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Abstract - Tracking a single object using feature fusion techniques constitutes a pivotal problem in the field of computer vision, 

as it involves the detection and tracking of a target object over a sequence of images. Focus has recently been placed on feature-

based methods to enhance the tracking accuracy and stability, especially in difficult situations. Nevertheless, many traditional 

approaches often struggle to provide a real-time solution due to their high computational needs. In this paper, we introduce a 

new framework for visual object tracking that merges feature fusion-based Local Binary Patterns (LBP) and Gradient Local 

Auto-Correlations (GLAC). Integrating LBP, which effectively captures robust texture information, with GLAC, which captures 

and encodes the spatial gradient correlation, enhances the object appearance discrimination. The tracking process is conducted 

in four distinct stages: feature extraction, feature fusion, similarity matching, and model update. The features of the object are 

extracted from both LBP and GLAC and then fused to form a discriminative feature vector, which is matched with the previously 

tracked features to identify the object in the next frames. Through the use of motion prediction, the accuracy in tracking is 

enhanced, and the estimated location is refined. The results of the experiment show that the LBP-GLAC Feature Fusion tracking 

method outperforms previously proposed techniques, achieving a tracking accuracy of 83% while performing computations in 

real-time. 

Keywords - Visual Object Tracking, Texture and Gradient Features, Similarity Matching, Motion Prediction, Real-Time 

Tracking, Tracking Accuracy. 

 

1. Introduction  
Visual Object Tracking (VOT) is a significant field in the 

domain of computer vision, which aims to identify and 

monitor one or more objects throughout various frames in a 

video. VOT has a plethora of applications spanning from 

autonomous vehicles and video surveillance to robotics. 

Challenges in VOT include tracking over changes in 

appearance, occlusions, and environmental changes. Recently, 

attempts have been made to enhance tracking performance by 

applying deep learning, multi-modal data, and novel fusion 

techniques. Solutions and frameworks designed to resolve the 

aforementioned technical concerns are addressed in the 

subsequent sections.   

Single Modal Tracking encompasses tracking methods 

that rely on a single data type, including RGB, thermal 

infrared, and point clouds.  RGB stands out as the most 

widespread due to its rich color information, but thermal 

cameras excel in low light conditions, according to Wang et al 

(2024) [1]. The tracking technique utilizes Multiple Sensors 

that join different data formats, such as RGB-Thermal or 

RGB-depth, to improve robustness by complementing 

separate sensor limitations. The method brings benefits to 

dynamic situations where single sensors prove lacking (Wang 

et al, 2024) [1]. Two main algorithms were used for VOT, 

known as Correlation Filters and Siamese Networks, to build 

their unique VOT frameworks. The tracking process with 

correlation filters can run in real-time, but Siamese networks 

excel at feature-based tracking across multiple scenarios 

(Yuan, 2022) [2]. Two machine learning strategies, along with 

structured sparse PCA and online learning, have been applied 

by researchers to enhance tracking precision by allowing the 

system to adapt to changes in objects and environments during 

different time periods (Odeh et al., 2023; Yoon et al., 2018) 

[3, 4]. 

The combination of Kalman Filters and Gaussian Mixture 

Models aids in resolving the position fixing of objects and 

updating their positions, particularly in cases where objects 

undergo disappearance and size changes. Handcrafted features 

from HOGs, CNs, and CHs aid in FOG, and CHs aid in 

domains where deep learning frameworks fail because of 
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inadequate data or weak computational resources. These 

features assist in tracking. Handcrafted features based tracking 

algorithms based on Discriminative Correlation Filters (DCF) 

achieve outstanding accuracy and robustness.   In sharp 

contrast, deep features as well as the combination of features 

touted by Gao et al. (2018) [5] and Zhu et al. (2020) [6] are 

appropriate for rapidly and greatly visually varying scenes. 

Research has documented that HOGs and CNs, and their 

combination with CNs and deep learning features, greatly 

enhance tracking system performance.  Multi-feature fusion, 

as pointed out by Ma et al. (2023) [7] and Fiaz et al. (2018) 

[8], strengthens tracking performance in challenging low-

light, blind, or obscured areas. 

 

Beyond deep learning models, feature manual 

engineering endows control and interpretability to the models. 

