• learning_rate vs. Score: A negative effect, suggesting

that higher learning rates might decrease the model’s

score. Lower learning rates are associated with better

performance.

• n_estimators vs. Score: Positive effect, showing that

increasing the number of estimators tends to improve the

model’s score. The optimal number of estimators is

around 350.

• Gamma vs. Score: Relatively flat, indicating that gamma

has a minimal impact on the score within the tested

range. Scores are relatively consistent regardless of

gamma.

• Subsample vs. Score: Negative effect, indicating higher

subsampling rates might reduce the score. Lower

subsampling rates tend to result in better performance.

• Colsample_bytree vs. Score: Slight negative effect,

suggesting that increasing colsample_by tree might

slightly reduce the score. Optimal values seem to be

around the middle range of the tested values.

• reg_lambda vs. Score: Negative effect, indicating that

higher regularization (lambda) reduces the score. Lower

values of reg_lambda are associated with better

performance.

• reg_alpha vs. Score: The Negative effect indicates that

higher regularization (alpha) reduces the score. The

lower values of reg_alpha are associated with better

performance.

4.11. Comparative Analysis of Model Performance across

Projects

This section discusses the comprehensive comparative

analysis of the model performance across various projects

based on aspects like stability, hyperparameter effects, and

model performance. These statistical approaches help

identify the model's performance under different conditions

and configurations.

This analysis has been structured to evaluate quantitative

and qualitative measures, where quantitative measures

include standard deviation, range, and stability scores, and

qualitative measures include score trends and gain

percentages. It also helps in understanding the behavior of the

model.

4.12. Hyperparameter Impact

With the help of visualization techniques, the

relationship between hyperparameter values and model

scores has been depicted. It helps identify the optimal settings

for each project. Figure 12 shows a heatmap of the

comparative analysis of Hyperparameter effects where 1

depicts “positive effect”, 0 for “Minimal effect”, and -1

means “Negative effect”. Figure 13 represents the count of

positive (+), negative (-), and minimal effects for each

hyperparameter.

Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025

66

Fig. 11 Hyperparameters vs score over iterations – appcelerator studio

Fig. 12 Comparative analysis of Hyperparameters effects across projects

Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025

67

Fig. 13 Effect count per hyperparameter

Fig. 14 CoRXGB accuracy comparison (Before and After Hyperparameter Tuning)

82.47 82.57
89.68

75.26

62.2

90.63

79.22
73.64

82.03

65.11 65.31 67.2
60

87.05

76.64

87.4890.55 90.82
95.68

83.25

68.48

95.67

85.8
80.23

90.55

70.29 70.33 73.15
67.76

93.38

85.1

95.86

0

10

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy

Project

CoRXGB Accuracy Before and After Hyperparameter TuningBefore Tuning

After Tuning

Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025

68

4.13. CoRXGB Accuracy Comparison (Before and After

Hyperparameter Tuning)

An accuracy comparison of the CoRXGB model has

been depicted in Table 15 and Figure 14 by performing

hyperparameter tuning before and after. The importance of

tuning has been clearly seen in accuracy improvements and

increased gain values from moderate to substantial across all

projects.

Table 15. CoRXGB Accuracy Comparison after Hyperparameter

tuning

Project
Initial Accuracy

(Before tuning)

Accuracy

After Tuning

Appceleratorstudio 82.47 90.55

Aptanastudio 82.57 90.82

Bamboo 89.68 95.68

Clover 75.26 83.25

Datamanagement 62.2 68.48

Duracloud 90.63 95.67

Jirasoftware 79.22 85.8

Mesos 73.64 80.23

Moodle 82.03 90.55

Mule 65.11 70.29

Mulestudio 65.31 70.33

Springxd 67.2 73.15

Talenddataquality 60 67.76

Talendesb 87.05 93.38

Titanium 76.64 85.1

Usergrid 87.48 95.86

The moodle project shows improvements in accuracy

from 82.04% to 90.55% after performing hyper tuning. The

average improvement of the CoRXGB model is 6.91

percentage points by performing the hypertuning. It also

shows the impact of hyperparameter tuning in increasing

model performance.

4.14. Statistical Hypothesis Testing Results for CoRXGB vs

DEEP-SE and RNN-CNN

A series of statistical hypothesis tests have been

performed. T-tests and Wilcoxon Signed-Rank tests have

been performed to check the accuracy between CoRXGB and

the other two models. A paired t-test is used to find out the

difference between two related groups by calculating means.

