
SSRG International Journal of Electronics and Communication Engineering Volume 12 Issue 10, 50-63, October 2025

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12I10P106 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Semi-Supervised Fault Prediction and Proactive

Task Migration in Dynamic Edge Environments

using PreGAN+

Sarala Patchala1, Banda S N V Ramana Murthy2, Vijaya Babu Burra3, Shaik Jameer4, Vullam Naga Gopiraju5,

Inakoti Ramesh Raja6

1Department of ECE, KKR & KSR Institute of Technology and Sciences, Guntur, Andhra Pradesh, India.

2Department of CSE-AIML, Aditya University, Surampalem, Andhra Pradesh, India.
3Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur,

Andhra Pradesh, India.
4Department of CSE(AI&ML), Lakireddy Bali Reddy College of Engineering, NTR District, Andhra Pradesh, India.
5Department of Computer Science and Engineering, Chalapathi Institute of Engineering and Technology, Guntur,

Andhra Pradesh, India.
6Department of ECE, Aditya University, Surampalem, Andhra Pradesh, India.

1Corresponding Author : saralajntuk@gmail.com

Received: 06 August 2025 Revised: 08 September 2025 Accepted: 07 October 2025 Published: 31 October 2025

Abstract - Mobile Edge Computing (MEC) systems operate at the network's edge. They use resource-constrained devices.

These systems face challenges due to limited computing power. Frequent faults occur due to high workloads and system

failures. To address this, fault-tolerant approaches help maintain system stability. One common method is pre-emptive

migration. It transfers active tasks from overloaded nodes to available ones. However, existing approaches struggle to adapt

to unpredictable workloads. Many fail to detect anomalies accurately. This leads to inefficient resource utilization and system

failures. PreGAN+ is a machine learning-based fault prediction model. It uses Generative Adversarial Networks (GANs) to

detect faults. GANs model complex distributions and predict faults accurately. PreGAN+ also identifies which resource type

(CPU, memory, or disk) is to fail. The model achieves quick adaptation to dynamic environments. It minimizes unnecessary

migrations by focusing only on critical tasks. PreGAN consists of two parts. The first part is a neural network-based fault

classifier. It uses a few-shot learning method for accurate classification. The second part is a GAN-based decision model. This

component generates optimal migration decisions. PreGAN uses coupled simulations to train its GAN model. The system

continuously updates its fault classification decisions. PreGAN+ extends the original PreGAN model. It introduces a semi-

supervised learning method. This method fine-tunes the decision model using limited labeled data. The updated model uses a

Transformer-based neural network. This improves tuning speed and accuracy. However, it also increases memory usage. The

research highlights the advantages of using GANs for predictive modeling. The study confirms that semi-supervised learning

improves adaptability in dynamic environments. PreGAN+ provides an effective solution for fault-tolerant computing in MEC

systems. It results in higher Quality of Service (QoS) while optimizing resource utilization. The model is highly beneficial for

environments with frequent workload fluctuations.

Keywords - Fault prediction, GAN, Mobile edge computing, Pre-GAN, Quality of Service.

1. Introduction
MEC follows the data gravity principle [1]. It processes

data close to its source. This includes sensors and actuators

in IoT networks. MEC is widely used in smart cities,

industrial automation, and healthcare applications [2]. It

improves system efficiency and reduces network congestion.

However, MEC devices have limited computing resources.

These limitations cause frequent system failures and resource

contention [3]. In modern MEC environments, workloads

change unpredictably. Resource demands are non-stationary.

Computational power is expensive, and redundant systems

are impractical. This makes fault tolerance essential.

Effective solutions must predict system faults in real-time [4].

They must also provide quick remediation. Traditional fault-

tolerant methods struggle to meet these demands. Many

existing approaches fail under high workload variations.

MEC systems require dynamic adaptation techniques to

balance efficiency and cost. MEC systems face several

http://creativecommons.org/licenses/by-nc-nd/4.0/

Sarala Patchala et al. / IJECE, 12(10), 50-63, 2025

51

challenges. One major issue is resource allocation. Edge

devices have limited CPU, memory, and disk space [5]. They

operate under strict power constraints. Managing these

resources effectively is critical. Another challenge is network

latency. Data transmission between edge nodes and cloud

servers must be minimized [6]. High latency affects

application performance. Additionally, MEC systems need to

handle unpredictable workloads. The number of connected

devices fluctuates. Resource allocation strategies must

dynamically adjust [7].

Security is another concern. MEC devices are vulnerable

to cyber-attacks. Unauthorized access to edge nodes leads to

data breaches [8]. Providing secure data transmission and

storage is a priority. Traditional cloud-based security

measures are insufficient. MEC requires lightweight and

distributed security solutions [9]. Moreover, energy

efficiency is crucial. Edge devices operate on battery power.

Optimizing energy consumption while maintaining

performance is a key research area. The goal of fault

tolerance is to prevent system failures [10]. A system should

predict faults early and take action. For MEC, fault prediction

means identifying nodes at risk. It also involves detecting

resource bottlenecks like CPU, memory, or disk overload.

Predicting these issues allows systems to manage resources

proactively [11]. Early fault detection prevents performance

degradation and costly downtime. Current fault-tolerant

strategies include redundancy and checkpointing. These

methods result in the availability of backup systems.

However, redundancy is expensive. It also requires additional

hardware, which is impractical for MEC. Effective pre-

emptive migration strategies must balance system load while

minimizing overhead [12].

This paper presents PreGAN+. It is an advanced fault-

tolerant model for MEC. PreGAN+ integrates deep learning

with GANs [13]. It combines real-time fault prediction with

pre-emptive migration strategies. The model accurately

detects faults and mitigates impact. PreGAN uses coupled

simulations to train its GAN model. The system continuously

updates its fault classification decisions. It adapts

dynamically to changing workloads. PreGAN+ extends the

original PreGAN model. It introduces a semi-supervised

learning method. This method fine-tunes the decision model

using limited labeled data. The updated model uses a

Transformer-based neural network. This improves tuning

speed and accuracy. However, it also increases memory

usage. The model balances performance and computational

efficiency. The key contributions of this paper are as follows:

 A novel GAN-based fault prediction model. It accurately

detects system faults in real-time.

 Identification of critical system resources. The model

predicts specific resource bottlenecks like CPU,

memory, or disk overload.

 A semi-supervised learning approach. It enables

continuous adaptation to changing workloads.

 A Transformer-based tuning method. This method

improves fault detection accuracy with low latency.

 Implementation and validation on a real-world MEC

testbed. The model demonstrates superior performance

over existing solutions.

 Reduction in unnecessary task migrations. The model

balances system efficiency and fault tolerance.

 Improved QoS through proactive fault management. The

model reduces energy consumption and response time.

This research highlights the need for intelligent fault-

tolerant models. PreGAN+ provides an adaptive solution for

MEC environments. It provides system reliability and

optimizes resource utilization. The proposed approach is

practical and scalable. Future research will explore

optimizations. By addressing these areas, future iterations of

PreGAN+ improve MEC performance and reliability. This

work serves as a foundation for developing advanced fault-

tolerant mechanisms in edge computing.

