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Abstract - In recent times, utilizing Unmanned Aerial Vehicles (UAVs) has proven to be an effective method for gathering data 

for environmental monitoring in inaccessible locations lacking infrastructure. This has resulted in numerous valuable studies 

being conducted in this area. However, collecting data from sensor nodes using UAVs has posed a challenge due to the 

potential impact on the UAV’s communication and flight time. Mainly to improve the deployment and data collection efficiency 

of the sensors in this article, Efficient Sensors Deployment and Reliable Data Collection using PSO-based Dynamic Clustering 

Approach (ESRD-PDCA) is developed in the UAV-assisted LoRaWAN-based network. The two main categories of the proposed 

ESRD-PDCA are UAV network construction, efficient sensor deployment, LoRaWAN routing protocol, and Particle Swarm 

Optimization (PSO) based dynamic clustering approach. With the presence of these processes, the network’s overall quality 

and reliability are improved, leading to efficient communication among the sensors. The implementation of the proposed UAV-

assisted LoRaWAN is constructed using the software NS2. The parameters that are calculated for the performance analysis of 

the proposed approach are data completion time, energy efficiency, and reliability. 

Keywords - Unmanned Aerial Vehicles (UAVs), Efficient Sensors Deployment, Reliable data collection, Particle Swarm 

Optimization (PSO), Dynamic clustering approach, LoRaWAN based network. 

1. Introduction 
Unmanned aerial vehicles, or UAVs, are showing 

promise as a technology for a wide range of wireless 

communication [1]. These vehicles are versatile and 

available in many sizes, making them ideal for various 

applications, including live streaming, military missions, 

delivery services, monitoring urban traffic, and disaster 

relief. UAV networks operate in Three-Dimensional (3D) 

spaces and are self-organized, decentralized, and operating 

without infrastructure. They use capabilities present in 

Vehicular Ad-hoc Networks (VANET) and Mobile Ad-

hoc Networks (MANET) to gather data from various areas 

and send it via communication links to its intended 

destination [4]. UAV ad-hoc networks operate in a 3D 

environment; therefore, tracking their locations, motion, 

and direction is essential. Consequently, several routing 

protocols have been implemented to improve UAV ad-hoc 

network performance [2]. The effectiveness of many 

UAVs’ communications is directly impacted by these 

protocols. Routing tables are used by traditional topology-

based routing protocols to forward data packets via the 

shortest path, which is usually measured hop by hop [3]. 

However, given the fast speed at which UAVs move, this 

approach requires extra overhead for route discovery and is not 

suitable for supporting the 3D nature of UAV networks. 

Position-based routing methods use additional geographic data 

from GPS or other position-tracking services to address this 

problem. According to its position or geographic location, a 

source UAV node sends data packets to a destination UAV 

using this method. The drone is equipped with cameras, 

sensors, communication equipment, and other tools. It was 

initially designed for military purposes but now also protects 

borders for civilian use. Unmanned aerial vehicles are 

commonly utilized in the armed forces. The United States 

Department of Defense (DOD) began producing unmanned 

aircraft systems in 2005. Currently, the leading countries in 

UAV manufacturing are the USA, Israel, China, Iran, and 

Russia. India’s Rustom series of UAVs is currently in 

development. Creating a UAV is relatively simple and cost-

effective compared to other aircraft. These drones are 

composed of essential elements and can be divided into two 

categories: Fixed Wing UAVs and Rotatory wing UAVs [5]. 

1.1. UAV Communication System 

 UAVs consist of a variety of essential components. Each 

component serves a specific purpose to ensure successful flight 
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operations, but the most crucial part is the communications 

systems. UAV operators can accomplish their goals with 

the help of these systems [8, 9]. They would be necessary 

for unmanned flight to be considered feasible and for 

gathering and sharing aerial imagery and communication 

data. UAV communications systems are becoming 

increasingly important as they continue to establish 

themselves as the primary platform for aerial data 

collecting across various industries. Operators are forced 

to rely heavily on unreliable and highly adaptive 

communication technologies in order to collect airborne 

images and data. Currently, the most sophisticated option 

for dependable UAV communications systems is RF 

communications.  

In many non-military applications, civilian drones are 

considered the best choice because of their compact 

design, low weight, low power consumption, and efficient 

communication interface. 2.4 GHz and 5.8 GHz are the 

usual frequencies used by these drones for communication. 

First-Person View (FPV) video is transmitted on one 

frequency, while the drone is controlled from the ground 

on another [6]. This allows for seamless transmission of 

visuals and data from the drone to those on the ground 

while it remains in flight. In contrast, military drones have 

distinct features and purposes, such as longer missions and 

advanced capabilities for providing aerial visuals of 

battlegrounds. However, using drones in defense 

applications raises concerns about signal jamming. To 

address this issue, some defense drones are equipped with 

redundant onboard navigation systems that do not rely on 

GPS data. This minimizes the risk of signal jamming and 

ensures a safe return to base for these drones, even in 

challenging situations.  

1.2. UAV Communication Design 

The strategy focuses on a compact, hand-controlled 

Unmanned Aerial Vehicle (UAV) with a maximum take-

off weight of 7 kilograms. The UAV’s purpose is 

surveillance, monitoring, reconnaissance, and target 

tracking to assist in operations for both military and 

friendly forces. Additionally, the UAV will have a well-

balanced camera payload [10]. The primary functions of 

the UAV’s communication system are to transmit payload 

images and flight data for independent intelligence and 

surveillance missions.  

To ensure stealthiness, the UAV’s design, color, and 

minimal heat and noise emissions will be considered. 

However, due to limited power availability onboard, 

electromagnetic stealth is not feasible for this lightweight 

UAV during combat operations. As a preventive measure 

against attacks on the UAV by hostile entities, 

countermeasures will be implemented to secure its control 

and communication systems from data manipulation or 

interception. This will involve using commercially 

available frequency-hopping handsets and authentication 

methods between the UAV and its ground controller [6]. The 

remaining portions of this paper are arranged as follows: The 

prior study on data collecting utilizing the clustering approach 

in UAVs is provided in Section 2. Section 3 provides the 

proposed algorithm. In Section 4, the proposed algorithm’s 

simulation results and analysis were discussed, along with a 

comparison with the current routing protocols. The conclusion 

and recommended subsequent paths are provided in Section 5. 

2. Literature Survey 
In [11], the authors NF Mohammad et al. proposed an 

energy-efficient multi-UAV data-collecting methodology for 

WSNs. The authors design the data collection system as a joint 

optimization issue of system cost and energy consumption 

limited by memory size, UAV mission time, and 

communication power. Two steps are involved in solving the 

problem: Initially, a triangulation-based K-means clustering 

that minimizes the number of aggregators employed, and the 

system cost is used to estimate the position and number of 

aggregators required. Second, the Gaining-Sharing Knowledge 

(GSK) optimization technique determines the dock station 

position, reducing energy usage. Each GSK potential solution’s 

ideal UAV trajectory is created using a Capacitated Vehicle 

Routing Problem (CVRP) that blends metaheuristic and 

heuristic solution methods. 

 In [12], the authors, V Gupta and D Seth developed the 

3Dimensional Improvise Clustering Algorithm (3DICA), a 

revolutionary cluster routing protocol, to address the node 

uncertainty issue in cluster head selection. The author creates 

the cluster head and cluster members and then computes the 

energy usage through transmission. The results of the 

simulation show that building 3D clusters with the 

recommended method produces more data in less time. In [13], 

the authors Liu et al. proposed an effective routing strategy 

created for UAV-based WSNs over data gathering, addressing 

the excessive energy consumption and premature SN death of 

some due to outdated routing protocols.  

