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Abstract - Mobile Edge Computing (MEC) systems operate at the network’s edge. They use resource-constrained devices.
These systems face challenges due to limited computing power. Frequent faults occur due to high workloads and system
failures. To address this, fault-tolerant approaches help maintain system stability. One common method is pre-emptive
migration. It transfers active tasks from overloaded nodes to available ones. However, existing approaches struggle to adapt
to unpredictable workloads. Many fail to detect anomalies accurately. This leads to inefficient resource utilization and system
failures. PreGAN+ is a machine learning-based fault prediction model. It uses Generative Adversarial Networks (GANS) to
detect faults. GANs model complex distributions and predict faults accurately. PreGAN+ also identifies which resource type
(CPU, memory, or disk) is to fail. The model achieves quick adaptation to dynamic environments. It minimizes unnecessary
migrations by focusing only on critical tasks. PreGAN consists of two parts. The first part is a neural network-based fault
classifier. It uses a few-shot learning method for accurate classification. The second part is a GAN-based decision model. This
component generates optimal migration decisions. PreGAN uses coupled simulations to train its GAN model. The system
continuously updates its fault classification decisions. PreGAN+ extends the original PreGAN model. It introduces a semi-
supervised learning method. This method fine-tunes the decision model using limited labeled data. The updated model uses a
Transformer-based neural network. This improves tuning speed and accuracy. However, it also increases memory usage. The
research highlights the advantages of using GANSs for predictive modeling. The study confirms that semi-supervised learning
improves adaptability in dynamic environments. PreGAN+ provides an effective solution for fault-tolerant computing in MEC
systems. It results in higher Quality of Service (QoS) while optimizing resource utilization. The model is highly beneficial for
environments with frequent workload fluctuations.

Keywords - Fault prediction, GAN, Mobile edge computing, Pre-GAN, Quality of Service.

1. Introduction change unpredictably. Resource demands are non-stationary.

MEC follows the data gravity principle [1]. It processes
data close to its source. This includes sensors and actuators
in 10T networks. MEC is widely used in smart cities,
industrial automation, and healthcare applications [2]. It
improves system efficiency and reduces network congestion.
However, MEC devices have limited computing resources.
These limitations cause frequent system failures and resource
contention [3]. In modern MEC environments, workloads

OSOE)

Computational power is expensive, and redundant systems
are impractical. This makes fault tolerance essential.
Effective solutions must predict system faults in real-time [4].
They must also provide quick remediation. Traditional fault-
tolerant methods struggle to meet these demands. Many
existing approaches fail under high workload variations.
MEC systems require dynamic adaptation techniques to
balance efficiency and cost. MEC systems face several
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challenges. One major issue is resource allocation. Edge
devices have limited CPU, memory, and disk space [5]. They
operate under strict power constraints. Managing these
resources effectively is critical. Another challenge is network
latency. Data transmission between edge nodes and cloud
servers must be minimized [6]. High latency affects
application performance. Additionally, MEC systems need to
handle unpredictable workloads. The number of connected
devices fluctuates. Resource allocation strategies must
dynamically adjust [7].

Security is another concern. MEC devices are vulnerable
to cyber-attacks. Unauthorized access to edge nodes leads to
data breaches [8]. Providing secure data transmission and
storage is a priority. Traditional cloud-based security
measures are insufficient. MEC requires lightweight and
distributed security solutions [9]. Moreover, energy
efficiency is crucial. Edge devices operate on battery power.
Optimizing energy consumption  while maintaining
performance is a key research area. The goal of fault
tolerance is to prevent system failures [10]. A system should
predict faults early and take action. For MEC, fault prediction
means identifying nodes at risk. It also involves detecting
resource bottlenecks like CPU, memory, or disk overload.
Predicting these issues allows systems to manage resources
proactively [11]. Early fault detection prevents performance
degradation and costly downtime. Current fault-tolerant
strategies include redundancy and checkpointing. These
methods result in the availability of backup systems.
However, redundancy is expensive. It also requires additional
hardware, which is impractical for MEC. Effective pre-
emptive migration strategies must balance system load while
minimizing overhead [12].

This paper presents PreGAN+. It is an advanced fault-
tolerant model for MEC. PreGAN+ integrates deep learning
with GANs [13]. It combines real-time fault prediction with
pre-emptive migration strategies. The model accurately
detects faults and mitigates impact. PreGAN uses coupled
simulations to train its GAN model. The system continuously
updates its fault classification decisions. It adapts
dynamically to changing workloads. PreGAN+ extends the
original PreGAN model. It introduces a semi-supervised
learning method. This method fine-tunes the decision model
using limited labeled data. The updated model uses a
Transformer-based neural network. This improves tuning
speed and accuracy. However, it also increases memory
usage. The model balances performance and computational
efficiency. The key contributions of this paper are as follows:

» Anovel GAN-based fault prediction model. It accurately
detects system faults in real-time.