2. Background Work
Fault tolerance in MEC is widely studied, with numerous

approaches proposed to enhance system reliability and

efficiency. This section reviews the existing fault-tolerant

strategies. It includes machine learning-based fault

prediction, redundancy-based techniques, task migration

strategies, and federated learning approaches. The literature

highlights the need for intelligent, adaptive fault management

systems that effectively handle dynamic workloads and

minimize computational overhead. One of MEC's most

traditional fault tolerance mechanisms is redundancy, where

backup tasks are maintained to maintain service continuity in

case of failures [14]. Redundancy-based approaches, namely

checkpointing [15] and task replication [16], are widely

adopted to provide reliability. However, these methods come

with significant computational overhead and energy

consumption, making them impractical for resource-

constrained MEC environments [17]. Machine learning-

based fault prediction models have emerged as an effective

alternative to redundancy-based techniques. Various

supervised and unsupervised learning methods are employed

to detect anomalies and predict system failures in MEC [18].

Support Vector Machines (SVMs) [19] and Decision Trees

[20] are used to classify normal and faulty system states.

However, these traditional classifiers often require extensive

labeled datasets for training, which limits their applicability

in real-world scenarios [21].

Deep learning models like Convolutional Neural

Networks (CNNs) [22] and Long Short-Term Memory

(LSTM) networks [23] have demonstrated improved

prediction accuracy compared to traditional machine learning

methods. These models are capable of learning from

historical system logs and adapting to changing network

Sarala Patchala et al. / IJECE, 12(10), 50-63, 2025

52

conditions. Nevertheless, deep learning models are often

computationally expensive, making the deployment

challenging in edge computing environments [24]. GANs

have recently been explored for fault detection and system

anomaly classification [25]. GAN-based fault prediction

models generate synthetic failure scenarios to improve

classification accuracy. Studies show that GANs

significantly enhance the generalization capability of fault

prediction models, outperforming traditional approaches

[26]. However, GANs suffer from challenges like mode

collapse and require extensive computational resources for

training [27]. Task migration strategies play a crucial role in

fault-tolerant MEC systems. Migration techniques maintain

that tasks are dynamically reassigned from failing nodes to

healthy ones [28]. Threshold-based migration policies [29]

initiate task transfers when system parameters exceed

predefined limits. While effective in some cases, these

policies often lead to unnecessary migrations, increase

network congestion, and energy consumption [30]. To

optimize task migration, reinforcement learning-based

approaches are proposed [31]. These methods leverage

dynamic learning mechanisms to find optimal migration

policies over time, reducing system failures while

maintaining efficiency. Federated learning-based task

migration has also gained attention, allowing distributed edge

nodes to collaboratively learn optimal migration strategies

without sharing raw data. This approach enhances privacy

while maintaining adaptability in large-scale MEC

deployments.

3. Methodology
The proposed PreGAN+ model integrates deep learning

techniques with MEC fault tolerance strategies. The model

consists of multiple components, including data pre-

processing, GANs for fault prediction, and a Transformer-

based task migration strategy. This section provides a

comprehensive explanation of the methodology. Figure 1

represents a complex scheduling framework that integrates

decision-making, migration handling, and deep learning

models for optimization. The scheduling decision module

processes system inputs and generates a scheduling choice.

This choice is fed into the preemptive migration generator. It

evaluates whether migration is necessary. The output is

passed to the preemptive migration discrimination module,

which determines the final migration decision. If migration is

approved, the system state will be updated. This module

captures meaningful patterns for effective decision-making.

The lower part of the figure illustrates the deep learning-

based prediction system. A time series window and

embedding sequence are input into the model. The graph

attention module processes the time series data to extract

dependencies and relations. The processed data is then passed

to a transformer model that learns meaningful patterns. The

output from the transformer is sent to feed-forward layers. It

applies activation functions for classification. The softmax

function is used for probability estimation, while the sigmoid

function handles binary classification tasks.

Fig. 1 PreGAN+ Model

The MEC network consists of a set of N edge nodes that

manage computation tasks. Each node has a limited set of

resources: processing power , memory and disk

storage . The total resource availability per node is

represented as:

 (1)

cpuR
memR

diskR

total cpu mem diskR = R + R + R

Scheduling Decision
Preemptive Migration

Generator

Preemptive Migration

Discrimination

Embedding Generator

Time Series Window

Embedding Sequence

Graph

Attention
Feed

Forward
Softmax

Feed

Forward Sigmoid Transformer

+

C

S

W

C

D

N

+ C
Legend Add Concatenate

1O

TP

A

TD

F

TE

Sarala Patchala et al. / IJECE, 12(10), 50-63, 2025

53

Tasks arrive dynamically at the MEC node n at time

t and are assigned to nodes based on the computational

demand . The objective is to allocate resources efficiently

while predicting failures in advance. Each task has multiple

parameters: execution time , CPU consumption ,

memory requirement , and failure probability . These

parameters form the task feature vector:

 (2)

The MEC scheduler monitors these tasks and triggers

migration when resource thresholds are exceeded. The failure

probability is continuously estimated based on historical

data and current resource conditions. The failure probability

is computed as:

 (3)

 Here, represents failure occurrences, and is a small

constant to avoid division by zero. The MEC system

distributes tasks dynamically across nodes to balance load

and minimize failures. The resource allocation function

follows:

 (4)

Here, represents the demand of task at time t. The

system minimizes the allocation imbalance using:

 (5)

Here, is the mean resource utilization across nodes.

PreGAN+ uses a GAN for fault prediction. The generator G

creates synthetic failure scenarios, while the discriminator D

differentiates real failures from synthetic ones. The loss

function is:

(6)

 (7)

Here, represents real data and is the noise input

to G. The gradient updates for the discriminator are computed

as:

(8)

While for the generator:

 (9)

To improve GAN training, a semi-supervised approach

is used, combining labeled and unlabeled data:

 (10)

Here, is a balance parameter. PreGAN+ uses a

Transformer model to make migration decisions. The

attention mechanism is computed as:

 (11)

Here, are query, key, and value matrices.

Task migration decisions are made based on:

(12)

Here, and are thresholds. To minimize

unnecessary migrations, an optimization function is used:

 (13)

Here, are weight factors. The expected system

reliability is:

 (14)

Finally, the migration cost is defined as:

 (15)

Here, is the migration overhead of task .

PreGAN+ integrates GAN-based fault prediction and

iT

iD

iX
iC

iM iP

i i i i iX = {X ,C ,M ,P}

iP

i
i

i

F
P =

T +ò

iF ò

N
i

alloc

i=1 total

D
R (t) =

R


iD iT

2
N

i

i=1 total

D
min -

R


 
 
 





data zD x~P z~PL = -E [logD(x)]- E [log(1- D(G(z)))]

zG z~PL = -E [logD(G(z))]

dataP
zP

D data D z DD x~P z~PL = E [logD(x)]+ E [log(1- D(G(z)))]    

G z GG z~PL = E [logD(G(z))]  

sup unsupL = L + L



T

i j

ij T

i k

k

exp(Q K / d)
A =

exp(Q K / d)

(Q,K,V)

i i totalM(T) =1,if P and R

0, otherwise

  

 

T

t t

t=1

min (F + U) 

(,) 

sR

N

s i

i=1

1
R = (1- P)

N


mC

N

m i i

i=1

C = M(T)×C(T)

iC(T) iT

Sarala Patchala et al. / IJECE, 12(10), 50-63, 2025

54

Transformer-driven migration strategies. The methodology

achieves high accuracy and adaptability for MEC fault

tolerance. The proposed model outperforms traditional

methods in fault detection, system stability, and task

migration efficiency.

