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Abstract - In agile software development, Story Point Estimation (SPE) is at the core of project planning, resource planning, 

and project timeline management. During the last ten years, many researchers have reasonably attempted to propose methods 

for estimating story points or tasks in agile projects. Expert judgment, planning poker, and analogy are some traditional 

approaches that have been widely applied but criticized because of the inherent subjectivity, vulnerability to biases, and 

inability to handle intrinsic complexities in user stories. Eventually, these lead to inaccurate estimates, misaligned stakeholder 

expectations, and suboptimal sprint outcomes. The research direction has also shifted more in recent times to machine 

learning-based and deep learning-based approaches that try to present more systematic estimation models driven by the data 

itself. However, these also face difficulties while fully capturing the nuances involved with the multifaceted nature of user 

stories. This paper proposes a new hybrid model for software effort estimation entitled CoRXGB. This will help through 

synergistically combine CNN, RNN, and XGBoost and take the strength of all: CNN for extracting contextual and textual 

features, the Bi-LSTM for extracting sequential and temporal relations, and XGBoost is superior at classifications. Among the 

key originalities of the research approach, the most important may become the strategy for hyperparameter optimization that 

involves Bayesian Optimization integrated with the Learning Gain Matrix. This strategy thus systematically analyzes and 

optimizes performance gains from various configurations of hyperparameters and hence effectively removes inefficiencies that 

are associated traditionally with the tuning process. This indeed lets one make better-informed and selective adjustments in 

reaching high performance. Then, the resultant CoRXGB model has been applied extensively to a wide array of data sourced 

from different Agile projects that included user stories amounting to more than 23,000 stories. The results showed a significant 

improvement in the accuracy after hyperparameter tuning, with Appcelerator Studio increasing its accuracy to 90.55% from 

82.47% and Aptana Studio increasing from 82.57% to 90.82%, reflecting an increase of 6.44%. In different data sets, CoRXGB 

outperformed traditional classifiers like Logistic Regression, Support Vector Classifier, and K-Nearest Neighbors, and also 

outperformed advanced models like RNN-CNN and DEEP-SE. These results underpin the efficiency of the CoRXGB model in 

story point estimation. It not only outperforms baselines by substantial margins in precision, recall, and F1-score but also 

holds immense promise to improve Agile project planning processes toward more reliable and efficient software development 

practices. 

Keywords - Agile, CNN, Deep Learning, Effort Estimation, Machine Learning, RNN, Scrum, XGB. 

1. Introduction 
Story points serve as a significant metric for estimating 

the effort required to implement a user story in agile project 

management, focusing on its complexity instead of its size 

[1-2]. Traditional estimation methods, including expert 

judgement, planning poker, and analogy-based techniques 

[3], often result in inconsistencies and inaccuracies due to 

heavy dependencies on the subjective judgement of team 

members, which impact the project timelines and resource 

allocation [4]. To overcome these challenges, there is a need 

for a more objective and reliable technique to estimate story 

point complexity. Over the past decade, several Machine 

Learning (ML) [5-13], deep learning [14-16], fuzzy [17-18] 

and regression techniques [19] have been explored to 

overcome these limitations and enhance the story point 

estimation accuracy. Earlier, Abrahamsson et al. (2011) [20] 

implemented regression models and Support Vector 

Machines using priority ad-specific keywords as features 

which were extracted from user stories. The SVM models 

show significant potential to address human bias and errors 

in manual estimations. Porru et al. (2016) [21] further 

expanded this approach using textual features and metadata 

taken from Jira issue reports to classify user stories, 

confirming the importance of user story text and length as key 

predictors for estimating story points. Moving further, 

developer-related features (e.g., developer reputation and 
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workload) alongside textual features were included by Scott 

and Pfahl (2018) [22] for the estimation of story points using 

SVM models, which outperformed traditional textual 

analysis. The incorporation of deep learning resulted in the 

development of models like Deep-SE (Choetkiertikul et al., 

2019) [23] and GPT2SP [24]. Deep-SE leverages word 

embeddings and deep learning architectures to map raw user 

story text into a representation that aids story point 

estimation.  

The CoRXGB model performs better than various other 

algorithms like TF/IDF, SVM, etc. The model can work on 

the semantic relationships between user stories. A 

transformer-based model, GPT2SP, has also been developed 

in recent times, which offers improvements in cross-project 

scenarios. However, the existing methods still face 

challenges in capturing user stories’ intricate and sequential 

nature. These research gaps have been addressed by 

CoRXGB, combining CNN, RNN and XGBoost [25]. The 

CNN layer extracts features from user stories by detecting 

local patterns and identifying key phrases and combinations 

of words frequently associated with specific story points. 

This layer captures the spatial hierarchies in data, deriving 

higher-level features from lower-level ones. The output from 

the CNN is fed into the RNN layer, which is used for 

processing sequences and, therefore, handles the contextual 

nature of user stories. The RNN layer understands the 

complexity embedded in the sequence of words and preserves 

the context of the story points. Finally, the extracted features 

are sent to an XGBoost classifier, which utilizes these refined 

features to predict story points.  

The CorXGB model incorporates an innovative 

hyperparameter tuning strategy that combines Bayesian 

Optimization [26] with a Learning Gain Matrix (LGM). This 

approach captures performance gains while exploring the 

hyperparameter space [27]. The proposed CoRXGB model 

was trained and evaluated on a dataset containing more than 

23000 user stories taken from open-source projects and 

repositories. This performance demonstrates the model’s 

efficacy in delivering a consistent estimation process. It also 

aids in better sprint planning and resource management. 

Section 2 reviews related work in story point estimation, 

highlighting current trends and gaps in the field. Section 3 

details the methodology of the CoRXGB model. Section 4 

depicts the setup, datasets, and performance metrics. Section 

5 presents the results, comparing the CoRXGB model with 

existing approaches. Section 6 outlines the conclusion and 

future research. 

2. Related Work 
The estimation of SPs in Agile software development has 

increasingly drawn attention from researchers due to the 

dynamic nature of Agile projects, where the estimation of 

effort with good accuracy. The current research landscape of 

Agile story point estimation indeed reflects a considerable 

evolution in methodologies, focusing on enhancing 

estimation accuracy with new machine learning and NLP 

techniques [33-34]. Vali Towasi et al. (2022) [35] extended 

the DEEP-SE framework by incorporating a larger dataset 

from open-source projects. However, the expanded dataset 

did not significantly improve estimation accuracy, which 

may indicate that greater volume does not necessarily lead to 

higher-quality predictions in this context.  

On the other hand, Hung Phan et al. (2022) [36] applied 

the Text-Level Graph Neural Network with an accuracy of 

80%. Due to the above approach beating or attaining 

traditional approaches such as TF-IDF [37], its demonstration 

has opened up newer sets with a greater potential GNN and 

in extracting complex associations presented between user 

stories than most previous traditional methods may stand in 

the way. Michael Fu et al. applied (Deep) transformer models 

in support of an Agile story point estimates’ implementation 

and were certain about accuracy improvements with 

estimations of 6 percent up to 47 percent on the DEEP-SE 

method. This also underscores a significant need that already 

leading-edge deep learning methodologies could play in 

estimating story points.  

SLRs also contribute to this domain. Indra Kharisma 

Raharjana et al. (2021) [40] performed an SLR on user stories 

and NLP, analyzing 38 studies out of a pool of 718 papers 

published between 2009 and 2020. Their work provides an 

overall overview of the intersection between NLP and user 

story analysis, highlighting trends and gaps in the literature. 

Julliano Trindade Pintas et al. (2021) [41] presented a related 

SLR on feature selection methods in text classification; 

hence, effective feature selection must also be performed to 

achieve better performance. Morakot Choetkiertikul et al. 

(2019) [23] presented a model of LSTM [42] networks with 

RHNs for story point prediction. Their end-to-end DEEP-SE 

system, training raw data without any feature engineering, 

tended to outperform methods such as Doc2Vec and Bag-

ofWords.  

Most recent studies have combined deep learning models 

with other machine learning approaches, such as 

SentenceBERT with gradient-boosted trees. The work of 

Burcu Yalçıner et al. (2024) [43] is a very good example of 

this. Their model outperformed the best-performing state-of-

theart models by about 18%, demonstrating how effectively 

DLbased feature extraction works coupled with advanced 

ML algorithms. These studies together point to the direction 

that Agile story point estimation research has taken so far—

from using traditional NLP techniques to more advanced 

deep learning models. The challenge is how these models are 

further refined, which can achieve high accuracy and be 

interpretable and practical in real-world Agile environments. 

A summary is provided in Table 1. 
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Table 1. Summary of the related work  

Author(s) Year Methodology Key contributions 

Burcu Yalçıner 

et al. [43] 
2024 

Deep Learning, Machine 

Learning, NLP (SBERT, 

Gradient Boosting) 

Introduces an integrated approach using SBERT 

and GBT, improving story point estimation by 18% 

over state-of-the-art models. Addresses 

subjectivity and variability in traditional methods. 

Sánchez, 

Santacruz [44] 
2023 

Autoencoders, Deep Neural 

Networks, Ensemble Learning 

Combines traditional Agile estimation with 

advanced ML models to improve estimation 

accuracy. 

Younisse, Azzeh 

[45] 
2023 NLP and Machine Learning 

Surveys the application of NLP in Agile SPE, 

highlighting the benefits of integrating ML and DL 

techniques for more accurate estimations. 

Vali Towasi et 

al. [35] 
2022 

Deep Learning (DEEP-SE 

Framework) 

Extended DEEP-SE framework with a dataset of 

thousands of user stories. Found that merely 

increasing dataset size does not necessarily 

improve estimation accuracy. 

Hung Phan et al. 

[36] 
2022 Graph Neural Network (GNN) 

Used Text-Level GNN to estimate story points, 

achieving 80% accuracy. Demonstrated the 

superiority of GNNs in capturing complex 

relationships within user stories over traditional 

methods. 

Michael Fu et al. 

[24] 
2022 Transformer Models (GPT2SP) 

Applied transformer models to Agile story point 

estimation, significantly improving accuracy (6% 

to 47%) over DEEP-SE. Highlighted the potential 

of advanced deep learning architectures. 

Haithem Kassem 

et al. [46] 
2022 

Hierarchical Attention Neural 

Network (HAN) 

Proposed Hierarchical Attention Neural Network 

(HAN), focusing on the hierarchical nature of 

textual information in user stories. The authors 

selected 7 projects out of 16 and formed a new 

dataset of 7459 issues. The proposed HAN model 

was tested on this subset, achieving an accuracy of 

87%. 

Indra Kharisma 

Raharjana et al. 

[40] 

2021 
Systematic Literature Review 

(SLR) 

Conducted an SLR on user stories and NLP, 

providing an extensive overview of trends and gaps 

in the intersection of NLP and user story analysis. 

Reviewed 38 studies out of 718 papers published 

from 2009 to 2020. 

Julliano 

Trindade Pintas 

et al. [41] 

2021 
Systematic Literature Review 

(SLR) 

Conducted an SLR on feature selection methods in 

text classification, emphasizing the importance of 

effective feature selection in improving accuracy, 

including Agile story point estimation. 

Morakot 

Choetkiertikul et 

al. [23] 

2019 Deep Learning 

Proposed the DEEP-SE model, an end-to-end 

system combining LSTM and RHN. Trained on 

raw data without feature engineering, 

outperforming methods like Doc2Vec and Bag-of-

Words. 

Porru et al. [21] 2018 
Textual Features, Metadata, 

Classification 

Confirmed the significance of user story text and 

length in story point classification, highlighting the 

feasibility of automated tools in Agile estimation. 