Identification of critical system resources. The model
predicts specific resource bottlenecks like CPU,
memory, or disk overload.

>
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A semi-supervised learning approach. It enables
continuous adaptation to changing workloads.

A Transformer-based tuning method. This method
improves fault detection accuracy with low latency.
Implementation and validation on a real-world MEC
testbed. The model demonstrates superior performance
over existing solutions.

Reduction in unnecessary task migrations. The model
balances system efficiency and fault tolerance.
Improved QoS through proactive fault management. The
model reduces energy consumption and response time.

This research highlights the need for intelligent fault-
tolerant models. PreGAN+ provides an adaptive solution for
MEC environments. It provides system reliability and
optimizes resource utilization. The proposed approach is
practical and scalable. Future research will explore
optimizations. By addressing these areas, future iterations of
PreGAN+ improve MEC performance and reliability. This
work serves as a foundation for developing advanced fault-
tolerant mechanisms in edge computing.

2. Background Work

Fault tolerance in MEC is widely studied, with numerous
approaches proposed to enhance system reliability and
efficiency. This section reviews the existing fault-tolerant
strategies. It includes machine learning-based fault
prediction, redundancy-based techniques, task migration
strategies, and federated learning approaches. The literature
highlights the need for intelligent, adaptive fault management
systems that effectively handle dynamic workloads and
minimize computational overhead. One of MEC's most
traditional fault tolerance mechanisms is redundancy, where
backup tasks are maintained to maintain service continuity in
case of failures [14]. Redundancy-based approaches, namely
checkpointing [15] and task replication [16], are widely
adopted to provide reliability. However, these methods come
with significant computational overhead and energy
consumption, making them impractical for resource-
constrained MEC environments [17]. Machine learning-
based fault prediction models have emerged as an effective
alternative to redundancy-based techniques. Various
supervised and unsupervised learning methods are employed
to detect anomalies and predict system failures in MEC [18].
Support Vector Machines (SVMs) [19] and Decision Trees
[20] are used to classify normal and faulty system states.
However, these traditional classifiers often require extensive
labeled datasets for training, which limits their applicability
in real-world scenarios [21].

Deep learning models like Convolutional Neural
Networks (CNNs) [22] and Long Short-Term Memory
(LSTM) networks [23] have demonstrated improved
prediction accuracy compared to traditional machine learning
methods. These models are capable of learning from
historical system logs and adapting to changing network
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conditions. Nevertheless, deep learning models are often
computationally expensive, making the deployment
challenging in edge computing environments [24]. GANs
have recently been explored for fault detection and system
anomaly classification [25]. GAN-based fault prediction
models generate synthetic failure scenarios to improve
classification accuracy. Studies show that GANSs
significantly enhance the generalization capability of fault
prediction models, outperforming traditional approaches
[26]. However, GANs suffer from challenges like mode
collapse and require extensive computational resources for
training [27]. Task migration strategies play a crucial role in
fault-tolerant MEC systems. Migration techniques maintain
that tasks are dynamically reassigned from failing nodes to
healthy ones [28]. Threshold-based migration policies [29]
initiate task transfers when system parameters exceed
predefined limits. While effective in some cases, these
policies often lead to unnecessary migrations, increase
network congestion, and energy consumption [30]. To
optimize task migration, reinforcement learning-based
approaches are proposed [31]. These methods leverage
dynamic learning mechanisms to find optimal migration
policies over time, reducing system failures while
maintaining efficiency. Federated learning-based task
migration has also gained attention, allowing distributed edge
nodes to collaboratively learn optimal migration strategies
without sharing raw data. This approach enhances privacy
while maintaining adaptability in large-scale MEC
deployments.

