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Abstract - Breast Cancer (BC), characterized by the uncontrolled proliferation of breast cells, remains the most prevalent and 

life-threatening cancer affecting women. Early detection significantly increases the chances of survival by enabling timely 

medical intervention. Numerous methods have been proposed for breast cancer detection; however, limitations in diagnostic 

accuracy and efficiency persist. To address these challenges, this study introduces a robust deep-learning framework leveraging 

fine-tuned EfficientNet-B3 for the detection and classification of breast tumors. The methodology employs segmentation 

techniques to accurately delineate the affected breast tumor regions, reducing training complexity while enhancing classification 

precision. The model was trained and evaluated using the Mammographic Image Analysis Society (MIAS) dataset, incorporating 

critical preprocessing steps to optimize image quality and feature extraction. Fine-tuning of EfficientNet-B3 was carried out to 

adapt the pre-trained network to mammogram-specific features, with hyperparameters optimized for this domain. Performance 

was assessed using three primary evaluation metrics: accuracy, specificity, and sensitivity. Experimental results demonstrate 

that the proposed CNN-EfficientNet-B3 framework achieves superior performance compared to conventional approaches, with 

specificity, accuracy, and sensitivity rates of 97.12%, 96.50%, and 96.43%, respectively. These findings highlight the potential 

of the proposed method to significantly enhance breast cancer detection and classification, paving the way for more effective 

clinical applications. 
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1. Introduction  
Cancer is caused by genetic mutations that lead to 

abnormal changes in the genes responsible for regulating cell 

development and maintaining their health. These genes, found 

in the cell’s nucleus, are the "control room" of each cell, 

dictating processes such as cell division, growth, and death. 

Under normal circumstances, the body follows an orderly 

process where healthy new cells replace older, dying ones. 

However, mutations can occur in specific genes, leading them 

to either activate or deactivate, causing a disturbance in the 

balance. Mutated cells acquire the ability to divide 

uncontrollably, generating more mutated cells that eventually 

form a tumor. Breast cancer, one of the most prevalent types 

of cancer among women, is the result of such mutations. It is 

a major cause of death globally, making early detection and 

intervention critical to reducing mortality rates [1]. Breast 

cancer detection has always been a challenge due to the 

complexity of the disease and the fact that its underlying 

causes remain largely unidentified. Despite this, early 

detection significantly improves the chances of successful 

treatment and complete recovery. Mammography has become 

the most commonly used tool for detecting both benign and 

malignant tumors in the breast. As technology has advanced, 

various imaging techniques such as Magnetic Resonance 

Imaging (MRI), ultrasound, and thermal imaging have been 

developed to further assist in the early identification of breast 

cancer. These methods have contributed to lowering 

recurrence rates and mortality, but challenges remain in 

detecting small anomalies in the early stages. Expert 

radiologists, despite their expertise, continue to miss a 

substantial proportion of anomalies in X-ray images due to 

the overwhelming number of images they must review. This 

http://www.internationaljournalssrg.org/
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issue underscores the importance of more efficient diagnostic 

methods that can assist radiologists in identifying early-stage 

breast cancer [2]. 

Recent advancements in mammography techniques have 

contributed to better detection rates. Digital mammography, 

Computer-Aided Detection (CAD), and breast tomosynthesis 

are some of the notable developments. These techniques have 

shown promise in enhancing the accuracy of cancer detection 

and minimizing the chances of missing early-stage tumors. 

However, they are not without their limitations, such as the 

difficulty in interpreting complex images, high false positive 

rates, and the need for human intervention. To overcome these 

challenges, machine learning and deep learning approaches 

have gained traction in recent years, promising significant 

improvements in the detection and classification of breast 

cancer [3]. 

1.1.  Early Detection and Importance of Mammography  

Mammography remains the gold standard for detecting 

breast cancer at an early stage. It involves taking X-ray 

images of the breast tissue to identify abnormalities, such as 

lumps or calcifications, which could indicate the presence of 

cancerous cells. Early detection is critical because it allows 

for the administration of treatments before the cancer spreads 

or grows into a more aggressive form, which could otherwise 

lead to the need for invasive procedures like mastectomy. 

The likelihood of successful treatment for breast cancer 

increases when it is detected in its earliest stages. This is 

especially important because early-stage breast cancer often 

has a high survival rate when treated promptly. As the disease 

progresses, however, the chances of survival decrease 

significantly, making early detection a key factor in 

improving outcomes. Research has shown that the survival 

rate for breast cancer patients can be as high as 99% when 

detected at stage 1, compared to only 27% for those diagnosed 

at stage 4 [5]. mammography allows radiologists to detect 

breast cancer masses, both benign and malignant before they 

become palpable or cause noticeable symptoms.  

This ability to detect presymptomatic cancer cells is 

crucial in preventing the disease from progressing into a more 

serious stage. However, despite the significant role of 

mammography in early cancer detection, there are limitations. 