First, a UAV communication coverage model is developed, 

and the UAV-WSNs data-gathering architecture is constructed. 

Second, based on the data transmission channel, the routing 

region was initially split into air-to-ground and ground-to-

ground routing areas. To encourage the balance of energy usage 

among clusters, a multi-hop routing protocol based on unequal-

sized clustering is suggested in light of this. The next step 

provides a sector dynamic adjustment technique modeled from 

lottery turntable wheels that simulates a rotation to dynamically 

adjust member nodes in each cluster and maintain the 

equilibrium of energy consumption amongst SNs in the cluster. 

In [14], Zekai Wang said that for coordinated transmission and 

distribution systems during severe natural catastrophes, use 

MPDRRM. It suggests using unmanned aerial vehicles and 

mobile energy storage to sustain vital loads and preserve power 

balance while restoring the system. 
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 A modified three-level analytical target cascading 

technique is used to solve the model, broken down into 

sub-problems concentrating on communication, 

transmission, and distribution systems. Case studies 

demonstrate how well this strategy works to improve load 

restoration and strengthen the transmission and 

distribution coordinated system’s resistance to natural 

disasters. In [15], an analytical framework is used to assess 

the timeliness of IoT systems using UAV communications. 

It comprises AoI analysis, which takes outages into 

account, as well as outage probability analysis. The paper 

derives an outage probability formula based on Shannon’s 

theorem by solving a lossy coding problem particular to 

UAV communication. In order to reduce PAoI, it also 

calculates the PAoI and optimizes the rate of information 

creation. Theoretical computations and simulations 

provide an ideal server usage ratio of 0.5 or below, 

providing guidance for real-world applications in 

enhancing the timeliness performance of UAV lossy 

communication. 

 In [16], the author Hakim Ghazzai introduced 

“WaveGAN,” a GAN-based approach for optimizing 

FANETs using mmWave technology. By choosing the best 

communication paths with the optimum channel 

conditions, the objective is to maximize the network’s 

throughput. Beam search is then used to modify these 

network topologies for mmWave-based FANET 

requirements after WaveGAN first learns to build efficient 

network topologies from a supervised dataset. Simulation 

results show that WaveGAN is a viable approach for 

effective and efficient dynamic FANET deployments, as it 

can quickly find FANET topologies with low optimality 

gaps across different network sizes. In [17], an 

“OLSR+GPSR,” an optimized link-state routing scheme 

tailored for FANETs comprised of UAVs. This novel 

approach combines OLSR with GPSR to address 

challenges posed by UAVs’ mobility, limited energy, and 

dynamic topology. In order to maximize routing efficiency, 

OLSR+GPSR incorporates a fuzzy algorithm to modify 

the broadcast period of greeting messages based on UAV 

velocity and position prediction inaccuracy. In contrast to 

OLSR, MPR node selection in OLSR+GPSR takes into 

account a number of factors, including energy levels, 

buffer capacity, neighbor degree, and node stability. 

Notably, OLSR+GPSR reduces routing overhead by 

streamlining OLSR’s operations by eliminating TC 

message propagation and full routing path calculations. 

OLSR+GPSR is effective for FANETs, as demonstrated by 

simulation findings using NS3, which show it outperforms 

other approaches like P-OLSR and OLSR-ETX in metrics 

like delay, packet delivery ratio, overhead, and throughput. 

In [18], a route planning algorithm for UAV relays 

addressing connectivity challenges in mountainous terrains 

is crucial for search and rescue operations. The algorithm 

comprises two phases: (1) detecting poor connectivity 

areas, and (2) an energy-aware, resilient path-planning method 

to optimize coverage links. It employs viewshed analysis to 

identify visibility between areas of interest and cell towers, 

creating a blockage map to avoid signal loss zones. This 

ensures UAV paths avoid areas without coverage while 

maximizing coverage within energy limits and hazardous 

weather conditions.  

Evaluation with publicly available mountainous datasets 

validates the method’s efficacy in improving communication 

networks in isolated, difficult settings. In [19], the author 

proposed that DMMS has described NDN to address the 

challenge of producer mobility, especially in scenarios 

involving high-speed and unpredictable movements of UAVs. 

During handoff, DMMS uses decentralized Anchors to deliver 

consumer Interest packets proactively to the producer’s 

estimated location. It also presents a new forwarding technique 

that combines location-based and traditional forwarding 

strategies to improve efficiency without changing the 

architecture of the network. DMMS is a viable option for low-

latency content delivery in NDN architectures, outperforming 

other solutions like MAP-ME and Kite through ndnSIM 

simulations in a realistic situation, displaying superior network 

cost and user quality-of-service metrics. In [20], the authors 

introduce a combination method for UAV-LiDAR data-based 

treetop detection and tree crown segmentation that is being 

tested for the first time.  

Initially, a Dalponte region-growing technique was 

presented to accomplish crown delineation, and a multiscale 

adaptive local maximum filter was suggested to identify 

treetops precisely. The limited region of each tree was then 

determined using the mean-shift voxelization and super voxel-

weighted fuzzy c-means clustering approach, which was based 

on the coarse-crown result. Finally, precise cloud points for 

each tree were acquired. In [21], the authors researched an 

Unmanned Aerial Vehicle (UAV) assisted sensor network 

system in which data is transmitted to the Base Station (BS) by 

the near-end UAV after being relayed to it by the far-end UAV. 

The author suggested an Adaptive UAV-aided sensor network 

Cooperative Data Acquisition (AUCDA) scheme for such a 

system, taking into account the Age of Information (AoI) as a 

measure of data freshness. To split task areas for UAVs, the 

author first introduces a Gaussian mixture clustering approach 

based on an ambiguous threshold. Expanding on this, the author 

presents a diffusion-based relay pairing technique for forming 

relay connections between UAVs. Lastly, the author suggested 

using the Multilayer Adaptive Large Neighborhood Search 

(MALNS) method to create paths for UAVs to return to the 

Base Station (BS) for charging and paths for data relaying 

between UAVs. In [22], the authors introduce a dependable and 

safe architecture for UAV network services that combines deep 

learning and blockchain to give UAVs safer and more effective 

network services. To improve the security of UAV 

communication data transfer, the author suggested a UAV 

cluster identity management module that combines blockchain, 
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encryption techniques, and digital signatures. Then, to 

improve the security of the UAV operating environment, 

the author presented a real-time secure situational 

awareness system for UAV cluster terminal devices based 

on deep learning, machine learning, and malicious process 

detection technologies.   

In [23], the authors proposed a productive technique 

for gathering data with UAV assistance that minimizes the 

WSN’s overall power consumption. First, the ground and 

aerial layers of a two-layer UAV-assisted data-collecting 

model are presented. The ground layer is used by the 

Cluster Members (CMs) to sense the ambient data. The 

CMs then transfer the data to the Cluster Heads (CHs), 

who then forward the data to the UAVs. Several UAVs 

comprise the aerial network layer, which gathers, stores, 

and transmits data from the CHs to the data center for 

examination. Second, an enhanced K-Means++ clustering 

approach is suggested to maximize the quantity and 

placement of CHs. In addition, an Actor-Critic strategy is 

presented to maximize the deployment of UAVs and their 

correlation with CHs. In [24], the challenge of establishing 

efficient network communication services in IoT networks, 

especially during natural disasters.  

It suggests utilizing UAVs as the primary 

communication devices in an emergency network's 

hierarchical multi-domain data transmission architecture. 