3. Methodology

The proposed PreGAN+ model integrates deep learning
techniques with MEC fault tolerance strategies. The model
consists of multiple components, including data pre-
processing, GANSs for fault prediction, and a Transformer-
based task migration strategy. This section provides a
comprehensive explanation of the methodology. Figure 1
represents a complex scheduling framework that integrates
decision-making, migration handling, and deep learning
models for optimization. The scheduling decision module
processes system inputs and generates a scheduling choice.
This choice is fed into the preemptive migration generator. It
evaluates whether migration is necessary. The output is
passed to the preemptive migration discrimination module,
which determines the final migration decision. If migration is
approved, the system state will be updated. This module
captures meaningful patterns for effective decision-making.
The lower part of the figure illustrates the deep learning-
based prediction system. A time series window and
embedding sequence are input into the model. The graph
attention module processes the time series data to extract
dependencies and relations. The processed data is then passed
to a transformer model that learns meaningful patterns. The
output from the transformer is sent to feed-forward layers. It
applies activation functions for classification. The softmax
function is used for probability estimation, while the sigmoid
function handles binary classification tasks.
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Fig. 1 PreGAN+ Model

The MEC network consists of a set of N edge nodes that
manage computation tasks. Each node has a limited set of

. R .
resources: processing power ", memory Rmm and disk
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storage Rusc

represented as:

The total resource availability per node is

R :chu+Rmem+Rdisk

total

)
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Tasks Tiarrive dynamically at the MEC node n at time
t and ar®iassigned to nodes based on the computational
demand . The objective is to allocate resources efficiently
while predicting failures in advaace. Each task has multipde

parameters: executiom time , CPU consumption

memory requirement , and failure probability . These
parameters form the task feature vector:
X, ={X,,C,,M,,P} @

The MEC scheduler monitors these tasks and triggers
migration when resource thresholds are exceeded. The failure

probability P is continuously estimated based on historical
data and current resource conditions. The failure probability
is computed as:

E

Pi_
T+

®)

Here, 5 represents failure occurrences, and 0 is a small
constant to avoid division by zero. The MEC system
distributes tasks dynamically across nodes to balance load
and minimize failures. The resource allocation function
follows:

Ralloc (t) = i&

i=1 "™ total

(4)

Here, i represents the demand of task T at time t. The
system minimizes the allocation imbalance using:

N D 2
min Z(R—IﬂJ
i=1 total

®)

Here, M is the mean resource utilization across nodes.
PreGAN+ uses a GAN for fault prediction. The generator G
creates synthetic failure scenarios, while the discriminator D
differentiates real failures from synthetic ones. The loss
function is:

Lo =-E, 5, [09D(]-E, , [log(1-DG@))]

Le =-E, ; [l0gD(G@)] -
Here, Paaa represents real data and P. is the noise input
to G. The gradient updates for the discriminator are computed
as:
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Vi Lo = Exep, [V, 109DX)]+E, [V, 10g(1-D(G(2)))] (®)
While for the generator:

V,, Lo =, [V, l0gD(G(@)] o

To improve GAN training, a semi-supervised approach
is used, combining labeled and unlabeled data:

L= Lsup +1 I—unsup

(10)

Here, A is a balance parameter. PreGAN+ uses a
Transformer model to make migration decisions. The
attention mechanism is computed as:

__exp(QK]/d)
Y exp(QK}/d)

(1)

Here, (Q’ K'V) are query, key, and value matrices.
Task migration decisions are made based on:

M(T)=1,if P, >0 andR,,, <7

0, otherwise (12)

Here, O and 7 are thresholds. To minimize
unnecessary migrations, an optimization function is used:

T
min» (aF+AU,)

t=1 (13)
Here, (@, f) are weight factors. The expected system

reliability R is:

1 N
R,==>(1-P)
N (14)

Finally, the migration cost Cn is defined as:

C, =3 MT)xC(T)
= (15)

Here, C(M) s the migration overhead of task T
PreGAN+ integrates GAN-based fault prediction and
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Transformer-driven migration strategies. The methodology
achieves high accuracy and adaptability for MEC fault
tolerance. The proposed model outperforms traditional
methods in fault detection, system stability, and task
migration efficiency.

Algorithm 1: PreGAN+ Testing Algorithm
1. Input: Task set T, Edge nodes N, Trained PreGAN+

model M
2. Initialize system parameters and load test dataset
3. For each task Tiel do
4. Extract resource features X ={Ci.M;,R}
5. Normalize features using min-max scaling.
6. Predict failure probability x using model M.
7. it > 9 (ault threshold) then
8. Identify an alternative node 1 with sufficient

resources.
9. if Ravailable (Nj) > I:\)min then

_ N.
10. Migrate T tonode !
11. Log migration event
12. else
13. Retry with the next optimal node.
14, end if
15. else
T

16. Execute ' on the current node.
17. endif
18.  Monitor execution performance and log results.
19. end for

20. Output: Task execution status, failure logs, and
migration summary

Algorithm 2: Offline Fault Prediction Engine (FPE)
Training Algorithm

1. Input: Historical failure data D, Learning rate 77,
Batch size B, Epochs E

Initialize model parameters 0 randomly
for epoch =1 to E do

Shuffle dataset D

for each batch 0 € B from D

X Y,
Extract features * ® and labels " °
Normalize features using min-max scaling.