One of the major challenges is the potential for missed 

diagnoses. Radiologists often need to examine a large number 

of images, which can lead to fatigue and, consequently, errors 

in interpretation. Additionally, subtle lesions and small 

tumors may not be easily visible in standard mammograms, 

making them difficult to detect. In some cases, lesions that are 

clearly visible to human eyes might still be overlooked due to 

image quality or the radiologist’s experience. Recent 

advancements in mammography technology, such as digital 

mammography and Computer-Aided Detection (CAD), aim 

to address these challenges. These technologies offer 

improved image clarity, better visualization of dense breast 

tissue, and automated systems to help identify abnormalities. 

Digital mammography uses digital detectors to capture breast 

images and store them in computer files, allowing for more 

precise measurements and faster image retrieval. Computer-

Aided Detection (CAD) systems analyze mammograms using 

algorithms to highlight areas that may need closer attention, 

providing additional support for radiologists.  

Breast tomosynthesis, another development, uses 

multiple X-ray images to create a 3D reconstruction of the 

breast tissue, offering a more detailed view and helping to 

improve tumor detection [6]. Despite these advancements, 

breast cancer detection remains a complex task. Radiologists 

may still struggle to differentiate between benign and 

malignant lesions, especially when the tumor is small or 

located in dense tissue. Furthermore, the growing amount of 

medical images has made it increasingly difficult for 

radiologists to maintain high levels of accuracy. This 

problem, known as "image overload," highlights the need for 

more effective tools to assist in the detection process. 

1.2.  Limitations of Current Techniques 

While mammography and its advanced variants, such as 

digital mammography and breast tomosynthesis, have 

undoubtedly improved the early detection of breast cancer, 

several limitations persist. The first challenge is the issue of 

false positives and false negatives. False positives occur when 

a benign tumor is mistakenly identified as malignant, leading 

to unnecessary biopsies or treatments. On the other hand, false 

negatives occur when malignant tumors are missed, which 

can delay treatment and reduce the chances of survival. These 

errors are particularly concerning in the early stages of cancer, 

where small tumors may be difficult to detect and easily 

overlooked. Another limitation is the variability in image 

quality.  

Factors such as the patient’s breast density, the imaging 

equipment used, and the radiologist’s experience can all affect 

the accuracy of mammograms. For example, dense breast 

tissue can obscure the visibility of tumors, making them 

harder to identify. Moreover, the interpretation of 

mammographic images is subjective and dependent on the 

radiologist’s expertise. This subjectivity can lead to 

inconsistencies in diagnoses, with some tumors being missed 

or misclassified. 

In addition, there is the issue of limited access to 

mammography, particularly in rural areas or low-income 

regions. Although mammography is widely available in 

developed countries, there are still significant gaps in access 

in many parts of the world. This disparity in access means that 

many women in underserved regions may not receive timely 

screenings, which could lead to delayed diagnoses and poorer 

outcomes. Lastly, the high cost of mammography, along with 

the need for skilled radiologists to interpret the images, adds 
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to the financial burden of healthcare systems. These 

challenges highlight the need for new, more efficient 

approaches to breast cancer detection that can reduce costs, 

improve accuracy, and overcome the limitations of current 

methods. 

1.3. The Role of Deep Learning in Breast Cancer Detection 

To address these challenges, researchers have 

increasingly turned to machine learning and deep learning 

techniques. These approaches offer the potential to enhance 

the accuracy of breast cancer detection by automating the 

process of image analysis. Deep learning, in particular, has 

shown great promise in this regard. By training neural 

networks on large datasets of mammographic images, deep 

learning models can learn to recognize complex patterns and 

features that may not be immediately apparent to human 

observers.  

Deep learning models, such as Convolutional Neural 

Networks (CNNs), have been applied to breast cancer 

detection with significant success. These models are designed 

to automatically extract features from images and use them to 

classify the presence of cancerous cells. In some studies, 

CNNs have been shown to outperform traditional image 

processing techniques in terms of accuracy and sensitivity. 

The advantage of deep learning lies in its ability to learn from 

vast amounts of data, enabling the model to generalize and 

improve its performance over time. 

One of the major benefits of using deep learning for 

breast cancer detection is the potential for reducing human 

error. By automating the process of analyzing mammograms, 

deep-learning models can help radiologists identify anomalies 

more quickly and accurately. These models can also reduce 

the burden on radiologists, allowing them to focus on more 

complex cases and improving efficiency.  

Recent studies have shown that deep learning models can 

achieve high accuracy in detecting breast cancer, with some 

models achieving sensitivity and specificity rates comparable 

to or even exceeding those of human radiologists. These 

models are particularly effective in detecting small tumors 

and subtle anomalies that might be missed in traditional 

mammograms. Furthermore, deep learning models can be 

trained to differentiate between benign and malignant tumors, 

helping to reduce the number of false positives and false 

negatives.  

Despite these promising results, challenges remain in 

implementing deep learning models in clinical practice. One 

of the main issues is the need for large, labeled datasets to 

train the models. While datasets such as the Mammographic 

Image Analysis Society (MIAS) dataset and the Digital 

Database for Screening Mammography (DDSM) provide 

valuable resources, there is still a need for more diverse and 

representative datasets that can improve the generalizability 

of the models. Additionally, deep learning models require 

significant computational power and resources, which may be 

a barrier to their widespread adoption in resource-limited 

settings. 