Algorithm 1: PreGAN+ Testing Algorithm

1. Input: Task set T, Edge nodes N, Trained PreGAN+

model M

2. Initialize system parameters and load test dataset

3. For each task do

4. Extract resource features

5. Normalize features using min-max scaling.

6. Predict failure probability using model M.

7. if (fault threshold) then

8. Identify an alternative node with sufficient

resources.

9. if then

10. Migrate to node

11. Log migration event

12. else

13. Retry with the next optimal node.

14. end if

15. else

16. Execute on the current node.

17. end if

18. Monitor execution performance and log results.

19. end for

20. Output: Task execution status, failure logs, and

migration summary

Algorithm 2: Offline Fault Prediction Engine (FPE)

Training Algorithm

1. Input: Historical failure data D, Learning rate ,

Batch size B, Epochs E

2. Initialize model parameters randomly

3. for to do

4. Shuffle dataset D

5. for each batch from D

6. Extract features and labels

7. Normalize features using min-max scaling.

8. Compute predicted outputs

9. Compute loss

10. Compute gradients

11. Update model parameters

12. end for

13. Evaluate model performance on the validation set.

14. Log training loss and accuracy.

15. end for

16. Save trained model parameters

17. Output: Trained fault prediction model

4. Experimental Results
This section describes the experimental setup, evaluation

metrics, and performance analysis of the PreGAN+ model.

The experiments were conducted on an MEC testbed to

evaluate fault detection accuracy, task migration efficiency,

and system reliability. The workloads for edge nodes were

generated dynamically to simulate real-world task execution

and failure conditions.

PreGAN+ was evaluated using several performance

metrics to assess its efficiency in fault detection and system

reliability. The Fault Detection Accuracy (FDA) was

measured as the proportion of correctly identified faults to the

total number of faults. The False Positive Rate (FPR) was

analyzed to determine how often a non-faulty node was

incorrectly classified as faulty.

Task Migration Efficiency (TME) was measured by

calculating the number of unnecessary task migrations and

the impact on system stability. Energy Consumption (EC)

was recorded to evaluate the overall power efficiency of

PreGAN+ in comparison to existing models. Table 1 presents

the fault detection accuracy of PreGAN+ compared to

traditional models.

The results indicate that PreGAN+ achieves an accuracy

of 96.5%, which is significantly higher than that of the SVM-

based and CNN-based models. Moreover, the false positive

rate is reduced to 5.7%, demonstrating improved reliability in

distinguishing faulty from non-faulty nodes.

Table 1. Fault detection accuracy comparison

Model FDA (%) FPR (%)
Precision

(%)

SVM – Based

Model
82.3 14.5 80.7

CNN – Based

Model
88.6 10.2 85.1

GAN – Based

Model
92.4 8.1 89.3

PreGAN+

(Proposed)
96.5 5.7 94.8

iT T

i i i iX = {C ,M ,P}

iP

iP 

jN

available j minR (N) > R

iT jN

iT





epoch =1 E

b B

bX bY

b bŶ = f (X)

2

b b

1 ˆL = (Y - Y)
B


L

- L   

*

Sarala Patchala et al. / IJECE, 12(10), 50-63, 2025

55

Table 2. Task migration efficiency

Model Average Power (W) Energy Reduction (%)

Traditional Model 4.8 0

GAN-Based Model 4.3 10.4

PreGAN+ (Proposed) 4.0 16.7

Table 3. Energy consumption analysis

Model FDA (%) Task Migration Overhead (ms) Energy Reduction (%)

PCFT 89.5 45 10.1

ECLB 91.3 40 12.5

CMODLB 92.7 38 13.8

DFTM 94.1 35 14.6

GOBI 95.2 30 15.9

PreGAN+(Proposed) 96.5 27 16.7

Table 2 presents the task migration efficiency results.

Task migration efficiency is crucial in maintaining system

stability and reducing failures. The proposed model

effectively reduces unnecessary migrations by ensuring that

only critical tasks are moved to less-loaded nodes. The failure

rate reduction achieved by PreGAN+ is 31.2%, which is

superior to threshold-based and reinforcement learning-based

migration approaches. The task migration overhead,

measured in milliseconds, is significantly lower for

PreGAN+, indicating that the system quickly adapts to

changing conditions with minimal delay.

Table 4. Performance comparison of fault-tolerant strategies

Model
Failure Rate

Reduction (%)

Task

Migration

Overhead (ms)

Threshold-Based 17.3 52

Reinforcement

Learning-Based
24.8 39

PreGAN+

(Proposed)
31.2 27

Table 3 provides an analysis of the energy consumption

of different models. Energy efficiency is a critical factor in

MEC environments with power resources limited. The

proposed model demonstrates a reduction in energy

consumption by 16.7% when compared to traditional

approaches. This is attributed to the optimized resource

allocation and effective fault prediction mechanism of

PreGAN+. The reduction in energy consumption translates to

prolonged device lifespan and reduced operational costs in

edge computing networks.

Table 4 compares the performance of PreGAN+ with

other fault-tolerant task migration strategies. It includes

PCFT, ECLB, CMODLB, DFTM, and GOBI. The

comparison highlights the superior performance of PreGAN+

in terms of fault detection accuracy, migration efficiency, and

energy savings.

The experimental evaluation demonstrates the

effectiveness of PreGAN+ in fault detection, task migration,

and energy efficiency. The proposed model outperforms

existing approaches in all key performance metrics. It makes

it a promising solution for fault-tolerant MEC systems.

Figure 2 presents a comparative analysis of detection

accuracy versus the number of faults for multiple fault

detection models. Six models are analyzed: PreGAN plus,

PCFT, ECLB, CMODLB, DFTM, and GOBI. Among them,

PreGAN plus shows the highest accuracy. It starts at around

80 percent for 10 faults and improves to nearly 98 percent for

100 faults.

The PCFT model follows closely behind, with accuracy

ranging between 75 and 92 percent. The GOBI model

performs slightly better than PCFT. It achieves

approximately 95 percent accuracy for high fault numbers.

The models ECLB, CMODLB, and DFTM show moderate

performance. The detection accuracy increases steadily but

remains lower than the top models. The CMODLB model

starts at 70 percent accuracy. It reaches 85 percent at the

highest fault level. This indicates the lowest efficiency among

all models.

The trend in the figure suggests that as the number of

faults increases, all models improve in accuracy, but the rates

of improvement vary. The PreGAN plus model demonstrates

a steeper accuracy increase, signifying better adaptability to

more faults. The PCFT and GOBI models show similar trends

but with a slightly lower accuracy margin. The ECLB and

DFTM models maintain a steady performance. It ends at

about 88 and 90 percent accuracy, respectively. The

CMODLB model exhibits the slowest growth. It reflects

possible inefficiencies in fault detection. The overall trends

indicate that GAN-based models like PreGAN plus and

GOBI outperform traditional fault detection methods. It

confirms higher accuracy as fault numbers grow. This figure

highlights the superiority of GAN-enhanced models for fault

detection in systems with an increasing number of faults.