Qb =f,(X,)

No g ke N

8. Compute predicted outputs

1 ~
L= _Z(Yb'Yb)z
9. Compute loss B
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Compute gradients Vol

10.

11. Update model parameters 0=0-1vV,L

12.  end for

13.  Evaluate model performance on the validation set.
14. Log training loss and accuracy.

15. end for

16. Save trained model parameters 0
17. Output: Trained fault prediction model

4. Experimental Results

This section describes the experimental setup, evaluation
metrics, and performance analysis of the PreGAN+ model.
The experiments were conducted on an MEC testbed to
evaluate fault detection accuracy, task migration efficiency,
and system reliability. The workloads for edge nodes were
generated dynamically to simulate real-world task execution
and failure conditions.

PreGAN+ was evaluated using several performance
metrics to assess its efficiency in fault detection and system
reliability. The Fault Detection Accuracy (FDA) was
measured as the proportion of correctly identified faults to the
total number of faults. The False Positive Rate (FPR) was
analyzed to determine how often a non-faulty node was
incorrectly classified as faulty.

Task Migration Efficiency (TME) was measured by
calculating the number of unnecessary task migrations and
the impact on system stability. Energy Consumption (EC)
was recorded to evaluate the overall power efficiency of
PreGAN+ in comparison to existing models. Table 1 presents
the fault detection accuracy of PreGAN+ compared to
traditional models.

The results indicate that PreGAN+ achieves an accuracy
of 96.5%, which is significantly higher than that of the SVM-
based and CNN-based models. Moreover, the false positive
rate is reduced to 5.7%, demonstrating improved reliability in
distinguishing faulty from non-faulty nodes.

Table 1. Fault detection accuracy comparison

Model FDA (%) | FPR (%) Prig/i;s)ion
MNocer | 0 | 102 | e
et | 24 | 81 | 83

(F;’rﬁ)%slsg) %5 > e
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Table 2. Task migration efficiency

Model Average Power (W) Energy Reduction (%)
Traditional Model 4.8 0
GAN-Based Model 4.3 10.4

PreGAN+ (Proposed) 4.0 16.7

Table 3. Energy consumption analysis

Model FDA (%) Task Migration Overhead (ms) | Energy Reduction (%)
PCFT 89.5 45 10.1
ECLB 91.3 40 12.5
CMODLB 92.7 38 13.8
DFTM 94.1 35 14.6
GOBI 95.2 30 15.9
PreGAN+(Proposed) 96.5 27 16.7

Table 2 presents the task migration efficiency results. The experimental evaluation demonstrates the

Task migration efficiency is crucial in maintaining system
stability and reducing failures. The proposed model
effectively reduces unnecessary migrations by ensuring that
only critical tasks are moved to less-loaded nodes. The failure
rate reduction achieved by PreGAN+ is 31.2%, which is
superior to threshold-based and reinforcement learning-based
migration approaches. The task migration overhead,
measured in milliseconds, is significantly lower for
PreGAN+, indicating that the system quickly adapts to
changing conditions with minimal delay.

Table 4. Performance comparison of fault-tolerant strategies

Failure Rate Task
Model Reduction (%) Migration
Overhead (ms)

Threshold-Based 17.3 52
Reinforcement
Learning-Based 24.8 39

PreGAN+

(Proposed) 31.2 27

Table 3 provides an analysis of the energy consumption
of different models. Energy efficiency is a critical factor in
MEC environments with power resources limited. The
proposed model demonstrates a reduction in energy
consumption by 16.7% when compared to traditional
approaches. This is attributed to the optimized resource
allocation and effective fault prediction mechanism of
PreGAN+. The reduction in energy consumption translates to
prolonged device lifespan and reduced operational costs in
edge computing networks.

Table 4 compares the performance of PreGAN+ with
other fault-tolerant task migration strategies. It includes
PCFT, ECLB, CMODLB, DFTM, and GOBI. The
comparison highlights the superior performance of PreGAN+
in terms of fault detection accuracy, migration efficiency, and
energy savings.
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effectiveness of PreGAN+ in fault detection, task migration,
and energy efficiency. The proposed model outperforms
existing approaches in all key performance metrics. It makes
it a promising solution for fault-tolerant MEC systems.
Figure 2 presents a comparative analysis of detection
accuracy versus the number of faults for multiple fault
detection models. Six models are analyzed: PreGAN plus,
PCFT, ECLB, CMODLB, DFTM, and GOBI. Among them,
PreGAN plus shows the highest accuracy. It starts at around
80 percent for 10 faults and improves to nearly 98 percent for
100 faults.