The architecture takes advantage of UAVs’ ability to sense 

network status and learn spatiotemporal connection 

properties to improve their roles as network controllers 

and switches. A routing algorithm based on FedRDR is 

created to increase the generalization of the routing 

decision model by increasing the number of training data 

samples. Compared to federated reinforcement learning, 

simulation results show that the FedRDR algorithm 

reduces parameter transmission size by around 29%, 

achieving an average communication data size of about 

45.3 KB per domain controller. This approach facilitates 

knowledge transfer, accelerates intelligent agent training, 

and lowers communication costs, offering practical 

benefits for UAV network deployment in resource-

constrained and emergency scenarios. In [25], a Network 

scenario with UAV support for edge computing is used to 

maximize task delays for edge computing. When the 

wireless connection between UEs and ECSs is 

compromised, the UAV acts as a relay node to forward 

tasks. The joint UE-ECS matching and UAV 3D hovering 

position deployment optimization problem is converted 

into a continuous-variable decision process. For this, a 

collaborative optimization method based on PPO is created. 

Experimental results show the algorithm achieving seamless 

rewards after three million training steps, demonstrating 

desirable convergence. Simulations across various 

environments confirm the algorithm’s effectiveness, 

consistently achieving lower average latency rates and up to an 

8% reduction compared to baseline scenarios. 

3. Proposed System 
3.1.  Proposed ESRD-PDCA Method 

The proposed ESRD-PDCA system has been classified into 

four steps to carry out a full set of operations. 

3.2. UAVs Network Construction 

In the field of Unmanned Aerial Vehicles (UAVs), Mesh, 

star, and multi-star are the three primary topologies that are 

utilized. Mobility, energy, inter-UAV distance, noise, link 

quality, and path availability are some of the other topologies. 

Figure 1 shows these are all significant aspects to consider 

when sending messages from the UAVs to the Ground Station 

(GS). To achieve optimal communication for UAVs, various 

mechanisms and strategies have been implemented. Numerous 

advancements have been made in Flying Ad-hoc Network  

Technology (FANET), such as routing optimization techniques.  

Depending on the particular application, FANET uses 

various link types, including group, multiple groups, indirect, 

and direct [8, 13–15]. These links are combined in Figure 2 

network design. In addition to indirect links with other clusters 

(VANET and MANET), the FANET Cluster Head (CH) has 

direct links with the members of its cluster. There are numerous 

group connections throughout the entire network. Because of its 

increased movement, the structure of FANET changes more 

often than that of MANET and VANET. If a UAV’s designated 

path fails, the corresponding FANET also fails and must be 

updated. The main issue that disrupts the performance of 

FANET is link outages. Due to shifts in UAV schedules and 

movements of FANET nodes, the quality of links declines 

quickly, leading to failures and updates in the topology. To 

address these challenges, routing protocols with advanced 

features are necessary for enhancing FANET systems. 

3.3. Efficient Sensors Deployment 

A system has been proposed in which a UAV network is 

utilized to collect data from users within a specific region. The 

purpose of this system is to monitor devices and smart home 

systems.  
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Fig. 2 The general architecture of FANETs 

Users are able to interact with the UAV at different 

designated time intervals. The system consists of N users and 

L time slots. It is assumed that all users on the ground and the 

UAV have only one antenna each. In the uplink transmission, 

the nth user utilizes a designated power Pn to transmit the 

signal xn to the UAV. However, there are certain restrictions 

on the transmit power of each user that must be adhered to. 

𝑃𝑛 ≤  𝑃𝑛
𝑡ℎ𝑟, ∀𝑛 (1) 

The maximum transmission power for the nth user is 

denoted as 𝑃𝑛
𝑡ℎ𝑟 . It is assumed that the L>=N; then, this 

means that each time slot can only be used by one user, and a 

user may use multiple time slots. As a result, there is no 

interference between users during uplink transmission. The 

signal received by the UAV during the lth time slot can be 

represented as: 

𝑦[𝑙] = ∑ 𝜏𝑛[𝑙]ℎ𝑛[𝑙]√𝑃𝑛[𝑙]𝐿
𝑙=1  𝑥𝑛 + 𝑛[𝑙]   (2) 

The signal sent by the nth user is denoted as Xn. In this 

context, n indicates the presence of white Gaussian Noise 

(AWGN) at the lth time slot with an average of zero. The 

integer variable is described as: 

 

𝜏𝑛[𝑙] = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑛 − 𝑡ℎ 𝑢𝑠𝑒𝑟 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑠 𝑡ℎ𝑒 𝑙 − 𝑡ℎ 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡,

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        (3) 

The transmission strength of the connection between the 

unmanned aerial vehicle and the nth individual in the lth time 

slot is expressed as: 

ℎ𝑛[𝑙] = √
𝜌𝑜

𝐻2 +||𝑤[𝑙]−𝐿𝑛||2  (4) 

In this scenario,  𝜌𝑜 represents the power gain of the 

reference channel when the distance is 𝑑0 = 1𝑚. The UAV’s 

position at a certain time is displayed by 𝑤[𝑙] = [𝑥[𝑙], 𝑦[𝑙]]𝑇 

which consists of its x and y coordinates. The altitude of the 

UAV remains constant at H meters. The nth user’s location is 

denoted by Ln. Therefore, the movement of the UAV must 

adhere to these limitations. 

𝑤[𝑙] = 𝑤[𝐿] 

||𝑤[𝑙 + 1] − 𝑤[𝑙]||2 ≤ (
𝜈𝑇

𝐿
)

2

, ∀𝑙 (5) 

Equation (5) states that the UAV will return to its initial 

position after each cycle of duration T. The maximum speed 

of the UAV is represented by 𝜈, and the term 
𝜈𝑇

𝐿
 in Equation 

(5) represents the farthest distance it can cover in each time 

slot. To simplify, proposed work use. 𝜏𝑛 = [𝜏𝑛[1, … 𝜏𝑛[𝐿]]], 

Θ = 𝜏𝑛 = [𝜏1, … . 𝜏𝑛]𝑇 , 𝑝 = [𝑃1, … . 𝑃𝑁]  and 𝑊 =
[𝑤[1], … . 𝑤[𝐿]] for convenient notation. The attainable data 

rate for the nth user during the lth time slot is given as: 

𝑅𝑛[𝑙](𝑝, Θ, 𝑊) = 𝐵𝑙𝑜𝑔 (1 +
𝑃𝑛[𝑙]ℎ𝑛[𝑙]|2

𝜎2 )         (6) 

The typical speed at which the nth individual is attended 

to by a UAV during the L time periods can be expressed as: 

𝑅𝑛(𝑝, Θ, 𝑊) =
1

𝐿
∑ 𝑅𝑛

𝐿
𝑙=1 [𝑙]                         (7) 

The reason why the index 
1

𝐿
  is used is because each user 

is only assigned one time slot out of a total of ‘L’ time slots. 