Sarala Patchala et al. / IJECE, 12(10), 50-63, 2025

56

Fig. 2 Detection Accuracy versus Number of Faults

Fig. 3 Precision, Recall & F1-Score Comparison

Figure 3 presents a bar chart comparing precision, recall,

and F1-score for different fault categories. CPU

overutilization has the highest scores across all fault

categories. Precision reaches approximately 93 percent.

Recall is around 90 percent. The F1-score is slightly above

91 percent. Network overload has the lowest recall at around

82 percent. Its precision and F1-score remain close to 85

percent. Memory leak has lower recall than precision. Recall

is around 83 percent, while precision is about 86 percent. This

results in an F1-score slightly below 85 percent. The trend in

the figure shows that precision is generally higher than recall

across all fault categories. The models are better at correctly

classifying faults when they occur. However, they miss some

actual instances, reducing recall. The abnormal memory

allocation category shows balanced performance. Precision is

slightly above 90 percent. Recall is near 88 percent. The F1-

score closely aligns with precision. Abnormal disk utilization

follows a similar trend. Precision is around 87 percent. Recall

is near 85 percent. The F1-score falls within the same range.

Overall, the figure shows that detection models work best for

CPU overutilization and abnormal memory allocation.

Network overload and memory leaks are more challenging.

The results highlight the detection approach’s effectiveness.

They also show the need for recall improvements in fault

detection.

Figure 4 presents a bar chart illustrating the hit rate at

100 percent for different fault categories. Among these

categories, CPU overutilization has the highest hit rate,

reaching approximately 95 percent. Abnormal memory

allocation closely follows, with a hit rate of nearly 91 percent.

Abnormal disk utilization has a hit rate of around 90 percent.

Memory leak shows a lower hit rate of about 87 percent.

Network overload achieves a hit rate of approximately 89

percent. The results indicate that CPU overutilization is the

most easily detected fault. It achieves the highest hit rate

among all categories. The trend in the figure suggests that

different fault types impact the hit rate at 100 percent

differently. CPU overutilization has the highest detection

efficiency. It suggests that it is more distinguishable

compared to other faults. Memory leak has the lowest hit rate,

indicating challenges in detection. This may be due to its

subtle impact on system performance. Network overload also

exhibits a relatively lower hit rate. As it shows, fault detection

in network-related issues requires optimization. The

detection model performs well across all categories. There is

room for improvement. Handling memory leaks and network

overload needs better optimization. The findings suggest that

refining detection algorithms for these specific faults

enhances overall system accuracy and reliability.

Fig. 4 Hitrate@100% versus Fault Categories

Figure 5 illustrates the overhead ratio percentage versus

the number of tasks for multiple methods. The chart

compares six different methods: PreGAN plus, PCFT, ECLB,

CMODLB, DFTM, and GOBI. CMODLB has the highest

overhead ratio among all methods. It reaches approximately

42 percent at 100 tasks. GOBI and PCFT follow closely. The

overhead ratios are around 38 and 35 percent, respectively.

PreGAN plus maintains the lowest overhead ratio. It keeps

computational cost low as the number of tasks increases.

DFTM and ECLB show intermediate performance. The

overhead ratios stay between 30 and 35 percent at higher task

levels. The trend in the figure shows that as the number of

tasks increases, all methods experience a rise in the overhead

ratio. CMODLB incurs the highest computational overhead.

It suggests that it is less efficient in handling large workloads.

65
70
75
80
85
90
95

100

10 20 30 40 50 60 70 80 90 100

D
et

ec
ti

o
n
 A

cc
u
ra

cy
 (

%
)

Number of Faults

PreGAN+ PCFT ECLB

CMODLB DFTM GOBI

75

80

85

90

95

CPUO ADU MEL AMA NOL

S
co

re
 (

%
)

Fault Categories

Precision (%) Recall (%) F1-Score (%)

82

84

86

88

90

92

94

96

CPUO ADU MEL AMA NOL

H
it

R
at

e@
1

0
0

%
 (

%
)

Fault Categories

Sarala Patchala et al. / IJECE, 12(10), 50-63, 2025

57

GOBI and PCFT also exhibit increasing overhead, though the

growth rates are slightly lower. PreGAN plus maintains a

lower and more controlled increase in the overhead ratio. It

indicates its efficiency in managing computational resources.

DFTM and ECLB perform moderately. They balance

overhead cost and efficiency. The results suggest that

PreGAN plus is more scalable. It handles larger task loads

efficiently. CMODLB has significant computational

overhead. This limits its usability in high-load environments.

Fig. 5 Overhead ratio versus Number of tasks

Figure 6 presents a bar chart that compares the

improvement ratio percentage across different fault

categories. PreGAN plus has the highest improvement ratio

in all fault categories. It reaches around 55 percent in network

overload. It achieves about 50 percent in abnormal memory

allocation. PCFT and GOBI also perform well. The

improvement ratios reach approximately 50 percent in

network overload. They achieve around 45 percent in

abnormal memory allocation. ECLB and DFTM show

moderate performance. The values range between 30 and 45

percent. CMODLB has the lowest improvement ratio. It

shows values between 20 and 40 percent across all fault

categories.

The trend in the figure indicates that different fault types

affect the improvement ratio of the models differently.

Network overload has the highest improvement ratios across

all models. PreGAN plus leads with nearly 55 percent. GOBI

and PCFT follow at around 50 percent. The abnormal

memory allocation category also shows high improvement

values. These fault types benefit from detection and

mitigation methods. CPU overutilization and memory leak

have lower improvement ratios. Most models achieve

between 25 and 40 percent. CMODLB remains the least

effective method in all categories. PreGAN plus maintains a

strong lead in overall improvement. The results show that

advanced models perform better. GAN-based methods

handle complex faults more effectively than traditional

approaches.

Fig. 6 Improvement ratio versus Fault categories

Figure 7 illustrates a line chart that compares energy

consumption as the task load increases. CMODLB consumes

the most energy among all methods. It starts at about 5.5

watts for 10 tasks. It reaches nearly 9.5 watts for 100 tasks.

PreGAN plus has the lowest energy consumption. It begins

at around 4.5 watts. It gradually increases to nearly 8 watts.

PCFT, ECLB, DFTM, and GOBI follow similar energy

trends. The consumption remains between the highest and

lowest values. The figure indicates that as task load increases,

energy consumption rises proportionally for all methods.

CMODLB shows the fastest increase in energy usage,

highlighting its inefficiency in handling larger workloads. In

contrast, PreGAN plus maintains the most efficient energy

usage pattern. It consumes the least power across all task

loads. The models PCFT, ECLB, DFTM, and GOBI follow

similar trends, consuming between 5 and 9 watts as tasks

increase. Different models affect energy efficiency in

different ways. PreGAN plus is the most optimized.

CMODLB leads to higher energy overhead.

Fig. 7 Energy consumption versus Task load

0

10

20

30

40

50

10 20 30 40 50 60 70 80 90 100

O
v
er

h
ea

d
 R

at
io

 (
%

)

Number of Tasks

PreGAN+ PCFT ECLB

CMODLB DFTM GOBI

15
20
25
30
35
40
45
50
55
60

CPUO ADU MEL AMA NOL

Im
p

ro
v
em

en
t

R
at

io
 (

%
)

Fault Categories

PreGAN+ PCFT ECLB

CMODLB DFTM GOBI

4
5
6
7
8
9

10

10 20 30 40 50 60 70 80 90 100

E
n
er

g
y
 C

o
n
su

m
p

ti
o

n
 (

W
at

ts
)

Task Load (Number of Concurrent Tasks)

PreGAN+ PCFT ECLB

CMODLB DFTM GOBI

Sarala Patchala et al. / IJECE, 12(10), 50-63, 2025

58

Fig. 8 Response time versus Fault severity

Figure 8 presents a line chart that illustrates the response

time in milliseconds versus fault severity. CMODLB has the

highest response time at all severity levels. It starts at about

42 milliseconds for low severity. It increases to nearly 80

milliseconds for high severity.