The PCFT model follows closely behind, with accuracy
ranging between 75 and 92 percent. The GOBI model
performs slightly better than PCFT. It achieves
approximately 95 percent accuracy for high fault numbers.
The models ECLB, CMODLB, and DFTM show moderate
performance. The detection accuracy increases steadily but
remains lower than the top models. The CMODLB model
starts at 70 percent accuracy. It reaches 85 percent at the
highest fault level. This indicates the lowest efficiency among
all models.

The trend in the figure suggests that as the number of
faults increases, all models improve in accuracy, but the rates
of improvement vary. The PreGAN plus model demonstrates
a steeper accuracy increase, signifying better adaptability to
more faults. The PCFT and GOBI models show similar trends
but with a slightly lower accuracy margin. The ECLB and
DFTM models maintain a steady performance. It ends at
about 88 and 90 percent accuracy, respectively. The
CMODLB model exhibits the slowest growth. It reflects
possible inefficiencies in fault detection. The overall trends
indicate that GAN-based models like PreGAN plus and
GOBI outperform traditional fault detection methods. It
confirms higher accuracy as fault numbers grow. This figure
highlights the superiority of GAN-enhanced models for fault
detection in systems with an increasing number of faults.
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Fig. 2 Detection Accuracy versus Number of Faults
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Fig. 3 Precision, Recall & F1-Score Comparison

Figure 3 presents a bar chart comparing precision, recall,
and Fl-score for different fault categories. CPU
overutilization has the highest scores across all fault
categories. Precision reaches approximately 93 percent.
Recall is around 90 percent. The F1-score is slightly above
91 percent. Network overload has the lowest recall at around
82 percent. Its precision and F1-score remain close to 85
percent. Memory leak has lower recall than precision. Recall
is around 83 percent, while precision is about 86 percent. This
results in an F1-score slightly below 85 percent. The trend in
the figure shows that precision is generally higher than recall
across all fault categories. The models are better at correctly
classifying faults when they occur. However, they miss some
actual instances, reducing recall. The abnormal memory
allocation category shows balanced performance. Precision is
slightly above 90 percent. Recall is near 88 percent. The F1-
score closely aligns with precision. Abnormal disk utilization
follows a similar trend. Precision is around 87 percent. Recall
is near 85 percent. The F1-score falls within the same range.
Overall, the figure shows that detection models work best for
CPU overutilization and abnormal memory allocation.
Network overload and memory leaks are more challenging.
The results highlight the detection approach’s effectiveness.
They also show the need for recall improvements in fault
detection.
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Figure 4 presents a bar chart illustrating the hit rate at
100 percent for different fault categories. Among these
categories, CPU overutilization has the highest hit rate,
reaching approximately 95 percent. Abnormal memory
allocation closely follows, with a hit rate of nearly 91 percent.
Abnormal disk utilization has a hit rate of around 90 percent.
Memory leak shows a lower hit rate of about 87 percent.
Network overload achieves a hit rate of approximately 89
percent. The results indicate that CPU overutilization is the
most easily detected fault. It achieves the highest hit rate
among all categories. The trend in the figure suggests that
different fault types impact the hit rate at 100 percent
differently. CPU overutilization has the highest detection
efficiency. It suggests that it is more distinguishable
compared to other faults. Memory leak has the lowest hit rate,
indicating challenges in detection. This may be due to its
subtle impact on system performance. Network overload also
exhibits a relatively lower hit rate. As it shows, fault detection
in network-related issues requires optimization. The
detection model performs well across all categories. There is
room for improvement. Handling memory leaks and network
overload needs better optimization. The findings suggest that
refining detection algorithms for these specific faults
enhances overall system accuracy and reliability.

96
94 -
= 92 -
XX
= 90 A
X
g 88 -
—
® 86 -
L
g 84 -
T 82 -
CPUO ADU AMA

Fault Categories
Fig. 4 Hitrate@100% versus Fault Categories

Figure 5 illustrates the overhead ratio percentage versus
the number of tasks for multiple methods. The chart
compares six different methods: PreGAN plus, PCFT, ECLB,
CMODLB, DFTM, and GOBI. CMODLB has the highest
overhead ratio among all methods. It reaches approximately
42 percent at 100 tasks. GOBI and PCFT follow closely. The
overhead ratios are around 38 and 35 percent, respectively.
PreGAN plus maintains the lowest overhead ratio. It keeps
computational cost low as the number of tasks increases.
DFTM and ECLB show intermediate performance. The
overhead ratios stay between 30 and 35 percent at higher task
levels. The trend in the figure shows that as the number of
tasks increases, all methods experience a rise in the overhead
ratio. CMODLB incurs the highest computational overhead.
It suggests that it is less efficient in handling large workloads.



