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Abstract - Mobile Edge Computing (MEC) systems operate at the network's edge. They use resource-constrained devices. 

These systems face challenges due to limited computing power. Frequent faults occur due to high workloads and system 

failures. To address this, fault-tolerant approaches help maintain system stability. One common method is pre-emptive 

migration. It transfers active tasks from overloaded nodes to available ones. However, existing approaches struggle to adapt 

to unpredictable workloads. Many fail to detect anomalies accurately. This leads to inefficient resource utilization and system 

failures. PreGAN+ is a machine learning-based fault prediction model. It uses Generative Adversarial Networks (GANs) to 

detect faults. GANs model complex distributions and predict faults accurately. PreGAN+ also identifies which resource type 

(CPU, memory, or disk) is to fail. The model achieves quick adaptation to dynamic environments. It minimizes unnecessary 

migrations by focusing only on critical tasks. PreGAN consists of two parts. The first part is a neural network-based fault 

classifier. It uses a few-shot learning method for accurate classification. The second part is a GAN-based decision model. This 

component generates optimal migration decisions. PreGAN uses coupled simulations to train its GAN model. The system 

continuously updates its fault classification decisions. PreGAN+ extends the original PreGAN model. It introduces a semi-

supervised learning method. This method fine-tunes the decision model using limited labeled data. The updated model uses a 

Transformer-based neural network. This improves tuning speed and accuracy. However, it also increases memory usage. The 

research highlights the advantages of using GANs for predictive modeling. The study confirms that semi-supervised learning 

improves adaptability in dynamic environments. PreGAN+ provides an effective solution for fault-tolerant computing in MEC 

systems. It results in higher Quality of Service (QoS) while optimizing resource utilization. The model is highly beneficial for 

environments with frequent workload fluctuations. 

Keywords - Fault prediction, GAN, Mobile edge computing, Pre-GAN, Quality of Service. 

 

1. Introduction 
MEC follows the data gravity principle [1]. It processes 

data close to its source. This includes sensors and actuators 

in IoT networks. MEC is widely used in smart cities, 

industrial automation, and healthcare applications [2]. It 

improves system efficiency and reduces network congestion. 

However, MEC devices have limited computing resources. 

These limitations cause frequent system failures and resource 

contention [3]. In modern MEC environments, workloads 

change unpredictably. Resource demands are non-stationary. 

Computational power is expensive, and redundant systems 

are impractical. This makes fault tolerance essential. 

Effective solutions must predict system faults in real-time [4]. 

They must also provide quick remediation. Traditional fault-

tolerant methods struggle to meet these demands. Many 

existing approaches fail under high workload variations. 

MEC systems require dynamic adaptation techniques to 

balance efficiency and cost. MEC systems face several 
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challenges. One major issue is resource allocation. Edge 

devices have limited CPU, memory, and disk space [5]. They 

operate under strict power constraints. Managing these 

resources effectively is critical. Another challenge is network 

latency. Data transmission between edge nodes and cloud 

servers must be minimized [6]. High latency affects 

application performance. Additionally, MEC systems need to 

handle unpredictable workloads. The number of connected 

devices fluctuates. Resource allocation strategies must 

dynamically adjust [7]. 

 

Security is another concern. MEC devices are vulnerable 

to cyber-attacks. Unauthorized access to edge nodes leads to 

data breaches [8]. Providing secure data transmission and 

storage is a priority. Traditional cloud-based security 

measures are insufficient. MEC requires lightweight and 

distributed security solutions [9]. Moreover, energy 

efficiency is crucial. Edge devices operate on battery power. 

Optimizing energy consumption while maintaining 

performance is a key research area. The goal of fault 

tolerance is to prevent system failures [10]. A system should 

predict faults early and take action. For MEC, fault prediction 

means identifying nodes at risk. It also involves detecting 

resource bottlenecks like CPU, memory, or disk overload. 

Predicting these issues allows systems to manage resources 

proactively [11]. Early fault detection prevents performance 

degradation and costly downtime. Current fault-tolerant 

strategies include redundancy and checkpointing. These 

methods result in the availability of backup systems. 

However, redundancy is expensive. It also requires additional 

hardware, which is impractical for MEC. Effective pre-

emptive migration strategies must balance system load while 

minimizing overhead [12]. 

 

This paper presents PreGAN+. It is an advanced fault-

tolerant model for MEC. PreGAN+ integrates deep learning 

with GANs [13]. It combines real-time fault prediction with 

pre-emptive migration strategies. The model accurately 

detects faults and mitigates impact. PreGAN uses coupled 

simulations to train its GAN model. The system continuously 

updates its fault classification decisions. It adapts 

dynamically to changing workloads. PreGAN+ extends the 

original PreGAN model. It introduces a semi-supervised 

learning method. This method fine-tunes the decision model 

using limited labeled data. The updated model uses a 

Transformer-based neural network. This improves tuning 

speed and accuracy. However, it also increases memory 

usage. The model balances performance and computational 

efficiency. The key contributions of this paper are as follows: 

 A novel GAN-based fault prediction model. It accurately 

detects system faults in real-time. 