2. Related Work  
Recent advancements in deep learning have significantly 

enhanced breast cancer detection, enabling more accurate and 

timely diagnoses. In the context of mammography image 

analysis, various deep learning models have been proposed to 

improve the detection and classification of malignant and 

benign tumours. These advancements have leveraged a range 

of architectures, from traditional Convolutional Neural 

Networks (CNNs) to more complex models like EfficientNet, 

ResNet, and DenseNet. 

One of the pioneering approaches involved CNN-based 

models for feature extraction and classification. LeNet and 

AlexNet, early CNN architectures, laid the foundation for 

subsequent models but were limited by their relatively 

shallow architectures and inability to capture fine-grained 

features essential for accurate tumour detection. More recent 

architectures, such as VGGNet, ResNet, and DenseNet, have 

improved on these by introducing deeper layers and skip 

connections, enabling better feature extraction from high-

resolution images.  

These models have been shown to achieve superior 

performance in classifying breast tumours but still face 

challenges in generalizing to diverse datasets.EfficientNet, as 

used in the current study, represents a significant 

breakthrough by using a compound scaling method that 

uniformly scales all dimensions of the network (depth, width, 

and resolution) to achieve higher accuracy with fewer 

parameters.  

Studies have demonstrated that EfficientNet models 

outperform traditional CNN architectures, offering a more 

efficient solution for mammography image classification. 

Specifically, EfficientNet B3, used in this research, has been 

shown to deliver a balance between model size and 

performance, achieving state-of-the-art results on several 

medical imaging benchmarks.  

Another notable approach has been the integration of 

ensemble learning techniques, where multiple models are 

combined to improve predictive accuracy. Methods like 

stacking or boosting have been explored to combine the 

strengths of different models, leading to improved sensitivity 

and specificity in breast cancer detection. Additionally, 

transfer learning techniques have been widely adopted, where 

pre-trained models on large datasets, such as ImageNet, are 

fine-tuned on smaller medical datasets, allowing for better 

generalization and reduced training time. Recent studies have 

also explored the use of advanced architectures like U-Net for 
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segmentation tasks, which focus on delineating tumour 

boundaries in mammographic images. These methods are 

particularly effective in enhancing the model's interpretability 

and aiding radiologists in identifying tumours more 

accurately. Combining segmentation with classification in a 

multi-task learning framework has shown promising results in 

improving both detection and localization.  

Despite these advancements, challenges remain, 

particularly in handling class imbalance, overfitting, and the 

availability of high-quality annotated data. Several works 

have addressed these issues through data augmentation, 

synthetic data generation, and the use of advanced 

regularization techniques like dropout and batch 

normalization. The integration of clinical metadata, including 

patient age, breast density, and family history, is also being 

explored to enhance model accuracy further. 

In comparison to these approaches, the model proposed 

in this study CNN-EfficientNet B3 offers significant 

improvements in terms of both accuracy and computational 

efficiency. By leveraging a novel deep feature extraction 

strategy, using HOG for haze removal and a serial-based 

technique for feature selection, this model outperforms 

traditional methods and has shown excellent precision, 

sensitivity, and specificity. Moreover, the use of enhanced 

data through augmentation techniques ensures better 

generalization and robustness, making this approach well-

suited for real-world clinical applications. 

Breast cancer is the term for a malignant tumor that 

develops from breast cells. “Breast cancer usually begins in 

the lobules, the ducts or breastmilk-producing glands, which 

are the paths that transport milk flowing to the nipple from the 

lobules. Breast cancer is less common to arise from the 

histological tissues of the breast, which are made up of its 

fatty and fibrous connective tissues.  

To make a diagnosis in the context of radiographic image 

interpretation, image data must be assessed and organised. 

The challenges related to these operations can include varying 

breast parenchyma with structural noise caused by thick tissue 

masking” [6]. These factors can make cancer lesions 

unnoticed or hidden. Manual diagnosis requires a number of 

subjective judgements, more diversity between and among 

observers, and the potential for serious errors [7].  

A tumour may be benign (not harmful to health) or 

malignant (possibly harmful to health). “Benign tumors are 

not considered to be cancerous since they grow slowly, 

include cells that resemble healthy tissue, don't move to other 

parts of the body and don't infect nearby tissues. Cancerous 

tumours are called as malignant tumours. If malignant cells 

are not contained, they may eventually spread to other body 

organs. Clinical experts have fervently fought against 

tolerating "false alarms" [8]. Consequently, the creation of the 

Computer-Aided Diagnostic system (CAD) adds value by 

assisting the radiologist in reducing the number of false-

negative and false-positive instances.  

Additionally, while ground truth exists, the radiologist's 

expertise continues to serve as the benchmark and the 

deciding factor. The classifications for radiologists show that 

they are in the training stage [9, 10]. Radius (the average 

distance between the perimeter's points and the center), 

texture (the values of the grayscale standard deviation), the 

perimeter, smoothness, region, concavity, compactness, 

symmetry or fractal dimension, and concave points are 

examples of the physical characteristics that were measured 

in order to identify two classes of tumors and establish which 

class each tumor in new samples belongs to”.  