PreGAN plus has the lowest response time. It begins at

around 30 milliseconds. It reaches about 65 milliseconds as

fault severity increases. PCFT, ECLB, DFTM, and GOBI

follow a similar trend. The response times remain between

the highest and lowest values. The figure shows that all

models' response time increases as fault severity rises.

CMODLB demonstrates the highest delay. This

indicates that it takes longer to process faults than other

methods. PreGAN plus has the lowest response time,

suggesting it is more efficient in handling different fault

severity levels. PCFT, ECLB, DFTM, and GOBI exhibit

moderate response times. It follows a steady upward trend as

severity increases. All methods show higher response times

as fault severity increases. PreGAN plus is the most efficient

and fastest model. CMODLB remains the slowest among all

methods.

Figure 9 presents a line chart comparing the SLO

violation rate percentage against resource utilization. Six

different methods are analyzed: PreGAN plus, PCFT, ECLB,

CMODLB, DFTM, and GOBI. CMODLB has the highest

violation rate at all resource utilization levels. It starts at

around 5 percent at 50 percent utilization. It rises to nearly 27

percent at 100 percent utilization.

PreGAN plus has the lowest violation rate. It begins at

about 2 percent. It reaches around 15 percent as resource

utilization increases. PCFT, ECLB, DFTM, and GOBI follow

a similar trend. The violation rates remain between the

highest and lowest values. The trend in the figure shows that

as resource utilization increases, the service level objective

violation rate also rises for all methods. CMODLB shows the

steepest growth in violation rate. It struggles to maintain

service level objectives under high workloads. PreGAN plus

has the lowest violation rate. It manages resources effectively

while providing compliance.

PCFT, ECLB, DFTM, and GOBI have moderate

violation rates. The rates increase steadily with resource

utilization. Traditional models struggle as system load rises.

Optimized models like PreGAN plus perform better. They

minimize violations more effectively.

Fig. 9 SLO Violation Rate versus Resource Utilization

 Figure 10 presents a line chart that compares task

migration count against the number of faults. Four different

methods are analyzed: PreGAN plus, PCFT, ECLB, and

DFTM. ECLB has the highest task migration count. It reaches

nearly 40 migrations at the maximum number of faults.

DFTM follows closely with slightly fewer migrations. PCFT

maintains a moderate migration rate. It stays between the

highest and lowest values.

PreGAN plus records the lowest task migration count. Its

migration rate increases more slowly than other methods. The

trend in the figure indicates that as the number of faults rises,

all methods experience an increase in task migration. ECLB

and DFTM show the steepest rise, saying that they require

more frequent task reallocations under fault conditions.

PCFT follows a similar pattern but at a lower rate. PreGAN

plus maintains the most stable performance with the least task

migrations.

This suggests that PreGAN plus is more efficient in

handling faults with minimal disruptions. ECLB and DFTM

incur higher computational overhead due to frequent

migrations. The results highlight that reducing task migration

is essential for maintaining system efficiency. PreGAN plus

demonstrates the most optimized approach among the

compared methods.

20

30

40

50

60

70

80

1 2 3

R
es

p
o

n
se

 T
im

e
(m

s)

Fault Severity (1: Low, 2: Medium, 3: High)

PreGAN+ PCFT ECLB

CMODLB DFTM GOBI

0

5

10

15

20

25

30

50 60 70 80 90 100

S
L

O
 V

io
la

ti
o

n
 R

at
e

(%
)

Resource Utilization (%)

PreGAN+ PCFT ECLB

CMODLB DFTM GOBI

Sarala Patchala et al. / IJECE, 12(10), 50-63, 2025

59

Fig. 10 Task migration count versus Number of faults

Figure 11 presents a bar chart comparing the

performance metrics of different models based on fault

detection accuracy, task migration efficiency, and energy

reduction. Fault detection accuracy is the highest for all

models, exceeding 90 percent with minor variations.

PreGAN plus, DFTM, and GOBI achieve slightly better

accuracy compared to the other models. Task migration

efficiency varies across models. PreGAN plus has the highest

efficiency, close to 30 percent. GOBI and DFTM follow

behind. PCFT and CMODLB have lower efficiency levels.

Energy reduction has the lowest values among the three

metrics. It stays below 20 percent for all models. PreGAN

plus achieves the highest energy reduction. GOBI and DFTM

perform moderately. PCFT records the lowest energy

reduction. The figure shows that fault detection accuracy is

the strongest metric. Task migration efficiency and energy

reduction vary significantly. PreGAN plus performs best in

terms of both migration efficiency and energy reduction. It

handles tasks efficiently while consuming less energy. PCFT

and CMODLB perform the weakest. They have higher

computational overhead. GOBI and DFTM show moderate

performance in all metrics. They balance accuracy, task

management, and energy savings. Advanced models like

PreGAN plus and GOBI perform better overall. Traditional

models like PCFT and CMODLB need improvements. They

must enhance efficiency and energy utilization.

Figure 12 presents a line chart comparing the task

completion rate percentage over time for three models: the

traditional model, the GAN-based model, and the PreGAN

plus model. All three models show an increasing trend in task

completion as time progresses. The traditional model has the

slowest task completion rate. It starts at around 0 percent and

reaches around 90 percent in 45 minutes. The GAN-based

model performs better. It maintains a higher completion rate

than the traditional model at all times. The PreGAN plus

model has the highest completion rate.

Fig. 11 Comparison of PreGAN+ versus Traditional models

It surpasses both models at every time step. It reaches

nearly 100 percent by the end of the period. The trend in the

figure indicates that the PreGAN plus model outperforms the

other two models in completing tasks faster. All models start

with a low completion rate. PreGAN plus quickly gains an

advantage. It reaches around 60 percent completion in 15

minutes.

The GAN-based model and traditional model remain

slightly lower. As time progresses, the gap between models

stays constant. PreGAN plus maintains the lead. The GAN-

based model follows. The traditional model remains the

slowest. The results show that advanced models improve task

scheduling. GAN-based and PreGAN plus achieve faster

completion rates. PreGAN plus performs the best. It is the

best choice for systems needing rapid task execution.

Fig. 12 Task completion rate versus Time

0

5

10

15

20

25

30

35

40

45

10 20 30 40 50 60 70 80 90 100

T
as

k
 M

ig
ra

ti
o

n
 C

o
u
n
t

Number of Faults

PreGAN+ PCFT ECLB DFTM

0
20
40
60
80

100

P
er

fo
rm

an
ce

 M
et

ri
cs

 (
%

)

Models

Fault Detection Accuracy (%)

Task Migration Efficiency (%)

Energy Reduction (%)

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45

T
as

k
 C

o
m

p
le

ti
o

n
 R

at
e

(%
)

Time (minutes)

Baseline Model (%)

GAN-Based Model (%)

PreGAN+ Model (%)

Sarala Patchala et al. / IJECE, 12(10), 50-63, 2025

60

Fig. 13 Packet loss versus Network load

Figure 13 presents a line chart that compares packet loss

percentage against network load in Mbps for three models.