 Identification of critical system resources. The model 

predicts specific resource bottlenecks like CPU, 

memory, or disk overload. 

 A semi-supervised learning approach. It enables 

continuous adaptation to changing workloads. 

 A Transformer-based tuning method. This method 

improves fault detection accuracy with low latency. 

 Implementation and validation on a real-world MEC 

testbed. The model demonstrates superior performance 

over existing solutions. 

 Reduction in unnecessary task migrations. The model 

balances system efficiency and fault tolerance. 

 Improved QoS through proactive fault management. The 

model reduces energy consumption and response time. 

 

This research highlights the need for intelligent fault-

tolerant models. PreGAN+ provides an adaptive solution for 

MEC environments. It provides system reliability and 

optimizes resource utilization. The proposed approach is 

practical and scalable. Future research will explore 

optimizations.  By addressing these areas, future iterations of 

PreGAN+ improve MEC performance and reliability. This 

work serves as a foundation for developing advanced fault-

tolerant mechanisms in edge computing. 

2. Background Work 
Fault tolerance in MEC is widely studied, with numerous 

approaches proposed to enhance system reliability and 

efficiency. This section reviews the existing fault-tolerant 

strategies. It includes machine learning-based fault 

prediction, redundancy-based techniques, task migration 

strategies, and federated learning approaches. The literature 

highlights the need for intelligent, adaptive fault management 

systems that effectively handle dynamic workloads and 

minimize computational overhead. One of MEC's most 

traditional fault tolerance mechanisms is redundancy, where 

backup tasks are maintained to maintain service continuity in 

case of failures [14]. Redundancy-based approaches, namely 

checkpointing [15] and task replication [16], are widely 

adopted to provide reliability. However, these methods come 

with significant computational overhead and energy 

consumption, making them impractical for resource-

constrained MEC environments [17]. Machine learning-

based fault prediction models have emerged as an effective 

alternative to redundancy-based techniques. Various 

supervised and unsupervised learning methods are employed 

to detect anomalies and predict system failures in MEC [18]. 

Support Vector Machines (SVMs) [19] and Decision Trees 

[20] are used to classify normal and faulty system states. 

However, these traditional classifiers often require extensive 

labeled datasets for training, which limits their applicability 

in real-world scenarios [21]. 

Deep learning models like Convolutional Neural 

Networks (CNNs) [22] and Long Short-Term Memory 

(LSTM) networks [23] have demonstrated improved 

prediction accuracy compared to traditional machine learning 

methods. These models are capable of learning from 

historical system logs and adapting to changing network 
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conditions. Nevertheless, deep learning models are often 

computationally expensive, making the deployment 

challenging in edge computing environments [24]. GANs 

have recently been explored for fault detection and system 

anomaly classification [25]. GAN-based fault prediction 

models generate synthetic failure scenarios to improve 

classification accuracy. Studies show that GANs 

significantly enhance the generalization capability of fault 

prediction models, outperforming traditional approaches 

[26]. However, GANs suffer from challenges like mode 

collapse and require extensive computational resources for 

training [27]. Task migration strategies play a crucial role in 

fault-tolerant MEC systems. Migration techniques maintain 

that tasks are dynamically reassigned from failing nodes to 

healthy ones [28]. Threshold-based migration policies [29] 

initiate task transfers when system parameters exceed 

predefined limits. While effective in some cases, these 

policies often lead to unnecessary migrations, increase 

network congestion, and energy consumption [30]. To 

optimize task migration, reinforcement learning-based 

approaches are proposed [31]. These methods leverage 

dynamic learning mechanisms to find optimal migration 

policies over time, reducing system failures while 

maintaining efficiency. Federated learning-based task 

migration has also gained attention, allowing distributed edge 

nodes to collaboratively learn optimal migration strategies 

without sharing raw data. This approach enhances privacy 

while maintaining adaptability in large-scale MEC 

deployments. 

3. Methodology 
The proposed PreGAN+ model integrates deep learning 

techniques with MEC fault tolerance strategies. The model 

consists of multiple components, including data pre-

processing, GANs for fault prediction, and a Transformer-

based task migration strategy. This section provides a 

comprehensive explanation of the methodology. Figure 1 

represents a complex scheduling framework that integrates 

decision-making, migration handling, and deep learning 

models for optimization. The scheduling decision module 

processes system inputs and generates a scheduling choice. 

This choice is fed into the preemptive migration generator. It 

evaluates whether migration is necessary. The output is 

passed to the preemptive migration discrimination module, 

which determines the final migration decision. If migration is 

approved, the system state will be updated. This module 

captures meaningful patterns for effective decision-making. 