Gaining an appropriate categorization, meanwhile, is still 

difficult because of several imaging problems and variances 

in the tumour regions. In order to detect and categorise 

medical infections throughout the past 10 years, AI has been 

very important for breast cancer [12]. The right course of 

therapy must be chosen in order to preserve and improve 

quality of life, and this requires accurately determining 

whether a tumor is cancerous or benign. The two primary 

genetic causes of breast cancer are damaged DNA and 

heritage.  

However, other risk factors can be environmental or 

related to a person's way of life, such as alcohol consumption 

(studies show that women who drink three drinks per day 

have a 1.5 times higher risk of being affected), obesity, 

hormonal treatments (an increased level of oestrogen due to 

hormone replacement therapy or birth control pills can link to 

breast cancer), and a sedentary lifestyle without regular 

exercise. Additional factors could include delivery later in life 

or insufficient nursing.  

This is founded on a number of intermediary procedures, 

such as preprocessing. of source images. Thanks to the CAD 

system, feature learning and feature extraction then, feature 

selection and feature reduction, and also classification were 

possible. The biggest triggers, however, are ignorance of 

available treatments and screening methods. The paucity of 

skilled radiologists and diagnostic resources, as well as the 

delay in providing critical care, are major issues. In an effort 

to aid this expanding cause, the plan is to develop deep 

learning models that can recognise worrisome lesions and, 

therefore, provide quick and reliable diagnoses. During the 

preliminary phase, the researcher strives to generate images 

of exceptional quality and eliminate any noise. The purpose 

of preprocessing is to make the cancer zone appear more 

prominently so that it may later be precisely identified as a 

Region of Interest (ROI) [13]. Table 1 shows the review of 

histopathology image detection and classification based on 

the deep learning technique used for breast cancer. 

https://www.mdpi.com/2075-4418/13/7/1238#B13-diagnostics-13-01238


K. Punithavathi & G. Yamuna / IJECE, 12(1), 257-270, 2025 

261 

3. Proposed Methodology   
3.1. Major Challenges and Contributions 

Medical image processing, particularly the classification 

of mammogram images using deep learning, encounters 

several significant challenges. One of the primary issues is the 

limited availability of mammography image datasets. Deep 

learning models require extensive training data to achieve 

robust generalization, but the scarcity of datasets in this 

domain poses a significant hurdle. Additionally, these models 

demand a deeper understanding of the classification 

objective, which becomes challenging given the subtle and 

complex nature of emerging features in mammographic 

images. 

Another critical challenge arises from the presence of 

redundant or irrelevant features in the dataset. These 

redundant features not only increase computational 

complexity and training time but also contribute to a higher 

false-negative rate, which is detrimental in medical 

diagnostics where accurate detection is paramount. In 

response to these challenges, this research makes several key 

contributions.  

It introduces a method for enhancing mammography 

image clarity using haze removal techniques, improving 

feature representation for deep learning. The study also 

incorporates a novel data augmentation strategy to address the 

issue of limited datasets, ensuring the CNN-EfficientNet-B3 

model learns effectively from diverse and enhanced inputs. 

Furthermore, a feature selection method, Equilibrium (a one-

hot encoder categorical function), is proposed to identify and 

prioritize the most significant features while eliminating 

redundancies.  

This reduces computational overhead and improves 

classification accuracy. By addressing these challenges, the 

proposed framework not only enhances the efficiency and 

precision of mammogram image classification but also sets a 

foundation for more effective use of deep learning in medical 

image processing. 

3.2. Proposed System 

The research introduces a novel approach grounded in 

deep learning, leveraging optimal characteristics extracted 

from original and enhanced mammography images using the 

CNN-EfficientNet-B3 architecture. The study proposes a 

method for improving the Histogram of Oriented Gradients 

(HOG) based on the concept of haze removal, enhancing the 

clarity and feature representation of the input images. To 

effectively train the improved CNN-EfficientNet-B3 model, 

data augmentation techniques were employed, ensuring 

robust learning and generalization.  

Hyperparameter values for the training phase were 

determined through systematic trials and evaluations to 

optimize the model's performance. The CNN-EfficientNet-B3 

architecture was fine-tuned to extract deep features directly 

from the convolutional and average pooling layers, bypassing 

the traditional fully connected layer for improved feature 

representation. Both original and enhanced images were used 

for training, with the model extracting critical features from 

these inputs. To further refine the feature representation, a 

serial nature technique was employed to merge the deep 

features extracted during training. Additionally, a novel 

feature selection method, referred to as Equilibrium (a one-

hot encoder categorical function), was introduced to identify 

and combine the most significant features. 

These contributions, including the integration of the 

CNN-EfficientNet-B3 architecture, enhanced HOG, 

improved training methodology, and efficient feature 

selection and fusion, represent the core innovations of this 

work. The proposed framework demonstrates significant 

improvements in breast cancer detection and classification, 

showcasing its potential for clinical applications. 