The equation for the paired t-test is:

 (20)

The Wilcoxon Signed-Rank Test 𝑊 is calculated as

follows:

(21)

Hypothesis

• Null Hypothesis (H0): No major difference in the

accuracy of CoRXGB and other models (DEEP-SE or

RNN-CNN).

• Alternative Hypothesis (H1): Major difference in the

accuracy of CoRXGB and other models (DEEP-SE or

RNN-CNN).

4.15. Results Table

The results for both tests are given in Table 16.

The paired t-test results show extremely low p-values,

indicating a significant difference in accuracy between

CoRXGB and both DEEP-SE and RNN-CNN. The high t-

statistic values further reinforce this conclusion. The

Wilcoxon Signed-Rank Test results also exhibit extremely

low p-values, indicating that the accuracy differences

between CoRXGB and the other two models are statistically

significant. The Wilcoxon statistic being 0.0 suggests a

consistent pattern where CoRXGB consistently outperforms

DEEP-SE and RNN-CNN across all datasets. The results

from the paired t-tests and the Wilcoxon Signed-Rank tests

strongly suggest that the CoRXGB model significantly

outperforms DEEP-SE and RNN-CNN regarding accuracy

across various projects. The p-values, i.e., <0.05, show that

the null hypothesis can be rejected. The CoRXGB model

provides improved performance than DEEP-SE and RNN-

CNN. This makes the CoRXGB model a better choice for

predicting the complexity of user stories. Paired t-tests and

Wilcoxon Signed-Rank tests accuracy results show that the

CoRXGB model outperforms DEEP-SE and RNN-CNN

approaches.

Table 16. Statistical Comparison of CoRXGB with DEEP-SE and RNN-CNN Model

Comparison
Paired t-test t-

statistic

Paired t-test p-

value

Wilcoxon Signed-

Rank Test

Statistic

Wilcoxon Signed-

Rank Test p-value

CoRXGB vs DEEP-SE 9.548 9.15E-08 0 3.05E-05

CoRXGB vs RNN-CNN 9.235 1.41E-07 0 3.05E-05

Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025

69

5. Conclusion and Future Work
The paper represents the results in the field of Agile

project management using the CoRXGB model. The

CoRXGB model improves story point estimation accuracy by

combining the features of CNN, RNN, and XGBoost

algorithms. The CoRXGB model predicts the user story

points. Our study is supported by the extensive literature

work in the field of Agile project Development. The

CoRXGB model uses CNN for feature extraction, LSTM for

extracting sequential dependencies, and XGBoost for

efficient classification. Advanced preprocessing techniques

like TF-IDF vectorization have also been implemented. The

model was trained using Bayesian Optimization ensuring

optimal performance supported with Hyperparameter tuning.

Overall, the CoRXGB model has proven to be the tool for

enhancing Agile project management efficiency.

The various advanced machine learning techniques, like

transformers, could be integrated with the CoRXGB model.

Team dynamics and human factors such as team size and

experience can also be included to improve the model’s

adaptability. The CoRXGB model can be deployed in the real

world by agile practitioners as it provides customized

estimations of industry-specific requirements. The dataset

biases can also be explored to improve the model’s

generalizability. Explainable AI techniques like SHAP,

LIME, etc., can enhance the model’s interpretability.

References
[1] Nisma Gaffar et al., “A Proposed Framework for Enhancing Story Points in Agile Software Projects,” Indian Journal of Science and

Technology, vol. 11, no. 31, pp. 1-11, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[2] Janeth Lopez-Martinez et al., “Estimating User Stories’ Complexity and Importance in Scrum with Bayesian Networks,” Recent Advances

in Information Systems and Technologies, pp. 205-214, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[3] M. Shepperd, and C. Schofield, “Estimating Software Project Effort Using Analogies,” IEEE Transactions on Software Engineering, vol.