The models are applied to specific domains due to the custom 

design structure, which enables attribute extraction (Klaver-

Krol, 2023) [9]. The tracking capabilities of handcrafted 

features succumb to visually simultaneous object movement 

and structural change. The performance of the statistical 

handcrafted features is remarkable in extreme illumination 

changes or background interference, but they face difficulties 

in overall performance (Gao et al., 2018) [5]. Combined deep 

learning and handcrafted feature systems outperform 

individual application tracking results. The Modified LeNet-5 

network utilizes both deep and handcrafted features to enable 

exact target location and spatial control over appearance 

changes (Gulla, Pelly & Banik, 2023) [10]. Game theory 

application for feature fusion determines dynamic feature 

channel weights and blends deep and handcrafted features into 

an advanced tracking model, which dramatically improves 

performance (Ma et al., 2023) [7]. 

Several experiments conducted on the OTB and VOT 

benchmarks illustrate that a merger of handcrafted and deep 

features yields successful performance outcomes. Supporting 

documents showcase that deep features outperformed 

handcrafted features. However, the latter does improve 

outcomes in certain specific scenarios as per the research by 

Fiaz et al. (2018) [8]. Handcrafted features for part-based 

tracking managed to deal with the complexities of different 

object motions and camera movements, as well as varying 

object size (Ath, 2019) [11]. Such manually designed 

technical features enable the system to understand user needs, 

yet its operational efficiency is maximized with deep learning-

based frameworks. The blend of these tracking techniques 

offers all the beneficial elements from every tracking method 

to achieve a precise tracking method. Studies conducted on 

visual object tracking reveal that the combination of 

handcrafted and deep features is promising, as both 

approaches address numerous tracking difficulties. 

Real-time performance exists as the main obstacle in 

visual object tracking, along with dealing with Appearance 

Changes and Occlusions. Visual object tracking under 

changing object appearances requires sparse discriminative 

classifiers and attention-based algorithms as solution 

components. The tracking methods achieve efficient target 

discrimination and accurate precision tracking by overcoming 

visual disturbances according to Devi et al., 2021 [12] and He 

& Liu, 2022 [13]. Real-time requirements for autonomous 

driving and surveillance applications benefit from the efficient 

tracking capability of both correlation filters and binary 

descriptors (Xu et al., 2017) [14]. Scientists in the visual 

object tracking field actively drive research progress through 

their efforts to increase both robustness and accuracy 

performance. The development of visual object tracking 

products will work toward greater multi-modal combination 

capabilities, as well as state-of-the-art deep learning 

algorithms and accelerated real-time processing speed 

standards. The works of Wang et al. (2024) [1] and Yuan 

(2022) [2] focus on tracking performance enhancement under 

crowded conditions. Visual object tracking improvements 

continue to be made, even though the proper deployment of 

sensors remains a fundamental challenge across different 

operating environments. The analysis of multisource data, 

coupled with modern machine learning methods, offers a 

glimpse of hope for the resolution of existing problems. The 

ongoing development of visual object tracking systems 

requires a balance between tracking accuracy and processing 

speed, which calls for more attention. The system design 

tackles the problem of fast motion and rotation of two-

dimensional objects by adaptive local binary patterns feature 

matching. 

Although the technology has improved in tracking 

objects, difficulties still arise from large changes in 

appearance and occlusion of objects and background noise 

that frequently cause the tracked object to lose its tracking or 

wander away from the object. Even Local Binary Patterns 

(LBP) and Gradient Local Auto-Correlation (GLAC) 

traditional feature models may not be robust against such 

variations, as they capture complementary but limited aspects 

of object appearance (Jin et al., 2014) [15]. It has been studied 

that complementary hand-crafted features (LBP, HOG, for 

instance) can be fused, which has been found to be more 

robust than single-feature models, but very little attention has 

been dedicated to LBP and GLAC specifically for real-time 

visual object tracking. It has become a rather neglected effort 

to systematically combine LBP local texture encoding with 

GLAC spatial gradient representation to improve tracking 

performance in various challenging scenarios (Tong et al., 

2012) [16].  Motivated by the requirement for a stable and 

effective tracking algorithm capable of responding 

dynamically to changes in the appearance or the environment 

of an object. With LBP, it is possible to effectively account for 

texture changes, while GLAC represents the gradient 

correlation, indicating different aspects of local micro-patterns 

and meso-scale structural information scenarios (Boragule et 

al., 2015) [17]. Feature fusion of LBP and GLAC utilizes the 

joint advantages to minimize shortcomings of LBP and GLAC 
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and provide more stable tracking concerning considerable 

appearance changes or partial occlusion (Cai et al., 2016) [18]. 