The lower part of the figure illustrates the deep learning-

based prediction system. A time series window and 

embedding sequence are input into the model. The graph 

attention module processes the time series data to extract 

dependencies and relations. The processed data is then passed 

to a transformer model that learns meaningful patterns. The 

output from the transformer is sent to feed-forward layers. It 

applies activation functions for classification. The softmax 

function is used for probability estimation, while the sigmoid 

function handles binary classification tasks.  

 
Fig. 1 PreGAN+ Model 

The MEC network consists of a set of N edge nodes that 

manage computation tasks. Each node has a limited set of 

resources: processing power , memory  and disk 

storage . The total resource availability per node is 

represented as: 

                                       (1) 
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Tasks  arrive dynamically at the MEC node n at time 

t and are assigned to nodes based on the computational 

demand . The objective is to allocate resources efficiently 

while predicting failures in advance. Each task has multiple 

parameters: execution time , CPU consumption , 

memory requirement , and failure probability . These 

parameters form the task feature vector: 

                             (2) 

The MEC scheduler monitors these tasks and triggers 

migration when resource thresholds are exceeded. The failure 

probability  is continuously estimated based on historical 

data and current resource conditions. The failure probability 

is computed as: 

                               (3) 

  Here,  represents failure occurrences, and  is a small 

constant to avoid division by zero. The MEC system 

distributes tasks dynamically across nodes to balance load 

and minimize failures. The resource allocation function 

follows: 

                              (4) 

Here,  represents the demand of task  at time t. The 

system minimizes the allocation imbalance using: 

                             (5) 

Here,  is the mean resource utilization across nodes. 

PreGAN+ uses a GAN for fault prediction. The generator G 

creates synthetic failure scenarios, while the discriminator D 

differentiates real failures from synthetic ones. The loss 

function is: 

(6) 

                                   (7) 

Here,  represents real data and  is the noise input 

to G. The gradient updates for the discriminator are computed 

as: 

(8) 

While for the generator: 

                          (9) 

To improve GAN training, a semi-supervised approach 

is used, combining labeled and unlabeled data: 

                                                 (10) 

Here,  is a balance parameter. PreGAN+ uses a 

Transformer model to make migration decisions. The 

attention mechanism is computed as: 

                                      (11) 

Here,  are query, key, and value matrices. 

Task migration decisions are made based on: 

(12) 

Here,  and  are thresholds. To minimize 

unnecessary migrations, an optimization function is used: 

                                                (13) 

Here,  are weight factors. The expected system 

reliability  is: 

                                                    (14) 

Finally, the migration cost  is defined as: 

                                           (15) 

Here,  is the migration overhead of task . 

PreGAN+ integrates GAN-based fault prediction and 
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Transformer-driven migration strategies. The methodology 

achieves high accuracy and adaptability for MEC fault 

tolerance. The proposed model outperforms traditional 

methods in fault detection, system stability, and task 

migration efficiency. 

 

Algorithm 1: PreGAN+ Testing Algorithm 

1. Input: Task set T, Edge nodes N, Trained PreGAN+ 

model M 

2. Initialize system parameters and load test dataset 

3. For each task  do 

4.    Extract resource features  

5.    Normalize features using min-max scaling. 

6.    Predict failure probability  using model M. 

7.    if  (fault threshold) then 

8.       Identify an alternative node  with sufficient 

resources. 

9.       if  then 

10.          Migrate  to node  

11.          Log migration event 

12.       else 

13.          Retry with the next optimal node. 

14.       end if 

15.    else 

16.       Execute  on the current node. 

17.    end if 

18.    Monitor execution performance and log results. 

19. end for 

20. Output: Task execution status, failure logs, and 

migration summary 

 

Algorithm 2: Offline Fault Prediction Engine (FPE) 

Training Algorithm 

1. Input: Historical failure data D, Learning rate , 

Batch size B, Epochs E 

2. Initialize model parameters  randomly 

3. for  to  do 

4.    Shuffle dataset D 

5.    for each batch  from D 

6.       Extract features  and labels  

7.       Normalize features using min-max scaling. 

8.       Compute predicted outputs  

9.       Compute loss  

10.       Compute gradients  

11.       Update model parameters  

12.    end for 

13.    Evaluate model performance on the validation set. 

14.    Log training loss and accuracy. 

15. end for 

16. Save trained model parameters  

17. Output: Trained fault prediction model 

 

4. Experimental Results 
This section describes the experimental setup, evaluation 

metrics, and performance analysis of the PreGAN+ model. 

The experiments were conducted on an MEC testbed to 

evaluate fault detection accuracy, task migration efficiency, 

and system reliability. The workloads for edge nodes were 

generated dynamically to simulate real-world task execution 

and failure conditions.  

 

PreGAN+ was evaluated using several performance 

metrics to assess its efficiency in fault detection and system 

reliability. The Fault Detection Accuracy (FDA) was 

measured as the proportion of correctly identified faults to the 

total number of faults. The False Positive Rate (FPR) was 

analyzed to determine how often a non-faulty node was 

incorrectly classified as faulty.  