3.4. LoRaWAN Routing Protocol  

A condensed version of the Destination-Sequenced 

Distance Vector (DSDV) routing protocol was chosen for 

implementation. Perkins and Bhagwat [7] proposed the 

concept of DSDV. Each node in this protocol maintains a 

routing table containing data about reachable destinations, 

related metrics, the path’s next node, and other elements. In 

DSDV, routing advertisement messages contain both 

Ground Station 

Gateway 

UAV UAV 

UAV 

Gateway 

Cluster Head 
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incremental packets and entire dumps that contain pertinent 

data. Full dumps are sent periodically and contain all routing 

table entries, while incremental packets only include changes 

since the last full dump. A key feature of DSDV is its loop-

free routes 7. It required some adjustments to make it 

perform best on a LoRaWAN network, even though it was 

initially intended for mobile nodes. For example, as RNs are 

considered stationary, there is no need for a stability pointer 

in the routing table as in the original DSDV. Additionally, 

routes are deemed stable upon advertisement due to the 

expected stability of a LoRaWAN network. Lastly, unlike 

DSDV, there is synchronization between nodes set by a 

gateway.LNs create a LoRaWAN packet and add extra 

information for routing purposes before sending it through 

multiple hops. When the packet reaches a gateway 

neighbour, the additional information is removed, and only 

the LoRaWAN section is transmitted. This process can be 

seen in the second set of arrows originating from LN1 in 

Figure 3. The Application Server will receive the packet as if 

it was sent directly from the initial node, and its encryption 

remains secure throughout as part of a single-hop network 

within LoRaWAN. A routing database that includes a list of 

destinations, metrics to get to each one, the next pathway 

hops, destination sequence numbers, and time stamps to 

identify out-of-date entries is kept in storage by each 

registered nurse. As of this writing, the destinations are 

gateways, and the only gateway stored is the one with the 

fewest hops (metric).  

Upon receipt of full updates, they are cross-checked 

against the current routing database, which gets updated in 

the event that new destinations or improved metrics for 

current sequence numbers become available. RNs can be 

separated into two categories: those with gateways as 

neighbours and those without gateways. Gateway neighbours 

have designated reception windows immediately after 

receiving a beacon where they change their channel 

parameters to match those the gateway uses when 

transmitting its beacon. Other RNs schedule their own 

updates after the expected time of the first full update in the 

next beacon cycle, after which they transmit their own 

updates. Packet Structure: Two sorts of packets are  

transmitted within the multi-hop extension: data packets 

containing application data and complete dumps, including 

routing information.Nodes create routes using full dumps, 

akin to distance-vector protocols in that each node only 

stores the next node in the path and its metric to a given 

destination. Sequence numbers from each destination are 

included to avoid loops. Figure 5 shows the layout of a 

complete dump packet.  

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

Fig. 3 Multi-hop solution timing 

 
Fig. 4 Packet structure of a complete dump, including field lengths in 

bytes and routing information 

 
Fig. 5 Structure of an application data packet within the multi-hop 

network with field lengths in bytes 
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The Source ID field is added as the subsequent hop for 

getting to the destination whenever a new destination is 

added to the receiving node's routing table. To enable the 

receiving node to appropriately interpret the entries, the 

number of entries is supplied. The ID, metric, and sequence 

number created by each destination are contained in each 

entry.  

A simplified form of the sender’s routing table is 

represented by the list of routing entries. The packet should 

be transmitted to the next hop node, identified by the Unicast 

ID field. This guarantees that when a packet reaches an RN, 

it will only follow one path to its destination. When an LN 

transmits a packet, this field is assigned the broadcast value. 

The ID of the gateway, which is normally 0, usually 

correlates to the destination ID. 

 The data payload and additional fields listed in the 

LoRaWAN specification1 are contained in the remaining 

section called LoRaWAN. Packet reception: Upon receiving 

a packet, it undergoes a verification process to determine its 

type based on the “Type of packet” field. An instance of this 

would be a beacon from a gateway that receives its sequence 

number from a LoRaWAN beacon packet.  

A further option is a full dump, in which several 

advertised destinations are extracted by iterating over the 

packet (as illustrated in Figure 2). Finally, if the packet 

represents application data, the receiving RN’s ID and the 

Unicast ID are compared. The RN looks for the next node in 

the path if there is a match. The three bytes of overhead are 

eliminated if the subsequent hop turns out to be a gateway. 

However, if it is not a gateway, then the Unicast ID field is 

updated to reflect the next hop destination. 

 Full Dump: Complete dumps are sent out as soon as a 

beacon is received or the first full dump within a beacon 

period. Every entry from the scanned routing table is 

included in a full dump packet sent to nearby devices. The 

first thing the program does throughout this procedure is 

compare the installation time of the current entry with the 

current timer value to see if it has become outdated. A certain 

number of beacon periods are exceeded by the difference 

before the entry is deemed stale.  

In these instances, the entry is appended to the current 

full dump packet before being deleted from the table, and the 

sequence number is incremented to signify an unreachable 

destination. In a full dump packet from the previous beacon 

period, this location was previously identified as unreachable 

if the sequence number is even. As a result, it is still in the 

routing table and has not yet been communicated, ready to be 

sent out during the upcoming beacon time. It is also 

appended to the packet in this instance, after which it is 

eliminated from the routing table.  

Packet Transmission: Each communication begins by 

conducting a Carrier Activity Detection (CAD) assessment 

of the channel to identify a proper LoRa preamble [8]. In the 

event that no preamble is detected, it assumes the channel is 

available and proceeds with the transmission.  

However, if a preface is detected, the transmitter will 

make an effort to prevent any collisions. In this case, the 

transmitter implements an exponential backoff approach 

when multiple preambles are identified in a row.  

Design Decisions: The following is a list of the design 

decisions made during the progress phase. 

• The frequency band in which registered nurses (RNs) 

transmit is from 868.0 to 868.6 MHz, with a maximum 

duty cycle of 1%. When the RNs are programmed, the 

frequency at which full dumps and application data 

messages are sent must be specified. An RN will 

transmit to a gateway using a random channel from the 

set of 868.1, 868.3, or 868.5 MHz if it is in close 

proximity to the gateway. 

• The current proposal does not support downlink 

communication. Considering the duty cycle constraints 

on RNs, ensuring reliable delivery of downlink packets 

to LNs at specific times becomes challenging unless 

they are continuously receiving data. 

Prototype Description: 

• The RFM95 868Mhz module from HopeRF was utilized 

as the transceiver for both the Leaf Nodes (LNs) and 

Relay Nodes (RNs). While the RNs were attached to an 

STM32L432KC Nucleo board, the LNs were connected 

to an Arduino Pro Mini. 

• Raspberry Pi 3 was attached to running a packet 

forwarder to the iC880A-SPI board, which was 

manufactured by IMST, to serve as the gateway. For 

time reference, a GPS was also installed. A 1/2λ dipole 

antenna with a 2 dBi gain was employed. 

• The Things Network (TTN) was an open-source 

LoRaWAN network that depends on community 

sourcing to set up a Network Server. It has a built-in 

network server as well.  

• The incorporated TTN’s Node-Red for the Application 

Server. Since the TTN dashboard lacks persistent data 

storage capabilities, we were able to store test data for 

analysis at a later time.  

3.5. PSO-Based Dynamic Clustering Approach 

3.5.1. Fundamentals 

Clustering  

Data clustering is an essential task in the realm of 

unsupervised datasets, where the dataset is divided into 

clusters based on similar characteristics. There are two main 

types of data clustering: hierarchical and partition methods.  
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The hierarchical approach involves merging or splitting 

clusters, with agglomeration algorithms focusing on merging 

clusters until only one remains. On the other hand, divisive 

algorithms divide a cluster until each only contains one data 

point.  

Partition algorithms, on the other hand, divide the data 

set into clusters at a single level. Examples of partition 

clustering methods include K-means, fuzzy C-

Means, DBSCAN, and EM. The number of clusters and their 

structures are the main focus areas in data clustering. 

 For the former problem, there are few methods 

available, whereas there are several clustering algorithms to 

address the latter. Even with the advent of numerous 

clustering techniques, they are unable to satisfy the demands 

of efficiency, simplicity, quality, and automation. Finding the 

ideal number of clusters within a big data collection can be 

difficult.  

To tackle this problem, Chang et al. suggested DNNM-

clustering, a genetic clustering approach that makes use of 

dynamic niching with niche migration. In order to 

automatically evolve the number of clusters, this method 

dynamically finds niches and migrates them at each 

generation using a similarity function to predict approximate 

density shapes.  