Real-world application requirements directly call for 

robustness and real-time performance, even if deep learning 

models are computationally prohibitive or require substantial 

amounts of labelled data. Developing such a multi-cue feature 

fusion approach is a clear proposal for such a multi-cue feature 

fusion method, yet it is a challenging task, because of low 

computational efficiency and large scope of labelled data, and 

hence heavy dependence on noisy input (Rami et al., 2013) 

[19].   

The new proposed research solves the issue that 

traditional single-feature-based trackers suffer from failure in 

case of sudden appearance changes, occlusions, and 

background interference. Here, we propose and implement a 

strong and scalable visual object tracking framework based on 

the fusion of Local Binary Patterns and Gradient Local Auto-

Correlation at the representation level to make it robust and 

efficient in enhancing discriminative performance. We aim at 

systematically analysing and testing the effect of combining 

these complementary hand-crafted feature sets, which can 

give better resistance to challenging situations and better 

tracking performance when compared against the most recent 

single-feature and conventional fusion methods. 

The main contributions are as follows. 

1. The first contribution is a novel feature fusion approach 

that refines local binary patterns by incorporating gradient 

local auto-correlations together with the former, thus 

increasing the discriminative power of tracking features. 

2. The second contribution outlines a weighted 

concatenation approach to LBP and GLAC descriptors, 

which ensures both feature types are efficiently integrated 

for computation. 

3. The proposed tracking framework includes the steps of 

feature extraction, feature fusion, similarity matching, 

and model updating, ensuring reliable tracking even when 

there are illumination changes, partial occlusion, and 

background clutter. 

4. The system includes motion estimation, which allows the 

current object position to be refined and its future position 

predicted, improving tracking reliability within and 

across frames.    

5. The experimental evaluations demonstrate that the LBP–

GLAC feature fusion tracker outperformed all other 

algorithms by achieving 83% tracking accuracy and 83% 

tracking accuracy, exceeding several existing state-of-

the-art algorithms in accuracy and computational 

efficiency. 

Fig. 1 Visual object tracking using LBP and GLAC features 

2. Methodology 
The methodology depicted in Figure 1 describes the 

process of visual object tracking, which allows for the 

continuous tracking and monitoring of a particular object 

throughout a series of video frames. The process outlines the 

use of input video frames that have targets within them to be 

tracked. These frames are first pre-processed to remove noise 

and to conduct resizing and normalization. Preprocessing aims 

to improve and prepare these frames for feature extraction. 

The extraction of features takes place in two stages. In the first 

stage, two types of features are extracted: GLAC features, 

which express the global context of the shape and structure of 

the object, and LBP features, which are texture-based 

descriptors of the object. Feature fusion occurs at this stage, 

which creates a rich and robust representation for object 

tracking. An initial model of the object is created, based on the 

extracted features. In each new frame, the system performs 

similarity matching based on the fused features, searching for 

the regions that are closest to the target model. The object’s 

model is updated as the object’s appearance, pose, or the 

surrounding lighting conditions change in order to retain 

accuracy and robustness. Finally, the tracker provides the 

estimated spatial coordinates of the object being tracked in 

each frame, enabling continuous, real-time object tracking 

throughout the video sequence. 

 

2.1. LBP-Based Feature Extraction 

Feature extraction, the Local Binary Pattern (LBP) based, 

is one of the most popular techniques in image processing for 

the analysis of image texture. In this approach, the pixels of a 
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grayscale picture are assessed in relation to their surrounding 

pixels, most often in a 3x3 matrix (e.g., Figure 2). Each of the 

surrounding pixels is assigned a binary value: 1 if the pixel is 

brighter than or equal to the central pixel, 0 if it is darker. 

These binary results are combined to generate the LBP value 

for the central pixel, which is equivalent to an 8-bit number. 

The LBP image processing technique scans the entire image, 

producing a matrix of all the LBP values that reflect the local 

texture patterns. 

In order to prepare an image for analysis or classification, 

it is common to segment the image into smaller regions. 

Within each segment, the occurrence of every distinct LBP 

pattern is recorded, and a histogram is constructed to 

summarize the occurrence of each LBP pattern. Such regional 

histograms are combined to yield a comprehensive histogram-

based global descriptor of the image’s texture. This method 

makes it possible for the system to distinguish fine nuances of 

texture, which is essential for robust object identification and 

tracking. The effectiveness of LBP features makes them 

exceptionally popular, especially as they can be computed 

cheaply and capture global and local texture changes that are 

important in visual tracking of objects. 