Abrahamsson et 

al. [20] 
2011 

Regression Models and Neural 

Networks (NN) 

Explored various models for story point estimation, 

finding SVM to be the most effective in reducing 

human bias in manual estimation. 
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3. Methodology 
The CoRXGB model is a hybrid deep learning model 

that integrates CNN, RNN (Bi-LSTM), and XGB to classify 

story points based on the complexity of user stories. It 

predicts the complexity of the given user story based on 

historical data of previously estimated tasks. Our model 

classifies the user stories into 3 categories – easy, medium 

and complex. The steps of the proposed research 

methodology are given below. 

3.1. Data Preprocessing 

• Data Loading: Load the dataset containing user stories, 

their corresponding descriptions, and assigned story 

points. 

• Class Balancing: Group the user stories into three 

classes—easy, medium, and complex—to manage class 

imbalance in the dataset. 

• Feature Creation: Concatenate the attributes of each user 

story to form an input feature representing the textual 

data. 

• Data Cleaning: The stop words, HTML tags, and null 

values have been removed from the user stories. 

• Text Normalization: A Porter stemmer has been used to 

reduce dimensionality. 

• Tokenization: A Count Vectorizer is used on cleaned 

user stories, which further splits the text into tokens. 

• TF-IDF Vectorization: A TF-IDF is used to convert the 

textual information into a numerical format. It captures 

the relevance of words in the user stories. 

• Padding: It has been ensured that the input sequences are 

of uniform length for better model training and that 

padding is used for this task.  

• Normalization: A standard scaler has been used to 

standardize numerical features. It ensured consistency in 

scaling across all data points. 

3.2. CoRXGB Model Architecture 

• Input Layer: In this layer, the shape of the TF-IDF vector 

and padded sequences have been taken together.  

• Embedding Layer: This layer captures the semantic 

meaning of the user stories. It transforms the word 

indices into dense vectors of a fixed size.  

 

It is defined with input dimensions corresponding to the 

vocabulary size and output dimensions suitable for the 

subsequent convolutional layer. 

• Convolutional Layer: This layer incorporates a 1D 

Convolutional Layer from user stories. It is defined in 

Equation (1) with input size (𝑁, 𝐶𝑖𝑛, 𝐿𝑖𝑛), output size 

(𝑁, 𝐶𝑜𝑢𝑡, 𝐿𝑜𝑢𝑡), and ReLU activation function using 

Equation (2): 

 (1) 

              (2) 

 

The output size of the Convolution 1D Layer can be 

calculated using Equation (3): 

 

                     (3) 

 

• Max-Pooling Layer: Use a MaxPooling1D layer to 

simplify the model and reduce computational 

complexity. Define the Max Pooling 1D Layer using 

Equation (4) with input size (𝑁, 𝐶𝑖𝑛, 𝐿𝑖𝑛) and output 

size (𝑁, 𝐶𝑜𝑢𝑡, 𝐿𝑜𝑢𝑡): 

   (4) 

The output size of the Max Pooling 1D Layer can be 

calculated using Equation (4): 

• Bidirectional LSTM Layers: Add Bidirectional LSTM 

layers to capture long-term dependencies, increasing the 

model’s understanding of the context within the user 

stories. Define the Bidirectional LSTM Layer using 

Equations (5) and (6) 

      (5) 

  (6) 

Each cell in the LSTM is calculated using Equations (7)-

(12): 

  (7) 

      (8) 

       (9) 

       (10) 

     (11) 

 (12) 
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• Dropout Layer: Apply the Dropout layer using Equation 

(13): 

 (13) 

• Dense Layer: Introduce a dense layer with ReLU 

activation followed by batch normalization to improve 

non-linearity and stabilize the training process. Define 

the Dense layer using Equation (14) with ReLU 

activation function Equation (2): 

 

   (14) 

Where 𝑤𝑖 is the weight of neuron 𝑖, 𝑥𝑖  is the input to 

neuron 𝑖 and 𝑏 is the bias. Also, Define the Batch 

Normalization layer using Eq. (15): 

   (15) 

Where 𝑥𝑖  is the input feature, 𝜇𝐵 is the mean of the input 

features, 𝜎𝐵
2

 is the variance of the input features, 𝜀 is a small 

constant, and 𝛾 & 𝛽 are the scalable parameters for selecting 

and shifting the normalized input. 

• XGBoost Layer: Integrate an XGBoost classification 

layer to utilize the extracted features from the CNN-Bi-

LSTM part of the model for final classification. Define 

the XGBoost classifier using Eq. (16) – Eq. (18): 

    (16) 

Where �̂� is the predicted class, K is the number of trees, 

𝑓𝑘 is the kth tree in the ensemble, which is part of the model, 

and 𝑥 is the input feature vector. 

Each tree 𝑓𝑘 is defined as follows – 

           (17) 

 

Where 𝑞(𝑥) is a function that assigns the input 𝑥 to one 

of the leaves and 𝑤𝑞(𝑥) is the weight of the leaf to which 𝑥 

is assigned. 

The objective function for the XGBoost is defined as 

follows: 

 (18) 

Where 𝑙  is the multiclass cross-entropy loss, and Ω(𝑓𝑘) 

is the regularization term for the kth tree, which controls the 

complexity of the model. 

3.3. Model Training and Configuration 

• Data Splitting: Divide the dataset into training, 

validation, and testing sets. Stratified k-fold cross-

validation has also been used. 

• Model Compilation: Compile the CoRXGB model with 

sparse categorical cross-entropy and an ADAM 

optimizer. 

• Training: Train the model using the training set, 

evaluating performance on the validation set to tune 

parameters and prevent overfitting. 

3.4. Hyperparameter Tuning via Bayesian Optimization 

• Hyperparameter Selection: Identify key 

hyperparameters (e.g., learning rate, number of layers, 

and XGBoost-specific parameters) for optimization. 

• Objective Function: Define the objective function to 

maximize accuracy while also taking into account the 

Learning Gain Matrix (LGM) to ensure model 

improvements. 

• Optimization Process: Use Bayesian Optimization to 

find the optimal hyperparameter settings over multiple 

iterations. 

• Learning Gain Matrix (LGM) Evaluation: Apply LGM 

to evaluate how changes in hyperparameters affect 

model performance, optimizing for both accuracy and 

efficiency. 

3.5. Model Evaluation 

• Performance Metrics: Evaluate the CoRXGB model 

using evaluation metrics across all Agile projects. 

• Confusion Matrix and ROC Curve: Construct confusion 

matrices and AUC-ROC curves before and after 

hyperparameter tuning to assess improvements in 

classification. 

• Gain Analysis: Plot line graphs showing the relationship 

between CoRXGB gains and score over iterations for 

each Agile project, highlighting areas of improvement. 

• Hyperparameter Impact Visualization: Visualize the 

effects of various hyperparameters using scatter 

matrices, heat maps, and bar charts to understand their 

influence on the model’s performance. 

• Stability Assessment: Use radar graphs to assess the 

stability of the model across multiple iterations, ensuring 

that the model remains robust. 

• Statistical Comparison: Perform statistical hypothesis 

testing to compare CoRXGB’s performance against 
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other baseline classifiers, ensuring that improvements 

are statistically significant. 

• Comparative Analysis: Conduct a comparative analysis 

of CoRXGB to showcase its effectiveness in the context 

of Agile software development. 

The flowchart of the CoRXGB model is given in Figure 

1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Flowchart of CoRXGB 

 

4. Results and Discussions 
4.1. The Dataset  

The CoRXGB model has taken datasets from various 

open-source projects [23]. A typical issue consists of an issue 

key, issue title, issue description, and actual story points. A 

total of 23313 issues have been used. The descriptive 

characteristics of the dataset have been given in Table 2. It 

contains the name of the open-source repository, open-source 

project name, number of issues, minimum SPs, maximum 

SPs, mean SPs, median SPs, mode SPs, SP variance, SP 

standard deviation, and mean TD length of the project. 

START 

Step 1: Define the Input Layer with the shape  

S=[Shape of TF-IDF vector + Shape of Padded Sequences) 

Step 2: Define the Embedding Layer with the input dimension 
as the size of word vocabulary, input length as the maximum 

length of a sequence and the output dimension as the 
dimension of the dense embedding for the Convolution Layer 

Step 3: Define the Convolution ID  

Layer using Eq. (1) and ReLU  
activation function using Eq. (2) 

Step 4: Define the Max Pooling 1D Layer 
using Eq. (4) 

Step 5: Define the Bidirectional LSTM 
Layer using Eq. (5) and Eq. (6) 

Step 6: Define the Dropout layer  

using Eq. (13) 

Step 7 and Step 8: Perform step 5 and step 

6 again 

Step 9: Define the Dense layer using Eq. 

(14) with ReLU activation function using 
Eq. (2) 

Step 10: Define the Batch Normalization 

layer using Eq. (15) 

Step 11: Configure the model with sparse 

categorical cross-entropy loss, Adam 
optimizer and performance metric as 

accuracy 

Step 12: Train the model on the input data 

to update the parameters of the 
intermediate layers 

Step 13: Extract the features from the deep 
learning model by fetching the predictions 
using the training and testing features set 

Step 14: Define the XGBoost classifier 
using Eq. (16), Eq. (17) and Eq. (18) 

Step 15: Train the XGBoost classifier on 

the extracted features and actual labels of 
the training set 

 
Step 16: Output the predictions from the 

extracted features of the testing set 

END 

dl_model 



Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025 

 

50 

 

Table 2. Descriptive characteristics of the dataset 

Repo. Project 
No. of 

Issues 

min 

SP 

max 

SP 

mean 

SP 

median 

SP 

mode 

SP 
var SP std SP 

Mean TD 

length 

Apache 

Mesos 1,680 1 40 3.09 3 3 5.87 2.42 181.12 

Usergrid 482 1 8 2.85 3 3 1.97 1.4 108.6 

Appcelerator 

Appcelerator 

Studio 
2,919 1 40 5.64 5 5 11.07 3.33 124.61 

Aptana 

Studio 
829 1 40 8.02 8 8 35.46 5.95 124.61 

Titanium 

SDK/CLI 
2,251 1 34 6.32 5 5 25.97 5.1 205.9 

DuraSpace DuraCloud 666 1 16 2.13 1 1 4.12 2.03 70.91 

Atlassian 

Bamboo 521 1 20 2.42 2 1 4.6 2.14 133.28 

Clover 384 1 40 4.59 2 1 42.95 6.55 124.48 

JIRA 

Software 
352 1 20 4.43 3 5 12.35 3.51 114.57 

Moodle Moodle 1,166 1 100 15.54 8 5 468.5 21.6 88.86 

Lsstcorp 
Data 

Management 
4,667 1 100 9.57 4 1 275.7 16.6 69.41 

Mulesoft 

Mule 889 1 21 5.08 5 5 12.24 3.5 81.16 

Mule Studio 732 1 34 6.4 5 5 29.01 5.39 70.99 

Spring Spring XD 3,526 1 40 3.7 3 1 10.42 3.23 78.47 

Talendforge 

Talend Data 

Quality 
1,381 1 40 5.92 5 8 26.96 5.19 104.86 

Talend ESB 868 1 13 2.16 2 1 2.24 1.5 128.97 

Total  23313         

 
Fig. 2 Distribution of story points in Appcelerator Studio
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Fig. 3 Architecture of the CoRXGB model

The actual story points in the Appcelerator Studio dataset 

before pre-processing are given in Figure 2. It can be inferred 

that the number of occurrences is not uniform throughout the 

different story point categories. We have resolved the 

problem of the imbalanced dataset by generating new 

artificial entries using SMOTE (Synthetic Minority 

Oversampling Technique) [47] as defined in Equation (19). 