 

Task Migration Efficiency (TME) was measured by 

calculating the number of unnecessary task migrations and 

the impact on system stability. Energy Consumption (EC) 

was recorded to evaluate the overall power efficiency of 

PreGAN+ in comparison to existing models. Table 1 presents 

the fault detection accuracy of PreGAN+ compared to 

traditional models.  

 

The results indicate that PreGAN+ achieves an accuracy 

of 96.5%, which is significantly higher than that of the SVM-

based and CNN-based models. Moreover, the false positive 

rate is reduced to 5.7%, demonstrating improved reliability in 

distinguishing faulty from non-faulty nodes. 
 

Table 1. Fault detection accuracy comparison 

Model FDA (%) FPR (%) 
Precision 

(%) 

SVM – Based 

Model 
82.3 14.5 80.7 

CNN – Based 

Model 
88.6 10.2 85.1 

GAN – Based 

Model 
92.4 8.1 89.3 

PreGAN+ 

(Proposed) 
96.5 5.7 94.8 
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Table 2. Task migration efficiency 

Model Average Power (W) Energy Reduction (%) 

Traditional Model 4.8 0 

GAN-Based Model 4.3 10.4 

PreGAN+ (Proposed) 4.0 16.7 

 
Table 3. Energy consumption analysis 

Model FDA (%) Task Migration Overhead (ms) Energy Reduction (%) 

PCFT 89.5 45 10.1 

ECLB 91.3 40 12.5 

CMODLB 92.7 38 13.8 

DFTM 94.1 35 14.6 

GOBI 95.2 30 15.9 

PreGAN+(Proposed) 96.5 27 16.7 

Table 2 presents the task migration efficiency results. 

Task migration efficiency is crucial in maintaining system 

stability and reducing failures. The proposed model 

effectively reduces unnecessary migrations by ensuring that 

only critical tasks are moved to less-loaded nodes. The failure 

rate reduction achieved by PreGAN+ is 31.2%, which is 

superior to threshold-based and reinforcement learning-based 

migration approaches. The task migration overhead, 

measured in milliseconds, is significantly lower for 

PreGAN+, indicating that the system quickly adapts to 

changing conditions with minimal delay. 

 
Table 4. Performance comparison of fault-tolerant strategies 

Model 
Failure Rate 

Reduction (%) 

Task 

Migration 

Overhead (ms) 

Threshold-Based 17.3 52 

Reinforcement 

Learning-Based 
24.8 39 

PreGAN+ 

(Proposed) 
31.2 27 

 

Table 3 provides an analysis of the energy consumption 

of different models. Energy efficiency is a critical factor in 

MEC environments with power resources limited. The 

proposed model demonstrates a reduction in energy 

consumption by 16.7% when compared to traditional 

approaches. This is attributed to the optimized resource 

allocation and effective fault prediction mechanism of 

PreGAN+. The reduction in energy consumption translates to 

prolonged device lifespan and reduced operational costs in 

edge computing networks. 

Table 4 compares the performance of PreGAN+ with 

other fault-tolerant task migration strategies. It includes 

PCFT, ECLB, CMODLB, DFTM, and GOBI. The 

comparison highlights the superior performance of PreGAN+ 

in terms of fault detection accuracy, migration efficiency, and 

energy savings. 

The experimental evaluation demonstrates the 

effectiveness of PreGAN+ in fault detection, task migration, 

and energy efficiency. The proposed model outperforms 

existing approaches in all key performance metrics. It makes 

it a promising solution for fault-tolerant MEC systems. 

Figure 2 presents a comparative analysis of detection 

accuracy versus the number of faults for multiple fault 

detection models. Six models are analyzed: PreGAN plus, 

PCFT, ECLB, CMODLB, DFTM, and GOBI. Among them, 

PreGAN plus shows the highest accuracy. It starts at around 

80 percent for 10 faults and improves to nearly 98 percent for 

100 faults.  

 

The PCFT model follows closely behind, with accuracy 

ranging between 75 and 92 percent. The GOBI model 

performs slightly better than PCFT. It achieves 

approximately 95 percent accuracy for high fault numbers. 

The models ECLB, CMODLB, and DFTM show moderate 

performance. The detection accuracy increases steadily but 

remains lower than the top models. The CMODLB model 

starts at 70 percent accuracy. It reaches 85 percent at the 

highest fault level. This indicates the lowest efficiency among 

all models.  