 
Fig. 2 Local binary patterns-based object feature extraction 

 

The important steps for the extraction of LBP features are 

shown below. 

2.1.1. Grayscale Conversion 

Since LBP functions based on intensity values, the input 

color image I(x,y) must be transformed into a grayscale image 

first: 

𝐼𝑔(𝑥,𝑦) =  0.299𝑅 +  0.587𝐺 +  0.114𝐵                   (1) 

 

Where R, G, and B are the red, green, and blue 

components of the pixel. 

2.1.2. Neighborhood Sampling and Thresholding 

Because LBP functions on intensity values, the color 

input image I(x, y) must be transformed into grayscale form: 

𝐼𝑔(𝑥𝑝,𝑦𝑝). The thresholding function is: 

 

𝑠(𝑥)  =  {1 𝑖𝑓 𝑥 >=  0, 0 𝑖𝑓 𝑥 <  0}                         (2) 

 

Each neighbor is compared to the center pixel: 

𝑏𝑝 =  𝑠 (𝐼𝑔(𝑥𝑝,𝑦𝑝) − 𝐼𝑔(𝑥𝑐,𝑦𝑐)) , 𝑝 =  0, 1, … , 𝑃 − 1            (3) 

2.1.3. Binary Pattern Encoding 

The binary outcomes are structured to form a binary 

numeral. The LBP code for the central pixel is: 

 

𝐿𝐵𝑃{𝑃,𝑅}(𝑥𝑐,𝑦𝑐) =  𝛴 (𝑓𝑟𝑜𝑚 𝑝 = 0 𝑡𝑜 𝑃 − 1)𝑏𝑝 ∗  2𝑝     (4) 

2.1.4. Histogram Generation 

The image is partitioned into m×n cells. For each cell, a 

histogram based on its LBP codes is generated: 

 

𝐻(𝑘) =  𝛴 𝑓(𝐿𝐵𝑃(𝑥, 𝑦), 𝑘)                                             (5) 

 

Where 𝑓(𝐿𝐵𝑃(𝑥, 𝑦), 𝑘) =  {1 𝑖𝑓 𝐿𝐵𝑃(𝑥, 𝑦) =
 𝑘, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} for k = 0, 1, ..., K-1         

      

2.1.5. Feature Vector Construction 

Ultimately, all cell histograms are merged to create a 

universal feature vector F:  

 

F = [H1, H2, H3, ..., Hm]                                            (6) 

 

The feature vector captures the image texture, serving 

classification or tracking tasks. Key parameters: P = sampling 

points (usually 8), R = radius (usually 1). 

 

In object tracking, the LBP features supply well-defined 

textural detail to complement other descriptors (ex., GLAC), 

thus improving the tracker’s capability to manage changes in 

appearance, obstructions, and cluttered backgrounds. 

 

In object tracking, the LBP features supply well-defined 

textural detail to complement other descriptors (ex., GLAC), 

thus improving the tracker’s capability to manage changes in 

appearance, obstructions, and cluttered backgrounds. 

 

2.2. GLAC-Based Object Feature Extraction 

Like in Figure 3, Gradient Local Auto-Correlation 

(GLAC) integrates spatial information and gradient direction, 

making it a complex image descriptor. It is commonly used 

for object detection and visual tracking due to its robustness 

against illumination, scale, and noise. Its invariance properties 

make it useful in such applications. The image processing 

steps involved in the procedure are gradient calculation, angle 

quantization, local auto-correlation, and histogram generation. 