Before oversampling, the story points have been grouped 

together into 3 different categories – easy, medium and 

complex, to reduce the imbalanced data. 

              (19) 

input_2 

InputLayer 

float32 

input: 

output: 

[(None, 5385)] 

[(None, 5385)] 

embedding_1 

Embedding 

float32 

input: 

output: 

(None, 5385) 

(None, 5385,100) 

max_pooling1d_1 

MaxPooling 1D 

float32 

input: 

output: 

(None, 5381, 128) 

(None, 2690, 128) 

conv1d_1 

float32 

input: 

output: 

(None, 5385, 100) 

(None, 5381, 128) 

Conv1D relu 

bidirectional_2(1stm_2) 

Bidirectional (LSTM) 

float32 

input: 

output: 

(None, 2690, 128) 

(None, 2690, 200) 

dropout_2 

Dropout 

float32 

input: 

output: 

(None, 2690, 200) 

(None, 2690, 200) 

dropout_3 

Dropout 

float32 

input: 

output: 

(None, 200) 

(None, 200) 

dense_1 

float32 

input: 

output: 

None, 200) 

(None, 100) 

Dense relu 

bidirectional_3(1stm_3) 

Bidirectional (LSTM) 

float32 

input: 

output: 

(None, 2690, 200) 

(None, 200) 

batch_normalization_1 

BatchNormalization 

float32 

input: 

output: 

(None, 100) 

(None, 100) 
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Where 𝑥𝑛𝑒𝑤 is the synthetic sample, 𝑥𝑖  is the original 

minority class sample, 𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 is k-nearest neighbors of 

𝑥𝑖 , 𝛿 is the random number between 0 and 1. 

 

Figure 3 illustrates the architecture of the CoRXGB 

model used for story point classification in Agile projects. 

The model employs a hybrid deep learning approach, starting 

with an input layer that accepts the concatenated TF-IDF 

vector and padded sequence of the user stories. These inputs 

are then processed through an embedding layer that 

transforms word indices (with a vocabulary size of 5385) into 

dense vectors of size 100, capturing the semantic meaning of 

the text. Following this, a Conv1D layer extracts important 

local patterns. Dropout layers are introduced between the 

LSTMs to prevent overfitting during training. A dense layer 

with 100 neurons applies a non-linear transformation, and a 

batch normalization layer ensures stable and efficient training 

by normalizing the input to the dense layer. Although not 

shown in the figure, the final step involves passing the 

extracted features to an XGBoost classifier, which performs 

the classification of user stories into categories such as 

“easy,” “medium,” or “complex.” This architecture 

effectively combines the strengths of CNNs for feature 

extraction and Bidirectional LSTMs for capturing sequential 

relationships, followed by XGBoost for improved 

classification performance. Initial Hyperparameter setting of 

CoRXGB: Table 3 defines the hyperparameters and their 

values for the CoRXGB model. These hyperparameters are 

carefully chosen to balance the model’s complexity and 

performance.  

 

Table 3. Initial Hyperparameters setting of the CoRXGB model 

Hyperparameter Name Value 

Filters 32 

kernel_size 5 

Conv 1D Activation (Input) ReLU 

Dropout 0.5 

LSTM input 128 neurons 

Optimizer Adam 

Number of epochs 10 

Early stopping 

Monitor – val_accuracy 

Min_delta = 1e-2 

Patience = 5 

Loss type Categorical cross-entropy 

min_lr 0.001 

No. of folds 5 

Seed 250 

 

The hyperparameters selected for the XGB model are 

given in Table 4.  

The specified ranges for these hyperparameters allow the 

Bayesian Optimization process to explore a wide space of 

possible model configurations. In the context of story point 

classification using the CoRXGB algorithm, this helps find 

an optimal balance between model complexity, accuracy, and 

generalization capability. 

 

Table 4. Hyperparameters of the XGBoost model 

Hyperparameter Significance 

max_depth (MD) 

Controls the maximum depth of trees. A range of (3, 10) balances complexity 

and generalization, capturing intricate dependencies between story attributes 

without overfitting. 

learning_rate(LR) 

Controls the step size during each iteration. A range of (0.01, 0.3) ensures subtle 

learning and avoids aggressive updates, which is essential for precise story point 

classification. 

n_estimators(NE) 
Specifies the number of trees. The range (100, 500) ensures accurate 

classification by capturing data patterns while maintaining training efficiency. 

Gamma(G) 
Minimum loss reduction for partitioning leaf nodes. The range (0, 0.5) balances, 

making enough splits for pattern capture while avoiding over-complex models. 

Subsample(SS) 
Controls the fraction of samples per tree. The range (0.5, 1.0) introduces 

randomness, improving robustness and reducing overfitting. 

colsample_bytree 

(CB) 

Controls the fraction of features used for each tree. A range of (0.5, 1.0) ensures 

the model captures relevant features without over-reliance on any single 

attribute. 

reg_lambda(RL) 
Specifies the L2 regularization term to prevent overfitting. The range (0, 10) 

applies varying degrees of regularization for better generalization. 

reg_alpha(RA) 
Specifies the L1 regularization term. A range of (0, 10) helps reduce overfitting, 

encouraging simpler models that generalize better. 
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Table 5. CoRXGB performance on the Appcelerator Studio dataset 

Class/Metrics precision Recall f1-score support 

Class 0 (Easy) 
0.941657 0.95109 0.94635 1697 

Class 1 (Medium) 0.755199 0.748969 0.752071 1697 

Class 2 (Complex) 0.775679 0.774308 0.774993 1697 

macro avg 0.824178 0.824789 0.824471 5091 

4.2. Performance Evaluation of CoRXGB on Appcelerator 

Studio Project (without Hyperparameter Tuning) 

The evaluation of the “Appcelerator Studio” project was 

conducted using four algorithms: CoRXGB, KNN, Logistic 

Regression (LR), and Support Vector Classifier (SVCLd). 

This analys is included several performance metrics. Figure 

4 illustrates the confusion matrix of the CoRXGB model, 

which performed exceptionally well in classifying user 

stories into Easy, Medium, and Complex categories. The 

model’s overall classification accuracy on the Appcelerator 

Studio dataset was 83%, as summarized in Table 5 for each 

class.  

 

 
Fig. 4 Confusion matrix of CoRXGB on Appcelerator Studio 

 

4.3. Training and Validation Accuracy 

The CoRXGB algorithm demonstrates high accuracy 

across training and validation phases. The slight drop in 

validation accuracy is due to the nature of the US, but overall, 

the model performs well on the Appcelerator Studio dataset. 

This high performance across multiple phases indicates a 

robust model with good generalization capabilities. The “loss 

plot” in Figure 5 shows the training and validation loss. 

 

The training loss and the validation loss decreased, 

showing significant improvement in both cases. The gap 

between training and validation loss is relatively small, 

indicating good generalization performance. Table 6 shows 

the accuracy comparison of the CoRXGB for the appcelerator 

studio project. 

 
Fig. 5 Training and validation loss vs epochs plot of CoRXGB on 

appcelerator studio project 

 
Table 6. CoRXGB accuracy comparison for Appcelerator studio 

Metric Accuracy 

Training Accuracy 0.905 

Validation Accuracy 0.845 

 

4.4. ROC Curve for CoRXGB Model on Appcelerator 

Studio Dataset 

The ROC curve for the CoRXGB model on the 

Appcelerator Studio dataset in Figure 6 indicates strong 

classification performance across all three classes: Easy, 

Medium, and Complex. The curve for Class 0 (Easy) is the 

most prominent. Class 1 (Medium) also shows good 

performance but with slightly lower accuracy compared to 

Class 0. Class 2 (Complex) has the lowest curve among the 

three, indicating relatively more challenges in accurately 

classifying complex tasks. The AUC values for the 

appcelerator studio project are given in Table 7. 

 
Fig. 6 ROC curve of CoRXGB on appcelerator studio 
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Table 7. AUC values table for appcelerator studio 

  

 

 

These AUC values indicate the model’s performance, 

with Class 0 having the highest accuracy. 

4.5. Performance Evaluation of CoRXGB across Multiple 

Projects 

A comprehensive analysis of the CoRXGB model’s 

performance across multiple projects has been performed. 

4.6. Training, Testing, and Validation Accuracy of 

CoRXGB across Different Projects 

The various accuracies of the CoRXGB model across 

various projects are given in Table 8 and Figure 7.  

 

It helps in understanding the model's generalizability to 

new data. It also ensures consistency across different 

datasets. 

 

4.7. Performance Metrics of CoRXGB across Different 

Projects 

The performance matrices for each class across different 

projects are given in Table 9.  

Table 8. Training, Testing, and Validation Accuracy of CoRXGB across Different Projects 

Project Training Accuracy Testing accuracy Validation Accuracy 

Appceleratorstudio 0.84 82.47 0.80 

Aptanastudio 0.75 82.57 0.80 

Bamboo 0.95 89.68 0.85 

Clover 0.70 75.26 0.75 

Datamanagement 0.74 62.20 0.70 

Duracloud 0.95 90.63 0.80 

Jirasoftware 0.85 79.22 0.75 

Mesos 0.90 73.64 0.70 

Moodle 0.65 82.03 0.80 

Mule 0.79 65.11 0.70 

Mulestudio 0.78 65.31 0.75 

Springxd 0.76 67.2 0.70 

Talenddataquality 0.70 60 0.65 

Talendesb 0.85 87.05 0.85 

Titanium 0.80 76.64 0.75 

Usergrid 0.85 87.48 0.80 

 

 Fig. 7 CoRXGB accuracy comparisons across different projects 
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Table 9. Performance Metrics of CoRXGB across Different Projects 

Projects Class Precision Recall F1-Score Support 

Appcelerator 

Studio 

0 (Easy) 0.941657 0.95109 0.94635 1697 

1 (Medium) 0.755199 0.748969 0.752071 1697 

2 (Complex) 0.775679 0.774308 0.774993 1697 

Aptana Studio 

0 (Easy) 0.917927 0.925926 0.921909 459 

1 (Medium) 0.792735 0.808279 0.800431 459 

2 (Complex) 0.764574 0.742919 0.753591 459 

Bamboo 

0 (Easy) 0.848485 0.845283 0.846881 265 

1 (Medium) 0.843284 0.85283 0.84803 265 

2 (Complex) 1 0.992453 0.996212 265 

Clover 

0 (Easy) 0.697917 0.705263 0.701571 190 

1 (Medium) 0.676617 0.715789 0.695652 190 

2 (Complex) 0.898305 0.836842 0.866485 190 

Moodle 

0 (Easy) 0.917957 0.908116 0.91301 653 

1 (Medium) 0.77573 0.773354 0.77454 653 

2 (Complex) 0.768882 0.779479 0.774144 653 

Mule 

0 (Easy) 0.703349 0.744304 0.723247 395 

1 (Medium) 0.574026 0.559494 0.566667 395 

2 (Complex) 0.662304 0.640506 0.651223 395 

Mulestudio 

0 (Easy) 0.787466 0.840116 0.81294 344 

1 (Medium) 0.534884 0.534884 0.534884 344 

2 (Complex) 0.626168 0.584302 0.604511 344 

SpringXD 

0 (Easy) 0.616915 0.632653 0.624685 1372 

1 (Medium) 0.547282 0.535714 0.541436 1372 

2 (Complex) 0.848463 0.844752 0.846603 1372 

Data 

Management 

0 (Easy) 0.609394 0.63654 0.622671 1549 

1 (Medium) 0.621142 0.610717 0.615885 1549 

2 (Complex) 0.636122 0.618464 0.627169 1549 

Duracloud 

0 (Easy) 0.863636 0.869281 0.86645 459 

1 (Medium) 0.872807 0.867102 0.869945 459 

2 (Complex) 0.982571 0.982571 0.982571 459 

Jirasoftware 

0 (Easy) 0.72956 0.794521 0.760656 146 

1 (Medium) 0.796875 0.69863 0.744526 146 

2 (Complex) 0.854305 0.883562 0.868687 146 

Mesos 

0 (Easy) 0.640816 0.635628 0.638211 741 

1 (Medium) 0.621871 0.636977 0.629333 741 

2 (Complex) 0.951989 0.936572 0.944218 741 

Talenddata 

quality 

0 (Easy) 0.664488 0.682327 0.673289 447 

1 (Medium) 0.49537 0.478747 0.486917 447 

2 (Complex) 0.566667 0.57047 0.568562 447 

Talendesb 0 (Easy) 0.80863 0.80863 0.80863 533 
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1 (Medium) 0.80705 0.816135 0.811567 533 

