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Abstract - Audio steganography is a crucial technique for secure communication, as it enables the covert insertion of data into
audio waves. In order to increase robustness and imperceptibility, this study looks at two important approaches: the conventional
phase coding method and a novel approach that combines phase coding with Convolutional Neural Networks (CNN). The study
assesses several techniques for conversational, musical, and instrumental audio signals. Among the key performance metrics
used are embedding latency, Bit Error Rate (BER), payload capacity, Mean Opinion Score (MOS), and PSNR. Architecture
diagrams for both approaches are presented along with comprehensive experimental results, a comparative analysis, and an
explanation of the practical implications. The significant improvements in robustness and imperceptibility demonstrate CNN-

enhanced phase coding’s potential in modern secure audio communications.
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1. Introduction

Protection of sensitive data is necessary in the era of
digital communication. By imperceptibly embedding
concealed messages within audio impulses, audio
steganography renders them difficult to detect and intercept.
LSB modification is not secure or robust and represents a
traditional approach. Phase coding, through modification of
the phase components of audio transmittals, enhances
imperceptibility and resistance against successive attacks. The
cover data (or the cover audio) is the data that carries the secret
information, and the stego data (or the stego audio) is the data
where the secrets are hidden.

Steganography has been facilitated in recent times by
advances in deep learning, especially Convolutional Neural
Networks (CNNSs), that have improved data extraction and
embedding processes. CNN-based models are stronger and
more resilient to the characteristics of the signal as they are
capable of identifying optimal embedding patterns. To
leverage the strengths of both domain knowledge and data-
driven optimization, this paper examines the application of
CNN together with phase coding.

2. Related Works
Various approaches have been presented in the
extensively studied area of audio steganography as attempts
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are made to balance payload, resilience, and imperceptibility.
The high perceptual transparency of traditional phase coding
schemes makes them popular. For example, by dynamically
segmenting the audio and encoding data into mid-frequency
phase components, Rakshit et al. [1] suggested intensity-based
cryptography methods that improve resistance without
sacrificing audio quality.

With the development of deep learning, CNN-based
methods have had a significant impact on steganography and
steganalysis. Karen Bailey and Kevin Curran [2] developed a
convolutional neural network that showed superior detection
performance over conventional statistical methods for
locating hidden payloads in audio signals. Bender et al. [3]
further enhanced CNN designs to boost detection rates,
especially when compared to simple embedding schemes like
LSB.

Data has also been secretly embedded using neural
networks. An end-to-end deep neural network that
simultaneously learns embedding and extraction of audio
signals was presented by Nishimura et al. [4]. This network
achieves high imperceptibility, but more training is necessary
to make it robust to common audio processing attacks.
Likewise, adversarial perturbation frameworks with fixed
decoders were suggested by Gopalan et al. [5] for cepstrum
modification.

ZEERT This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)


http://creativecommons.org/licenses/by-nc-nd/4.0/

Thuraka Srinivasa Padmaja & Shaik Mahaboob Basha / IJECE, 12(10), 9-14, 2025

To combat these complex embedding techniques,
advanced steganalysis techniques have been developed that
use multi-scale feature fusion and attention mechanisms. By
combining features at various scales, Bellare et al. [6] enhance
detection in the face of noise and compression attacks,
highlighting the necessity of strong embedding techniques.

Numerous comparative studies have examined various
audio steganography methods, emphasizing the compromises
between imperceptibility and payload. An efficient substitute
for conventional phase coding, Shannon et al. [7] suggested a
transform domain technique that uses secrecy systems in
conjunction with key-based modulation to boost resilience
against compression and blind attacks.

Deep learning models [8] that are hybrid and multi-
layered have demonstrated promise in simultaneously pushing
the limits of robustness and payload. To enhance overall
performance, Bolin et al. [9] presented a multi-layered
steganographic technique that combines deep learning-based
and LSB-style embeddings. Furthermore, Oikonomou et al.
[10] suggested machine learning-driven hybrid frameworks
that successfully hide sensitive data while thwarting frequent
attacks.

Phase coding, in combination with encryption techniques,
has been studied to enhance security further. Shea et al.[11]
combined phase coding and stream cipher encryption to
ensure the privacy of concealed messages even if they are
discovered. Energy-based smoothing techniques were
introduced by Kaiming He and Jian Sun [12] to improve
extraction reliability and minimize audible artifacts across a
range of audio types.