Sarala Patchala et al. / IJECE, 12(10), 50-63, 2025

GOBI and PCFT also exhibit increasing overhead, though the
growth rates are slightly lower. PreGAN plus maintains a
lower and more controlled increase in the overhead ratio. It
indicates its efficiency in managing computational resources.
DFTM and ECLB perform moderately. They balance
overhead cost and efficiency. The results suggest that
PreGAN plus is more scalable. It handles larger task loads
efficiently. CMODLB has significant computational
overhead. This limits its usability in high-load environments.

=¢=PreGAN+ =li=PCFT =#=ECLB
== CMODLB =¢=DFTM =0—GOBI

_. 50

ST

2

§ 30

B 20 -

2

s 10

S

O O T T T T T T T T T 1

10 20 30 40 50 60 70 80 90 100
Number of Tasks

Fig. 5 Overhead ratio versus Number of tasks

Figure 6 presents a bar chart that compares the
improvement ratio percentage across different fault
categories. PreGAN plus has the highest improvement ratio
in all fault categories. It reaches around 55 percent in network
overload. It achieves about 50 percent in abnormal memory
allocation. PCFT and GOBI also perform well. The
improvement ratios reach approximately 50 percent in
network overload. They achieve around 45 percent in
abnormal memory allocation. ECLB and DFTM show
moderate performance. The values range between 30 and 45
percent. CMODLB has the lowest improvement ratio. It
shows values between 20 and 40 percent across all fault
categories.

The trend in the figure indicates that different fault types
affect the improvement ratio of the models differently.
Network overload has the highest improvement ratios across
all models. PreGAN plus leads with nearly 55 percent. GOBI
and PCFT follow at around 50 percent. The abnormal
memory allocation category also shows high improvement
values. These fault types benefit from detection and
mitigation methods. CPU overutilization and memory leak
have lower improvement ratios. Most models achieve
between 25 and 40 percent. CMODLB remains the least
effective method in all categories. PreGAN plus maintains a
strong lead in overall improvement. The results show that
advanced models perform better. GAN-based methods
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handle complex faults more effectively than traditional
approaches.

mPreGAN+ mPCFT
= CMODLB = DFTM

=ECLB
= GOBI

Improvement Ratio (%)

CPUO ADU

MEL

Fault Categories

Fig. 6 Improvement ratio versus Fault categories

Figure 7 illustrates a line chart that compares energy
consumption as the task load increases. CMODLB consumes
the most energy among all methods. It starts at about 5.5
watts for 10 tasks. It reaches nearly 9.5 watts for 100 tasks.
PreGAN plus has the lowest energy consumption. It begins
at around 4.5 watts. It gradually increases to nearly 8 watts.
PCFT, ECLB, DFTM, and GOBI follow similar energy
trends. The consumption remains between the highest and
lowest values. The figure indicates that as task load increases,
energy consumption rises proportionally for all methods.
CMODLB shows the fastest increase in energy usage,
highlighting its inefficiency in handling larger workloads. In
contrast, PreGAN plus maintains the most efficient energy
usage pattern. It consumes the least power across all task
loads. The models PCFT, ECLB, DFTM, and GOBI follow
similar trends, consuming between 5 and 9 watts as tasks
increase. Different models affect energy efficiency in
different ways. PreGAN plus is the most optimized.
CMODLB leads to higher energy overhead.
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Fig. 7 Energy consumption versus Task load
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Fig. 8 Response time versus Fault severity

Figure 8 presents a line chart that illustrates the response
time in milliseconds versus fault severity. CMODLB has the
highest response time at all severity levels. It starts at about
42 milliseconds for low severity. It increases to nearly 80
milliseconds for high severity.

PreGAN plus has the lowest response time. It begins at
around 30 milliseconds. It reaches about 65 milliseconds as
fault severity increases. PCFT, ECLB, DFTM, and GOBI
follow a similar trend. The response times remain between
the highest and lowest values. The figure shows that all
models' response time increases as fault severity rises.

CMODLB demonstrates the highest delay. This
indicates that it takes longer to process faults than other
methods. PreGAN plus has the lowest response time,
suggesting it is more efficient in handling different fault
severity levels. PCFT, ECLB, DFTM, and GOBI exhibit
moderate response times. It follows a steady upward trend as
severity increases. All methods show higher response times
as fault severity increases. PreGAN plus is the most efficient
and fastest model. CMODLB remains the slowest among all
methods.

