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Abstract - This paper presents an ensemble-based approach to agricultural crop yield forecasting, focusing on the Indian 

context. The study integrates different forecasting models to improve forecasting accuracy for agricultural complexity data 

analysis. SHAP (SHapley Additive exPlanations) is used to give a clear idea of the contribution of each factor in the prediction 

model to improve model interpretation. The dataset used for this study contains yields of 55 crops over 6 seasons in 30 countries 

in 23 years (1997) -2020 available). Besides demonstrating the method's effectiveness, it emphasizes the need for explicit 

modeling that can provide valuable insights for better agricultural practices and ultimately contribute to higher yields that will 

be sustainable in Indian agriculture. 
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1. Introduction  
Agricultural productivity is a cornerstone of economic 

stability and food security, particularly in agrarian economies 

like India. Accurate crop yield prediction is crucial for 

planning and decision-making, impacting everything from 

farmer income to national food supply. Adopting Machine 

Learning (ML) for agricultural crop yield prediction has 

gained momentum, particularly in regions like India, where 

agriculture plays a pivotal role in the economy. ML techniques 

offer advanced tools to analyse complex agricultural data, 

improving yield predictions and aiding in better decision-

making for farmers and policymakers. Various ML techniques 

have been explored for their effectiveness in predicting crop 

yields. Due to the diverse agroclimatic conditions in India, 

region-specific studies have also been conducted to tailor 

machine learning models to local conditions [1-4]. 

Various Machine Learning techniques have been 

explored for their effectiveness in predicting crop yields. 

These techniques range from traditional models like linear 

regression to advanced neural networks and ensemble 

methods [5-7]. Effective crop yield prediction relies heavily 

on the quality and relevance of data. Studies have emphasized 

the importance of integrating various data sources and 

selecting key features to improve prediction accuracy [8, 9].  

Several studies have applied ensemble methods to predict crop 

yields under various Indian agricultural conditions, 

demonstrating their effectiveness in handling the complexity 

of agricultural data [7, 10-13]. Ensemble-driven techniques 

and explainable AI, like SHapley Additive exPlanations 

(SHAP), have shown promise in enhancing prediction 

accuracy and model interpretability. SHAP values are a game-

changer in the realm of explainable AI, providing clear 

insights into the contribution of each feature in a prediction 

model. This is particularly crucial in agriculture, where 

understanding the impact of various factors can drive better 

decision-making [14-18]. From the above literature it is 

observed that ensemble-driven approaches present a robust 

and effective solution for agricultural crop yield prediction in 

Indian conditions. These methods improve predictive 

accuracy and offer valuable insights for optimizing 

agricultural practices, ultimately contributing to enhanced 

productivity and sustainability in Indian agriculture. Despite 

their effectiveness, many advanced ML models are often 

perceived as "black boxes" due to their lack of interpretability. 

Farmers and policymakers need transparent models to 

understand the predictions and make informed decisions. In 

this paper, an ensemble-driven approach is used for the 

prediction of yield in Indian Conditions. SHAP analysis is 

performed for model explanation and interpretability.  

2. Feature Analysis  
This section describes the detailed analysis of the 

parameters or factors contributing to yield prediction along 

with methodology adapted for yield prediction using machine 

learning. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
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2.1. Parameters 

All the major factors contributing towards the yield of 

various crops, along with the topographical conditions, are 

thoroughly analysed in this section. By analysing these factors 

and parameters, researchers can prepare a proper report 

depicting the strategies that should be used for the utmost 

utilization of resources along with the prevention and 

detection of any unwanted events. The dataset contains data 

on the yield of 55 crops over 6 different seasons for 30 states 

over a tenure of 23 years (1997 - 2020). It also contains other 

topographical features such as rainfall, area, pesticides, 

fertilizers, etc. The dataset was collected from Kaggle for 

reference study [19]. A total of 10 parameters are used for the 

analysis of crop yield. Out of these 10, 7 parameters have 

numerical values, while the other 3 have categorical values. 

The parameters having categorical data are crop, season and 

state. The parameters having numerical values are crop year, 

area, production, annual rainfall, fertilizers, pesticide and 

yield. Their minimum, maximum and mean values are given 

in Table 1. Categorical features are shown in Table 2. They 

include crops (55), seasons (6) and states (30). 