2 (Complex) 0.998102 0.986867 0.992453 533 

Titanium 

0 (Easy) 0.868491 0.879357 0.87389 1119 

1 (Medium) 0.679715 0.682752 0.68123 1119 

2 (Complex) 0.75 0.737265 0.743578 1119 

Usergrid 

0 (Easy) 0.814516 0.852321 0.83299 237 

1 (Medium) 0.834821 0.78903 0.81128 237 

2 (Complex) 0.974895 0.983122 0.978992 237 

4.8. AUC Values of CoRXGB across Different Projects 

The AUC values for each class across different projects 

are given in Table 10. The higher value of the AUC indicates 

better performance. The classification of the complex user 

stories showed the best performance across multiple projects. 

It represents the model’s effectiveness and reliability. It also 

provides a solid foundation for further improvements of 

CoRXGB in real-world agile project management scenarios.  

Training, Testing, and Validation Accuracy: The results 

show consistency among training, testing, and validation 

accuracies. Here are some observations: 

• Bamboo and Duracloud: These projects show high 

training and testing accuracies, depicting the good 

performance of the model on these datasets. 

• Talend ESB and Usergrid: These projects also show 

balanced training and validation accuracies along 

with testing accuracies, depicting the model's 

reliability. 

• Data management, Mule, Mulestudio, and 

SpringXD: These projects show lower testing 

accuracies, depicting a margin of improvements. 

 

Table 10. AUC values of CoRXGB across different projects 

Project Class 0 AUC Class 1 AUC Class 2 AUC 

Appceleratorstudio 0.98 0.9 0.87 

Aptanastudio 0.97 0.88 0.84 

Bamboo 0.99 0.92 0.85 

Clover 0.98 0.9 0.92 

Datamanagement 0.92 0.87 0.89 

Duracloud 0.96 0.91 0.94 

Jirasoftware 0.95 0.85 0.89 

Mesos 0.97 0.88 0.93 

Moodle 0.96 0.87 0.92 

Mule 0.92 0.84 0.88 

Mulestudio 0.9 0.83 0.86 

Springxd 0.92 0.86 0.91 

Talenddataquality 0.9 0.84 0.88 

Talendesb 0.92 0.88 0.94 

Titanium 0.94 0.89 0.91 

Usergrid 0.99 0.96 0.98 

Performance Metrics (Precision, Recall, F1-Score): The 

performance metrics across various projects show that 

CoRXGB consistently performs well, particularly for 

complex user stories: 

• High Performance for Complex Stories: The model 

achieves high precision and recall values for complex 

stories across most projects, indicating its strong 

capability to handle the most challenging classifications. 

• Medium and Easy Stories: While the model generally 

performs well for medium and easy stories, some 

projects show a slight drop in performance for medium 

complexity (e.g., Mesos and Talend Data Quality). 
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AUC Values: The AUC values across projects highlight 

the model’s excellent ability to distinguish between different 

classes: 

• High AUC for Complex Stories: Projects such as 

Duracloud, Talend ESB, and Usergrid exhibit very high 

AUC values for complex stories, demonstrating the 

model’s superior discrimination capability in identifying 

these cases. 

• Balanced Performance: Even for projects with relatively 

lower AUC values (e.g., Talend Data Quality and Mule), 

the model still maintains a reasonable level of 

performance, suggesting its overall robustness. 

 

4.9. Comparative Analysis of CoRXGB and Other 

Classifiers 

The CoRXGB model demonstrates robust performance 

across various projects when compared to other classifiers 

like KNN, LR, and SVCLd. The comparison is given in Table 

11. The performance metrics indicate that CoRXGB excels, 

particularly in classifying complex user stories. An accuracy 

comparison with DEEP-SE [23] and RNN-CNN [15] is given 

in Table 12. 
 

Table 11. Comparative Performance Metrics of CoRXGB and Other Classifiers across Different Projects 

Projects Algorithm Class Precision Recall F1-Score Support 

Appcelerator 

Studio 

CoRXGB 

0 (Easy) 0.941657 0.95109 0.94635 1697 

1 (Medium) 0.755199 0.748969 0.752071 1697 

2 (Complex) 0.775679 0.774308 0.774993 1697 

KNN 

0 (Easy) 0.612845 0.995286 0.75859 1697 

1 (Medium) 0.737255 0.221567 0.340734 1697 

2 (Complex) 0.696438 0.748969 0.721749 1697 

LR 

0 (Easy) 0.846071 0.926341 0.884388 1697 

1 (Medium) 0.702561 0.630524 0.664596 1697 

2 (Complex) 0.72807 0.733648 0.730848 1697 

SVCLd 

0 (Easy) 0.875327 0.984679 0.926789 1697 

1 (Medium) 0.773707 0.634649 0.697313 1697 

2 (Complex) 0.751397 0.792575 0.771437 1697 

Aptana Studio 

CoRXGB 

0 (Easy) 0.917927 0.925926 0.921909 459 

1 (Medium) 0.792735 0.808279 0.800431 459 

2 (Complex) 0.764574 0.742919 0.753591 459 

KNN 

0 (Easy) 0.550602 0.995643 0.709077 459 

1 (Medium) 0.696325 0.784314 0.737705 459 

2 (Complex) 0.8 0.052288 0.09816 459 

LR 

0 (Easy) 0.909278 0.960784 0.934322 459 

1 (Medium) 0.792735 0.808279 0.800431 459 

2 (Complex) 0.808962 0.747277 0.776897 459 

SVCLd 

0 (Easy) 0.926829 0.993464 0.958991 459 

1 (Medium) 0.793587 0.862745 0.826722 459 

2 (Complex) 0.862694 0.72549 0.788166 459 

Bamboo 

CoRXGB 

0 (Easy) 0.848485 0.845283 0.846881 265 

1 (Medium) 0.843284 0.85283 0.84803 265 

2 (Complex) 1 0.992453 0.996212 265 

KNN 
0 (Easy) 1 0.101887 0.184932 265 

1 (Medium) 0.598916 0.833962 0.697161 265 
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2 (Complex) 0.66416 1 0.798193 265 

LR 

0 (Easy) 0.865854 0.803774 0.833659 265 

1 (Medium) 0.822064 0.871698 0.846154 265 

2 (Complex) 0.988806 1 0.994371 265 

SVCLd 

0 (Easy) 0.88843 0.811321 0.848126 265 

1 (Medium) 0.828671 0.89434 0.860254 265 

2 (Complex) 0.992509 1 0.996241 265 

Clover 

CoRXGB 

0 (Easy) 0.697917 0.705263 0.701571 190 

1 (Medium) 0.676617 0.715789 0.695652 190 

2 (Complex) 0.898305 0.836842 0.866485 190 

KNN 

0 (Easy) 0.8 0.084211 0.152381 190 

1 (Medium) 0.572 0.752632 0.65 190 

2 (Complex) 0.593333 0.936842 0.726531 190 

LR 

0 (Easy) 0.775148 0.689474 0.729805 190 

1 (Medium) 0.730769 0.8 0.763819 190 

2 (Complex) 0.891192 0.905263 0.898172 190 

SVCLd 

0 (Easy) 0.828947 0.663158 0.736842 190 

1 (Medium) 0.738318 0.831579 0.782178 190 

2 (Complex) 0.897059 0.963158 0.928934 190 

Moodle 

CoRXGB 

0 (Easy) 0.917957 0.908116 0.91301 653 

1 (Medium) 0.77573 0.773354 0.77454 653 

2 (Complex) 0.768882 0.779479 0.774144 653 

KNN 

0 (Easy) 0.621822 0.898928 0.735128 653 

1 (Medium) 0.591837 0.799387 0.68013 653 

2 (Complex) 0.894737 0.182236 0.302799 653 

LR 

0 (Easy) 0.863034 0.897397 0.87988 653 

1 (Medium) 0.752656 0.759571 0.756098 653 

2 (Complex) 0.79066 0.751914 0.770801 653 

SVCLd 

0 (Easy) 0.887798 0.969372 0.926794 653 

1 (Medium) 0.799127 0.840735 0.819403 653 

2 (Complex) 0.862254 0.738132 0.79538 653 

Mule 

CoRXGB 

0 (Easy) 0.703349 0.744304 0.723247 395 

1 (Medium) 0.574026 0.559494 0.566667 395 

2 (Complex) 0.662304 0.640506 0.651223 395 

KNN 

0 (Easy) 0.491228 0.850633 0.622799 395 

1 (Medium) 0.573529 0.098734 0.168467 395 

2 (Complex) 0.600462 0.658228 0.628019 395 

LR 
0 (Easy) 0.64657 0.787342 0.710046 395 

1 (Medium) 0.562112 0.458228 0.504881 395 
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2 (Complex) 0.691099 0.668354 0.679537 395 

SVCLd 

0 (Easy) 0.691824 0.835443 0.756881 395 

1 (Medium) 0.608247 0.448101 0.516035 395 

2 (Complex) 0.671463 0.708861 0.689655 395 

 

Mule Studio 

CoRXGB 

0 (Easy) 0.787466 0.840116 0.81294 344 

1 (Medium) 0.534884 0.534884 0.534884 344 

2 (Complex) 0.626168 0.584302 0.604511 344 

KNN 

0 (Easy) 0.435931 0.959302 0.599455 344 

1 (Medium) 0.769231 0.087209 0.156658 344 

2 (Complex) 0.690678 0.473837 0.562069 344 

LR 

0 (Easy) 0.769231 0.843023 0.804438 344 

1 (Medium) 0.60066 0.52907 0.562597 344 

2 (Complex) 0.613636 0.627907 0.62069 344 

SVCLd 

0 (Easy) 0.79198 0.918605 0.850606 344 

1 (Medium) 0.619863 0.526163 0.569182 344 

2 (Complex) 0.639296 0.633721 0.636496 344 

SpringXD 

CoRXGB 

0 (Easy) 0.616915 0.632653 0.624685 1372 

1 (Medium) 0.547282 0.535714 0.541436 1372 

2 (Complex) 0.848463 0.844752 0.846603 1372 

KNN 

0 (Easy) 0.573293 0.416181 0.482264 1372 

1 (Medium) 0.576923 0.153061 0.241935 1372 

2 (Complex) 0.458636 0.921283 0.612403 1372 

LR 

0 (Easy) 0.622493 0.633382 0.62789 1372 

1 (Medium) 0.539405 0.44898 0.490056 1372 

2 (Complex) 0.752852 0.865889 0.805424 1372 

SVCLd 

0 (Easy) 0.629078 0.646501 0.637671 1372 

1 (Medium) 0.569982 0.451166 0.503662 1372 

2 (Complex) 0.784568 0.926385 0.849599 1372 

Data 

Management 

CoRXGB 

0 (Easy) 0.609394 0.63654 0.622671 1549 

1 (Medium) 0.621142 0.610717 0.615885 1549 

2 (Complex) 0.636122 0.618464 0.627169 1549 

KNN 

0 (Easy) 0.55609 0.224015 0.319374 1549 

1 (Medium) 0.400238 0.868948 0.548046 1549 

2 (Complex) 0.719697 0.306649 0.430059 1549 

LR 

0 (Easy) 0.645266 0.64235 0.643805 1549 

1 (Medium) 0.589454 0.606198 0.597708 1549 

2 (Complex) 0.659392 0.643641 0.651421 1549 

SVCLd 
0 (Easy) 0.661806 0.615236 0.637671 1549 

1 (Medium) 0.616494 0.690123 0.651234 1549 
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2 (Complex) 0.663951 0.631375 0.647253 1549 