3.3. Dataset 

The Mammographic Image Analysis Society (MIAS) 

dataset serves as a foundational resource for this study and 

encompasses two primary categories: cancerous (malignant) 

and benign tumours. Tumours are classified as benign if they 

lack key malignancy criteria such as significant atypia of 

cells, mitosis, membrane degradation, or metastasis. Each 

dataset entry consists of mammographic films grouped in 

pairs, representing the patient’s left breast (even numbers in 

the filenames) and right breast (odd numbers in the 

filenames).  

Each image has dimensions of 1024x1024 pixels, with 

the breast region centrally aligned in the matrix for 

consistency. Benign tumours, referred to as "innocent," are 

typically slow-growing and localized, whereas malignant 

tumours are characterized by their ability to metastasize, 

damaging surrounding structures and posing severe health 

risks.  

The MIAS dataset contains examples of both malignant 

and benign cases distributed across various histological 

subtypes, including ORC, NORM, MISC, ASYM, ARCH, 

SPIC, and CALC. Before analysis, preprocessing steps were 

undertaken to enhance the quality of the dataset.  

These steps included image normalization to ensure 

uniform intensity distribution, resizing to ensure 

compatibility with the model input dimensions, and 

augmentation techniques to increase dataset diversity. The 

detailed organization and preprocessing of the MIAS dataset 

enabled the robust training and evaluation of the CNN-

EfficientNet-B3 model, providing a reliable foundation for 

breast tumour detection and classification. 
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 Table.1. Survey of deep learning based breast cancer detection methods 
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Parvin & 

Mehedi 

Hasan [14] 

(2020) 

To analyze 

CNN models 

for cancer 

images 

LeNet, VGGNet, 

AlexNet, 

InceptionV3, 

ResNet 

BreaKHis 7909 80 20 

Accuracy of 89.00%, 92.00%, 

94.00% and 90.00% acquired for 

40x, 100x, 200x, and 

400xmagnification factors, 

respectively 

Hameed et 

al. [15] 

(2020) 

To use deep 

learning for 

the 

classification 

of breast 

cancer 

images 

Variants of 

VGGNet (e.g., fully 

trained VGG16, 

fine-tuned VGG16, 

fully trained 

VGG19, and fine-

tuned 

VGG19model) 

Breast cancer 

images: 675 

for training 

and 170 for 

testing 

845 80 20 

The ensemble offine-tuned VGG16 

and VGG19 models offered a 

sensitivity of 97.73% for the 

carcinoma class and 95.29% total 

accuracy. It additionally provided a 

95.29% F1 score. 

Mahmoud 

et al. [16] 

(2021) 

To analyze 

breast cancer 

images 

Implemented 

transfer learning 

Mammogram 

images 
7500 80 20 

Maximum accuracy of 97.80% was 

claimed by using this dataset. 

Sensitivity and specificity were 

calculated. 

Boumaraf 

et al. [17] 

(2021) 

To classify 

mammogram 

images 

Performed ResNet 

on ImageNet 

images 

BreaKHis 7909 80 20 

Accuracy of 94.49%, 93.27%, 

91.29%, 89.56% acquired over 40x, 

100x, 200x, & 400x magnification 

factors, consequently 

Reshma et 

al. [18] 

(2022) 

To diagnose 

mammogram 

images 

Utilized CNN along 

with probabilistic 

transition rules 

BreaKHis 7909 90 10 

Accuracy, PRS, F1S, RES, & GMN 

of 89.13%, 86.23%, 81.47%, 

85.38%, & 85.17% 

Alruwaili 

and Gouda 

[19] (2022) 

To diagnose 

breast cancer 

Implemented the 

transfer learning 

principle, ResNet 

MIAS 322 80 20 

Finest results for ACC, PRS, RES, 

F1S, and AUC of 89.5%, 89.5%, 

90%, and 89.5% obtained from 

MIAS, respectively 

 

          
Fig. 1 Benign and malignant 

3.4. Data Augmentation 

For the training of Common approaches for machine 

learning, including form features (HOG), point features, 

colour features, and others, the few envision datasets are 

helpful. It is usually necessary to create or gather some larger 

datasets for deep learning models. Nevertheless, the size of the 

publicly accessible databases for cancer and breast images is 

insufficient; as a result, in this work with data augmentation. 

Data augmentation increases the dataset while decreasing 

overfitting issues and boosting the robustness of the deep 
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learning model. Eight additional images were created for each 

identified patch by rotating each image four times at angles of 

0°, 90°, 180°, and 270° and then flipping the four recently 

obtained images from right to left. Figure 2 shows the model 

for data augmentation for mammogram images. 

 

                              
Fig. 2 Data augmentation for mammogram image 

3.5. Feature Projection and Feature Scaling 

Data from a space with multiple dimensions has been 

converted into a lower-dimensional space (with fewer 

properties) using feature projection. Both linear and nonlinear 

reduction techniques can be used, depending on how the 

characteristics in the dataset are correlated. The features in the 

data that are gathered often come in an immense range of 

magnitudes, ranges and units. However, given that the 

majority of machine learning algorithms analyze the 

Euclidean distance between two data points. Each attribute 

must be scaled up to the same magnitude. This can be attained 

through scaling.  