 

Table 1. Factors contributing yield prediction with min, max and mean values 

SN Parameters Min. Value Max. Value Mean Value 

1 Crop Year 1997 2020 2009 

2 Area 0.50 5.080810e+07 1.7996e+05 

3 Production 0.00 6.326000e+09 1.6439e+07 

4 Annual Rainfall 301.30 6552 1437 

5 Fertilizer 54.17 4.835407e+09 2.4103e+07 

6 Pesticide 0.09 1.575051e+07 4.8848e+04 

7 Yield 0.00 21105 7.9954e+01 
 

Table 2. Factors contributing to yield prediction with categorical attributes 

SN Feature Categories 

1 Crops 

“Arecanut, Arhar/Tur, Urad, Horse-gram, Gram, Moong, Masoor, Bajra, Jowar, Ragi, Maize, Banana, 

Barley, Black Cardamom, Cashew nut, Castor seed, Turmeric, Pepper, Coconut, Coriander, Cotton, 

Cowpea, Dry chillies, Garlic, Ginger, Groundnut, Guar seed, Jute, Khesari, Linseed, Mesta, Cereals, 

Moth, Niger seed, Oilseeds, Onion, Rabi pulses, Kharif pulses, Summer Pulses, Peas & beans, Potato, 

Rapeseed, Mustard, Rice, Safflower, Sunflower, Sannhamp, Sesamum, Small millets, Soyabean, 

Sugarcane, Sweet potato, Tapioca, Tobacco, Wheat, oilseeds” 

2 States 

“Jammu and Kashmir, Haryana, Uttarakhand, West Bengal, Uttar Pradesh, Andhra Pradesh, Arunachal 

Pradesh, Assam, Bihar Delhi, Gujarat, Himachal Pradesh, Jharkhand Karnataka, Kerala, Madhya 

Pradesh, Chhattisgarh, Maharashtra, Goa, Manipur, Odisha, Meghalaya, Mizoram, Punjab, Nagaland, 

Sikkim, Tripura, Tamil Nadu, Telangana, Puducherry” 

3 Seasons “Autumn, Kharif, Rabi, Summer, Whole Year, Winter” 

The analysis for these factors is described below. 

2.1.1. Year 

The dataset contains the yield prediction data for the 

period of 1977 to 2020. The yield prediction over these time 

periods is shown in Figure 1. It can be observed from Figure 

1 that the yield has increased over the year, but after 2014, it 

is showing a declining trend. Reasons can be climate change, 

decreased soil fertility, and continuous changes in rainfall 

patterns. There has been a shift towards more frequent and 

intense rainfall events, leading to both droughts and floods, 

which is one of the contributing reasons for the decline in the 

yield after 2014. Additionally, the increased frequency of 

extreme weather events, such as heat waves and pest 

outbreaks, has also contributed to the decline in crop yields 

after 2014. Furthermore, the shift towards more intensive and 

unsustainable agricultural practices, such as excessive use of 

fertilizers and pesticides, has led to soil degradation and 

reduced crop yields over time. 

  
Fig. 1 Graph displaying year-wise yield 

2.1.2. Area under Cultivation 

The area under cultivation has a great impact on the yield 

of crops. The yield is also expected to increase as the area 

increases, but it is not always necessary. This is because 

factors such as soil quality, climate, and irrigation can affect 

the yield more than the area alone. This shows that while a 
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larger area can provide higher yields, other factors, such as 

soil quality and climate, also play an important role in 

determining the yield. Figure 2 shows the area under 

cultivation spanning from 1977 to 2020. 

 
Fig. 2 Year-wise distribution of cultivable land 

It can be observed in Figure 2 that the area under 

cultivation is increasing continuously, which in return tends to 

give us more yield. Many agriculturists have been able to turn 

unused and degradable land into cultivable land by using 

fertilizers, pesticides and other techniques.  

 
Fig. 3 Graph displaying cultivable land area present in individual states 

The overall distribution of cultivable area per state is 

shown in Figure 3. More cultivable land generates more yield 

along with more employment opportunities for rural people. It 

also portrays economic development as agriculture has been 

the backbone of our country’s economy. 