23, no. 11, pp. 736-743, 1997. [CrossRef] [Google Scholar] [Publisher Link]

[4] Ravi Kiran Mallidi, and Manmohan Sharma, “Study on Agile Story Point Estimation Techniques and Challenges,” International Journal

of Computer Applications, vol. 174, no. 13, pp. 9-14, 2021. [Google Scholar] [Publisher Link]

[5] Suyash Shukla, and Sandeep Kumar, “Study of Learning Techniques for Effort Estimation in Object-Oriented Software Development,”

IEEE Transactions on Engineering Management, vol. 71, pp. 4602-4618, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[6] Mohit Arora et al., “An Efficient ANFIS-EEBAT Approach to Estimate Effort of Scrum Projects,” Scientifc Reports, vol. 12, pp. 1-14,

2022. [CrossRef] [Google Scholar] [Publisher Link]

[7] Ekrem Kocaguneli, Tim Menzies, and Jacky W. Keung, “On the Value of Ensemble Effort Estimation,” IEEE Transactions on Software

Engineering, vol. 38, no. 6, pp. 1403-1416, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[8] Onkar Malgonde, and Kaushal Chari, “An Ensemble-Based Model for Predicting Agile Software Development Effort,” Empirical

Software Engineering, vol. 24, pp. 1017-1055, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[9] Claudio Ratke et al., “Effort Estimation Using Bayesian Networks for Agile Development,” 2019 2nd International Conference on

Computer Applications & Information Security (ICCAIS), Riyadh, Saudi Arabia, pp. 1-4, 2019. [CrossRef] [Google Scholar] [Publisher

Link]

[10] Ali Bou Nassif et al., “Neural Network Models for Software Development Effort Estimation: A Comparative Study,” Neural Computing

and Applications, vol. 27, no. 8, pp. 2369-2381, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[11] Asad Ali, and Carmine Gravino, “A Systematic Literature Review of Software Effort Prediction using Machine Learning Methods,”

Journal of Software: Evolution and Process, vol. 31, no. 10, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[12] Vlad-Sebastian, Horia, and Istvan-Gergely, “Natural Language Processing and Machine Learning Methods for Software Development

Effort Estimation,” Studies in Informatics and Control, vol. 26, no. 2, pp. 219-228, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[13] Akshay Jadhav et al., “Effective Software Effort Estimation Leveraging Machine Learning for Digital Transformation,” IEEE Access,

vol. 11, pp. 83523-83536, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[14] Harish Kumar Mittal, Mohd Arsalan, and Puneet Garg, “A Novel Deep Learning Model for Effective Story Point Estimation in Agile

Software Development,” 2024 International Conference on Emerging Innovations and Advanced Computing (INNOCOMP), Sonipat,

India, pp. 404-410, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[15] Bhaskar Marapelli, Anil Carie, and Sardar M.N. Islam, “RNN-CNN MODEL:A Bi-directional Long Short-Term Memory Deep Learning

Network For Story Point Estimation,” 2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial

Applications (CITISIA), Sydney, Australia, pp. 1-7, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[16] Haithem Kassem, Khaled Mahar, and Amani A. Saad, “Story Point Estimation Using Issue Reports with Deep Attention Neural

Network,” E-Informatica Software Engineering Journal, vol. 17, no. 1, pp. 1-15, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[17] Ali Bou Nassif et al., “Software Development Effort Estimation Using Regression Fuzzy Models,” Computational Intelligence and

Neuroscience, vol. 2019, pp. 1-17, 2019. [CrossRef] [Google Scholar] [Publisher Link]