In order to determine the cluster number, Cheung created 

a competitor penalized competitive learning algorithm that 

has produced encouraging results. By maximizing a weighted 

likelihood, the algorithm determines the parameters of a 

mixture model and discards unnecessary seed points, moving 

the initial seed centers to their actual locations within the 

data set. Bayesian-Kullback Ying-Yang suggested a unified 

technique that provides insight into solving the cluster 

number problem for both supervised and unsupervised 

learning tasks.  

Furthermore, Jain offered further methods for choosing 

cluster numbers, while Swagatam Das and Ajith Abraham 

developed an Automatic Clustering employing a Differential 

Evolution (ACDE) approach by providing a novel 

chromosomal representation. However, Most of these 

methods may not be feasible due to the need for numerous 

iterations of clustering algorithms to obtain decent results, as 

well as the computationally costly nature of model-based 

methods like penalized likelihood estimation and cross-

validation. 

 PSO 

Particle Swarm Optimization (PSO) is a method of 

optimizing nonlinear functions using social behaviour, first 

introduced by Berhart and Kennedy in 1995. This approach 

is considered population-based, with the population referred 

to as a “swarm” made up of individuals known as particles. 

Each particle ‘i’ in the swarm stores the following 

information:  

• Its recent position 

• Its recent velocity 

• The finest position it has achieved so far, known as its 

personal best  

• The finest position originates among all particles, known 

as the global best  

A particle modifies its trajectory in space with each 

iteration to progress toward both the global and personal 

bests. The particle uses the following equations to modify its 

position and velocity after calculating these values: 

𝜈𝑖+1 = 𝑤𝑋𝜈𝑖 + 𝑐1𝑋𝑟𝑎𝑛𝑑𝑋(𝑝𝐵𝑒𝑠𝑡𝑖 − 𝑥𝑖) + 𝑐2𝑋𝑟𝑎𝑛𝑑𝑋(𝑔𝐵𝑒𝑠𝑡𝑖 − 𝑥𝑖)  (8) 

𝑥𝑖+1 = 𝑥𝑖 + 𝜈𝑖+1 (9) 

The disinterest coefficient, which causes the speed to 

decrease over time, is a random value between 0 and 1. c1 

and c2 are the acceleration coefficients are also present. 

Usually, the minimal error threshold or the maximum 

number of PSO runs decides the terminating condition.  

The final condition is variable, just like other 

parameters, and is contingent upon the particular 

optimization problem. PSO has demonstrated excellent 

results in solving optimization problems and has recently 

been utilized for data clustering. 

3.5.2. PSO-DCA Model 

In part, it will provide an explanation of the method for 

solving the issue of automated grouping of MRS tasks. The 

solution involves the utilization of Dynamic Distributed PSO 

(D2PSO) and allocation techniques. The D2PSO, or the 

Dynamic Distributed PSO algorithm, is a popular approach 

for solving UAV target searching problems.  

However, it has two main drawbacks: it can get stuck on 

local optimal solutions, and it may have slow progress in 

certain situations. Two new parameters were incorporated 

based on previous research into the PSO to address these 

issues. These characteristics help determine when particles 

are not improving, thus, not contributing to determining the 

global optimal solution. They are named Local Optima 

Detector for global best and Local Optima Detector for 

personal best.  

This suggests that these particles are saturated and 

require an outside force to increase their search capacity. 

This problem is addressed by the D2PSO method, which 

broadens the search space by guiding particles toward 

uncharted territory that might yield better answers. 

Furthermore, the global best could become stuck in a local 

optimum and lead other particles in the wrong direction if it 

hasn’t improved after a set amount of iterations.  
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An external push is used to overcome this issue and 

lessen its effects by releasing the trapped particle from the 

local optima location. This method preserves the fast 

convergence of PSO while successfully avoiding stagnation 

and local optima issues. D2PSO functions similarly to 

regular PSO in most circumstances, but it offers further 

advantages when these problems occur.  

The local optimum detector: A parameter that plays a 

crucial role in the optimization process. It is continuously 

updated based on the current conditions. If a particle 

becomes stuck in a local optimum during the optimization 

process, the LOD will be increased. This indicates that the 

personal best for that particular particle has either remained 

constant or failed to improve over several 

consecutive generations of gBest and LOD g
Best. Dynamic 

concept: Our task involves creating a dynamic, decentralized 

version of the PSO algorithm. This approach utilizes multiple 

agents and gains its dynamic nature from their ability to 

adjust their parameters using user-provided values 

(𝑆𝑃 , 𝑆𝑔, 𝜀), 𝜀𝜖[0,1].  

Particles pBest that do not show improvement beyond a 

predetermined threshold LOD p
Best=Sp will be reconfigured 

using Equation (10), while those that fall below the threshold 

LOD g
Best=Sg will be reconfigured using Equation (11). 

Where, r, ii=random (1, M)r, ‘M’ refers to the total number of 

individuals in a population, i2=random(1, size(gBest_hist)), and 

gBest_hist represents the past figures of gBest.  

𝑝𝐵𝑒𝑠𝑡−𝑡𝑒𝑚𝑝 = 𝑝𝐵𝑒𝑠𝑡_𝑡𝑒𝑚𝑝𝑖1
+  

𝑖1

𝑖1+𝑖2
 𝑋(𝑔𝐵𝑒𝑠𝑡_ℎ𝑖𝑠𝑡𝑖2

− 𝑝𝐵𝑒𝑠𝑡)  (10) 

𝑔𝐵𝑒𝑠𝑡−𝑡𝑒𝑚𝑝 = min (𝑝𝐵𝑒𝑠𝑡_𝑡𝑒𝑚𝑝𝑖, 𝑔𝐵𝑒𝑠𝑡)     (11) 

Flow chart of the ESRD-PDCA: Automatic Clustering 

D2PSO - Diagram showing the ESRD-PDCA process: 

Automated Clustering using D2PSO Originally used to 

replicate social interactions, PSO has gained popularity as an 

effective optimization technique. In the field of data mining, 

particularly in data clustering, PSO has been extensively 

utilized. This research expands on the PSO algorithm to 

address automatic clustering challenges.  

The flowchart in Figure 6 outlines the comprehensive 

algorithm proposed in this study, which incorporates ESRD-

PDCA to solve the MRTA problem. First, the number of task 

locations (NT), the number of UAV (NR), and the PSO 

parameters need to be specified. This model must also 

generate the first particles and initialize the LOD values. In 

this approach, a job grouping into clusters is represented by a 

particle.  

Next, the phase uses a selected fitness function (either 

DB or CS) to calculate the cost value for each particle to 

evaluate the clustering. Then, it determines the personal best 

parameter for all particles and checks if it remains 

unchanged for a certain number of consecutive iterations. If 

this threshold is met, this model restructures the personal 

best value using Equation (12).  

Afterwards, the global best parameter was calculated 

and compared to the historical values from previous 

iterations before updating the position and velocity of each 

particle. If there is no change in value for a given threshold, 

Equation (13) was used to calculate a new value. Otherwise, 

move on to the next step in the algorithm. After updating the 

positions and velocities of the particles, the procedure is 

repeated a predetermined number of times.  

Lastly, the total number of clusters (KT), together with 

the locations of each cluster’s centroid, were generated. The 

UAV task cluster assignment is handled as an MTSP 

problem, with the final distribution returned. After updating 

the positions and velocities of the particles, the procedure is 

repeated a predetermined number of times. Lastly, the 

system gives back the total number of clusters (KT) together 

with the locations of each cluster’s centroid. The UAV task 

cluster assignment is handled as an MTSP problem, with the 

final distribution returned. 