2.1.3. Production 

The production of crops is also one of the most important 

contributing factors that affect yield. There is a direct relation 

between production and yield; more production means more 

yield. More production means more resources being used and 

more favourable conditions for various crops, such as more 

beneficial use of fertilizers, pesticides, soil quality, rainfall 

and more. Figure 4 shows the total crop production per state, 

where it can be seen that the South Indian states have more 

production levels.   

 
Fig. 4 Total production per state 

2.1.4. Annual Rainfall 

Annual rainfall has a significant impact on the yield of 

crops. Proper rainfall is essential for the good yield of crops.  

 
Fig. 5 Annual rainfall per state 

Low rainfall levels result in scarcity of water; however, 

higher rainfall levels result in drought situations, and both 

these situations are very unfavourable for crop growth and 

yield. Higher rainfall may also lead to the spreading of crop 

diseases. Proper rainfall level indicates higher yield and good 

crop health. In these ways, we can observe how annual rainfall 

affects the yield of crops. Annual rainfall per state is depicted 

in Figure 5.  

2.1.5. Fertilizers and Pesticides 

Proper use of fertilizers can result in higher yield by 

providing crops with all the necessary nutrients required for 

good crop health and growth, but overuse of fertilizers may 

result in degradation of the quality of the soil by turning it into 

uncultivable land. Figure 6 indicates how farmers are 

involving the use of fertilizers in their conventional method of 

irrigation to increase their production and yield. 
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Fig. 6 Graph of fertilizer being used per year 

The use of pesticides affects the growth of crops, and 

yields vary considerably. Proper use of pesticides indicates 

that the pests and diseases are controlled, which increases the 

crop yield by reducing the possible losses. Pesticides protect 

the crops from damage, and ensure proper unharmed growth 

of the crops. Farmers have adopted the use of pesticides in 

their traditional method of irrigation to boost crop yields, 

which can also be seen in Figure 7.  

 

 
Fig. 7 Graph displaying pesticides used per year 

However, it should be noted that the overuse of pesticides 

and fertilizers results in the degradation of the soil quality 

along with very poor yield quality, which has harmful health 

effects on food consumers. Sustainable irrigation practices 

never advise to overuse of pesticides and fertilizers but to use 

them in an optimized way. 

2.1.6. Season 

The seasons have a big impact on how well crops grow. 

Crops like rice, sugarcane, and small grains grow better when 

it rains a lot in the summer because they need lots of water and 

warm weather to grow well. On the other hand, crops like 

wheat, barley, and beans grow better in the cool and dry Rabi 

season.  

 
Fig. 8 Bar plot displaying season-wise yield 

Farmers need to adjust their farming methods to match the 

specific needs of each crop during different seasons to get the 

best results. Figure 8 shows the season-wise yield in 30 

different states in India. 

3. Methodology 
 Machine learning methods can be divided into widely 

different approaches. It depends on the purpose and use, such 

as decision trees, random forests, and gradient growth. 

Extreme gradient optimization Adaptive improvements 

Histogram based optimization and the SHapley Annotation 

(SHAP) and other interpretive frameworks. Each method 

provides an effective and efficient approach to solving 

complex problems, such as agricultural yield forecasting. 

 
3.1. Decision Tree (DT) 

 DT is a supervised learning model widely used for 

classification and regression tasks. This is shown as a 

flowchart-like tree structure, in which each node corresponds 

to an experiment or position in the feature, branches represent 

the results of these experiments, and leaf nodes represent the 

final prediction. Each method from the root to the leaf node 

can be interpreted as a specific rule. 

Algorithm 

 

• Start with the entire dataset. For each feature Xj, consider 

all possible splits S. 

• Calculate the reduction in the sum of squared errors 

( )
n

i

i

ˆSSE y y
=

= −
2

1

 for each split. 

• Choose the split that maximizes 

( )parent left rightSSE SSE SSE SSE = − +  
parentSSE  - sum of 

squared errors before the split 
leftSSE  - sum of square 

error of left child node  

SSEright - the sum of the square error of the right child 

node 

• Apply the same process recursively to the left and right 

child nodes. Continue splitting until a stopping rule is 

met. Commonly used stopping rules are: 

▪ Minimum Error Reduction: Stop if the reduction in 

error from a split is less than a predefined threshold. 