 

 

 

Duracloud 

 

  

CoRXGB 

0 (Easy) 0.863636 0.869281 0.86645 459 

1 (Medium) 0.872807 0.867102 0.869945 459 

2 (Complex) 0.982571 0.982571 0.982571 459 

KNN 

0 (Easy) 0.578313 0.104575 0.177122 459 

1 (Medium) 0.633284 0.936819 0.755712 459 

2 (Complex) 0.708943 0.949891 0.811918 459 

 

LR 

0 (Easy) 0.90799 0.816993 0.860092 459 

1 (Medium) 0.84413 0.908497 0.875131 459 

2 (Complex) 0.976596 1 0.988159 459 

SVCLd 

0 (Easy) 0.961735 0.821351 0.886016 459 

1 (Medium) 0.853282 0.962963 0.904811 459 

2 (Complex) 0.982869 1 0.991361 459 

Jirasoftware 

CoRXGB 

0 (Easy) 0.72956 0.794521 0.760656 146 

1 (Medium) 0.796875 0.69863 0.744526 146 

2 (Complex) 0.854305 0.883562 0.868687 146 

KNN 

0 (Easy) 0.596154 0.849315 0.700565 146 

1 (Medium) 1 0.089041 0.163522 146 

2 (Complex) 0.640553 0.952055 0.76584 146 

LR 

0 (Easy) 0.759259 0.842466 0.798701 146 

1 (Medium) 0.784 0.671233 0.723247 146 

2 (Complex) 0.89404 0.924658 0.909091 146 

SVCLd 

0 (Easy) 0.79375 0.869863 0.830065 146 

1 (Medium) 0.803279 0.671233 0.731343 146 

2 (Complex) 0.884615 0.945205 0.913907 146 

Mesos 

CoRXGB 

0 (Easy) 0.640816 0.635628 0.638211 741 

1 (Medium) 0.621871 0.636977 0.629333 741 

2 (Complex) 0.951989 0.936572 0.944218 741 

KNN 

0 (Easy) 0.616725 0.238866 0.344358 741 

1 (Medium) 0.641791 0.232119 0.340932 741 

2 (Complex) 0.443046 0.997301 0.613533 741 

LR 

0 (Easy) 0.659091 0.665317 0.662189 741 

1 (Medium) 0.655063 0.558704 0.603059 741 

2 (Complex) 0.856465 0.974359 0.911616 741 

SVCLd 

0 (Easy) 0.663877 0.642375 0.652949 741 

1 (Medium) 0.656848 0.601889 0.628169 741 

2 (Complex) 0.8948 0.99865 0.943878 741 

 

 
CoRXGB 

0 (Easy) 0.664488 0.682327 0.673289 447 

1 (Medium) 0.49537 0.478747 0.486917 447 
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Talenddata 

quality 

 

 

  

2 (Complex) 0.566667 0.57047 0.568562 447 

KNN 

0 (Easy) 0.395604 0.805369 0.530582 447 

1 (Medium) 0.424354 0.257271 0.320334 447 

2 (Complex) 0.45 0.161074 0.237232 447 

LR 

0 (Easy) 0.634656 0.680089 0.656587 447 

1 (Medium) 0.476998 0.440716 0.45814 447 

2 (Complex) 0.550111 0.552573 0.551339 447 

 SVCLd 

0 (Easy) 0.654064 0.774049 0.709016 447 

1 (Medium) 0.529412 0.483221 0.505263 447 

2 (Complex) 0.576733 0.521253 0.547591 447 

Talendesb 

CoRXGB 

0 (Easy) 0.80863 0.80863 0.80863 533 

1 (Medium) 0.80705 0.816135 0.811567 533 

2 (Complex) 0.998102 0.986867 0.992453 533 

KNN 

0 (Easy) 0.653061 0.180113 0.282353 533 

1 (Medium) 0.658015 0.80863 0.725589 533 

2 (Complex) 0.636136 0.95122 0.762406 533 

LR 

0 (Easy) 0.816929 0.778612 0.79731 533 

1 (Medium) 0.791289 0.818011 0.804428 533 

2 (Complex) 0.987037 1 0.993476 533 

SVCLd 

0 (Easy) 0.876333 0.771107 0.820359 533 

1 (Medium) 0.799663 0.891182 0.842946 533 

2 (Complex) 0.994403 1 0.997194 533 

Titanium 

CoRXGB 

0 (Easy) 0.868491 0.879357 0.87389 1119 

1 (Medium) 0.679715 0.682752 0.68123 1119 

2 (Complex) 0.75 0.737265 0.743578 1119 

KNN 

0 (Easy) 0.509416 0.942806 0.661442 1119 

1 (Medium) 0.682609 0.140304 0.232765 1119 

2 (Complex) 0.703598 0.663986 0.683218 1119 

LR 

0 (Easy) 0.778302 0.884718 0.828105 1119 

1 (Medium) 0.677149 0.577301 0.623251 1119 

2 (Complex) 0.717065 0.724754 0.720889 1119 

SVCLd 

0 (Easy) 0.813777 0.960679 0.881148 1119 

1 (Medium) 0.737209 0.566577 0.640728 1119 

2 (Complex) 0.728741 0.765862 0.746841 1119 

Usergrid 

CoRXGB 

0 (Easy) 0.814516 0.852321 0.83299 237 

1 (Medium) 0.834821 0.78903 0.81128 237 

2 (Complex) 0.974895 0.983122 0.978992 237 

KNN 
0 (Easy) 0.632353 0.907173 0.745234 237 

1 (Medium) 0.84 0.088608 0.160305 237 
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2 (Complex) 0.684971 1 0.813036 237 

LR 

0 (Easy) 0.843882 0.843882 0.843882 237 

1 (Medium) 0.84322 0.839662 0.841438 237 

2 (Complex) 0.995798 1 0.997895 237 

SVCLd 

0 (Easy) 0.841509 0.940928 0.888446 237 

1 (Medium) 0.932367 0.814346 0.869369 237 

2 (Complex) 0.991632 1 0.995798 237 

 
Table 12. Accuracy Comparison of CoRXGB with DEEP-SE and RNN-CNN across Various Projects 

Projects Algorithms Accuracy Projects Algorithms Accuracy 

Appcelerator Studio 

CoRXGB 82.47 

Data Management 

CoRXGB 62.2 

RNN-CNN 62.29 RNN-CNN 49.92 

DEEP-SE 60.26 DEEP-SE 47.87 

Aptana Studio 

CoRXGB 82.57 

Duracloud 

CoRXGB 90.63 

RNN-CNN 45.62 RNN-CNN 70.94 

DEEP-SE 42.58 DEEP-SE 69.92 

Bamboo 

CoRXGB 89.68 

Jirasoftware 

CoRXGB 79.22 

RNN-CNN 74.28 RNN-CNN 59.64 

DEEP-SE 71.24 DEEP-SE 59.52 

Clover 

CoRXGB 75.26 

Mesos 

CoRXGB 73.64 

RNN-CNN 50.95 RNN-CNN 59.53 

DEEP-SE 50.45 DEEP-SE 59.84 

Moodle 

CoRXGB 82.03 

Talenddata quality 

CoRXGB 60 

RNN-CNN 51.32 RNN-CNN 49.06 

DEEP-SE 50.29 DEEP-SE 48.28 

Mule 

CoRXGB 65.11 

Talendesb 

CoRXGB 87.05 

RNN-CNN 43.17 RNN-CNN 70.57 

DEEP-SE 40.09 DEEP-SE 69.67 

Mulestudio 

CoRXGB 65.31 

Titanium 

CoRXGB 76.64 

RNN-CNN 18.26 RNN-CNN 58.95 

DEEP-SE 17.17 DEEP-SE 55.92 

SpringXD 

CoRXGB 67.2 

Usergrid 

CoRXGB 87.48 

RNN-CNN 46.93 RNN-CNN 55.16 

DEEP-SE 46.82 DEEP-SE 52.66 
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Fig. 8 Accuracy comparison – CoRXGB vs DEEP-SE vs RNN-CNN 

 

Table 13. LGM Bayesian Optimization results for CoRXGB Hyperparameters - Appcelerator Studio Project 

max_

depth 

learning

_rate 

n_estim

ators 
gamma subsample 

colsample

_bytree 

reg_lam

bda 

reg_alph

a 
score Gain 

7 0.22228 162 0.47536 0.9330881 0.6872701 0.58084 1.55995 83.94 0 

9 0.01597 432 0.35404 0.5917023 0.8005575 1.81825 2.12339 88.24 5.118814 

5 0.13526 344 0.26238 0.6831809 0.6521211 2.92145 1.39494 86.36 -2.12968 

6 0.06791 336 0.39259 0.5852621 0.728035 6.07545 0.4645 90.55 2.615584 

8 0.29003 221 0.47444 0.7200762 0.5325258 6.84233 0.97672 88.92 -1.80016 

9 0.0599 300 0.48058 0.9229804 0.950709 9.91947 0 86.58 -4.38296 

3 0.3 100 0.5 1 1 10 10 82.87 -8.48641 

7 0.06443 299 0.46991 0.8955632 0.931528 9.3424 0.20465 82.98 -8.36044 

10 0.01 315 0.5 1 1 10 0 87.19 -3.71303 

8 0.24072 174 0.41956 0.6154358 0.6675653 0.35628 3.95756 86.94 -3.99074 

5 0.22327 151 0 0.5 0.7153427 1.37257 0.37098 86.36 -4.62615 

8 0.07783 159 0.27687 0.5217279 0.6532014 9.96212 8.0399 87.61 -3.24146 

8 0.28949 341 0.02785 0.7688727 0.8629891 7.85035 8.742 84.47 -6.71929 

3 0.01 336 0.5 0.5 0.5 0 0 90.14 -0.4578 

6 0.24158 340 0.43896 0.9370519 0.5444044 8.48533 1.39253 83.35 -7.95131 

9 0.01 335 0.18557 0.5 1 8.98963 0.44258 88.82 -1.91013 

8 0.01 341 0.01562 0.5 1 4.58593 0.87025 84.88 -6.26427 

10 0.03863 302 0.5 1 1 7.26337 1.73721 86.64 -4.31867 

6 0.2248 158 0.28334 0.7614067 0.6993633 0.77253 0.98499 85.78 -5.27052 

3 0.01112 160 0.16475 0.7065307 0.7504244 2.65962 0.92076 88 -2.81323 
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The comparison of CoRXGB with DEEP-SE and RNN-

CNN models in Figure 8 across multiple projects reveals that 

CoRXGB consistently delivers higher accuracy. For instance, 

CoRXGB achieved 82.47% accuracy on the Appcelerator 

Studio dataset, significantly outperforming RNN-CNN 

(62.29%) and DEEP-SE (60.26%). Similarly, CoRXGB 

excelled in other projects, such as Aptana Studio and 

Bamboo, where it recorded accuracies of 82.57% and 

89.68%, respectively, compared to much lower scores by the 

other models. Notable high-performing cases for CoRXGB 

include Duracloud (90.63%) and Usergrid (87.48%). These 

results underscore CoRXGB’s robustness and effectiveness 

in classifying complex user stories, demonstrating its 

superior generalization and adaptability across diverse 

datasets in agile story point classification tasks. 