As network load increases, all three models experience a rise

in packet loss. The traditional model exhibits the highest

packet loss, reaching nearly 58 percent at 100 Mbps. The

GAN-based model performs better and maintains lower

packet loss than the traditional model at all points. It reaches

about 50 percent at the highest load. The PreGAN plus model

achieves the lowest packet loss. It peaks at around 42 percent

at 100 Mbps. The trend in the figure indicates that as network

load increases, congestion leads to higher packet loss. The

traditional model shows the steepest rise in packet loss. This

indicates that it is the least efficient in handling higher

network traffic. The GAN-based model demonstrates an

improvement over the traditional model, but packet loss

remains significant at higher loads. The PreGAN plus model

exhibits the best performance. It keeps packet loss lower

throughout the range. PreGAN plus optimizes network

resource management. It reduces packet loss more effectively

than traditional and GAN-based models. The results show

that advanced techniques perform better. PreGAN plus is

ideal for high-traffic environments. Minimizing packet loss

is crucial for efficient data transmission.

Figure 14 presents a line chart comparing latency in

milliseconds against task complexity levels for three models:

the traditional, GAN-based, and PreGAN plus models. As

task complexity increases, all three models experience a rise

in latency. The traditional model has the highest latency. It

reaches nearly 220 milliseconds at the highest complexity

level. The GAN-based model performs better. It maintains

lower latency than the traditional model. However, it still

reaches around 190 milliseconds at extreme complexity. The

PreGAN plus model has the lowest latency. It stays below

160 milliseconds even at the highest complexity. The figure

shows that higher task complexity increases computational

demand. This leads to higher latency for all models.

Fig. 14 Latency versus Task complexity

The traditional model exhibits the steepest increase,

showing inefficiency in handling complex tasks. The GAN-

based model performs better but still experiences noticeable

latency growth. PreGAN plus has the lowest latency. It is the

most optimized for handling complex tasks. This shows the

advantage of advanced models. PreGAN plus processes high-

complexity tasks with lower latency. It achieves faster system

response. It improves task execution efficiency.

Fig. 15 Computational time versus Number of tasks

Figure 15 presents a line chart comparing computation

time in milliseconds against the number of tasks. Among

these models, CMODLB exhibits the highest computation

time across all task numbers. It reaches nearly 65

milliseconds at 100 tasks. PreGAN plus has the lowest

computation time. It starts at about 5 milliseconds for 10

tasks. It gradually increases to 35 milliseconds at 100 tasks.

Other models, including PCFT, ECLB, DFTM, and GOBI,

show a steady rise. The computation times stay between the

highest and lowest values. The trend in the figure indicates

0

20

40

60

80

10 20 30 40 50 60 70 80 90 100

P
ac

k
et

 L
o

ss
 (

%
)

Network Load (Mbps)

Baseline Model (%)

GAN-Based Model (%)

PreGAN+ Model (%)

0

50

100

150

200

250

1 2 3 4 5

L
at

en
cy

 (
m

s)

Task Complexity Level (1: Low, 5: Extreme)

Baseline Model (ms)

GAN-Based Model (ms)

PreGAN+ Model (ms)

0

20

40

60

80

10 20 30 40 50 60 70 80 90 100

C
o

m
p

u
ta

ti
o

n
 T

im
e

(m
s)

Number of Tasks

PreGAN+ (ms) PCFT (ms)

ECLB (ms) CMODLB (ms)

DFTM (ms) GOBI (ms)

Sarala Patchala et al. / IJECE, 12(10), 50-63, 2025

61

that as the number of tasks increases, computation time rises

for all models. CMODLB shows the steepest increase,

indicating that it requires more processing power as the

workload increases. PreGAN plus maintains the lowest and

most stable computation time. It suggests it is the most

optimized model for handling multiple tasks. PCFT, ECLB,

DFTM, and GOBI have moderate computation times. The

values range from about 10 to 50 milliseconds as tasks

increase. Different models impact computational efficiency

in different ways. PreGAN plus provides the best

performance. CMODLB has the highest computational cost

as task numbers rise.

Fig. 16 CPU usage versus Number of tasks

Figure 16 presents a line chart comparing CPU usage

percentage against the number of tasks for three models. The

traditional model has the highest CPU usage. It starts at

around 25 percent for 10 tasks. It reaches nearly 90 percent

for 100 tasks. The GAN-based model follows a similar trend.

It starts near 22 percent and peaks at 85 percent for 100 tasks.

PreGAN plus has the lowest CPU usage. It begins at about 20

percent. It increases to around 80 percent as tasks rise. The

trend in the figure shows that as the number of tasks

increases, CPU usage rises for all models. The traditional

model exhibits the steepest growth, indicating it is the least

efficient in managing computational load. The GAN-based

model demonstrates improved efficiency compared to the

traditional model. It still consumes a significant amount of

CPU resources. The PreGAN plus model maintains the most

stable and optimized CPU usage. It suggests it effectively

distributes computing power as task load increases. All

models show higher CPU usage as tasks increase. PreGAN

plus manages resources better. It reduces computational

strain. It performs better than traditional and GAN-based

models.

5. Conclusion
This paper presented PreGAN+, a novel approach to

fault prediction and task migration in MEC environments.

The model integrates GANs for fault detection and

Transformer-based decision mechanisms for task migration.

The results show that PreGAN+ significantly enhances

system reliability and resource efficiency. The study

demonstrated that PreGAN+ achieves a fault detection

accuracy of 96.5%. It outperforms traditional machine

learning models. The semi-supervised learning approach uses

both labelled and unlabelled data. It improves adaptability in

dynamic environments. The GAN-based training structure

enhances failure prediction. It reduces unnecessary task

migrations. It optimizes computational resources effectively.

Task migration efficiency is another key advantage of

PreGAN+. The Transformer-based migration strategy

effectively identifies the best edge node for task relocation.

This reduces system failures by 31.2% compared to existing

methods. Energy efficiency is critical in MEC operations, and

PreGAN+ successfully addresses this challenge. The

proposed model reduces energy consumption by 16.7%

compared to traditional fault-tolerant strategies. This

improvement proves that edge nodes operate efficiently

while maintaining high reliability. The reduction in energy

use extends the operational lifespan of edge devices and

minimizes power-related costs. Future research will explore

optimizations of PreGAN+. One potential direction is the

integration of reinforcement learning for adaptive task

scheduling. Another area of improvement is the inclusion of

federated learning techniques to enhance model training

across distributed edge nodes. Overall, PreGAN+ provides an

effective and efficient fault prediction and migration

framework for MEC systems. The model enhances system

reliability, reduces energy consumption, and optimizes task

execution. The results validate its applicability for real-world

edge computing scenarios.