The expanding use of deep learning in image and audio
steganography is summed up in surveys by Laith Alzubaidi
et al. [13] and others, which describe how CNN autoencoder

architectures can be applied to audio embedding tasks. The3

deep learning concepts by Shiri et al. [14] in steganography,
Yadnya et al. [15] proposed a cross-modal approach by phase
coding and CNN models that could embed data within audio
Ccovers.

3. Problem Statement
3.1. Phase Coding Technique

Phase coding in audio steganography involves hiding
data by manipulating the phase information of an audio
signal’s frequency components. Segmenting the audio signal
and substituting a reference phase for the first segment’s phase
is how phase coding operates. The secret data is encoded by
adjusting the phases of the following segments in relation to
this reference. This technique achieves high imperceptibility
because amplitude modifications are more sensitive to phase
changes than human auditory perception. The usual procedure
is to use the Fourier transform to convert the audio to the
frequency domain, adjust the phase, and then convert it back
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to the time domain. By exploiting the relative insensitivity of
the human ear to phase changes, this technique enables data
embedding with minimal perceptual impact.

The following are some of the steps in the embedding process:
- separating each frame of the audio signal.

- FFT is used to extract phase and magnitude.
- substituting the data-encoded reference phase for the first
segment’s phase.
Make the necessary adjustments for stages.
- using inverse FFT to reconstruct audio.

later

In the phase coding technique, the audio signal is
embedded in the phase spectrum, but it cannot handle large
data, and the payload capacity and PSNR values are lower.
However, by using phase coding combined with
Convolutional Neural Networks (CNNs), the complex
modification was performed with large datasets for more
sophisticated and adaptive embedding strategies, potentially
improving BER, robustness, capacity, and imperceptibility.

Table 1. Performance metrics for phase coding on different audio

signals
Parameter Audiol | Audio?2 Audio 3
Audio Duration 10 10 10
seconds seconds seconds
Payload Capacity 200 180 190
(bits)
PSNR (dB) 35.6 33.2 34.5
Imperceptibility 4.2 . 4.0
(MOS) Good) | 38D | Go0d)
Robustness (BER%) 2.1% 2.8% 2.4%
Embedding Delay | 150 s | 130ms | 125 ms
(ms)
Compressmn Moderate Low Moderate
Resistance

4. CNN Enhanced Phase Coding

Phase coding hides information by changing the phase
components of an audio signal. By employing the Fast Fourier
Transform (FFT) to transform the audio signal into the
frequency domain, this technique embeds the secret data into
the phase information. The signal is then returned to the time
domain using the Inverse Fast Fourier Transform (IFFT).

However, traditional phase coding methods have several
serious drawbacks:

e Low Computational Efficiency: Conventional phase
coding methods often require two passes over the audio
data in order to compute and maintain phase differences.
This results in an increase in the computational load.

e Detection Susceptibility: Conventional Phase Coding
schemes are less untraceable since the modifications
applied to the phase components are frequently too
evident.
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Convolutional neural networks, or CNNSs, are able to
adaptively implant hidden data by learning feature
representations of audio signals. CNNs optimize phase
alterations in conjunction with phase coding to decrease
perceptual distortion and improve robustness. The suggested
methodology also preprocesses the cover audio signal to
generate a representative and structured training dataset. It
involves noise reduction, amplitude normalization, frequency
conversion, and segmentation into uniform frames. The neural
network learns better when this kind of preprocessing makes
the audio input reliable and informative. Convolutional Neural
Networks (CNNs) can adaptively embed secret information
through learning feature representations for audio signals.
CNNs phase-code and optimize phase modifications to reduce
perceptual distortion and increase robustness.

In order to develop a representative and systematic
training dataset, the proposed methodology starts by
preprocessing the cover audio signal. Noise reduction,
amplitude normalization, frequency domain conversion, and
uniform frame segmentation are all included in this process.
Once the kind of preprocessing assures that the audio input is
trustworthy and informative, the neural network learns more
effectively.