4.10. Performance Evaluation of CoRXGB on 

Appceleratorstudio project (Post Tuning) 

This section represents the results of the performance of 

the CoRXGB model using hyperparameter tuning for 

different projects. Each result consists of a Learning Gain 

Matrix (LGM), model score, gain over iterations, 

hyperparameters iterations, and confusion matrix. 

Performance metrics have also been updated based on these 

results. Interpretation of the same has been included, along 

with comparative analysis for various projects.   

The Learning Gain Matrix (LGM) Bayesian 

Optimization results for CoRXGB Hyperparameters are 

given in Table 13 for the Appcelerator Studio Project. The 

highest score of 90.55 was achieved with a max_depth of 6, 

learning_rate of 0.06791, n_estimators of 336, gamma of 

0.39259, subsample of 0.5852621, colsample_bytree of 

0.728035, reg_lambda of 6.07545, and reg_alpha of 0.4645. 

This result indicates that the model benefits from a moderate 

depth, a balanced learning rate, and a sufficient number of 

estimators. Table 13 shows that lower learning rates and 

higher numbers of estimators generally lead to higher 

accuracy scores. 

The combination of CNN and RNN is used to extract the 

spatial and sequential features not done by other models.   

The use of Bayesian optimization helps in achieving the 

optimal configurations for the CoRXGB model. 

The Appcelerator Studio project exhibited a substantial 

improvement in accuracy from 82.47% to 90.55% after 

hyperparameter tuning. The confusion matrix after 

Hyperparameter tuning is given in Figure 9. 

 
Fig. 9 Post-tuning confusion matrix of CoRXGB for Appcelerator 

studio project 

 

The improved performance metrics for the Appcelerator 

studio project are given in Table 14.

 

Table 14. CoRXGB Performance Metrics after Tuning for Appcelerator Studio Project 

Class/Metrics Precision Recall F1 Score Support 

Class 0 (Easy) 0.973177 0.982518 0.977822 1697 

Class 1 (Medium) 0.866742 0.855562 0.861114 1697 

Class 2 (Complex) 0.867135 0.879141 0.873091 1697 

 

A “Model score and gain over iterations” plot is given in 

Figure 10. The Blue Line (Score) represents the model’s 

score over different iterations. It indicates the performance of 

the model as the iterations progress. The score fluctuates 

significantly for initial iterations, indicating instability in the 

model’s performance initially. There is a significant drop in 

the score around iteration 5 in the middle iterations, followed 

by a recovery, suggesting the model may be adjusting to the 

parameters. In later iterations, the score remains somewhat 

volatile but shows overall improvement, indicating potential 

fine-tuning and optimization of the model. The Red Line 

(Gain%) represents the gain percentage over different 

iterations. It measures the change in performance relative to 

the previous iteration.  
 

The initial iterations show high fluctuations, indicating 

significant changes in the model’s performance, whereas, in 

middle iterations, a noticeable drop in gain around iteration 5 

corresponds to the drop in the score. The gains become more 

stable in later iterations, with smaller fluctuations indicating 

more consistent model performance.  
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Fig. 10 Model score and gain over iterations – appcelerator studio 

 

In Figure 11, a series of subplots shows how different 

hyperparameters impact the model’s score across various 

iterations.   

• max_depth vs. Score: A slight positive effect, indicating 

that increasing max_depth can improve the model’s 

score up to a certain point. The optimal max_depth 

appears to be around 9. 

• learning_rate vs. Score: A negative effect, suggesting 

that higher learning rates might decrease the model’s 

score. Lower learning rates are associated with better 

performance. 

• n_estimators vs. Score: Positive effect, showing that 

increasing the number of estimators tends to improve the 

model’s score. The optimal number of estimators is 

around 350. 

• Gamma vs. Score: Relatively flat, indicating that gamma 

has a minimal impact on the score within the tested 

range. Scores are relatively consistent regardless of 

gamma. 

• Subsample vs. Score: Negative effect, indicating higher 

subsampling rates might reduce the score. Lower 

subsampling rates tend to result in better performance. 

• Colsample_bytree vs. Score: Slight negative effect, 

suggesting that increasing colsample_by tree might 

slightly reduce the score. Optimal values seem to be 

around the middle range of the tested values. 

• reg_lambda vs. Score: Negative effect, indicating that 

higher regularization (lambda) reduces the score. Lower 

values of reg_lambda are associated with better 

performance. 

• reg_alpha vs. Score: The Negative effect indicates that 

higher regularization (alpha) reduces the score. The 

lower values of reg_alpha are associated with better 

performance. 

 

4.11. Comparative Analysis of Model Performance across 

Projects 

This section discusses the comprehensive comparative 

analysis of the model performance across various projects 

based on aspects like stability, hyperparameter effects, and 

model performance. These statistical approaches help 

identify the model's performance under different conditions 

and configurations.  
 

This analysis has been structured to evaluate quantitative 

and qualitative measures, where quantitative measures 

include standard deviation, range, and stability scores, and 

qualitative measures include score trends and gain 

percentages. It also helps in understanding the behavior of the 

model. 
 

4.12. Hyperparameter Impact 

With the help of visualization techniques, the 

relationship between hyperparameter values and model 

scores has been depicted. It helps identify the optimal settings 

for each project. Figure 12 shows a heatmap of the 

comparative analysis of Hyperparameter effects where 1 

depicts “positive effect”, 0 for “Minimal effect”, and  -1 

means “Negative effect”. Figure 13 represents the count of 

positive (+), negative (-), and minimal effects for each 

hyperparameter.



Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025 

 

66 

Fig. 11 Hyperparameters vs score over iterations – appcelerator studio 

 

Fig. 12 Comparative analysis of Hyperparameters effects across projects 
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Fig. 13 Effect count per hyperparameter 

 

Fig. 14 CoRXGB accuracy comparison (Before and After Hyperparameter Tuning) 
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4.13. CoRXGB Accuracy Comparison (Before and After 

Hyperparameter Tuning) 

An accuracy comparison of the CoRXGB model has 

been depicted in Table 15 and Figure 14 by performing 

hyperparameter tuning before and after. The importance of 

tuning has been clearly seen in accuracy improvements and 

increased gain values from moderate to substantial across all 

projects. 

 
Table 15. CoRXGB Accuracy Comparison after Hyperparameter 

tuning 

Project 
Initial Accuracy 

(Before tuning) 

Accuracy 

After Tuning 

Appceleratorstudio 82.47 90.55 

Aptanastudio 82.57 90.82 

Bamboo 89.68 95.68 

Clover 75.26 83.25 

Datamanagement 62.2 68.48 

Duracloud 90.63 95.67 

Jirasoftware 79.22 85.8 

Mesos 73.64 80.23 

Moodle 82.03 90.55 

Mule 65.11 70.29 

Mulestudio 65.31 70.33 

Springxd 67.2 73.15 

Talenddataquality 60 67.76 

Talendesb 87.05 93.38 

Titanium 76.64 85.1 

Usergrid 87.48 95.86 

 

The moodle project shows improvements in accuracy 

from 82.04% to 90.55% after performing hyper tuning. The 

average improvement of the CoRXGB model is 6.91 

percentage points by performing the hypertuning. It also 

shows the impact of hyperparameter tuning in increasing 

model performance. 

4.14. Statistical Hypothesis Testing Results for CoRXGB vs 

DEEP-SE and RNN-CNN 

A series of statistical hypothesis tests have been 

performed. T-tests and Wilcoxon Signed-Rank tests have 

been performed to check the accuracy between CoRXGB and 

the other two models. A paired t-test is used to find out the 

difference between two related groups by calculating means. 

The equation for the paired t-test is: 

                   (20)   

 

The Wilcoxon Signed-Rank Test 𝑊 is calculated as 

follows: 

 

(21) 

 

Hypothesis 

• Null Hypothesis (H0): No major difference in the 

accuracy of CoRXGB and other models (DEEP-SE or 

RNN-CNN). 

• Alternative Hypothesis (H1): Major difference in the 

accuracy of CoRXGB and other models (DEEP-SE or 

RNN-CNN). 

 

4.15. Results Table 

The results for both tests are given in Table 16. 

The paired t-test results show extremely low p-values, 

indicating a significant difference in accuracy between 

CoRXGB and both DEEP-SE and RNN-CNN. The high t-

statistic values further reinforce this conclusion. The 

Wilcoxon Signed-Rank Test results also exhibit extremely 

low p-values, indicating that the accuracy differences 

between CoRXGB and the other two models are statistically 

significant. The Wilcoxon statistic being 0.0 suggests a 

consistent pattern where CoRXGB consistently outperforms 

DEEP-SE and RNN-CNN across all datasets. The results 

from the paired t-tests and the Wilcoxon Signed-Rank tests 

strongly suggest that the CoRXGB model significantly 

outperforms DEEP-SE and RNN-CNN regarding accuracy 

across various projects. The p-values, i.e., <0.05, show that 

the null hypothesis can be rejected. The CoRXGB model 

provides improved performance than DEEP-SE and RNN-

CNN. This makes the CoRXGB model a better choice for 

predicting the complexity of user stories. Paired t-tests and 

Wilcoxon Signed-Rank tests accuracy results show that the 

CoRXGB model outperforms DEEP-SE and RNN-CNN 

approaches.

 
Table 16. Statistical Comparison of CoRXGB with DEEP-SE and RNN-CNN Model 

Comparison 
Paired t-test t-

statistic 

Paired t-test p-

value 

Wilcoxon Signed-

Rank Test 

Statistic 

Wilcoxon Signed-

Rank Test p-value 

CoRXGB vs DEEP-SE 9.548 9.15E-08 0 3.05E-05 

CoRXGB vs RNN-CNN 9.235 1.41E-07 0 3.05E-05 



Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025 

 

69 

5. Conclusion and Future Work 
The paper represents the results in the field of Agile 

project management using the CoRXGB model. The 

CoRXGB model improves story point estimation accuracy by 

combining the features of CNN, RNN, and XGBoost 

algorithms. The CoRXGB model predicts the user story 

points. Our study is supported by the extensive literature 

work in the field of Agile project Development. The 

CoRXGB model uses CNN for feature extraction, LSTM for 

extracting sequential dependencies, and XGBoost for 

efficient classification. Advanced preprocessing techniques 

like TF-IDF vectorization have also been implemented. The 

model was trained using Bayesian Optimization ensuring 

optimal performance supported with Hyperparameter tuning. 

Overall, the CoRXGB model has proven to be the tool for 

enhancing Agile project management efficiency. 

The various advanced machine learning techniques, like 

transformers, could be integrated with the CoRXGB model. 

Team dynamics and human factors such as team size and 

experience can also be included to improve the model’s 

adaptability. The CoRXGB model can be deployed in the real 

world by agile practitioners as it provides customized 

estimations of industry-specific requirements. The dataset 

biases can also be explored to improve the model’s 

generalizability. Explainable AI techniques like SHAP, 

LIME, etc., can enhance the model’s interpretability.  