References
[1] Rafia Malik, and Mai Vu, “Energy-Efficient Computation Offloading in Delay-Constrained Massive MIMO Enabled Edge Network using

Data Partitioning,” IEEE Transactions on Wireless Communications, vol. 19, no. 10, pp. 6977-6991, 2020. [CrossRef] [Google Scholar]

[Publisher Link]

[2] Latif U. Khan et al., “Edge-Computing-Enabled Smart Cities: A Comprehensive Survey,” IEEE Internet of Things Journal, vol. 7, no. 10,

pp. 10200-10232, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[3] Ding Yuan et al., “Simple Testing can Prevent Most Critical Failures: An Analysis of Production Failures in Distributed Data-Intensive

Systems,” 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14), pp. 249-265, 2014. [Google Scholar]

[Publisher Link]

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100

C
P

U
 U

sa
g

e
(%

)

Number of Tasks

Baseline Model (%)

GAN-Based Model (%)

PreGAN+ Model (%)

https://doi.org/10.1109/TWC.2020.3007616
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy-efficient+computation+offloading+in+delay-constrained+massive+mimo+enabled+edge+network+using+data+partitioning&btnG=
https://ieeexplore.ieee.org/abstract/document/9140406
https://doi.org/10.1109/JIOT.2020.2987070
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Edge-computing-enabled+smart+cities%3A+A+comprehensive+survey&btnG=
https://ieeexplore.ieee.org/abstract/document/9063670
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=D.+Yuan%2C+Simple+testing+can+prevent+most+critical+failures%3A+An+analysis+of+production+failures+in+distributed+%7BData-Intensive%7D+systems&btnG=
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/yuan

Sarala Patchala et al. / IJECE, 12(10), 50-63, 2025

62

[4] Hairong Qi et al., “A Resilient Real-Time System Design for a Secure and Reconfigurable Power Grid,” IEEE Transactions on Smart

Grid, vol. 2, no. 4, pp. 770-781, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[5] Yang Yang, Qiang Cao, and Hong Jiang, “Edgedb: An Efficient Time-Series Database for Edge Computing,” IEEE Access, vol. 7, pp.

142295-142307, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[6] Jinke Ren et al., “Collaborative Cloud and Edge Computing for Latency Minimization,” IEEE Transactions on Vehicular Technology,

vol. 68, no. 5, pp. 5031-5044, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[7] Sheng Di, and Cho-Li Wang, “Dynamic Optimization of Multiattribute Resource Allocation in Self-Organizing Clouds,” IEEE

Transactions on parallel and Distributed Systems, vol. 24, no. 3, pp. 464-478, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[8] Bela Ali, Mark A. Gregory, and Shou Li, “Multi-Access Edge Computing Architecture, Data Security and Privacy: A Review,” IEEE

Access, vol. 9, pp. 18706-18721, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[9] Chi-Yu Li et al., “Transparent AAA Security Design for Low-Latency MEC-Integrated Cellular Networks,” IEEE Transactions on

Vehicular Technology, vol. 69, no. 3, pp. 3231-3243, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[10] Flavin Cristian, “Understanding Fault-Tolerant Distributed Systems,” Communications of the ACM, vol. 34, no. 2, pp. 56-78, 1991.

[CrossRef] [Google Scholar] [Publisher Link]

[11] B. Kumar, A. Verma, and P. Verma, “Optimizing Resource Allocation using Proactive Scaling with Predictive Models and Custom

Resources,” Computers and Electrical Engineering, vol. 118, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[12] Shreshth Tuli, Giuliano Casale, and Nicholas R. Jennings, “PreGAN: Preemptive Migration Prediction Network for Proactive Fault-

Tolerant Edge Computing,” IEEE INFOCOM 2022 - IEEE Conference on Computer Communications, London, United Kingdom, pp.

670-679, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[13] Zexi Chen et al., “PREGAN: Pose Randomization and Estimation for Weakly Paired Image Style Translation,” IEEE Robotics and

Automation Letters, vol. 6, no. 2, pp. 2209-2216, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[14] Rajendra Kumar et al., Immersive Virtual and Augmented Reality in Healthcare: An IoT and Blockchain Perspective, CRC Press, pp. 1-

244, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[15] Qiang Duan, Shangguang Wang, and Nirwan Ansari, “Convergence of Networking and Cloud / Edge Computing: Status, Challenges

Opportunities,” IEEE Network, vol. 34, no. 6, pp. 148-155, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[16] Shenzhi Wang et al., “Train Once, Get a Family: State-Adaptive Balances for Offline-to-Online Reinforcement Learning,” Advances in

Neural Information Processing Systems, vol. 36, pp. 47081-47104, 2023. [Google Scholar] [Publisher Link]

[17] Anita Choudhary et al., “A Critical Survey of Live Virtual Machine Migration Techniques,” Journal of Cloud Computing, vol. 6, pp. 1-

41, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[18] Awder Ahmed, Sadoon Azizi, and Subhi R.M. Zeebaree, “ECQ: An Energy-Efficient, Cost-Effective and Qos-Aware Method for

Dynamic Service Migration in Mobile Edge Computing Systems,” Wireless Personal Communications, vol. 133, pp. 2467-2501, 2023.

[CrossRef] [Google Scholar] [Publisher Link]

[19] Robert Müller, Ulrike Greiner, and Erhard Rahm, “Agentwork: A Workflow System Supporting Rule-Based Workflow Adaptation,” Data

& Knowledge Engineering, vol. 51, no. 2, pp. 223-256, 2004. [CrossRef] [Google Scholar] [Publisher Link]

[20] Yulu Gong et al., “Dynamic Resource Allocation for Virtual Machine Migration Optimization using Machine Learning,” Applied and

Computational Engineering, pp. 1-8, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[21] Xiaoqian Li et al., “Intelligent Service Migration based on Hidden State Inference for Mobile Edge Computing,” IEEE Transactions on

Cognitive Communications and Networking, vol. 8, no. 1, pp. 380-393, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[22] Qing Zhao et al., “Decentralized Cognitive MAC for Opportunistic Spectrum Access in ad hoc Networks: A POMDP Framework,” IEEE

Journal on Selected Areas in Communications, vol. 25, no. 3, pp. 589-600, 2007. [CrossRef] [Google Scholar] [Publisher Link]

[23] Shangguang Wang et al., “A Survey on Service Migration in Mobile Edge Computing,” IEEE Access, vol. 6, pp. 23511-23528, 2018.

[CrossRef] [Google Scholar] [Publisher Link]

[24] Shiqiang Wang et al., “Mobile Micro-Cloud: Application Classification, Mapping, and Deployment,” Proceedings Annual Fall Meeting

of ITA (AMITA), 2013. [CrossRef] [Google Scholar] [Publisher Link]

[25] Leonard Kleinrock, Communication Nets: Stochastic Message Flow and Delay, Dover Publications, 2007. [Google Scholar] [Publisher

Link]

[26] Yuxuan Sun et al., “Learning-Based Task Offloading for Vehicular Cloud Computing Systems,” 2018 IEEE International Conference on

Communications (ICC), Kansas City, MO, USA, pp. 1-7, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[27] Shangguang Wang et al., “Delay-Aware Microservice Coordination in Mobile Edge Computing: A Reinforcement Learning Approach,”

IEEE Transactions on Mobile Computing, vol. 20, no. 3, pp. 939-951, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[28] Tianzhe Jiao et al., “Multi-Agent Deep Reinforcement Learning for Efficient Computation Offloading in Mobile Edge Computing,”

Computers, Materials & Continua, vol. 76, no. 3, pp. 3585-3603, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[29] Xiaobo Zhou et al., “Energy-Efficient Service Migration for Multi-User Heterogeneous Dense Cellular Networks,” IEEE Transactions on