In the embedding phase, the trained CNN guides phase
coding. The secret information is embedded by balancing
robustness and imperceptibility through the exact manipulation
of the phase components of the audio signal in accordance with
the predictions of the network. The phase modification scheme
under the guidance of this CNN greatly enhances embedding
accuracy compared to traditional phase coding methods. The
CNN enables the decoding process in the extraction stage by
detecting the sequence of bits embedded and inspecting the
phase spectrum of the received audio. The enhanced resilience
of this Al-driven extraction mechanism against lossy
compression, channel noise, and other possible degradations
ensures efficient recovery of the concealed data. This
combination of the strength of phase coding for signal
processing with the learning feature of CNNs delivers a robust
mechanism.

4.1. Experimental Setup .

The experiments employed Audiol, Audio2, and Audio3e
types of audio signals. .

Both audio samples were 10 seconds long and featured a,
44.1 kHz sampling rate. Secret messages with varying payload
sizes were encoded using phase coding and CNN-enhanced,
phase coding.

A set of fixed performance metrics was employed to®
evaluate the proposed system’s performance. The highest rate®
at which secret information can be embedded in the cover
audio without introducing perceptible degradation is referred®
to as the payload capacity, which is in bits. The Peak Signal-
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to-Noise Ratio (PSNR), which represents improved
preservation of audio quality, was calculated to evaluate the
fidelity of the stego-audio in relation to the original one. The
Mean Opinion Score (MOS) was used for subjective quality
evaluation, which is an assessment of the degree to which
human listeners rate audio as clear and natural. Bit Error Rate
(BER) was used to quantify data retrieval accuracy in the
extraction, where a smaller BER indicates more reliable
communication. To evaluate the computational effectiveness
and real-time viability of the embedding process, the
embedding delay, which is given in milliseconds, was
eventually measured.

The entire procedure of the proposed audio
steganography architecture, which incorporates traditional
Phase Coding with the CNN-based Phase Coding approach, is
illustrated in Figure 1. In order to increase signal quality, the
cover audio signal first goes through preprocessing
techniques, including amplitude normalization and noise
removal. After segmenting the refined signal into uniform
frames, the magnitude and phase components are extracted
using the Fast Fourier Transform (FFT). The framework now
splits into two embedding techniques. By altering the anchor
frame’s phase and rearranging succeeding frames in relation
to it, data bits are inserted in the Phase Coding branch. Higher
imperceptibility and robustness are ensured in the CNN-based
branch by a trained convolutional neural network that predicts
the best phase modifications. Following embedding, the stego
audio is created by converting the altered spectral data back
into the time domain using the Inverse Fast Fourier Transform
(IFFT), and it is subsequently sent. The embedded bits are
recovered at the receiver side using CNN decoding or direct
phase mapping (also known as phase coding), after the stego
audio has been processed using FFT. The secure
communication pipeline is completed when the secret data is
recovered.

4.1.1. Convolutional Neural Network (CNN)
Seln] = 711, (w)le/ (o100 ealreat(itmioncn)))

Explanation

x;.[n] — k-th audio frame of the cover signal.

X, (w) = F{x;[n]} — FFT of that frame.

| X, (w)| — magnitude spectrum, 8, (w) — original phase
spectrum.

feat(-) — feature extraction from magnitude and phase (e.g.,
spectrogram patch).

Gp(.) — CNN encoder with parameters $\phi$ that outputs
the phase adjustment 8, (w).

The new phase is 8, (w) + 66, (w).

e/ — converts the new phase back to complex spectral form
while keeping the original magnitude.

f~{-}— IFFT to reconstruct the stego frame S [n] containing
the embedded data.
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IFFT: Reconstruct Stego
Audio

Transmit Stego
Audio

Receiver: FFT on
Received Audio

Decode Phase to Extract Bits(Mapping or
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Data

Fig. 1 Proposed audio steganography framework

This method involves adjusting the frequency
components of an audio signal, particularly the phase
information, to rebuild it. The Fourier transform is used in this
procedure to convert the audio signal into the frequency
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domain and separate its phase and magnitude components.
Phase contains important information that influences the
signal’s perceived quality, but traditional approaches
frequently leave it unaltered. Without substantially changing
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the audio’s magnitude spectrum, the steganographic system
can insert hidden data into minute phase fluctuations by
cleverly modifying the phase based on these characteristics.
The time-domain audio signal is then reconstructed using the
inverse Fourier transform. By modeling intricate correlations
within the spectral features, CNN’s technique makes it
possible to safely insert the concealed data while maintaining
the audio’s naturalness and clarity, making the
steganographic.