https://dx.doi.org/10.17485/ijst/2018/v11i31/128780
https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&as_vis=1&q=A+Proposed+Framework+for+Enhancing+Story+Points+in+Agile+Software+Projects&btnG=
https://indjst.org/articles/a-proposed-framework-for-enhancing-story-points-in-agile-software-projects
https://doi.org/10.1007/978-3-319-56535-4_21
https://scholar.google.com/scholar?q=Estimating+User+Stories%E2%80%99+Complexity+and+Importance+in+Scrum+with+Bayesian+Networks&hl=en&as_sdt=0,5
https://link.springer.com/chapter/10.1007/978-3-319-56535-4_21
https://doi.org/10.1109/32.637387
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Estimating+software+project+effort+using+analogies&btnG=
https://ieeexplore.ieee.org/abstract/document/637387
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Study+on+Agile+Story+Point+Estimation+Techniques+and+Challenges&btnG=
https://www.ijcaonline.org/archives/volume174/number13/31736-2021921014/
https://doi.org/10.1109/TEM.2022.3217570
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Study+of+Learning+Techniques+for+Effort+Estimation+in+Object-Oriented+Software+Development&btnG=
https://ieeexplore.ieee.org/abstract/document/9946865
https://doi.org/10.1038/s41598-022-11565-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+efficient+ANFIS-EEBAT+approach+to+estimate+effort+of+Scrum+projects&btnG=
https://www.nature.com/articles/s41598-022-11565-2
https://doi.org/10.1109/TSE.2011.111
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+the+value+of+ensemble+effort+estimation&btnG=
https://ieeexplore.ieee.org/abstract/document/6081882
https://doi.org/10.1007/s10664-018-9647-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+ensemble-based+model+for+predicting+agile+software+development+effort&btnG=
https://link.springer.com/article/10.1007/s10664-018-9647-0
https://doi.org/10.1109/CAIS.2019.8769455
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Effort+Estimation+using+Bayesian+Networks+for+Agile+Development&btnG=
https://ieeexplore.ieee.org/abstract/document/8769455
https://ieeexplore.ieee.org/abstract/document/8769455
https://doi.org/10.1007/s00521-015-2127-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Neural+network+models+for+software+development+effort+estimation%3A+a+comparative+study&btnG=
https://link.springer.com/article/10.1007/s00521-015-2127-1
https://onlinelibrary.wiley.com/doi/10.1002/smr.2211
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+systematic+literature+review+of+software+effort+prediction+using+machine+learning+methods&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2211
https://doi.org/10.24846/v26i2y201710
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Natural+language+processing+and+machine+learning+methods+for+software+development+effort+estimation&btnG=
https://sic.ici.ro/vol-26-no-2-2017/natural-language-processing-and-machine-learning-methods-for-software-development-effort-estimation/
https://doi.org/10.1109/ACCESS.2023.3293432
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Effective+Software+Effort+Estimation+Leveraging+Machine+Learning+for+Digital+Transformation&btnG=
https://ieeexplore.ieee.org/document/10175526
https://doi.org/10.1109/INNOCOMP63224.2024.00073
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Novel+Deep+Learning+Model+for+Effective+Story+Point+Estimation+in+Agile+Software+Development&btnG=
https://ieeexplore.ieee.org/abstract/document/10664177
https://doi.org/10.1109/CITISIA50690.2020.9371770
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=RNN-CNN+MODEL%3A+A+bi-directional+long+short-term+memory+deep+learning+network+for+story+point+estimation&btnG=
https://ieeexplore.ieee.org/abstract/document/9371770
https://doi.org/10.37190/e-Inf230104
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Story+Point+Estimation+Using+Issue+Reports+With+Deep+Attention+Neural+Network&btnG=
https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2023/issue-1/article-4/
https://doi.org/10.1155/2019/8367214
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Development+Effort+Estimation+Using+Regression+Fuzzy+Models&btnG=
https://onlinelibrary.wiley.com/doi/10.1155/2019/8367214

Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025

70

[18] Jasem M. Alostad, Laila R.A. Abdulla, and Lamya Sulaiman Aali, “A Fuzzy Based Model for Effort Estimation in Scrum Projects,”

International Journal of Advanced Computer Science and Applications, vol. 8, no. 9, pp. 270-277, 2017. [CrossRef] [Google Scholar]

[Publisher Link]

[19] Marta Fernandez-Diego et al., “An Update on Effort Estimation in Agile Software Development: A Systematic Literature Review,” IEEE

Access, vol. 8, pp. 166768-166800, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[20] Pekka Abrahamsson et al., “Predicting Development Effort from User Stories,” 2011 International Symposium on Empirical Software

Engineering and Measurement, Banff, AB, Canada, pp. 400-403, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[21] Simone Porru et al., “Estimating Story Points from Issue Reports,” Proceedings of the 12th International Conference on Predictive Models

and Data Analytics in Software Engineering, Ciudad Real, Spain, pp. 1-10, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[22] Ezequiel Scott, and Dietmar Pfahl, “Using Developers' Features to Estimate Story Points,” Proceedings of the 2018 International

Conference on Software and System Process, Gothenburg, Sweden, pp. 106-110, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[23] Morakot Choetkiertikul et al., “A Deep Learning Model for Estimating Story Points,” IEEE Transactions on Software Engineering, vol.