Figure 9 presents a line chart comparing the SLO
violation rate percentage against resource utilization. Six
different methods are analyzed: PreGAN plus, PCFT, ECLB,
CMODLB, DFTM, and GOBI. CMODLB has the highest
violation rate at all resource utilization levels. It starts at
around 5 percent at 50 percent utilization. It rises to nearly 27
percent at 100 percent utilization.

PreGAN plus has the lowest violation rate. It begins at
about 2 percent. It reaches around 15 percent as resource
utilization increases. PCFT, ECLB, DFTM, and GOBI follow
a similar trend. The violation rates remain between the
highest and lowest values. The trend in the figure shows that
as resource utilization increases, the service level objective
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violation rate also rises for all methods. CMODLB shows the
steepest growth in violation rate. It struggles to maintain
service level objectives under high workloads. PreGAN plus
has the lowest violation rate. It manages resources effectively
while providing compliance.

PCFT, ECLB, DFTM, and GOBI have moderate
violation rates. The rates increase steadily with resource
utilization. Traditional models struggle as system load rises.
Optimized models like PreGAN plus perform better. They
minimize violations more effectively.
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Fig. 9 SLO Violation Rate versus Resource Utilization

Figure 10 presents a line chart that compares task
migration count against the number of faults. Four different
methods are analyzed: PreGAN plus, PCFT, ECLB, and
DFTM. ECLB has the highest task migration count. It reaches
nearly 40 migrations at the maximum number of faults.
DFTM follows closely with slightly fewer migrations. PCFT
maintains a moderate migration rate. It stays between the
highest and lowest values.

PreGAN plus records the lowest task migration count. Its
migration rate increases more slowly than other methods. The
trend in the figure indicates that as the number of faults rises,
all methods experience an increase in task migration. ECLB
and DFTM show the steepest rise, saying that they require
more frequent task reallocations under fault conditions.
PCFT follows a similar pattern but at a lower rate. PreGAN
plus maintains the most stable performance with the least task
migrations.

This suggests that PreGAN plus is more efficient in
handling faults with minimal disruptions. ECLB and DFTM
incur higher computational overhead due to frequent
migrations. The results highlight that reducing task migration
is essential for maintaining system efficiency. PreGAN plus
demonstrates the most optimized approach among the
compared methods.
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Fig. 10 Task migration count versus Number of faults

Figure 11 presents a bar chart comparing the
performance metrics of different models based on fault
detection accuracy, task migration efficiency, and energy
reduction. Fault detection accuracy is the highest for all
models, exceeding 90 percent with minor variations.
PreGAN plus, DFTM, and GOBI achieve slightly better
accuracy compared to the other models. Task migration
efficiency varies across models. PreGAN plus has the highest
efficiency, close to 30 percent. GOBI and DFTM follow
behind. PCFT and CMODLB have lower efficiency levels.
Energy reduction has the lowest values among the three
metrics. It stays below 20 percent for all models. PreGAN
plus achieves the highest energy reduction. GOBI and DFTM
perform moderately. PCFT records the lowest energy
reduction. The figure shows that fault detection accuracy is
the strongest metric. Task migration efficiency and energy
reduction vary significantly. PreGAN plus performs best in
terms of both migration efficiency and energy reduction. It
handles tasks efficiently while consuming less energy. PCFT
and CMODLB perform the weakest. They have higher
computational overhead. GOBI and DFTM show moderate
performance in all metrics. They balance accuracy, task
management, and energy savings. Advanced models like
PreGAN plus and GOBI perform better overall. Traditional
models like PCFT and CMODLB need improvements. They
must enhance efficiency and energy utilization.

Figure 12 presents a line chart comparing the task
completion rate percentage over time for three models: the
traditional model, the GAN-based model, and the PreGAN
plus model. All three models show an increasing trend in task
completion as time progresses. The traditional model has the
slowest task completion rate. It starts at around O percent and
reaches around 90 percent in 45 minutes. The GAN-based
model performs better. It maintains a higher completion rate
than the traditional model at all times. The PreGAN plus
model has the highest completion rate.
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Fig. 11 Comparison of PreGAN+ versus Traditional models

It surpasses both models at every time step. It reaches
nearly 100 percent by the end of the period. The trend in the
figure indicates that the PreGAN plus model outperforms the
other two models in completing tasks faster. All models start
with a low completion rate. PreGAN plus quickly gains an
advantage. It reaches around 60 percent completion in 15
minutes.