 

The trend in the figure suggests that as the number of 

faults increases, all models improve in accuracy, but the rates 

of improvement vary. The PreGAN plus model demonstrates 

a steeper accuracy increase, signifying better adaptability to 

more faults. The PCFT and GOBI models show similar trends 

but with a slightly lower accuracy margin. The ECLB and 

DFTM models maintain a steady performance. It ends at 

about 88 and 90 percent accuracy, respectively. The 

CMODLB model exhibits the slowest growth. It reflects 

possible inefficiencies in fault detection. The overall trends 

indicate that GAN-based models like PreGAN plus and 

GOBI outperform traditional fault detection methods. It 

confirms higher accuracy as fault numbers grow. This figure 

highlights the superiority of GAN-enhanced models for fault 

detection in systems with an increasing number of faults. 
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Fig. 2 Detection Accuracy versus Number of Faults 

 
Fig. 3 Precision, Recall & F1-Score Comparison 

Figure 3 presents a bar chart comparing precision, recall, 

and F1-score for different fault categories. CPU 

overutilization has the highest scores across all fault 

categories. Precision reaches approximately 93 percent. 

Recall is around 90 percent. The F1-score is slightly above 

91 percent. Network overload has the lowest recall at around 

82 percent. Its precision and F1-score remain close to 85 

percent. Memory leak has lower recall than precision. Recall 

is around 83 percent, while precision is about 86 percent. This 

results in an F1-score slightly below 85 percent. The trend in 

the figure shows that precision is generally higher than recall 

across all fault categories. The models are better at correctly 

classifying faults when they occur. However, they miss some 

actual instances, reducing recall. The abnormal memory 

allocation category shows balanced performance. Precision is 

slightly above 90 percent. Recall is near 88 percent. The F1-

score closely aligns with precision. Abnormal disk utilization 

follows a similar trend. Precision is around 87 percent. Recall 

is near 85 percent. The F1-score falls within the same range. 

Overall, the figure shows that detection models work best for 

CPU overutilization and abnormal memory allocation. 

Network overload and memory leaks are more challenging. 

The results highlight the detection approach’s effectiveness. 

They also show the need for recall improvements in fault 

detection. 

Figure 4 presents a bar chart illustrating the hit rate at 

100 percent for different fault categories. Among these 

categories, CPU overutilization has the highest hit rate, 

reaching approximately 95 percent. Abnormal memory 

allocation closely follows, with a hit rate of nearly 91 percent. 

Abnormal disk utilization has a hit rate of around 90 percent. 

Memory leak shows a lower hit rate of about 87 percent. 

Network overload achieves a hit rate of approximately 89 

percent. The results indicate that CPU overutilization is the 

most easily detected fault. It achieves the highest hit rate 

among all categories. The trend in the figure suggests that 

different fault types impact the hit rate at 100 percent 

differently. CPU overutilization has the highest detection 

efficiency. It suggests that it is more distinguishable 

compared to other faults. Memory leak has the lowest hit rate, 

indicating challenges in detection. This may be due to its 

subtle impact on system performance. Network overload also 

exhibits a relatively lower hit rate. As it shows, fault detection 

in network-related issues requires optimization. The 

detection model performs well across all categories. There is 

room for improvement. Handling memory leaks and network 

overload needs better optimization. The findings suggest that 

refining detection algorithms for these specific faults 

enhances overall system accuracy and reliability. 

 
Fig. 4 Hitrate@100% versus Fault Categories 

Figure 5 illustrates the overhead ratio percentage versus 

the number of tasks for multiple methods. The chart 

compares six different methods: PreGAN plus, PCFT, ECLB, 

CMODLB, DFTM, and GOBI. CMODLB has the highest 

overhead ratio among all methods. It reaches approximately 

42 percent at 100 tasks. GOBI and PCFT follow closely. The 

overhead ratios are around 38 and 35 percent, respectively. 

PreGAN plus maintains the lowest overhead ratio. It keeps 

computational cost low as the number of tasks increases. 

DFTM and ECLB show intermediate performance. The 

overhead ratios stay between 30 and 35 percent at higher task 

levels. The trend in the figure shows that as the number of 

tasks increases, all methods experience a rise in the overhead 

ratio. CMODLB  incurs the highest computational overhead. 

It suggests that it is less efficient in handling large workloads. 
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GOBI and PCFT also exhibit increasing overhead, though the 

growth rates are slightly lower. PreGAN plus maintains a 

lower and more controlled increase in the overhead ratio. It 

indicates its efficiency in managing computational resources. 

DFTM and ECLB perform moderately. They balance 

overhead cost and efficiency. The results suggest that 

PreGAN plus is more scalable. It handles larger task loads 

efficiently. CMODLB has significant computational 

overhead. This limits its usability in high-load environments. 

 
Fig. 5 Overhead ratio versus Number of tasks 

Figure 6 presents a bar chart that compares the 

improvement ratio percentage across different fault 

categories. PreGAN plus has the highest improvement ratio 

in all fault categories. It reaches around 55 percent in network 

overload. It achieves about 50 percent in abnormal memory 

allocation. PCFT and GOBI also perform well. The 

improvement ratios reach approximately 50 percent in 

network overload. They achieve around 45 percent in 

abnormal memory allocation. ECLB and DFTM show 

moderate performance. The values range between 30 and 45 

percent. CMODLB has the lowest improvement ratio. It 

shows values between 20 and 40 percent across all fault 

categories.  