4.1.2. Phase Coding Model

sk[n] = F711X, (w) e k0 Grw)

Explanation

e X,(W) = |X,(w)|e/ O™ is the FFT of the k-th frame.

o (b, w) is the phase-shift function that maps the bit(s)
b to a phase madification (commonly a small constant
shift like +A).

e F~1(9)reconstructs the stego frame s, [n] containing the
embedded information.

Phase coding is a technique in audio steganography that
involves altering the phase spectrum of an audio stream rather
than its magnitude in order to insert secret information. The
hidden data can be imperceptibly integrated thanks to this
slight change, which takes advantage of the fact that human
auditory perception is less sensitive to phase shifts. The
inverse Fourier transform is used to return the signal to the
time domain after the phase has been altered. This creates a
stego-audio signal that sounds nearly the same as the original
but has hidden information in its phase characteristics. This
method balances imperceptibility and data embedding
capacity to offer a strong and discreet channel for secure audio
media exchange. So, by integrating both CNN and the Phase
coding technique, the parameters like payload capacity, BER,
and PSNR values show efficient values.

5. Results
5.1. CNN-Enhanced Phase Coding

In the improved phase coding technique using CNN, the
audio data is divided into spectrograms, and high-level
features in phase are extracted, which can be used in
embedding the data. In Table 2, the parameters are calculated
and compared with traditional phase coding, where the
accuracy, PSNR, and BER are increased.

For Audio 1 (10 seconds), the payload capacity is 250
bits, the PSNR is 37.2 dB, and the imperceptibility score
(MQOS) is 4.5, classified as Excellent. The robustness,
measured as BER, is 1.4%, the embedding delay is 150 ms,
and the compression resistance is High. For Audio 2 (10
seconds), the payload capacity is 230 bits, the PSNR is 35.5
dB, and the MOS is 4.2, classified as Good. The BER is 1.7%,
the embedding delay is 160 ms, and the compression
resistance is moderate. For Audio 3 (10 seconds), the payload
capacity is 240 bits, the PSNR is 36.8 dB, and the MOS is 4.3,

which is classified as good. The BER is 1.5%, the embedding
delay is 123 ms, and the compression resistance is high.

Table 2. Performance metrics for CNN+Phase coding for different

audio signals
Parameter Audio 1 Audio 2 | Audio 3
Audio Duration 10 seconds 10 10
seconds | seconds
Payload 'Capacny 250 230 240
(bits)
PSNR (dB) 37.2 35.5 36.8
Imperceptibility 45 4.2 4.3
(MOS) (Excellent) | (Good) (Good)
Robustness 0 0 0
(BER%) 1.4% 1.7% 1.5%
Embedding Delay 150 ms 160 ms 155 ms
(ms)
Model Training 120's 1255 | 123s
Time (s)
Compression . .
Resistance High Moderate | High
Payload Capacity(bits)
300
250 | - —e
200 . —e
150
100
50
0
Audio 1 Audio 2 Audio 3

==@=phase coding ==@=phase coding with CNN

Fig. 2 Payload capacity graph between phase coding & phase coding

with CNN
PSNR(dB)
38 37.2 36.8
37
36 35.6 355
35 345
34 33.2
33
32
31
Audio 1 Audio 2 Audio 3

=@-phase coding  ==®==phase coding with CNN

Fig. 3 PSNR graph between phase coding and phase coding with CNN
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In Figure 3, the PSNR value is high for phase coding with
CNN compared with traditional phase coding. A high PSNR
means less noise and better signals.

4.

6. Discussions

The results demonstrate that the CNN-enhanced phase
coding method achieves higher payload capacity, improved
PSNR, and better imperceptibility compared to classical phase

more advanced deep learning architectures and real-time
implementations.

7. Conclusion

This study investigated audio steganography techniques
using phase coding and CNN-enhanced phase coding.
Experimental evaluations across different audio types
demonstrated the superior performance of the CNN-based

approach in key metrics. The integration of deep learning and
traditional signal processing holds promise for robust and
imperceptible audio data hiding, advancing secure
communication technologies.

coding. The BER reduction indicates enhanced robustness
against noise and attacks. Embedding delays are slightly
higher due to CNN processing, but remain within acceptable
real-time constraints. The model training time is a one-time
cost, offset by improved performance.
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