Objective function: This approach aims to reduce 

similarity within clusters and increase dissimilarity between 

clusters, which has been a focus in recent research. Multiple 

methods have been suggested for evaluating clusters, 

including the DB index, which minimizes average similarity, 

and the PBM index, which seeks to identify well-separated 

clusters with a small number of members, CS and VI. These 

measures essentially represent the ratio between the two 

objectives of clustering.  

DB-index - Davies Bouldin invented the DB-index. It 

calculates the correlation between the distance between 

clusters and the overall distance inside a cluster. The intra-

cluster distance is divided by the inter-cluster distance to get 

this value. One can ascertain the quantity of clusters by 

computing the mean separation between each object and 

their respective ck, Sn(ck,ck’) cluster centers. The distance 

between the centers of clusters also plays a role in this 

calculation. Therefore, if the clusters are tightly packed and 

located far apart from each other, the resulting ratio will be 

small. As a result, a good clustering will have a low Davies-

Bouldin index.  

𝐷𝐵 =
1

𝑘
∑ 𝑚𝑎𝑥𝑘≠𝑘′

𝑘
𝑘=1

𝑆𝑛(𝑐𝑘)+𝑆𝑛(𝑐𝑘′)

𝑆𝑛(𝑐𝑘 ,𝑐𝑘′)
  (12) 

The CS-index, is a merging of both cluster diameters 

and the minimum distance between cluster centers. The 

calculation for this index is as follows:  

𝐶𝑆 =

1

𝑘
∑

1

|𝐶𝐾|
∑ ∈𝐶𝐾 max 𝑥𝑖 ∈𝐶𝐾 𝑑(𝑥𝑖,𝑥𝑗)𝑥𝑖

𝐾
𝑘=1

1

𝑘
∑ 𝑚𝑖𝑛𝑘≠𝑘′

𝐾
𝑘=1  𝑑(𝑐𝑘 ,𝑐𝑘′)

  (13) 
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Fig. 6 Flow chart of clustering and assignment 

What is the distance calculation formula? What is the 

number of elements in each cluster and the number of 

clusters overall? When comparing clusters of different 

densities or sizes, the CS index is helpful as it calculates the 

ratio between within-cluster scatter and between-cluster 

separation. Strong clustering is indicated by a low value. As 

demonstrated by Xu’s research, the CS validity index is 

frequently used as a fitness function in evolutionary 

computational clustering techniques. Because of this, it is 

also employed in experiments as a fitness function. 

4. Result and Analysis 
4.1. Network Formation of UAV Model 

The implementation of the proposed ESRD-PDCA is 

constructed in the software NS2, and the existing systems 

used for comparative analysis are ESSDS [26], DSSRCA 

[27], and EEUCH [28]. The parameters that are used for the 

performance analysis are Communication Delay (ms), 

Energy Efficiency (%), Data Success Rate (%), Network 

Throughput (Kbps) and Routing Overhead (Packets). The 

UAV network model in the NS2 software is illustrated in 

Figure 7. The proposed ESRD-PDCA algorithm is 

implemented in NS2. The simulation settings are shown in 

Table 1. 

Table 1.  Simulation Settings 

Number of Nodes 10,20,30,40,50,60,70,80,90,100 

Topology size 150 m * 150 m 

MAC protocol LoRaWAN 

Source of Traffic CBR 

Traffic Flows 6 

Traffic Rate 50 KB/s 

Input Energy 25 Joules 

Transmitting power 0.8 Watts 

Receiving power 0.3 Watts 

Speed of UAV 20-60 m/s 

Start 

Initialize the parameters: 

• Number of tasks 'Nr', 

• Number of UAV 'Nr'. 

• Sp.Sg. 

• PSO Parameters 

• LOD pbest and LOD gBest 

Evaluate the fitness value of each 
particle based on DB- index/CS-

index 

Calculate pBest for all particles 

LOD pBest=Sp 

• Restrict pBest to pBest_temp 

• Calculate the global gBest and 

save it in gBest historical values 

list of gBest 

LOD  

pBest=S
p 

• Restrict pBest to pBest_temp 

Update position and velocity for 
each particle 

Stopping 

condition 

satisied? 

Return the number of tasks 'clusters 
and their centroids 

Assign UAV to cluster 

End 
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Fig. 7  UAV network model in NS2 

 
Fig. 8 Communication Delay Calculation 

 
Fig. 9 Energy Efficiency Calculation 

 
Fig. 10 Data Success Rate Calculation 

 
Fig. 11 Network Throughput Calculation 

 
Fig. 12 Routing Overhead Calculation 
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4.1.1. Communication Delay Calculation 

In the UAV network model, the communication delay is 

defined as the time required to transmit a packet of data over 

the communication link from one place to another. It is 

essential to reduce communication delays to achieve better 

performance. Figure 8 shows the communication delay 

calculation using methods like ESSDS, DSSRCA, EEUCH 

and ESRD-PDCA. From the figure, it is proven that the 

proposed ESRD-PDCA attained minimum communication 

delay when compared with the other baseline methods. 

4.1.2.  Energy Efficiency Calculation: 

In the UAV network model, energy efficiency is defined 

as the energy that remains at the end of the simulation. It is 

essential to reduce energy consumption to achieve maximum 

energy efficiency among the nodes in the network. In Figure 

9, the energy efficiency calculation is performed using 

methods like ESSDS, DSSRCA, EEUCH, and ESRD-PDCA. 

From the figure it is proven that the proposed ESRD-PDCA 

attained maximum energy efficiency when compared with 

the other baseline methods. 

4.1.3. Data Success Rate Calculation 

In the UAV network model, the data success rate is 

defined as the number of packets successfully delivered to 

their destination. It is essential to attain maximum data 

success rate to achieve high performance among the nodes. 

In Figure 10, the data success rate calculation is shown with 

the methods like ESSDS, DSSRCA, EEUCH and ESRD-

PDCA. From the figure, it is proven that the proposed 

ESRD-PDCA attained the maximum data success rate 

compared with the other baseline methods. 

4.1.4. Network Throughput Calculation 

In the UAV network model, the throughput is defined as 

the total amount of data packets that get transmitted in a 

given time period. It is very essential to attain maximum 

throughput to achieve high performance among the nodes. In 

Figure 11, the throughput calculation is shown using 

methods like ESSDS, DSSRCA, EEUCH and ESRD-PDCA. 

The figure proves that the proposed ESRD-PDCA attained 

maximum throughput when compared with the other 

baseline methods. 

4.1.5. Routing Overhead Calculation 

In the UAV network model, the routing overhead is 

defined as the control messages and forwarded data packets, 

measured between the UAVs, Cluster Heads and the other 

nodes. Reducing the count of routing overhead is essential to 

achieve high performance. Figure 12 shows the routing 

overhead calculation using methods like ESSDS, DSSRCA, 

EEUCH and ESRD-PDCA. The figure proves that the 

proposed ESRD-PDCA attained minimum routing overhead 

when compared with the other baseline methods. 

 

Table 2. Results analysis 

Performance Metrics ESSDS DSSRCA EEUCH ESRD-PDCA 

Communication Delay (ms) 224.25ms 189.24ms 165.85ms 115.46ms 

Energy Efficiency (%) 69.25% 75.16% 84.17% 91.19% 

Data Success Rate (%) 75.25 % 81.17% 83.12% 91.28% 

Network Throughput (Kbps) 389.29 kbps 459.78 kbps 489.28 kbps 768.17 kbps 

Routing Overhead (Packets) 3487packets 2872packets 2187packets 923packets 

 

Table 2 shows the performance analysis of the proposed 

model and the existing methods. 