 

References 
[1] Nisma Gaffar et al., “A Proposed Framework for Enhancing Story Points in Agile Software Projects,” Indian Journal of Science and 

Technology, vol. 11, no. 31, pp. 1-11, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[2] Janeth Lopez-Martinez et al., “Estimating User Stories’ Complexity and Importance in Scrum with Bayesian Networks,” Recent Advances 

in Information Systems and Technologies, pp. 205-214, 2017. [CrossRef] [Google Scholar] [Publisher Link] 

[3] M. Shepperd, and C. Schofield, “Estimating Software Project Effort Using Analogies,” IEEE Transactions on Software Engineering, vol. 

23, no. 11, pp. 736-743, 1997. [CrossRef] [Google Scholar] [Publisher Link] 

[4] Ravi Kiran Mallidi, and Manmohan Sharma, “Study on Agile Story Point Estimation Techniques and Challenges,” International Journal 

of Computer Applications, vol. 174, no. 13, pp. 9-14, 2021. [Google Scholar] [Publisher Link] 

[5] Suyash Shukla, and Sandeep Kumar, “Study of Learning Techniques for Effort Estimation in Object-Oriented Software Development,” 

IEEE Transactions on Engineering Management, vol. 71, pp. 4602-4618, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[6] Mohit Arora et al., “An Efficient ANFIS-EEBAT Approach to Estimate Effort of Scrum Projects,” Scientifc Reports, vol. 12, pp. 1-14, 

2022. [CrossRef] [Google Scholar] [Publisher Link] 

[7] Ekrem Kocaguneli, Tim Menzies, and Jacky W. Keung, “On the Value of Ensemble Effort Estimation,” IEEE Transactions on Software 

Engineering, vol. 38, no. 6, pp. 1403-1416, 2012. [CrossRef] [Google Scholar] [Publisher Link] 

[8] Onkar Malgonde, and Kaushal Chari, “An Ensemble-Based Model for Predicting Agile Software Development Effort,” Empirical 

Software Engineering, vol. 24, pp. 1017-1055, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[9] Claudio Ratke et al., “Effort Estimation Using Bayesian Networks for Agile Development,” 2019 2nd International Conference on 

Computer Applications & Information Security (ICCAIS), Riyadh, Saudi Arabia, pp. 1-4, 2019. [CrossRef] [Google Scholar] [Publisher 

Link] 

[10] Ali Bou Nassif et al., “Neural Network Models for Software Development Effort Estimation: A Comparative Study,” Neural Computing 

and Applications, vol. 27, no. 8, pp. 2369-2381, 2016. [CrossRef] [Google Scholar] [Publisher Link] 

[11] Asad Ali, and Carmine Gravino, “A Systematic Literature Review of Software Effort Prediction using Machine Learning Methods,” 

Journal of Software: Evolution and Process, vol. 31, no. 10, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[12] Vlad-Sebastian, Horia, and Istvan-Gergely, “Natural Language Processing and Machine Learning Methods for Software Development 

Effort Estimation,” Studies in Informatics and Control, vol. 26, no. 2, pp. 219-228, 2017. [CrossRef] [Google Scholar] [Publisher Link] 

[13] Akshay Jadhav et al., “Effective Software Effort Estimation Leveraging Machine Learning for Digital Transformation,” IEEE Access, 

vol. 11, pp. 83523-83536, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[14] Harish Kumar Mittal, Mohd Arsalan, and Puneet Garg, “A Novel Deep Learning Model for Effective Story Point Estimation in Agile 

Software Development,” 2024 International Conference on Emerging Innovations and Advanced Computing (INNOCOMP), Sonipat, 

India, pp. 404-410, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[15] Bhaskar Marapelli, Anil Carie, and Sardar M.N. Islam, “RNN-CNN MODEL:A Bi-directional Long Short-Term Memory Deep Learning 

Network For Story Point Estimation,” 2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial 

Applications (CITISIA), Sydney, Australia, pp. 1-7, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[16] Haithem Kassem, Khaled Mahar, and Amani A. Saad, “Story Point Estimation Using Issue Reports with Deep Attention Neural 

Network,” E-Informatica Software Engineering Journal, vol. 17, no. 1, pp. 1-15, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[17] Ali Bou Nassif et al., “Software Development Effort Estimation Using Regression Fuzzy Models,” Computational Intelligence and 

Neuroscience, vol. 2019, pp. 1-17, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

 

https://dx.doi.org/10.17485/ijst/2018/v11i31/128780
https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&as_vis=1&q=A+Proposed+Framework+for+Enhancing+Story+Points+in+Agile+Software+Projects&btnG=
https://indjst.org/articles/a-proposed-framework-for-enhancing-story-points-in-agile-software-projects
https://doi.org/10.1007/978-3-319-56535-4_21
https://scholar.google.com/scholar?q=Estimating+User+Stories%E2%80%99+Complexity+and+Importance+in+Scrum+with+Bayesian+Networks&hl=en&as_sdt=0,5
https://link.springer.com/chapter/10.1007/978-3-319-56535-4_21
https://doi.org/10.1109/32.637387
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Estimating+software+project+effort+using+analogies&btnG=
https://ieeexplore.ieee.org/abstract/document/637387
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Study+on+Agile+Story+Point+Estimation+Techniques+and+Challenges&btnG=
https://www.ijcaonline.org/archives/volume174/number13/31736-2021921014/
https://doi.org/10.1109/TEM.2022.3217570
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Study+of+Learning+Techniques+for+Effort+Estimation+in+Object-Oriented+Software+Development&btnG=
https://ieeexplore.ieee.org/abstract/document/9946865
https://doi.org/10.1038/s41598-022-11565-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+efficient+ANFIS-EEBAT+approach+to+estimate+effort+of+Scrum+projects&btnG=
https://www.nature.com/articles/s41598-022-11565-2
https://doi.org/10.1109/TSE.2011.111
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+the+value+of+ensemble+effort+estimation&btnG=
https://ieeexplore.ieee.org/abstract/document/6081882
https://doi.org/10.1007/s10664-018-9647-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+ensemble-based+model+for+predicting+agile+software+development+effort&btnG=
https://link.springer.com/article/10.1007/s10664-018-9647-0
https://doi.org/10.1109/CAIS.2019.8769455
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Effort+Estimation+using+Bayesian+Networks+for+Agile+Development&btnG=
https://ieeexplore.ieee.org/abstract/document/8769455
https://ieeexplore.ieee.org/abstract/document/8769455
https://doi.org/10.1007/s00521-015-2127-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Neural+network+models+for+software+development+effort+estimation%3A+a+comparative+study&btnG=
https://link.springer.com/article/10.1007/s00521-015-2127-1
https://onlinelibrary.wiley.com/doi/10.1002/smr.2211
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+systematic+literature+review+of+software+effort+prediction+using+machine+learning+methods&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2211
https://doi.org/10.24846/v26i2y201710
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Natural+language+processing+and+machine+learning+methods+for+software+development+effort+estimation&btnG=
https://sic.ici.ro/vol-26-no-2-2017/natural-language-processing-and-machine-learning-methods-for-software-development-effort-estimation/
https://doi.org/10.1109/ACCESS.2023.3293432
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Effective+Software+Effort+Estimation+Leveraging+Machine+Learning+for+Digital+Transformation&btnG=
https://ieeexplore.ieee.org/document/10175526
https://doi.org/10.1109/INNOCOMP63224.2024.00073
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Novel+Deep+Learning+Model+for+Effective+Story+Point+Estimation+in+Agile+Software+Development&btnG=
https://ieeexplore.ieee.org/abstract/document/10664177
https://doi.org/10.1109/CITISIA50690.2020.9371770
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=RNN-CNN+MODEL%3A+A+bi-directional+long+short-term+memory+deep+learning+network+for+story+point+estimation&btnG=
https://ieeexplore.ieee.org/abstract/document/9371770
https://doi.org/10.37190/e-Inf230104
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Story+Point+Estimation+Using+Issue+Reports+With+Deep+Attention+Neural+Network&btnG=
https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2023/issue-1/article-4/
https://doi.org/10.1155/2019/8367214
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Development+Effort+Estimation+Using+Regression+Fuzzy+Models&btnG=
https://onlinelibrary.wiley.com/doi/10.1155/2019/8367214


Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025 

 

70 

[18] Jasem M. Alostad, Laila R.A. Abdulla, and Lamya Sulaiman Aali, “A Fuzzy Based Model for Effort Estimation in Scrum Projects,” 

International Journal of Advanced Computer Science and Applications, vol. 8, no. 9, pp. 270-277, 2017. [CrossRef] [Google Scholar] 

[Publisher Link] 

[19] Marta Fernandez-Diego et al., “An Update on Effort Estimation in Agile Software Development: A Systematic Literature Review,” IEEE 

Access, vol. 8, pp. 166768-166800, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[20] Pekka Abrahamsson et al., “Predicting Development Effort from User Stories,” 2011 International Symposium on Empirical Software 

Engineering and Measurement, Banff, AB, Canada, pp. 400-403, 2011. [CrossRef] [Google Scholar] [Publisher Link] 

[21] Simone Porru et al., “Estimating Story Points from Issue Reports,” Proceedings of the 12th International Conference on Predictive Models 

and Data Analytics in Software Engineering, Ciudad Real, Spain, pp. 1-10, 2016. [CrossRef] [Google Scholar] [Publisher Link] 

[22] Ezequiel Scott, and Dietmar Pfahl, “Using Developers' Features to Estimate Story Points,” Proceedings of the 2018 International 

Conference on Software and System Process, Gothenburg, Sweden, pp. 106-110, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[23] Morakot Choetkiertikul et al., “A Deep Learning Model for Estimating Story Points,” IEEE Transactions on Software Engineering, vol. 

45, no. 7, pp. 637-656, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[24] Michael Fu, and Chakkrit Tantithamthavorn, “GPT2SP: A Transformer-Based Agile Story Point Estimation Approach,” IEEE 

Transactions on Software Engineering, vol. 49, no. 2, pp. 611-625, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[25] Tianqi Chen, and Carlos Guestrin, “XGBoost : A Scalable Tree Boosting System,” Proceedings of the 22nd ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining, San Francisco California USA, pp. 785-794, 2016. [CrossRef] [Google Scholar] 

[Publisher Link] 

[26] Xilu Wang et al., “Recent Advances in Bayesian Optimization,” ACM Computing Surveys, vol. 55, no. 13s, pp. 1-36, 2023. [CrossRef] 

[Google Scholar] [Publisher Link] 

[27] James Bergstra, Daniel Yamins, and David Cox, “Making a Science of Model Search : Hyperparameter Optimization in Hundreds of 

Dimensions for Vision Architectures,” Proceedings of the 30th International Conference on Machine Learning, vol. 28, no. 1, pp. 115-

123, Atlanta, Georgia, USA, 2013. [Google Scholar] [Publisher Link] 

[28] Macarious Abadeer, and Mehrdad Sabetzadeh, “Machine Learning-based Estimation of Story Points in Agile Development : Industrial 

Experience and Lessons Learned,” 2021 IEEE 29th International Requirements Engineering Conference Workshops (REW), pp. 106-115, 

Notre Dame, IN, USA, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[29] Muaz Gultekin, and Oya Kalipsiz, “Story Point-Based Effort Estimation Model with Machine Learning Techniques,” International 

Journal of Software Engineering and Knowledge Engineering, vol. 30, no. 1, pp. 43-66, 2020. [CrossRef] [Google Scholar] [Publisher 

Link] 

[30] Przemyslaw Pospieszny, “Software Estimation: Towards Prescriptive Analytics,” Proceedings of the 27th International Workshop on 

Software Measurement and 12th International Conference on Software Process and Product Measurement, Gothenburg Sweden, pp. 221-