▪ Maximum Tree Depth: Stop if the depth of the tree 

exceeds a predefined limit. 

▪ Impurity Measure Threshold: Stop if the impurity 

measure (e.g., variance or SSE) is below a certain 

threshold. 

• For a defined input, the travel process in this traversal is 

traversed in the tree from the root to a leaf node. Now, it 

will return the mean target value of complete observations 

at the leaf node as a prediction. 
N
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i
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3.2. Random Forest (RF) 

RF is an ensemble-based kind of machine learning where 

the training phase considers multiple decision trees as 

individual classifiers to interpret a single data point. - In the 

case of regression, the final derived value is the average of 

predictions made by the individual trees. - The algorithm has 

incorporated the bagging and random selection of features to 

reduce over fitting and improve predictive power. Each of 

those trees was constructed on a bootstrap sample and 

determined for the best split at each node by randomly 

selecting a subset of features. - All trees then averaged their 

predictions to yield the final value, making random forests not 

overly sensitive to noise in the data and robust against over 

fitting. 

 For each bootstrap sample Db, initialize tree Tb, and at 

each node of Tb , randomly select m features. Determine the 

best split based on the selected m features. Split the node and 

repeat the process for child nodes until the stopping criteria 

are met. For a new observation x , predict bŷ  from each tree 

Tb and then aggregate predictions by averaging using 
B

b

b

ˆ ˆy y
B =

= 
1

1
  

RF exploit simultaneously the advantages of many DTs 

through the technique of bagging and the random selection of 

features, whose end result is better prediction and robustness. 

3.3. Gradient Boosting (GB) 

GB redesigns the boosting problem using gradient  

descent on a numeric objective, which is the loss of the model 

can be optimized by adding more weak learners and 

minimizing that loss. The steps involved are,  

• Initialize the model with a constant prediction, usually the 

mean of the target values 
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1
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• Compute the negative gradient for each observation using 
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iy  - actual output, iŷ  - predicted output 

• ( )mh x  to the residuals 
( )m

ir  using
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m
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• Predict the final model output by taking the sum of all the 

weak learners as  
( ) ( )

M

i m i

m

ˆ ˆy y h x
=

= + 
0

1

  

GB combines the power of multiple weak models to make 

a strong predictive model; by iteratively fitting weak learners 

to the negative gradient of the loss function and updating the 

model, Gradient Boosting effectively minimizes the 

prediction error. 

3.4. Extreme Gradient Boosting (XGBoost) 

XGBoost extends gradient boosting by incorporating 

regularization techniques and optimization enhancements 

[23]. The objective function to be minimized in XGBoost for 

regression is given by 

( ) ( ) ( )
n T

i i k

i k

ˆL l y , y f
= =

 = +  
1 1

 

( )i i
ˆl y , y  -  loss function, iy - the actual output, 

iŷ - predicted output, ( )kf   - Regularization Term, 

T-  number of trees (iterations). 

XGBoost uses regularization techniques like L1 and L2 

regularization on the weights of the trees, and tree pruning to 

control model complexity.  

3.5. Adaptive Boosting (AdaBoost) 

The AdaBoost algorithm represents an ensemble 

learning technique with popularity in machine 

learning applications. It combines multiple weak learners 

to form a much stronger, more accurate model. It iterates 

through training weak classifiers by decision stumps (simply 

decision trees) to adjust their weights according to 

performance.  

 

All training data points are initially given an equal 

weight. It then concentrates more on the misclassified data 

points after training the weak learner, increasing their 

weights and decreasing the weights of the correctly 

classified points, which is given by 

 
( )i i

n
y F x

i

L e
−

=

=
1

 

yi- actual output, F(Xi) is the predicted value by the current 

ensemble of weak learners for the 
thi instance. The objective 

is to find the ensemble F(X) that minimizes this exponential 

loss. Each training sample ( )i ix , y  is associated with a 

weight iw  updated after each iteration. The algorithm flow is 

described below 

• Initially, all weights are set 
iw for i , ,....n

n
= =
1

1 2 .  
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• For each iteration i, fit the weak learner ( )th x  to the 

training set using weights  iw . Compute the weighted 

error rate te  of  th  using ( )( )
n

t i i t i

i

e w .I y h x
=

= 
1

Here, I is the indicator function.  