5. Conclusion 
This research aims to provide a maximum data success 

rate among the UAV network. For that purpose, the PSO 

optimization-based dynamic clustering approach is used, 

which helps to achieve efficient sensor deployment and 

reliable data collection in UAVs. The parameters that are 

calculated for the performance analysis of the proposed 

approach are Communication Delay, Energy Efficiency, Data 

Success Rate, Network Throughput, and Routing Overhead. 

At the end of the experimental analysis, it was proven that 

the proposed ESRD-PDCA performed better when compared 

with the earlier methods like ESSDS, DSSRCA, and 

EEUCH. In the future, load balancing and enhanced 

clustering models will be concentrated to improve the 

network's performance in densely populated areas. 

References 
[1] Zhihui Xu et al., “Research on Precise Route Control of Unmanned Aerial Vehicles Based on Physical Simulation Systems,” Results in 

Physics, vol. 56, pp. 1-17, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[2] Saifullah et al., “K-Means Online-Learning Routing Protocol (K-MORP) for Unmanned Aerial Vehicles (UAV) Adhoc Networks,” Ad 

Hoc Networks, vol. 154, pp. 1-15, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

https://doi.org/10.1016/j.rinp.2023.107200
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Research+on+precise+route+control+of+unmanned+aerial+vehicles+based+on+physical+simulation+systems&btnG=
https://www.sciencedirect.com/science/article/pii/S2211379723009932
https://doi.org/10.1016/j.adhoc.2023.103354
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=K-means+online-learning+routing+protocol+%28K-MORP%29+for+unmanned+aerial+vehicles+%28UAV%29+adhoc+networks&btnG=
https://www.sciencedirect.com/science/article/pii/S1570870523002743


J. Vijaya Barathy & K. Kamali / IJECE, 12(1), 202-215, 2025 

214 

[3] Asif Ali Laghari et al., “Unmanned Aerial Vehicles: A Review,” Cognitive Robotics, vol. 3, pp. 8-22, 2023. [CrossRef] [Google 

Scholar] [Publisher Link] 

[4] E. Gurumoorthi, and A. Ayyasamy, “Cache Agent Based Location Aided Routing Using Distance and Direction for Performance 

Enhancement in VANET,” Telecommunication Systems, vol. 73, pp. 419-432, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[5] Muaz Al Radi et al., “Progress in Artificial Intelligence-Based Visual Servoing of Autonomous Unmanned Aerial Vehicles (UAVs),” 

International Journal of Thermofluids, vol. 21, pp. 1-15, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[6] Kaiyuan Bai, Jianfeng Wu, and Huabing Wu, “High-Precision Time Synchronization Algorithm for Unmanned Aerial Vehicle Ad Hoc 

Networks Based on Bidirectional Pseudo-Range Measurements,” Ad Hoc Networks, vol. 152, pp. 1-14, 2024. [CrossRef] [Google 

Scholar] [Publisher Link] 

[7] Charles E. Perkins, and Pravin Bhagwat, “Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile 

Computers,” ACM SIGCOMM Computer Communication Review, vol. 24, no. 4, pp. 234-244, 1994. [CrossRef] [Google Scholar] 

[Publisher Link] 

[8] Irshad A. Meer, Mustafa Ozger, and Cicek Cavdar, “Cellular Localizability of Unmanned Aerial Vehicles,” Vehicular Communications, 

vol. 44, pp. 1-12, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[9] Zhipeng Cheng et al., “Learning-Based User Association and Dynamic Resource Allocation in Multi-Connectivity Enabled Unmanned 

Aerial Vehicle Networks,” Digital Communications and Networks, vol. 10, no. 1, pp. 53-62, 2024. [CrossRef] [Google Scholar] 

[Publisher Link] 

[10] Daniel Fuertes et al., “Solving Routing Problems for Multiple Cooperative Unmanned Aerial Vehicles Using Transformer Networks,” 

Engineering Applications of Artificial Intelligence, vol. 122, pp. 1-10, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[11] N.F. Mohammad et al., “Software Complex for Modelling Routing in Heterogeneous Model of Wireless Sensor Network,” 2024 

Systems of Signals Generating and Processing in the Field of on Board Communications, Moscow, Russian Federation, pp. 1-5, 2024. 

[CrossRef] [Google Scholar] [Publisher Link] 

[12] Vinti Gupta, and Dambarudhar Seth, “3Dimensional Improvise Clustering Algorithm for Unmanned Aerial Vehicles: 

3DICA,” International Journal of Information Technology, vol. 16, pp. 2563-2576, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[13] Hao Liu et al., “An Energy Efficiency Routing Protocol for UAV-Aided WSNs Data Collection,” Ad Hoc Networks, vol. 154, 2024. 

[CrossRef] [Google Scholar] [Publisher Link] 

[14] Zekai Wang et al., “A Distributionally Robust Resilience Enhancement Model for Transmission and Distribution Coordinated System 

Using Mobile Energy Storage and Unmanned Aerial Vehicle,” International Journal of Electrical Power and Energy Systems, vol. 152, 

pp. 1-20, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[15] Wensheng Lin et al., “Timeliness Optimization of Unmanned Aerial Vehicle Lossy Communications for Internet-of-Things,” Chinese 

Journal of Aeronautics, vol. 36, no. 6, pp. 249-255, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[16] Enas Odat, Hakim Ghazzai, and Ahmad Alsharoa, “A WaveGAN Approach for mmWave-Based FANET Topology Optimization,” 

Sensors, vol. 24, no. 1, pp. 1-4, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[17] Omar Mutab Alsalami et al., “A Novel Optimized Link-State Routing Scheme with Greedy and Perimeter Forwarding Capability in 

Flying Ad Hoc Networks,” Mathematics, vol. 12, no. 7, pp. 1-26, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[18] Mostafa El Debeiki et al., “An Advanced Path Planning and UAV Relay System: Enhancing Connectivity in Rural Environments,” 

Future Internet, vol. 16, no. 3, pp. 1-17, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[19] Mohammed Bellaj, Najib Naja, and Abdellah Jamali, “Distributed Mobility Management Support for Low-Latency Data Delivery in 

Named Data Networking for UAVs,” Future Internet, vol. 16, no. 2, pp. 1-26, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[20] Yuwen Fu et al., “Individual-Tree Segmentation from UAV–LiDAR Data Using a Region-Growing Segmentation and Supervoxel-

Weighted Fuzzy Clustering Approach,” Remote Sensing, vol. 16, no. 4, pp. 1-18, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[21] Xiuwen Fu, and Mingyuan Ren, “Sustainable and Low-AoI Cooperative Data Acquisition in UAV-Aided Sensor Networks,” IEEE 

Sensors Journal, vol. 24, no. 6, pp. 9016-9031, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[22] Zhihao Li et al., “A Secure and Efficient UAV Network Defense Strategy: Convergence of Blockchain and Deep Learning,” Computer 

Standards & Interfaces, vol. 90, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[23] Huang Xiaoge et al., “Actor-Critic-Based UAV-Assisted Data Collection in the Wireless Sensor Network,” China Communications, vol. 

21, no. 4, pp. 163-177, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[24] Jie Li et al., “FedRDR: Federated Reinforcement Distillation-Based Routing Algorithm in UAV-Assisted Networks for Communication 

Infrastructure Failures,” Drones, vol. 8, no. 2, pp. 1-23, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[25] Zhihui Liu, Qiwei Zhang, and Yi Su, “PPO-Based Joint Optimization for UAV-Assisted Edge Computing Networks,” Applied Science, 

vol. 13, no. 23, pp. 1-15, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[26] Asmaa Abdallah et al., “Efficient Security Scheme for Disaster Surveillance UAV Communication Networks,” Information, vol. 10, no. 