226, 2017. [CrossRef] [Google Scholar] [Publisher Link] 

[31] Janeth Lopez-Martinez et al., “User Stories Complexity Estimation using Bayesian Networks for Inexperienced Developers,” Cluster 

Computing, vol. 21, pp. 715-728, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[32] Panut Chongpakdee, and Wiwat Vatanawood, “Estimating User Story Points Using Document Fingerprints,” 2017 8th IEEE International 

Conference on Software Engineering and Service Science (ICSESS), Beijing, China, pp. 149-152, 2017. [CrossRef] [Google Scholar] 

[Publisher Link] 

[33] Ahmad Azzazi, “A Framework using NLP to Automatically Convert User-Stories into Use Cases in Software Projects,” International 

Journal of Computer Science and Network Security, vol. 17, no. 5, pp. 71-76, 2017. [Google Scholar] [Publisher Link] 

[34] M. Thangaraj, and M Sivakami, “Text Classification Techniques: A Literature Review,” Interdisciplinary Journal of Information, 

Knowledge, and Management, Knowledge, vol. 13, pp. 117-135, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[35] Vali Tawosi, and Rebecca Moussa, “Agile Effort Estimation: Have We Solved the Problem Yet? Insights from a Replication Study,” 
IEEE Transactions on Software Engineering, vol. 49, no. 4, pp. 2677-2697, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[36] Hung Phan, and Ali Jannesari, “Story Point Effort Estimation by Text Level Graph Neural Network,” arxiv, pp. 1-4, 2022. [CrossRef] 

[Google Scholar] [Publisher Link] 

[37] Jiale Wu et al., “Toward Efficient and Effective Bullying Detection in Online Social Network,” Peer-to-Peer Networking and 

Applications, vol. 13, no. 5, pp. 1567-1576, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[38] Chaudhary Hamza Rashid et al., “Software Cost and Effort Estimation : Current Approaches and Future Trends,” IEEE Access, vol. 11, 

pp. 99268-99288, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[39] Lan Cao, “Estimating Efforts for Various Activities in Agile Software Development : An Empirical Study,” IEEE Access, vol. 10, pp. 

83311-83321, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[40] Indra Kharisma Raharjana, Daniel Siahaan, and Chastine Fatichah, “User Stories and Natural Language Processing: A Systematic 

Literature Review,” IEEE Access, vol. 9, pp. 53811-53826, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

 

https://dx.doi.org/10.14569/IJACSA.2017.080939
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Fuzzy+based+Model+for+Effort+Estimation+in+Scrum+Projects&btnG=
https://thesai.org/Publications/ViewPaper?Volume=8&Issue=9&Code=ijacsa&SerialNo=39
https://doi.org/10.1109/ACCESS.2020.3021664
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=E.+R.+M%C3%A9ndez%2C+M.+Fern%C3%A1ndez-Diego%2C+and+S.+Abrahao+Effort+Estimation+in+Agile+Software+Development%3A+A+Systematic+Literature+Review%2C%22+Information+and+Software+Technology&btnG=
https://ieeexplore.ieee.org/abstract/document/9186107
https://doi.org/10.1109/ESEM.2011.58
https://scholar.google.com/scholar?hl=en&as_sdt=2005&sciodt=0%2C5&cites=17627384562953775994&scipsc=&q=Predicting+Development+Effort+from+User+Stories&btnG=
https://ieeexplore.ieee.org/abstract/document/6092598
https://doi.org/10.1145/2972958.2972959
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Estimating+Story+Points+from+Issue+Reports&btnG=
https://dl.acm.org/doi/abs/10.1145/2972958.2972959
https://doi.org/10.1145/3202710.3203160
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Using+Developers+%E2%80%99+Features+to+Estimate+Story+Points%2C%E2%80%9D+in+International+Conference+on+the+Software+and+Systems+Process&btnG=
https://dl.acm.org/doi/abs/10.1145/3202710.3203160
https://doi.org/10.1109/TSE.2018.2792473
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+deep+learning+model+for+estimating+story+points%2C&btnG=
https://ieeexplore.ieee.org/abstract/document/8255666
https://doi.org/10.1109/TSE.2022.3158252
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=GPT2SP%3A+A+Transformer-Based+Agile+Story+Point+Estimation+Approach&btnG=
https://ieeexplore.ieee.org/abstract/document/9732669
https://doi.org/10.1145/2939672.2939785
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=XGBoost%E2%80%AF%3A+A+Scalable+Tree+Boosting+System&btnG=
https://dl.acm.org/doi/abs/10.1145/2939672.2939785
https://doi.org/10.1145/3582078
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Recent+Advances+in+Bayesian+Optimization&btnG=
https://dl.acm.org/doi/abs/10.1145/3582078
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Making+a+Science+of+Model+Search%E2%80%AF%3A+Hyperparameter+Optimization+in+Hundreds+of+Dimensions+for+Vision+Architectures&btnG=
https://proceedings.mlr.press/v28/bergstra13.html
https://doi.org/10.1109/REW53955.2021.00022
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+Learning-based+Estimation+of+Story+Points+in+Agile+Development%E2%80%AF%3A+Industrial+Experience+and+Lessons+Learned&btnG=
https://ieeexplore.ieee.org/abstract/document/9582288
https://doi.org/10.1142/S0218194020500035
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Story+Point-Based+Effort+Estimation+Model+with+Machine+Learning+Techniques&btnG=
https://www.worldscientific.com/doi/abs/10.1142/S0218194020500035
https://www.worldscientific.com/doi/abs/10.1142/S0218194020500035
https://doi.org/10.1145/3143434.3143459
https://scholar.google.com/scholar?q=Software+Estimation:+Towards+Prescriptive+Analytics&hl=en&as_sdt=0,5
https://dl.acm.org/doi/abs/10.1145/3143434.3143459
https://doi.org/10.1007/s10586-017-0996-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=User+stories+complexity+estimation+using+Bayesian+networks+for+inexperienced+developers&btnG=
https://link.springer.com/article/10.1007/s10586-017-0996-z
https://doi.org/10.1109/ICSESS.2017.8342885
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Estimating+user+story+points+using+document+fingerprints&btnG=
https://ieeexplore.ieee.org/abstract/document/8342885
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Framework+using+NLP+to+automatically+convert+User-Stories+into+Use+Cases+in+Software+Projects&btnG=
http://search.ijcsns.org/07_book/html/201705/201705010.html
https://doi.org/10.28945/4066
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Text+classification+techniques%3A+A+literature+review&btnG=
https://www.informingscience.org/Publications/4066?Source=%2FJournals%2FIJIKM%2FArticles%3FVolume%3D0-0
https://doi.org/10.1109/TSE.2022.3228739
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Agile+Effort+Estimation%3A+Have+We+Solved+the+Problem+Yet%3F+Insights+From+a+Replication+Study&btnG=
https://ieeexplore.ieee.org/abstract/document/9984979
https://doi.org/10.48550/arXiv.2203.03062
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Story+Point+Effort+Estimation+by+Text+Level+Graph+Neural+Network&btnG=
https://arxiv.org/abs/2203.03062
https://doi.org/10.1007/s12083-019-00832-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Toward+efficient+and+effective+bullying+detection+in+online+social+network&btnG=
https://link.springer.com/article/10.1007/s12083-019-00832-1
https://doi.org/10.1109/ACCESS.2023.3312716
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Cost+and+Effort+Estimation%E2%80%AF%3A+Current+Approaches+and+Future+Trends&btnG=
https://ieeexplore.ieee.org/abstract/document/10243029
https://doi.org/10.1109/ACCESS.2022.3196923
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Estimating+Efforts+for+Various+Activities+in+Agile+Software+Development%E2%80%AF%3A+An+Empirical+Study&btnG=
https://ieeexplore.ieee.org/abstract/document/9851663
https://doi.org/10.1109/ACCESS.2021.3070606
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=User+Stories+and+Natural+Language+Processing%3A+A+Systematic+Literature+Review&btnG=
https://ieeexplore.ieee.org/abstract/document/9393933


Shivali Chopra & Arun Malik / IJECE, 12(1), 44-71, 2025 

 

71 

[41] Julliano Trindade Pintas, Leandro A.F. Fernandes, and Ana Cristina Bicharra Garcia, “Feature Selection Methods for Text 

Classification: a Systematic Literature Review, vol. 54, no. 8, pp. 6149-6200, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[42] Sepp Hochreiter, and Jurgen Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997. 

[CrossRef] [Google Scholar] [Publisher Link] 

[43] Burcu Yalcıner et al., “Enhancing Agile Story Point Estimation: Integrating Deep Learning, Machine Learning, and Natural Language 

Processing with SBERT and Gradient Boosted Trees,” Applied Sciences, vol. 14, no. 16, 2024. [CrossRef] [Google Scholar] [Publisher 

Link] 

[44] Eduardo Rodriguez Sanchez, Eduardo Filemon Vazquez Santacruz, and Humberto Cervantes Maceda, “Effort and Cost Estimation Using 

Decision Tree Techniques and Story Points in Agile Software Development,” Mathematics, vol. 11, no. 6, pp. 1-31, 2023. [CrossRef] 

[Google Scholar] [Publisher Link] 

[45] Remah Younisse, and Mohammad Azzeh, “Application of Natural Language Processing Techniques in Agile Software Project 

Management: A Survey,” 2023 14th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, pp. 1-

6, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[46] Haithem Kassem, Khaled Mahar, and Amani Saad, “Software Effort Estimation using Hierarchical Attention Neural Network,” Journal 

of Theoretical and Applied Information Technology, vol. 100, no. 18, pp. 5308-5322, 2022. [Google Scholar] [Publisher Link] 

[47] N.V. Chawla et al., “SMOTE: Synthetic Minority Over-sampling Technique,” Journal of Artificial Intelligence Research, vol. 16, pp. 

321-357, 2002. [CrossRef] [Google Scholar] [Publisher Link] 

 

 

 

https://doi.org/10.1007/s10462-021-09970-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Feature+selection+methods+for+text+classification%3A+a+systematic+literature+review&btnG=
https://link.springer.com/article/10.1007/s10462-021-09970-6
https://doi.org/10.1162/neco.1997.9.8.1735
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%09S.+Hochreiter+and+J.+Schmidhuber+Long+Short-Term+Memory&btnG=https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Long+Short-Term+Memory&btnG=
https://ieeexplore.ieee.org/abstract/document/6795963
https://doi.org/10.3390/app14167305
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+Agile+Story+Point+Estimation%3A+Integrating+Deep+Learning%2C+Machine+Learning%2C+and+Natural+Language+Processing+with+SBERT+and+Gradient+Boosted+Trees&btnG=
https://www.mdpi.com/2076-3417/14/16/7305
https://www.mdpi.com/2076-3417/14/16/7305
https://doi.org/10.3390/math11061477
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Effort+and+Cost+Estimation+Using+Decision+Tree+Techniques+and+Story+Points+in+Agile+Software+Development&btnG=
https://www.mdpi.com/2227-7390/11/6/1477
https://doi.org/10.1109/ICICS60529.2023.10330468
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Application+of+Natural+Language+Processing+Techniques+in+Agile+Software+Project+Management%3A+A+Survey&btnG=
https://ieeexplore.ieee.org/abstract/document/10330468
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+effort+estimation+using+Hierarchical+Attention+Neural+Network&btnG=
https://www.jatit.org/volumes/onehundred18.php
https://doi.org/10.1613/jair.953
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SMOTE%3A+Synthetic+Minority+Over-sampling+Technique&btnG=
https://www.jair.org/index.php/jair/article/view/10302