• Calculate the learner's weight  

t

t

t

e
log

e

 −
 =  

 

11

2
. 

• Update the weights using ( )( )i i t i t iw w .exp .y .h x −  

and normalize it.  

• Final prediction is obtained by combining the weak 

learners into a strong learner using  

( ) ( )
T

t t

t

F x .h x
=

= 
1   

In the context of regression, AdaBoost adjusts the weights 

of training instances to sequentially fit multiple weak learners, 

each of which attempts to minimize the exponential loss. The 

final prediction F(X) is a weighted combination of these 

learners, where each learner contributes proportionally to its 

accuracy in predicting the residual errors from previous 

iterations [24]. 

3.6. Histogram Boosting (HB) 

Histogram-based learning is a gradient-boosting 

algorithm that learns decision trees sequentially. With each 

iteration, it learns a tree to minimize some loss 

function and adds new trees to the ensemble. These 

histograms allow efficient computation of gradient statistics 

for every histogram bin at the time of tree construction. The 

algorithm for yield prediction using histogram based gradient 

boosting is given below. 

• Initialize the prediction with a constant value, typically 

the mean of the target variable. For each iteration t, 

Compute the pseudo-residuals 

( )

( )( )
( )

t

i it

i t

i

ˆL y , y
r

ŷ

−

−


= −



1

1
. 

• Create histograms for each feature by aggregating the 

pseudo-residuals and, if applicable, the second-order 

gradients into bins. Choosing the split that maximizes the 

reduction in the loss function. 

• Fit a decision tree to the binned data using the chosen split 

points. Update the model using  
( ) ( ) ( )t t

i i t i
ˆ ˆy y f x

−
= +

1
   

Where   is the learning rate and tf  is the newly fitted 

tree. 

3.7. Interpretable Model Using SHapley Additive 

exPlanations (SHAP) 

SHAP is the methodology that 

is used for interpreting the output of machine learning 

models. The core concept behind the SHAP values 

is related to cooperative game theory as well as Shapley 

values. The other methodologies do not explain how each 

feature contributed to the predictions.  

This might lead to fairness but enables ease of 

understanding for one and all. SHAP is useful because 

it tells us what each feature is important in making 

predictions. The model's prediction f (x)  is seen as the 

payout from a cooperative game where features collaborate to 

produce the output. The SHAP value for the feature i   in the 

context of a specific input x   is given by 

( )
    ( ) ( )i SS iS N\ i

S ! n S !
f x f x

n!

− −
  = −
 

1
  

Where  N , ,........n= 1 2  is the total dataset, S  is the 

cardinality of the S , ( )Sf x is denotes the model output using 

only the features in S  ensuring fair and consistent feature 

importance values based on the cooperative game theory 

concept of Shapley v0alues. In this paper, model interpretation 

is carried out using SHAP analysis to provide an explanation 

of obtained results on yield prediction [26].   

4. Results and Discussion  
Six machine learning algorithms are applied to 

agricultural datasets for yield prediction. The quantitative 

assessment of the yield prediction is carried out using the 

following metrics [27, 28]. Consider N is the total number of 

samples in the dataset, iy  is the actual value of the yield, iŷ  

is the predicted value of the yield after applying ML 

algorithms, iy is the average value of yield prediction. 

A high R² score indicates that the model accurately 

captures the variability in crop yields based on input features. 

It helps understand how well the model can generalize and 

how much of the yield variability is explained by the model. 

The quantitative assessment of six ML algorithms for yield 

prediction using MAE, MSE and RMSE is shown in Table 3. 

 

The best-performing model is GB with a very low MAE 

of 0.0151 and the lowest. A higher R2 score of 0.9340 shows 

that it perfectly fits the data and has high predictive accuracy, 

while random forest with the lowest MAE of 0.0128 (less than 

the linear regression model) and efficient R2 score of 0.9041 

discloses its exceptional predictive ability.
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Table 3. Quantitative assessment of six machine learning algorithms for yield prediction using MAE, MSE and RMSE 