The trend in the figure indicates that different fault types 

affect the improvement ratio of the models differently. 

Network overload has the highest improvement ratios across 

all models. PreGAN plus leads with nearly 55 percent. GOBI 

and PCFT follow at around 50 percent. The abnormal 

memory allocation category also shows high improvement 

values. These fault types benefit from detection and 

mitigation methods. CPU overutilization and memory leak 

have lower improvement ratios. Most models achieve 

between 25 and 40 percent. CMODLB remains the least 

effective method in all categories. PreGAN plus maintains a 

strong lead in overall improvement. The results show that 

advanced models perform better. GAN-based methods 

handle complex faults more effectively than traditional 

approaches. 

 

 
Fig. 6 Improvement ratio versus Fault categories 

Figure 7 illustrates a line chart that compares energy 

consumption as the task load increases. CMODLB consumes 

the most energy among all methods. It starts at about 5.5 

watts for 10 tasks. It reaches nearly 9.5 watts for 100 tasks. 

PreGAN plus has the lowest energy consumption. It begins 

at around 4.5 watts. It gradually increases to nearly 8 watts. 

PCFT, ECLB, DFTM, and GOBI follow similar energy 

trends. The consumption remains between the highest and 

lowest values. The figure indicates that as task load increases, 

energy consumption rises proportionally for all methods. 

CMODLB shows the fastest increase in energy usage, 

highlighting its inefficiency in handling larger workloads. In 

contrast, PreGAN plus maintains the most efficient energy 

usage pattern. It consumes the least power across all task 

loads. The models PCFT, ECLB, DFTM, and GOBI follow 

similar trends, consuming between 5 and 9 watts as tasks 

increase. Different models affect energy efficiency in 

different ways. PreGAN plus is the most optimized. 

CMODLB leads to higher energy overhead. 

 

 
Fig. 7 Energy consumption versus Task load 
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Fig. 8 Response time versus Fault severity 

Figure 8 presents a line chart that illustrates the response 

time in milliseconds versus fault severity. CMODLB has the 

highest response time at all severity levels. It starts at about 

42 milliseconds for low severity. It increases to nearly 80 

milliseconds for high severity.  

PreGAN plus has the lowest response time. It begins at 

around 30 milliseconds. It reaches about 65 milliseconds as 

fault severity increases. PCFT, ECLB, DFTM, and GOBI 

follow a similar trend. The response times remain between 

the highest and lowest values. The figure shows that all 

models' response time increases as fault severity rises.  

CMODLB demonstrates the highest delay. This 

indicates that it takes longer to process faults than other 

methods. PreGAN plus has the lowest response time, 

suggesting it is more efficient in handling different fault 

severity levels. PCFT, ECLB, DFTM, and GOBI exhibit 

moderate response times. It follows a steady upward trend as 

severity increases. All methods show higher response times 

as fault severity increases. PreGAN plus is the most efficient 

and fastest model. CMODLB remains the slowest among all 

methods. 

Figure 9 presents a line chart comparing the SLO 

violation rate percentage against resource utilization. Six 

different methods are analyzed: PreGAN plus, PCFT, ECLB, 

CMODLB, DFTM, and GOBI. CMODLB has the highest 

violation rate at all resource utilization levels. It starts at 

around 5 percent at 50 percent utilization. It rises to nearly 27 

percent at 100 percent utilization.  

PreGAN plus has the lowest violation rate. It begins at 

about 2 percent. It reaches around 15 percent as resource 

utilization increases. PCFT, ECLB, DFTM, and GOBI follow 

a similar trend. The violation rates remain between the 

highest and lowest values. The trend in the figure shows that 

as resource utilization increases, the service level objective 

violation rate also rises for all methods. CMODLB shows the 

steepest growth in violation rate. It struggles to maintain 

service level objectives under high workloads. PreGAN plus 

has the lowest violation rate. It manages resources effectively 

while providing compliance.  

PCFT, ECLB, DFTM, and GOBI have moderate 

violation rates. The rates increase steadily with resource 

utilization. Traditional models struggle as system load rises. 

Optimized models like PreGAN plus perform better. They 

minimize violations more effectively. 

 
Fig. 9 SLO Violation Rate versus Resource Utilization 

 Figure 10 presents a line chart that compares task 

migration count against the number of faults. Four different 

methods are analyzed: PreGAN plus, PCFT, ECLB, and 

DFTM. ECLB has the highest task migration count. It reaches 

nearly 40 migrations at the maximum number of faults. 

DFTM follows closely with slightly fewer migrations. PCFT 

maintains a moderate migration rate. It stays between the 

highest and lowest values.  