45, no. 7, pp. 637-656, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[24] Michael Fu, and Chakkrit Tantithamthavorn, “GPT2SP: A Transformer-Based Agile Story Point Estimation Approach,” IEEE

Transactions on Software Engineering, vol. 49, no. 2, pp. 611-625, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[25] Tianqi Chen, and Carlos Guestrin, “XGBoost : A Scalable Tree Boosting System,” Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco California USA, pp. 785-794, 2016. [CrossRef] [Google Scholar]

[Publisher Link]

[26] Xilu Wang et al., “Recent Advances in Bayesian Optimization,” ACM Computing Surveys, vol. 55, no. 13s, pp. 1-36, 2023. [CrossRef]

[Google Scholar] [Publisher Link]

[27] James Bergstra, Daniel Yamins, and David Cox, “Making a Science of Model Search : Hyperparameter Optimization in Hundreds of

Dimensions for Vision Architectures,” Proceedings of the 30th International Conference on Machine Learning, vol. 28, no. 1, pp. 115-

123, Atlanta, Georgia, USA, 2013. [Google Scholar] [Publisher Link]

[28] Macarious Abadeer, and Mehrdad Sabetzadeh, “Machine Learning-based Estimation of Story Points in Agile Development : Industrial

Experience and Lessons Learned,” 2021 IEEE 29th International Requirements Engineering Conference Workshops (REW), pp. 106-115,

Notre Dame, IN, USA, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[29] Muaz Gultekin, and Oya Kalipsiz, “Story Point-Based Effort Estimation Model with Machine Learning Techniques,” International

Journal of Software Engineering and Knowledge Engineering, vol. 30, no. 1, pp. 43-66, 2020. [CrossRef] [Google Scholar] [Publisher

Link]

[30] Przemyslaw Pospieszny, “Software Estimation: Towards Prescriptive Analytics,” Proceedings of the 27th International Workshop on

Software Measurement and 12th International Conference on Software Process and Product Measurement, Gothenburg Sweden, pp. 221-

226, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[31] Janeth Lopez-Martinez et al., “User Stories Complexity Estimation using Bayesian Networks for Inexperienced Developers,” Cluster

Computing, vol. 21, pp. 715-728, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[32] Panut Chongpakdee, and Wiwat Vatanawood, “Estimating User Story Points Using Document Fingerprints,” 2017 8th IEEE International

Conference on Software Engineering and Service Science (ICSESS), Beijing, China, pp. 149-152, 2017. [CrossRef] [Google Scholar]

[Publisher Link]

[33] Ahmad Azzazi, “A Framework using NLP to Automatically Convert User-Stories into Use Cases in Software Projects,” International

Journal of Computer Science and Network Security, vol. 17, no. 5, pp. 71-76, 2017. [Google Scholar] [Publisher Link]

[34] M. Thangaraj, and M Sivakami, “Text Classification Techniques: A Literature Review,” Interdisciplinary Journal of Information,

Knowledge, and Management, Knowledge, vol. 13, pp. 117-135, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[35] Vali Tawosi, and Rebecca Moussa, “Agile Effort Estimation: Have We Solved the Problem Yet? Insights from a Replication Study,”
IEEE Transactions on Software Engineering, vol. 49, no. 4, pp. 2677-2697, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[36] Hung Phan, and Ali Jannesari, “Story Point Effort Estimation by Text Level Graph Neural Network,” arxiv, pp. 1-4, 2022. [CrossRef]

[Google Scholar] [Publisher Link]

[37] Jiale Wu et al., “Toward Efficient and Effective Bullying Detection in Online Social Network,” Peer-to-Peer Networking and

Applications, vol. 13, no. 5, pp. 1567-1576, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[38] Chaudhary Hamza Rashid et al., “Software Cost and Effort Estimation : Current Approaches and Future Trends,” IEEE Access, vol. 11,

pp. 99268-99288, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[39] Lan Cao, “Estimating Efforts for Various Activities in Agile Software Development : An Empirical Study,” IEEE Access, vol. 10, pp.

83311-83321, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[40] Indra Kharisma Raharjana, Daniel Siahaan, and Chastine Fatichah, “User Stories and Natural Language Processing: A Systematic