Mobile Computing, vol. 22, no. 2, pp. 890-905, 2023. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/TSG.2011.2159819
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+resilient+real-time+system+design+for+a+secure+and+reconfigurable+power+grid&btnG=
https://ieeexplore.ieee.org/abstract/document/6003812
https://doi.org/10.1109/ACCESS.2019.2943876
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Edgedb%3A+An+efficient+time-series+database+for+edge+computing&btnG=
https://ieeexplore.ieee.org/abstract/document/8850107
https://doi.org/10.1109/TVT.2019.2904244
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Collaborative+cloud+and+edge+computing+for+latency+minimization&btnG=
https://ieeexplore.ieee.org/abstract/document/8664595
https://doi.org/10.1109/TPDS.2012.144
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dynamic+optimization+of+multiattribute+resource+allocation+in+self-organizing+clouds&btnG=
https://ieeexplore.ieee.org/abstract/document/6200263
https://doi.org/10.1109/ACCESS.2021.3053233
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multi-access+edge+computing+architecture%2C+data+security+and+privacy%3A+A+review&btnG=
https://ieeexplore.ieee.org/abstract/document/9330515
https://doi.org/10.1109/TVT.2020.2964596
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Transparent+aaa+security+design+for+low-latency+mec-integrated+cellular+networks&btnG=
https://ieeexplore.ieee.org/abstract/document/8951281
https://doi.org/10.1145/102792.102801
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Understanding+fault-tolerant+distributed+systems&btnG=
https://dl.acm.org/doi/abs/10.1145/102792.102801
https://doi.org/10.1016/j.compeleceng.2024.109419
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimizing+resource+allocation+using+proactive+scaling+with+predictive+models+and+custom+resources&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0045790624003471
https://doi.org/10.1109/INFOCOM48880.2022.9796778
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Pregan%3A+Preemptive+migration+prediction+network+for+proactive+fault-tolerant+edge+computing&btnG=
https://ieeexplore.ieee.org/abstract/document/9796778
https://doi.org/10.1109/LRA.2021.3061359
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Pregan%3A+Pose+randomization+and+estimation+for+weakly+paired+image+style+translation&btnG=
https://ieeexplore.ieee.org/abstract/document/9361304
https://doi.org/10.1201/9781003340133
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Immersive+virtual+and+augmented+reality+in+healthcare%3A+an+IoT+and+blockchain+perspective&btnG=
https://www.taylorfrancis.com/books/edit/10.1201/9781003340133/immersive-virtual-augmented-reality-healthcare-rajendra-kumar-vishal-jain-garry-tan-wei-han-adberezak-touzene
https://doi.org/10.1109/MNET.011.2000089
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Convergence+of+networking+and+cloud%2Fedge+computing%3A+Status%2C+challenges+opportunities&btnG=
https://ieeexplore.ieee.org/abstract/document/9108989
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Train+once%2C+get+a+family%3A+State-adaptive+balances+for+offline-to-online+reinforcement+learning&btnG=
https://proceedings.neurips.cc/paper_files/paper/2023/hash/9318763d049edf9a1f2779b2a59911d3-Abstract-Conference.html
https://doi.org/10.1186/s13677-017-0092-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+critical+survey+of+live+virtual+machine+migration+techniques&btnG=
https://link.springer.com/article/10.1186/s13677-017-0092-1
https://doi.org/10.1007/s11277-024-10883-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ecq%3A+an+energy-efficient%2C+cost-effective+and+qos-aware+method+for+dynamic+service+migration+in+mobile+edge+computing+systems&btnG=
https://link.springer.com/article/10.1007/s11277-024-10883-0
https://doi.org/10.1016/j.datak.2004.03.010
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Agentwork%3A+a+workflow+system+supporting+rule-based+workflow+adaptation&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0169023X0400076X
https://doi.org/10.54254/2755-2721/57/20241348
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dynamic+resource+allocation+for+virtual+machine+migration+optimization+using+machine+learning&btnG=
https://www.ewadirect.com/proceedings/ace/article/view/12386
https://doi.org/10.1109/TCCN.2021.3103511
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Intelligent+service+migration+based+on+hidden+state+inference+for+mobile+edge+computing&btnG=
https://ieeexplore.ieee.org/abstract/document/9509399
https://doi.org/10.1109/JSAC.2007.070409
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Decentralized+cognitive+mac+for+opportunistic+spectrum+access+in+ad+hoc+networks%3A+A+pomdp+framework&btnG=
https://ieeexplore.ieee.org/abstract/document/4155374
https://doi.org/10.1109/ACCESS.2018.2828102
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+on+service+migration+in+mobile+edge+computing&btnG=
https://ieeexplore.ieee.org/abstract/document/8340768
https://doi.org/10.1109/ACCESS.2018.2828102
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+on+service+migration+in+mobile+edge+computing&btnG=
https://ieeexplore.ieee.org/abstract/document/8340768
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Communication+nets%3A+Stochastic+message+flow+and+delay&btnG=
https://dl.acm.org/doi/book/10.5555/1096922
https://dl.acm.org/doi/book/10.5555/1096922
https://doi.org/10.1109/ICC.2018.8422661
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Learning-Based+Task+Offloading+for+Vehicular+Cloud+Computing+Systems&btnG=
https://ieeexplore.ieee.org/abstract/document/8422661
https://doi.org/10.1109/TMC.2019.2957804
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Delay-Aware+Microservice+Coordination+in+Mobile+Edge+Computing%3A+A+Reinforcement+Learning+Approach&btnG=
https://ieeexplore.ieee.org/abstract/document/8924682
https://doi.org/10.32604/cmc.2023.040068
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multi-Agent+Deep+Reinforcement+Learning+for+Efficient+Computation+Offloading+in+Mobile+Edge+Computing&btnG=
https://www.techscience.com/cmc/v76n3/54354
https://doi.org/10.1109/TMC.2021.3087198
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy-Efficient+Service+Migration+for+Multi-User+Heterogeneous+Dense+Cellular+Networks&btnG=
https://ieeexplore.ieee.org/abstract/document/9448508

Sarala Patchala et al. / IJECE, 12(10), 50-63, 2025

63

[30] Quan Yuan et al., “A Joint Service Migration and Mobility Optimization Approach for Vehicular Edge Computing,” IEEE Transactions

on Vehicular Technology, vol. 69, no. 8, pp. 9041-9052, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[31] Chao-Lun Wu et al., “Mobility-Aware Deep Reinforcement Learning with Glimpse Mobility Prediction in Edge Computing,” ICC 2020

- 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, pp. 1-7, 2020. [CrossRef] [Google Scholar] [Publisher

Link]

https://doi.org/10.1109/TVT.2020.2999617
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Joint+Service+Migration+and+Mobility+Optimization+Approach+for+Vehicular+Edge+Computing&btnG=
https://ieeexplore.ieee.org/abstract/document/9107503
https://doi.org/10.1109/ICC40277.2020.9149185
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mobility-Aware+Deep+Reinforcement+Learning+with+Glimpse+Mobility+Prediction+in+Edge+Computing&btnG=
https://ieeexplore.ieee.org/abstract/document/9149185
https://ieeexplore.ieee.org/abstract/document/9149185