PreGAN plus records the lowest task migration count. Its 

migration rate increases more slowly than other methods. The 

trend in the figure indicates that as the number of faults rises, 

all methods experience an increase in task migration. ECLB 

and DFTM show the steepest rise, saying that they require 

more frequent task reallocations under fault conditions. 

PCFT follows a similar pattern but at a lower rate. PreGAN 

plus maintains the most stable performance with the least task 

migrations.  

This suggests that PreGAN plus is more efficient in 

handling faults with minimal disruptions. ECLB and DFTM  

incur higher computational overhead due to frequent 

migrations. The results highlight that reducing task migration 

is essential for maintaining system efficiency. PreGAN plus 

demonstrates the most optimized approach among the 

compared methods. 
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Fig. 10 Task migration count versus Number of faults 

Figure 11 presents a bar chart comparing the 

performance metrics of different models based on fault 

detection accuracy, task migration efficiency, and energy 

reduction. Fault detection accuracy is the highest for all 

models, exceeding 90 percent with minor variations. 

PreGAN plus, DFTM, and GOBI achieve slightly better 

accuracy compared to the other models. Task migration 

efficiency varies across models. PreGAN plus has the highest 

efficiency, close to 30 percent. GOBI and DFTM follow 

behind. PCFT and CMODLB have lower efficiency levels. 

Energy reduction has the lowest values among the three 

metrics. It stays below 20 percent for all models. PreGAN 

plus achieves the highest energy reduction. GOBI and DFTM 

perform moderately. PCFT records the lowest energy 

reduction. The figure shows that fault detection accuracy is 

the strongest metric. Task migration efficiency and energy 

reduction vary significantly. PreGAN plus performs best in 

terms of both migration efficiency and energy reduction. It 

handles tasks efficiently while consuming less energy. PCFT 

and CMODLB perform the weakest. They have higher 

computational overhead. GOBI and DFTM show moderate 

performance in all metrics. They balance accuracy, task 

management, and energy savings. Advanced models like 

PreGAN plus and GOBI perform better overall. Traditional 

models like PCFT and CMODLB need improvements. They 

must enhance efficiency and energy utilization. 

Figure 12 presents a line chart comparing the task 

completion rate percentage over time for three models: the 

traditional model, the GAN-based model, and the PreGAN 

plus model. All three models show an increasing trend in task 

completion as time progresses. The traditional model has the 

slowest task completion rate. It starts at around 0 percent and 

reaches around 90 percent in 45 minutes. The GAN-based 

model performs better. It maintains a higher completion rate 

than the traditional model at all times. The PreGAN plus 

model has the highest completion rate.  

 
Fig. 11 Comparison of PreGAN+ versus Traditional models 

It surpasses both models at every time step. It reaches 

nearly 100 percent by the end of the period. The trend in the 

figure indicates that the PreGAN plus model outperforms the 

other two models in completing tasks faster. All models start 

with a low completion rate. PreGAN plus quickly gains an 

advantage. It reaches around 60 percent completion in 15 

minutes.  

The GAN-based model and traditional model remain 

slightly lower. As time progresses, the gap between models 

stays constant. PreGAN plus maintains the lead. The GAN-

based model follows. The traditional model remains the 

slowest. The results show that advanced models improve task 

scheduling. GAN-based and PreGAN plus achieve faster 

completion rates. PreGAN plus performs the best. It is the 

best choice for systems needing rapid task execution. 

 
Fig. 12 Task completion rate versus Time 
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Fig. 13 Packet loss versus Network load 

Figure 13 presents a line chart that compares packet loss 

percentage against network load in Mbps for three models. 

As network load increases, all three models experience a rise 

in packet loss. The traditional model exhibits the highest 

packet loss, reaching nearly 58 percent at 100 Mbps. The 

GAN-based model performs better and maintains lower 

packet loss than the traditional model at all points. It reaches 

about 50 percent at the highest load. The PreGAN plus model 

achieves the lowest packet loss. It peaks at around 42 percent 

at 100 Mbps. The trend in the figure indicates that as network 

load increases, congestion leads to higher packet loss. The 

traditional model shows the steepest rise in packet loss. This 

indicates that it is the least efficient in handling higher 

network traffic. The GAN-based model demonstrates an 

improvement over the traditional model, but packet loss 

remains significant at higher loads. The PreGAN plus model 

exhibits the best performance. It keeps packet loss lower 

throughout the range. PreGAN plus optimizes network 

resource management. It reduces packet loss more effectively 

than traditional and GAN-based models. The results show 

that advanced techniques perform better. PreGAN plus is 

ideal for high-traffic environments. Minimizing packet loss 

is crucial for efficient data transmission. 