 
Fig. 3 Feature projection sample mammogram image 

3.6. Model Selection 

The supervised learning approach involves labelling the 

input and output of the data before the machine is trained on 

it. The model may be trained using historical data, and it can 

analyse new data to make predictions about the future. They 

are divided into strategies for regression and classification. 

When the outcome is a continuous or real value, like "weight" 

or "salary," a regression challenge exists. When the outcome 

is a category like screening emails as "not spam" or "spam," 

there is a classification difficulty. Unsupervised learning is the 

process of giving the computer data that has not been 

categorised or marked and allowing the algorithm to study the 

data without being provided any instructions. The computer is 

taught from the data in an unsupervised learning technique. It 

is missing labels or classification, causing the algorithm to 

operate without sufficient direction. The outcome variable, or 

dependent variable, Y, in our dataset only has two possible 

values: M (Malign) or B (Benign). Therefore, the supervised 

learning Classification method is used on it. Three main 

categories of machine learning classification algorithms have 

been selected. The work can employ the simple little linear 

model. 

3.7. CNN-Efficientnet B3 Algorithm 

The proposed model consists of a CNN and transfer 

learning based on EfficientNetB3 (CNN-EfficientNetB3). The 

input image for this model is 1024 x 1024 pixels, with 

5,07,21,329 parameters. Table 2 illustrates the suggested 

model's overview. CNN for our application from scratch.  

A CNN's network layers serve as a detection filter for 

particular patterns or features that may be present in an image. 

Large features that are simple to understand are found in the 

first levels of a CNN. The lower levels find the more abstract, 

smaller features. By integrating all the features identified by 

preceding layers, the last layer is able to generate a reasonably 

thorough classification.  
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Fig. 4 CNN architecture diagram

The customized CNN model architecture consists of 

multiple convolutional layers, activation functions, batch 

normalization, and max pooling operations. Convolutional 

layers make up the first four of CNN's seven weighted layers, 

while fully connected layers make up the final three. "Grey 

scale images are the DCNN's inputs. To the local area that is 

related to the input quantity, each neuron computes a weighted 

dot product. This work utilised padding of sizes (3, 2, 1) along 

the outermost edges of the input layer and 4, 16, and 80 filters 

of sizes (2, 3, 5). The filters defined by the filter size (3, 3) 

have a height and length of 3. The width and height of each 

filter are moved across the input.   Down sampling is 

performed by two pooling layers, which helps to reduce 

computation and improve robustness. Pooling layers with a 2 

m filter by 2 pixels, "outputting" the highest value achievable 

from each local region's 4 inputs. A CNN-based classifier's 

final layer is usually the Softmax Layer.  

 

Table 2. Summary of the proposed model 

Layers K_Size Input Act_Function 
Output 

 

Conv2D_1 

Max_pooling_1 

Dropout=0.5 

3X3 

2X2 

----- 

(32,32,32) 

(32,32,32) 

(16,16,32) 

Relu 

----- 

----- 

(32,32,32) 

(16,16,32) 

(16,16,32) 

 

Conv2D_2 

Dropout=0.5 

3X3 

----- 

(16,16,32) 

(16,16,64) 

Relu 

----- 

(16,16,64) 

(16,16,64) 

 

Conv2D_3 

Max_pooling_3 

Dropout=0.5 

3X3 

2X2 

----- 

(16,16,64) 

(16,16,64) 

(8,8,64) 

Relu 

----- 

----- 

(16,16,64) 

(8,8,64) 

(8,8,64) 

 

Conv2D_4 

Dropout=0.5 

3X3 

----- 

(8,8,64) 

(8,8,128) 

Relu 

----- 

(8,8,128) 

(8,8,128) 

 

Conv2D_5 

Dropout=0.5 

3X3 

----- 

(8,8,128) 

(8,8,128) 

Relu 

----- 

(8,8,128) 

(4,4,128) 

 

Conv2D_6 

Max_pooling_6 

Dropout=0.5 

3X3 

2X2 

----- 

(4,4,128) 

(4,4,256) 

(2,2,256) 

Relu 

----- 

----- 

(4,4,256) 

(2,2,256) 

(2,2,256) 

 

Flatten_CNN Flatten_1_eff 
----- 

----- 

(2,2,256) 

(1,1,1024) 

----- 

----- 

1024 

1280 

 

Dense1 

Dense2 

Output 

----- 

----- 

1280 

64 

16 

Sigmoid 

Sigmoid 

64 

16 
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Each epoch's weight changes are impacted by the learning 

rate; for example, a higher learning rate leads to greater weight 

changes, which speed up network learning and vice versa. A 

learning rate of 0.01 has been employed. EfficientNetB3 uses 

a compound coefficient to reduce the convolutional neural 

network's size and architecture. This compound maintains 

stability across the network. The coefficient adjusts the depth, 

breadth, and resolution parameters regularly. The 

EfficientNetB3 scaling methodology, in contrast to the 

traditional approach, uses a predetermined collection of 

scaling coefficients that constantly change the depth, breadth 

and resolution of the network. According to the complex 

scaling method, this network required extra layers to increase 

its channels and receptive field to identify fine aspects inside 

the larger image as input images get higher. 