Literature Review,” IEEE Access, vol. 9, pp. 53811-53826, 2021. [CrossRef] [Google Scholar] [Publisher Link]

https://dx.doi.org/10.14569/IJACSA.2017.080939
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Fuzzy+based+Model+for+Effort+Estimation+in+Scrum+Projects&btnG=
https://thesai.org/Publications/ViewPaper?Volume=8&Issue=9&Code=ijacsa&SerialNo=39
https://doi.org/10.1109/ACCESS.2020.3021664
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=E.+R.+M%C3%A9ndez%2C+M.+Fern%C3%A1ndez-Diego%2C+and+S.+Abrahao+Effort+Estimation+in+Agile+Software+Development%3A+A+Systematic+Literature+Review%2C%22+Information+and+Software+Technology&btnG=
https://ieeexplore.ieee.org/abstract/document/9186107
https://doi.org/10.1109/ESEM.2011.58
https://scholar.google.com/scholar?hl=en&as_sdt=2005&sciodt=0%2C5&cites=17627384562953775994&scipsc=&q=Predicting+Development+Effort+from+User+Stories&btnG=
https://ieeexplore.ieee.org/abstract/document/6092598
https://doi.org/10.1145/2972958.2972959
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Estimating+Story+Points+from+Issue+Reports&btnG=
https://dl.acm.org/doi/abs/10.1145/2972958.2972959
https://doi.org/10.1145/3202710.3203160
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Using+Developers+%E2%80%99+Features+to+Estimate+Story+Points%2C%E2%80%9D+in+International+Conference+on+the+Software+and+Systems+Process&btnG=
https://dl.acm.org/doi/abs/10.1145/3202710.3203160
https://doi.org/10.1109/TSE.2018.2792473
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+deep+learning+model+for+estimating+story+points%2C&btnG=
https://ieeexplore.ieee.org/abstract/document/8255666
https://doi.org/10.1109/TSE.2022.3158252
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=GPT2SP%3A+A+Transformer-Based+Agile+Story+Point+Estimation+Approach&btnG=
https://ieeexplore.ieee.org/abstract/document/9732669
https://doi.org/10.1145/2939672.2939785
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=XGBoost%E2%80%AF%3A+A+Scalable+Tree+Boosting+System&btnG=
https://dl.acm.org/doi/abs/10.1145/2939672.2939785
https://doi.org/10.1145/3582078
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Recent+Advances+in+Bayesian+Optimization&btnG=
https://dl.acm.org/doi/abs/10.1145/3582078
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Making+a+Science+of+Model+Search%E2%80%AF%3A+Hyperparameter+Optimization+in+Hundreds+of+Dimensions+for+Vision+Architectures&btnG=
https://proceedings.mlr.press/v28/bergstra13.html
https://doi.org/10.1109/REW53955.2021.00022
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+Learning-based+Estimation+of+Story+Points+in+Agile+Development%E2%80%AF%3A+Industrial+Experience+and+Lessons+Learned&btnG=
https://ieeexplore.ieee.org/abstract/document/9582288
https://doi.org/10.1142/S0218194020500035
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Story+Point-Based+Effort+Estimation+Model+with+Machine+Learning+Techniques&btnG=
https://www.worldscientific.com/doi/abs/10.1142/S0218194020500035
https://www.worldscientific.com/doi/abs/10.1142/S0218194020500035
https://doi.org/10.1145/3143434.3143459
https://scholar.google.com/scholar?q=Software+Estimation:+Towards+Prescriptive+Analytics&hl=en&as_sdt=0,5
https://dl.acm.org/doi/abs/10.1145/3143434.3143459
https://doi.org/10.1007/s10586-017-0996-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=User+stories+complexity+estimation+using+Bayesian+networks+for+inexperienced+developers&btnG=
https://link.springer.com/article/10.1007/s10586-017-0996-z
https://doi.org/10.1109/ICSESS.2017.8342885
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Estimating+user+story+points+using+document+fingerprints&btnG=
https://ieeexplore.ieee.org/abstract/document/8342885
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Framework+using+NLP+to+automatically+convert+User-Stories+into+Use+Cases+in+Software+Projects&btnG=
http://search.ijcsns.org/07_book/html/201705/201705010.html
https://doi.org/10.28945/4066
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Text+classification+techniques%3A+A+literature+review&btnG=
https://www.informingscience.org/Publications/4066?Source=%2FJournals%2FIJIKM%2FArticles%3FVolume%3D0-0
https://doi.org/10.1109/TSE.2022.3228739
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Agile+Effort+Estimation%3A+Have+We+Solved+the+Problem+Yet%3F+Insights+From+a+Replication+Study&btnG=
https://ieeexplore.ieee.org/abstract/document/9984979
https://doi.org/10.48550/arXiv.2203.03062
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Story+Point+Effort+Estimation+by+Text+Level+Graph+Neural+Network&btnG=
https://arxiv.org/abs/2203.03062
https://doi.org/10.1007/s12083-019-00832-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Toward+efficient+and+effective+bullying+detection+in+online+social+network&btnG=
https://link.springer.com/article/10.1007/s12083-019-00832-1
https://doi.org/10.1109/ACCESS.2023.3312716
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Cost+and+Effort+Estimation%E2%80%AF%3A+Current+Approaches+and+Future+Trends&btnG=
https://ieeexplore.ieee.org/abstract/document/10243029
https://doi.org/10.1109/ACCESS.2022.3196923
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Estimating+Efforts+for+Various+Activities+in+Agile+Software+Development%E2%80%AF%3A+An+Empirical+Study&btnG=
https://ieeexplore.ieee.org/abstract/document/9851663
https://doi.org/10.1109/ACCESS.2021.3070606
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=User+Stories+and+Natural+Language+Processing%3A+A+Systematic+Literature+Review&btnG=
https://ieeexplore.ieee.org/abstract/document/9393933

Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025

71

[41] Julliano Trindade Pintas, Leandro A.F. Fernandes, and Ana Cristina Bicharra Garcia, “Feature Selection Methods for Text

Classification: a Systematic Literature Review, vol. 54, no. 8, pp. 6149-6200, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[42] Sepp Hochreiter, and Jurgen Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[CrossRef] [Google Scholar] [Publisher Link]

[43] Burcu Yalcıner et al., “Enhancing Agile Story Point Estimation: Integrating Deep Learning, Machine Learning, and Natural Language

Processing with SBERT and Gradient Boosted Trees,” Applied Sciences, vol. 14, no. 16, 2024. [CrossRef] [Google Scholar] [Publisher

Link]

[44] Eduardo Rodriguez Sanchez, Eduardo Filemon Vazquez Santacruz, and Humberto Cervantes Maceda, “Effort and Cost Estimation Using

Decision Tree Techniques and Story Points in Agile Software Development,” Mathematics, vol. 11, no. 6, pp. 1-31, 2023. [CrossRef]

[Google Scholar] [Publisher Link]

[45] Remah Younisse, and Mohammad Azzeh, “Application of Natural Language Processing Techniques in Agile Software Project

Management: A Survey,” 2023 14th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, pp. 1-

6, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[46] Haithem Kassem, Khaled Mahar, and Amani Saad, “Software Effort Estimation using Hierarchical Attention Neural Network,” Journal

of Theoretical and Applied Information Technology, vol. 100, no. 18, pp. 5308-5322, 2022. [Google Scholar] [Publisher Link]

[47] N.V. Chawla et al., “SMOTE: Synthetic Minority Over-sampling Technique,” Journal of Artificial Intelligence Research, vol. 16, pp.

321-357, 2002. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1007/s10462-021-09970-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Feature+selection+methods+for+text+classification%3A+a+systematic+literature+review&btnG=
https://link.springer.com/article/10.1007/s10462-021-09970-6
https://doi.org/10.1162/neco.1997.9.8.1735
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%09S.+Hochreiter+and+J.+Schmidhuber+Long+Short-Term+Memory&btnG=https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Long+Short-Term+Memory&btnG=
https://ieeexplore.ieee.org/abstract/document/6795963
https://doi.org/10.3390/app14167305
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+Agile+Story+Point+Estimation%3A+Integrating+Deep+Learning%2C+Machine+Learning%2C+and+Natural+Language+Processing+with+SBERT+and+Gradient+Boosted+Trees&btnG=
https://www.mdpi.com/2076-3417/14/16/7305
https://www.mdpi.com/2076-3417/14/16/7305
https://doi.org/10.3390/math11061477
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Effort+and+Cost+Estimation+Using+Decision+Tree+Techniques+and+Story+Points+in+Agile+Software+Development&btnG=
https://www.mdpi.com/2227-7390/11/6/1477
https://doi.org/10.1109/ICICS60529.2023.10330468
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Application+of+Natural+Language+Processing+Techniques+in+Agile+Software+Project+Management%3A+A+Survey&btnG=
https://ieeexplore.ieee.org/abstract/document/10330468
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+effort+estimation+using+Hierarchical+Attention+Neural+Network&btnG=
https://www.jatit.org/volumes/onehundred18.php
https://doi.org/10.1613/jair.953
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SMOTE%3A+Synthetic+Minority+Over-sampling+Technique&btnG=
https://www.jair.org/index.php/jair/article/view/10302