Figure 14 presents a line chart comparing latency in 

milliseconds against task complexity levels for three models: 

the traditional, GAN-based, and PreGAN plus models. As 

task complexity increases, all three models experience a rise 

in latency. The traditional model has the highest latency. It 

reaches nearly 220 milliseconds at the highest complexity 

level. The GAN-based model performs better. It maintains 

lower latency than the traditional model. However, it still 

reaches around 190 milliseconds at extreme complexity. The 

PreGAN plus model has the lowest latency. It stays below 

160 milliseconds even at the highest complexity. The figure 

shows that higher task complexity increases computational 

demand. This leads to higher latency for all models. 

 
Fig. 14 Latency versus Task complexity 

The traditional model exhibits the steepest increase, 

showing inefficiency in handling complex tasks. The GAN-

based model performs better but still experiences noticeable 

latency growth. PreGAN plus has the lowest latency. It is the 

most optimized for handling complex tasks. This shows the 

advantage of advanced models. PreGAN plus processes high-

complexity tasks with lower latency. It achieves faster system 

response. It improves task execution efficiency. 

 
Fig. 15 Computational time versus Number of tasks 

Figure 15 presents a line chart comparing computation 

time in milliseconds against the number of tasks. Among 

these models, CMODLB exhibits the highest computation 

time across all task numbers. It reaches nearly 65 

milliseconds at 100 tasks. PreGAN plus has the lowest 

computation time. It starts at about 5 milliseconds for 10 

tasks. It gradually increases to 35 milliseconds at 100 tasks. 

Other models, including PCFT, ECLB, DFTM, and GOBI, 

show a steady rise. The computation times stay between the 

highest and lowest values. The trend in the figure indicates 
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that as the number of tasks increases, computation time rises 

for all models. CMODLB shows the steepest increase, 

indicating that it requires more processing power as the 

workload increases. PreGAN plus maintains the lowest and 

most stable computation time. It suggests it is the most 

optimized model for handling multiple tasks. PCFT, ECLB, 

DFTM, and GOBI have moderate computation times. The 

values range from about 10 to 50 milliseconds as tasks 

increase. Different models impact computational efficiency 

in different ways. PreGAN plus provides the best 

performance. CMODLB has the highest computational cost 

as task numbers rise. 

 
Fig. 16 CPU usage versus Number of tasks 

Figure 16 presents a line chart comparing CPU usage 

percentage against the number of tasks for three models. The 

traditional model has the highest CPU usage. It starts at 

around 25 percent for 10 tasks. It reaches nearly 90 percent 

for 100 tasks. The GAN-based model follows a similar trend. 

It starts near 22 percent and peaks at 85 percent for 100 tasks. 

PreGAN plus has the lowest CPU usage. It begins at about 20 

percent. It increases to around 80 percent as tasks rise. The 

trend in the figure shows that as the number of tasks 

increases, CPU usage rises for all models. The traditional 

model exhibits the steepest growth, indicating it is the least 

efficient in managing computational load. The GAN-based 

model demonstrates improved efficiency compared to the 

traditional model. It still consumes a significant amount of 

CPU resources. The PreGAN plus model maintains the most 

stable and optimized CPU usage. It suggests it effectively 

distributes computing power as task load increases. All 

models show higher CPU usage as tasks increase. PreGAN 

plus manages resources better. It reduces computational 

strain. It performs better than traditional and GAN-based 

models. 

5. Conclusion 
This paper presented PreGAN+, a novel approach to 

fault prediction and task migration in MEC environments. 

The model integrates GANs for fault detection and 

Transformer-based decision mechanisms for task migration. 

The results show that PreGAN+ significantly enhances 

system reliability and resource efficiency. The study 

demonstrated that PreGAN+ achieves a fault detection 

accuracy of 96.5%. It outperforms traditional machine 

learning models. The semi-supervised learning approach uses 

both labelled and unlabelled data. It improves adaptability in 

dynamic environments. The GAN-based training structure 

enhances failure prediction. It reduces unnecessary task 

migrations. It optimizes computational resources effectively. 

Task migration efficiency is another key advantage of 

PreGAN+. The Transformer-based migration strategy 

effectively identifies the best edge node for task relocation. 

This reduces system failures by 31.2% compared to existing 

methods. Energy efficiency is critical in MEC operations, and 

PreGAN+ successfully addresses this challenge. The 

proposed model reduces energy consumption by 16.7% 

compared to traditional fault-tolerant strategies. This 

improvement proves that edge nodes operate efficiently 

while maintaining high reliability. The reduction in energy 

use extends the operational lifespan of edge devices and 

minimizes power-related costs. Future research will explore 

optimizations of PreGAN+. One potential direction is the 

integration of reinforcement learning for adaptive task 

scheduling. Another area of improvement is the inclusion of 

federated learning techniques to enhance model training 

across distributed edge nodes. Overall, PreGAN+ provides an 

effective and efficient fault prediction and migration 

framework for MEC systems. The model enhances system 

reliability, reduces energy consumption, and optimizes task 

execution. The results validate its applicability for real-world 

edge computing scenarios.
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