2, pp. 1-22, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

https://doi.org/10.1016/j.cogr.2022.12.004
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Unmanned+aerial+vehicles%3A+A+review&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Unmanned+aerial+vehicles%3A+A+review&btnG=
https://www.sciencedirect.com/science/article/pii/S2667241322000258
https://doi.org/10.1007/s11235-019-00617-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cache+agent+based+location+aided+routing+using+distance+and+direction+for+performance+enhancement+in+VANET&btnG=
https://link.springer.com/article/10.1007/s11235-019-00617-0
https://doi.org/10.1016/j.ijft.2024.100590
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Progress+in+artificial+intelligence-based+visual+servoing+of+autonomous+unmanned+aerial+vehicles+%28UAVs%29&btnG=
https://www.sciencedirect.com/science/article/pii/S2666202724000326
https://doi.org/10.1016/j.adhoc.2023.103326
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=High-precision+Time+synchronization+Algorithm+for+Unmanned+Aerial+Vehicle+Ad+Hoc+Networks+based+on+Bidirectional+Pseudo-range+Measurements&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=High-precision+Time+synchronization+Algorithm+for+Unmanned+Aerial+Vehicle+Ad+Hoc+Networks+based+on+Bidirectional+Pseudo-range+Measurements&btnG=
https://www.sciencedirect.com/science/article/pii/S1570870523002469
https://doi.org/10.1145/190809.190336
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Highly+dynamic+destination-sequenced+distance-vector+routing+%28DSDV%29+for+mobile+computers&btnG=
https://dl.acm.org/doi/abs/10.1145/190809.190336
https://doi.org/10.1016/j.vehcom.2023.100677
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cellular+localizability+of+unmanned+aerial+vehicles&btnG=
https://www.sciencedirect.com/science/article/pii/S2214209623001079
https://doi.org/10.1016/j.dcan.2022.05.026
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Learning-based+user+association+and+dynamic+resource+allocation+in+multi-connectivity+enabled+unmanned+aerial+vehicle+networks&btnG=
https://www.sciencedirect.com/science/article/pii/S2352864822001195
https://doi.org/10.1016/j.engappai.2023.106085
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Solving+routing+problems+for+multiple+cooperative+Unmanned+Aerial+Vehicles+using+Transformer+networks&btnG=
https://www.sciencedirect.com/science/article/pii/S0952197623002695
https://doi.org/10.1109/IEEECONF60226.2024.10496736
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Complex+for+Modelling+Routing+in+Heterogeneous+Model+of+Wireless+Sensor+Network&btnG=
https://ieeexplore.ieee.org/abstract/document/10496736
https://doi.org/https:/doi.org/10.1007/s41870-024-01748-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=3Dimensional+improvise+clustering+algorithm+for+unmanned+aerial+vehicles%3A+3DICA&btnG=
https://link.springer.com/article/10.1007/s41870-024-01748-7
https://doi.org/10.1016/j.adhoc.2023.103378
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+energy+efficiency+routing+protocol+for+UAV-aided+WSNs+data+collection&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1570870523002986
https://doi.org/10.1016/j.ijepes.2023.109256
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+distributionally+robust+resilience+enhancement+model+for+transmission+and+distribution+coordinated+system+using+mobile+energy+storage+and+unmanned+aerial+vehicle&btnG=
https://www.sciencedirect.com/science/article/pii/S0142061523003137
https://doi.org/10.1016/j.cja.2022.08.022
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Timeliness+optimization+of+unmanned+aerial+vehicle+lossy+communications+for+internet-of-things&btnG=
https://www.sciencedirect.com/science/article/pii/S1000936122001923
https://doi.org/10.3390/s24010006
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+WaveGAN+Approach+for+mmWave-Based+FANET+Topology+Optimization&btnG=
https://www.mdpi.com/1424-8220/24/1/6
https://doi.org/10.3390/math12071016
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Novel+Optimized+Link-State+Routing+Scheme+with+Greedy+and+Perimeter+Forwarding+Capability+in+Flying+Ad+Hoc+Networks&btnG=
https://www.mdpi.com/2227-7390/12/7/1016
https://doi.org/10.3390/fi16030089
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Advanced+Path+Planning+and+UAV+Relay+System%3A+Enhancing+Connectivity+in+Rural+Environments&btnG=
https://www.mdpi.com/1999-5903/16/3/89
https://doi.org/10.3390/fi16020057
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Distributed+Mobility+Management+Support+for+Low-Latency+Data+Delivery+in+Named+Data+Networking+for+UAVs&btnG=
https://www.mdpi.com/1999-5903/16/2/57
https://doi.org/10.3390/rs16040608
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Individual-Tree+Segmentation+from+UAV%E2%80%93LiDAR+Data+Using+a+Region-Growing+Segmentation+and+Supervoxel-Weighted+Fuzzy+Clustering+Approach&btnG=
https://www.mdpi.com/2072-4292/16/4/608
https://doi.org/10.1109/JSEN.2024.3355161
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sustainable+and+Low-AoI+Cooperative+Data+Acquisition+in+UAV-aided+Sensor+Networks&btnG=
https://ieeexplore.ieee.org/abstract/document/10413293
https://doi.org/10.1016/j.csi.2024.103844
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+secure+and+efficient+UAV+network+defense+strategy%3A+Convergence+of+blockchain+and+deep+learning&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0920548924000138
https://doi.org/10.23919/JCC.fa.2023-0492.202404
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Actor-Critic-based+UAV-assisted+data+collection+in+the+wireless+sensor+network&btnG=
https://ieeexplore.ieee.org/abstract/document/10507235
https://doi.org/10.3390/drones8020049
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FedRDR%3A+Federated+Reinforcement+Distillation-Based+Routing+Algorithm+in+UAV-Assisted+Networks+for+Communication+Infrastructure+Failures&btnG=
https://www.mdpi.com/2504-446X/8/2/49
https://doi.org/10.3390/app132312828
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PPO-Based+Joint+Optimization+for+UAV-Assisted+Edge+Computing+Networks&btnG=
https://www.mdpi.com/2076-3417/13/23/12828
https://doi.org/10.3390/info10020043
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+Security+Scheme+for+Disaster+Surveillance+UAV+Communication+Networks&btnG=
https://www.mdpi.com/2078-2489/10/2/43


J. Vijaya Barathy & K. Kamali / IJECE, 12(1), 202-215, 2025 

215 

[27] Ali Sayyed et al., “Dual-Stack Single-Radio Communication Architecture for UAV Acting As a Mobile Node to Collect Data in 

WSNs,” Sensors, vol. 15, no. 9, pp. 23376-23401, 2015. [CrossRef] [Google Scholar] [Publisher Link] 

[28] Syed Luqman Shah et al., “An Innovative Clustering Hierarchical Protocol for Data Collection from Remote Wireless Sensor Networks 

Based Internet of Things Applications,” Sensors, vol. 23, no. 12, pp. 1-26, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

 

 

https://doi.org/10.3390/s150923376
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dual-Stack+Single-Radio+Communication+Architecture+for+UAV+Acting+As+a+Mobile+Node+to+Collect+Data+in+WSNs&btnG=
https://www.mdpi.com/1424-8220/15/9/23376
https://doi.org/10.3390/s23125728
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Innovative+Clustering+Hierarchical+Protocol+for+Data+Collection+from+Remote+Wireless+Sensor+Networks+Based+Internet+of+Things+Applications&btnG=
https://www.mdpi.com/1424-8220/23/12/5728