Fine-Tuned Model: The EfficientNet-B3 network was 

initially trained and utilizing the ImageNet dataset, which 

consists of images from more than a million distinct object 

categories. The completely linked, softmax, and output layers 

were where the first three new levels were introduced; the final 

three layers were left out for fine-tuning.  

Subsequently, the stochastic gradient descent optimizer is 

set up with a momentum of 0.703, a learning rate of 0.005, and 

a total of 100 epochs. Finally, this improved model uses the 

deep learning transfer Model. Transfer learning is the process 

by which knowledge is transferred from one subject or domain 

to another. Especially in the area of medical imaging, it is 

challenging and time-consuming to learn precise patterns 

using deep learning. Employed a specific source as the 

"source" and used a labelled dataset.   

3.8. Fine-Tuning Parameters and Overfitting Mitigation 

Strategies 

To ensure optimal performance and reproducibility of the 

CNN-EfficientNet-B3 model for mammogram image 

classification, specific fine-tuning parameters and strategies to 

address overfitting were implemented. A learning rate of 

0.001 was selected to balance efficient convergence with 

stability, further refined using a learning rate scheduler to 

adaptively reduce the rate as the model approached optimal 

weights.  

A batch size of 32 was utilized, ensuring efficient 

memory usage and gradient stability. To enhance dataset 

diversity and improve model generalization, various data 

augmentation techniques were applied, including random 

rotations up to 15 degrees, horizontal and vertical flips, 

random cropping, intensity adjustments for brightness and 

contrast, and the addition of Gaussian noise.  

These augmentations enabled the model to learn robust 

features from diverse representations of mammography 

images. To mitigate overfitting, several regularization 

techniques were integrated into the model architecture and 

training process. Dropout layers with a rate of 0.3 were added 

to the fully connected layers to prevent neuron co-adaptation 

by randomly disabling a fraction of them during training. 

Early stopping was employed, monitoring validation loss and 

halting training after 10 epochs of no improvement to avoid 

overfitting the training data. Additionally, L2 regularization 

(weight decay) with a factor of 0.0001 was applied to penalize 

large weight magnitudes, promoting smoother learning. Batch 

normalization layers were incorporated throughout the 

network to standardize intermediate feature maps, reduce 

internal covariate shifts, and improve training stability. These 

carefully selected fine-tuning parameters and robust 

regularization strategies ensured a balance between high 

accuracy and generalization, making the framework both 

effective and reproducible for mammogram image 

classification. 

3.9. Potential Limitations of the MIAS Dataset 

The MIAS dataset, while valuable for breast cancer 

research, has several limitations that could affect the 

generalizability and robustness of models trained on it. One of 

the primary concerns is its relatively small size, which limits 

the model’s ability to generalize to larger, more diverse 

datasets. Additionally, the lack of demographic diversity in 

the dataset introduces potential biases, as it predominantly 

represents a specific population, reducing the model’s 

effectiveness when applied to different populations with 

varying breast tissue densities, imaging techniques, or genetic 

backgrounds.  

There is also the issue of class imbalance, as the 

distribution of malignant and benign cases may not be equally 

represented, leading to biased performance towards the 

majority class and reduced sensitivity in detecting the 

minority class. Furthermore, the dataset lacks accompanying 

clinical metadata, such as patient age, medical history, or 

breast density, which could provide valuable context for 

improving model interpretability and accuracy. The dataset’s 

low-resolution images (1024x1024 pixels) also limit the 

detection of fine details that may be crucial for accurate 

diagnosis, especially when compared to modern high-

resolution mammography systems. 

Additionally, the pairing of left and right breast images 

could introduce correlation bias, potentially influencing the 

model’s learning if one side contains a malignant tumour. 

Lastly, the absence of detailed annotations for subtle features 

like microcalcifications or architectural distortions makes it 

difficult for the model to learn these critical indicators of 

early-stage cancer.  

These limitations highlight the need for careful 

consideration during model development, and strategies such 

as data augmentation, transfer learning, and external 

validation on larger, more diverse datasets can help mitigate 

these constraints and enhance model generalizability. 
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4. Results and Discussion 
4.1. Experimental Setup 

This model was executed using Tensorflow with the 

Keras package in Python. The experiment's configuration used 

12 GB RAM and a Tesla K80 GPU, disk space of about 78 

GB, which was run on Google Colab. The obtained data was 

1024 by 1024 in size.  

First, split the dataset into two classes, benign and 

malignant, then used 150 and 100 of the generated images for 

training, while the leftover images were used for testing. 

Different size filters (sizes 2, 3, and 5) were used.  

Additionally, the work attempted to manually and 

automatically divide each training and testing dataset by a 

70:30 ratio, but the outcomes varied. When data is trained 

randomly, it produces better outcomes than when it is given 

instruction automatically. 