Model MAE MSE RMSE R2_score 

Histogram Gradient Boosting 0.0245 0.0985 0.3138 0.9052 

Decision Tree 0.0156 0.1444 0.3800 0.8610 

Extreme Gradient Boosting 0.0173 0.1361 0.3689 0.8690 

Random Forest 0.0128 0.0996 0.3157 0.9041 

Adaptive Boosting 0.0213 0.1165 0.3413 0.8879 

Gradient Boosting 0.0151 0.0685 0.2618 0.9340 

Other models such as DT, XGBoost, AdaBoost, and HB 

exhibit different levels of performance, each showing 

potential in specific metrics but generally followed by GB and 

RF a little in overall predictive power and accuracy. The 

scatter plot in Figure 9 depicts the performance of HB, DT, 

XGBoost, RF, AdaBoost, and GB. Each model's predictions 

are represented by different colored dots, as indicated in the 

legend. The green diagonal line represents perfect predictions 

(y = x). Points closer to this line indicate higher accuracy of 

the model's predictions. With the highest R² score of 0.9340, 

Gradient Boosting’s predictions are most closely aligned with 

the real values, demonstrating fine overall performance. 

Histogram Gradient Boosting and Random Forest, both 

models display robust predictive performance with R² ratings 

of 0.9052 and 0.9041, respectively.  

Their predictions are also intently clustered around the perfect 

line. XGBoost and Decision Tree have R² rankings of 0.8690 

and 0.8610, indicating appropriate, however slightly much 

less correct predictions in comparison to the pinnacle 

performers. AdaBoost, although performing moderately 

nicely with an R² score of 0.8879, its predictions are slightly 

greater scattered compared to the other ensemble models. 

Figure 10 shows SHAP values for feature-contributing yield 

prediction assigns a cost to each feature inside the version, 

which indicates how lots that function contributed to the 

model's prediction.  

 

 
Fig. 9 Model prediction using R2 score 

In this case, the capabilities are elements that might affect 

crop yield, including production, area, pesticide use, state, 

crop kind, annual rainfall, crop year, and season. The x-axis of 

the graph suggests the common impact of the model output 

importance, which is essentially how much the characteristic 

changed the model's prediction. Positive values imply that the 

function elevated the model's crop yield prediction, even as 

bad values suggest that the characteristic decreased the 

prediction.  
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Fig. 10 SHAP values for feature contributing yield prediction 

The y-axis of the graph shows the functions themselves. 

The height of the bar for every feature indicates the average 

magnitude of the feature's effect on the model's predictions. 

For instance, the bar for "Production" is the highest, meaning 

that production location had the biggest effect on the version's 

crop yield prediction. 

The SHAP summary plot shown in Figure 11 helps us to 

understand which factors are most important for predicting 

crop yields and how these factors affect the model’s 

predictions. The SHAP summary shows two things; the first 

is feature importance, which is represented by the y-axis of the 

factors used by the model to make its predictions. Items are 

listed in order of importance, with the most important item at 

the top. In this graph, crop production is most affected by 

production, followed by area, pesticide state and crop 

characteristics. The second is feature impact on the model, 

represented by the x-axis and the dot color. The x-axis shows 

the SHAP value, which indicates how much a factor 

contributed to a particular predictor. Positive values indicate 

that the trait increased the prediction of the crop yield model, 

while negative values indicate that the trait decreased the 

prediction.  

 
Fig. 11 Impact of SHAP values on predicting yield 

5. Conclusion  
In this comparative study of various machine learning 

models for crop prediction, including HB, DT, XGBoost, RF, 

AdaBoost, and GB, the performance metrics highlight the 

superiority of ensemble methods. GB emerges as the best-fit 

model with the highest R² score of 0.9340, the lowest MSE of 

0.0685, and a RMSE of 0.2618. RF also performs 

exceptionally well, with a high R² score of 0.9041, a low MAE 

of 0.0128, and an RMSE of 0.3157. AdaBoost shows strong 

performance with an R² score of 0.8879 and an RMSE of 

0.3413, making it reliable but slightly less effective than GB 

and RF. XGboost and DT show similar high performance, 

with XGBoost having an R² score of 0.8690 and an RMSE of 

0.3689 and DT having an R² score of 0.8610 and an RMSE of 

0.3800. HB performs well with an R² score of 0.9052 and an 

RMSE of 0.3138 but is slightly less efficient than the top 

models. These results underscore the effectiveness of 

ensemble methods, particularly GB and RF, in inaccurate crop 

prediction.  
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