The GAN-based model and traditional model remain
slightly lower. As time progresses, the gap between models
stays constant. PreGAN plus maintains the lead. The GAN-
based model follows. The traditional model remains the
slowest. The results show that advanced models improve task
scheduling. GAN-based and PreGAN plus achieve faster
completion rates. PreGAN plus performs the best. It is the
best choice for systems needing rapid task execution.
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Fig. 12 Task completion rate versus Time
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Fig. 13 Packet loss versus Network load

Figure 13 presents a line chart that compares packet loss
percentage against network load in Mbps for three models.
As network load increases, all three models experience a rise
in packet loss. The traditional model exhibits the highest
packet loss, reaching nearly 58 percent at 100 Mbps. The
GAN-based model performs better and maintains lower
packet loss than the traditional model at all points. It reaches
about 50 percent at the highest load. The PreGAN plus model
achieves the lowest packet loss. It peaks at around 42 percent
at 100 Mbps. The trend in the figure indicates that as network
load increases, congestion leads to higher packet loss. The
traditional model shows the steepest rise in packet loss. This
indicates that it is the least efficient in handling higher
network traffic. The GAN-based model demonstrates an
improvement over the traditional model, but packet loss
remains significant at higher loads. The PreGAN plus model
exhibits the best performance. It keeps packet loss lower
throughout the range. PreGAN plus optimizes network
resource management. It reduces packet loss more effectively
than traditional and GAN-based models. The results show
that advanced techniques perform better. PreGAN plus is
ideal for high-traffic environments. Minimizing packet loss
is crucial for efficient data transmission.

Figure 14 presents a line chart comparing latency in
milliseconds against task complexity levels for three models:
the traditional, GAN-based, and PreGAN plus models. As
task complexity increases, all three models experience a rise
in latency. The traditional model has the highest latency. It
reaches nearly 220 milliseconds at the highest complexity
level. The GAN-based model performs better. It maintains
lower latency than the traditional model. However, it still
reaches around 190 milliseconds at extreme complexity. The
PreGAN plus model has the lowest latency. It stays below
160 milliseconds even at the highest complexity. The figure
shows that higher task complexity increases computational
demand. This leads to higher latency for all models.
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Fig. 14 Latency versus Task complexity

The traditional model exhibits the steepest increase,
showing inefficiency in handling complex tasks. The GAN-
based model performs better but still experiences noticeable
latency growth. PreGAN plus has the lowest latency. It is the
most optimized for handling complex tasks. This shows the
advantage of advanced models. PreGAN plus processes high-
complexity tasks with lower latency. It achieves faster system
response. It improves task execution efficiency.
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Fig. 15 Computational time versus Number of tasks

Figure 15 presents a line chart comparing computation
time in milliseconds against the number of tasks. Among
these models, CMODLB exhibits the highest computation
time across all task numbers. It reaches nearly 65
milliseconds at 100 tasks. PreGAN plus has the lowest
computation time. It starts at about 5 milliseconds for 10
tasks. It gradually increases to 35 milliseconds at 100 tasks.
Other models, including PCFT, ECLB, DFTM, and GOBI,
show a steady rise. The computation times stay between the
highest and lowest values. The trend in the figure indicates
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that as the number of tasks increases, computation time rises
for all models. CMODLB shows the steepest increase,
indicating that it requires more processing power as the
workload increases. PreGAN plus maintains the lowest and
most stable computation time. It suggests it is the most
optimized model for handling multiple tasks. PCFT, ECLB,
DFTM, and GOBI have moderate computation times. The
values range from about 10 to 50 milliseconds as tasks
increase. Different models impact computational efficiency
in different ways. PreGAN plus provides the best
performance. CMODLB has the highest computational cost
as task numbers rise.
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Fig. 16 CPU usage versus Number of tasks

Figure 16 presents a line chart comparing CPU usage
percentage against the number of tasks for three models. The
traditional model has the highest CPU usage. It starts at
around 25 percent for 10 tasks. It reaches nearly 90 percent
for 100 tasks. The GAN-based model follows a similar trend.
It starts near 22 percent and peaks at 85 percent for 100 tasks.
PreGAN plus has the lowest CPU usage. It begins at about 20
percent. It increases to around 80 percent as tasks rise. The
trend in the figure shows that as the number of tasks
increases, CPU usage rises for all models. The traditional
model exhibits the steepest growth, indicating it is the least
efficient in managing computational load. The GAN-based
model demonstrates improved efficiency compared to the
traditional model. It still consumes a significant amount of
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