4.2. Performance Metrices 

The F1 score is a metric used in statistical analyses of 

binary classification to assess the accuracy of a test. It is also 

known as an F-score or F-measure. The total number of 

appropriate samples (all examples that should have been 

categorized as positive) and the total number of positive 

outcomes returned by the classifier are divided to figure out 

the score. The proposed methodology performance is 

examined with the help of the following metrics:  

Accuracy, Area Under the Curve (AUC), Receiving 

Operating features (ROC), Precision, and F1 score features. 

According to the previously suggested relationship, classifier 

accuracy. 

Classifier Accuracy= TP+TN/TN+TP+FP+FN 

Mapping the False Positive Rate (FPR) at the X-axis as 

well as the True Positive Rate (TPR) at the Y-axis results in a 

Receiver Operating Characteristic (ROC) graph. The 

calculated specificity and sensitivity of the classifier are 

frequently referred to as the false positive rate and the true 

positive rate. 

Sensitivity= TP/TN+FN 

Specificity= TN/TN+FP 

TP and FP rates are determined utilizing the Area Under 

the Curve (AUC) technique under the ROC curve. One can 

calculate the accuracy of actual positive predictions. 

Prediction= TP/TP+FP 

The weighted average of sensitivity and precision, known 

as the F1 Score, is applied to determine classifier performance. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

 

 
Fig. 5 Historical representation 
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Fig. 6 Accuracy and AUC curve for CNN-EfficientNetB3 model 

 
Fig. 7 Loss curve for CNN-EfficientNetB3 model

4.3. Performance Metrics 

The experimental study was conducted by the CNN-

EfficientNetB3. Figure 5 represents the historical 

representation of the histological dataset with its count and 

class. Figure 6 shows the accuracy AUC curve for the CNN-

EfficientNetB3 model, and Figure 7 shows the loss curve for 

the same model. Figure 8 shows the performance analysis of 

this model during prediction.  The outcomes demonstrate the 

accuracy of the CNN + EfficientNetB3 model, which is 97% 

accuracy, 97.50% recall, and also 97% F1 score. According to 

tests, the CNN + EfficientNetB3 model has the highest 

accuracy compared with the CNN model and the other deep 

learning models that are shown in Table 3. 
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Fig. 8 Performance analysis for the proposed method 

 
Fig. 9 Accuracy prediction 

Table 3.  Performance comparison between the proposed model with earlier models 

Author Approach Accuracy 

Gupta et al. [20] CNN 87% 

Barsha et al. [21] DenseNet-121 and DenseNet- 169 92.70% 

Humayun et al. [22] InceptionResNetV2 91% 

Abdolahi et al. [23] CNN 85% 

Zhang et al. [24] Alexnet, MobilenetV2, and Resnet50 87.45% 

Wang et al. [25] CNN-GRU 86.21% 

Celik et al. [26] ResNet-50 and DenseNet-161 91.57% 

Singh et al. [27] DenseNet + Logistic Regression 81% 

Kundale et al. [28] GoogLeNet+ CNN 94% 

Proposed Model CNN - EfficientNetB3 96.5% 

94

95

96

97

98

99

100

CNN-EfficientNet

Accuracy Precision Recall F1 Score
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In this study, several evaluation metrics were used to 

assess the performance of the CNN-EfficientNet-B3 model for 

breast cancer classification, including accuracy, sensitivity, 

and specificity. However, to provide a more comprehensive 

evaluation, additional metrics such as F1 score, precision, and 

ROC-AUC were also considered. Accuracy measures the 

overall proportion of correct predictions, but it may not be 

fully reliable in cases of class imbalance. Sensitivity (or recall) 

evaluates the model’s ability to correctly identify true positive 

cases of malignant tumours, which is critical in medical 

diagnostics to avoid false negatives. Specificity, on the other 

hand, assesses the model’s ability to correctly identify true 

negatives (benign cases), ensuring that benign tumours are not 

misclassified as malignant.  

Precision measures the proportion of true positives 

among all positive predictions, which is important to minimize 

false positives and prevent unnecessary treatments. The F1 

score, being the harmonic mean of precision and recall, offers 

a balanced evaluation and is particularly useful in imbalanced 

datasets, ensuring the model maintains a good balance 

between identifying true positives and avoiding false 

positives. Lastly, ROC-AUC provides a graphical 

representation of the model’s ability to distinguish between 

malignant and benign cases across various classification 

thresholds, with a higher AUC indicating better overall 

performance. By incorporating these additional metrics, a 

more holistic evaluation of the model’s performance is 

achieved, providing deeper insights into both its strengths and 

areas for improvement, especially in medical applications 

where the consequences of false positives and false negatives 

are significant. 

5. Conclusion  
This study proposes an entirely novel approach for 

classifying or predicting breast cancer using mammography 

images. The suggested structure starts with imagine 

acquisition and classification of images and comprises 

essential components. In this session, a method for contrast 

enhancement is recommended. The upgraded images were 

needed to train the deep learning model (CNN-

EfficientNetB3), and the outcomes were compared to the 

precision of the deep features in the original image.  

Results indicate the accuracy of our proposed or enhanced 

model is higher than the accuracy recently achieved; however, 

as a result, a new Combine technique has been Created. The 

raw image and augmented image features were combined 

using the recommended fusion model, which produced an 

amazing improvement in accuracy. 
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