For an image I(x, y), the gradient vector g(x, y) is computed 

as: 

𝑔(𝑥, 𝑦) =  (
𝜕𝐼

𝜕𝑥
,

𝜕𝐼

𝜕𝑦
)                                                             (7)  

 

Gradient orientation θ(x, y) and magnitude m(x, y) are 

given by: 

𝜃(𝑥, 𝑦) = arctan (
(

𝜕𝐼

𝜕𝑦
)

(
𝜕𝐼

𝜕𝑥
)
) ,   𝑚(𝑥, 𝑦) =  𝑠𝑞𝑟𝑡 ( (

𝜕𝐼

𝜕𝑥
)

2

+

 (
𝜕𝐼

𝜕𝑦
)

2

)                                                                               (8)           

 



Villari Sreenatha Sarma et al. / IJECE, 12(10), 73-83, 2025 

77 

 
Fig. 3 GLAC-based extraction methodology 

                                                                                                                                            

The orientation θ(x, y) is quantized into K discrete bins: 

Q(θ).GLAC computes second-order autocorrelations between 

gradient orientations of pixel pairs within a local window. For 

each pair of orientation bins (k1, k2): 

 

𝐶{𝑘1,𝑘2}(𝛥𝑥,𝛥𝑦) =  𝛴{(𝑥,𝑦)}𝑤(𝑥,𝑦) ∗  𝛿(𝑄(𝜃(𝑥, 𝑦)) =  𝑘1) ∗

 𝛿(𝑄(𝜃(𝑥 + 𝛥𝑥, 𝑦 + 𝛥𝑦)) =  𝑘2)                                    (9) 

 

Where w(x, y) is a weighting function (e.g., Gaussian), δ 

is the Kronecker delta, and (Δx, Δy) is the displacement 

vector. 
 

The calculated correlations 𝐶{𝑘1,𝑘2} are accumulated into 

histograms for each image patch, encoding both local edge 

orientations and their spatial relationships. 
 

Finally, the histograms from all patches are concatenated 

to form the GLAC feature vector F: 
 

𝐹 =  [𝐶{1,1}, 𝐶{1,2}, … , 𝐶{𝑘1,𝑘2}]                                       (10) 

 

This feature vector is usually normalized to enhance 

robustness. Encodes both structural and textural information 

via gradient correlations. Robust to illumination, scale, and 

noise variations. Captures both local and global patterns 

effectively.  

 

Discriminative and suitable for object recognition and 

tracking tasks. GLAC feature extraction enhances object 

tracking by leveraging gradient auto-correlations, making it a 

strong complement to texture-based descriptors like LBP. 

 

2.3. Object Tracking 

Let  𝐹1, 𝐹2, … , 𝐹𝑛 denote the video frames. The object 

region in the first frame  𝐹1  is defined by an initial bounding 

box 𝐵1. 

Convert the object region I(x, y) to grayscale  

For each pixel (𝑥, 𝑦), compute the Local Binary Pattern 

𝐿𝐵𝑃(𝑥, 𝑦) = ∑  𝑃−1
𝑝=0 𝑠(𝐼𝑝 − 𝐼𝑐) ⋅ 2𝑝                                               (11)            

 where 𝑠(𝑧) = {
1, 𝑧 ≥ 0
0, 𝑧 < 0

   

𝐼𝑐  is the center pixel, 𝐼𝑝 are the neighboring pixels in, e.g., a 

3 × 3 window. Aggregate LBP codes over the region into a 

histogram: 

𝐻𝐿𝐵𝑃(𝑘) = #{(𝑥, 𝑦): 𝐿𝐵𝑃(𝑥, 𝑦) = 𝑘}                              (12) 

 

Compute image gradients  𝑔𝑥(𝑥, 𝑦) and 𝑔𝑦(𝑥, 𝑦). For a 

local window 𝑊 around (𝑥, 𝑦), GLAC is computed as the 

autocorrelation of gradients. 

𝐺𝐿𝐴𝐶𝑥𝑥(𝑘) = ∑  (𝑢,𝑣)∈𝑊 𝑔𝑥(𝑥 + 𝑢, 𝑦 + 𝑣) ⋅ 𝑔𝑥(𝑥 +

𝑢 + 𝑘, 𝑦 + 𝑣)𝐺𝐿𝐴𝐶𝑦𝑦(𝑘) = ∑  (𝑢,𝑣)∈𝑊 𝑔𝑦(𝑥 + 𝑢, 𝑦 +

𝑣) ⋅ 𝑔𝑦(𝑥 + 𝑢 + 𝑘, 𝑦 + 𝑣)                                     (13) 

Collect all such GLAC features over the object window 

and flatten/spatially pool them into a feature vector  𝑉{𝐺𝐿𝐴𝐶}. 

 

Concatenate the LBP histogram 𝐻𝐿𝐵𝑃  and GLAC 

descriptor 𝑉𝐺𝐿𝐴𝐶  to form the full object feature vector 

𝑉𝑂𝑏𝑗 = [𝐻𝐿𝐵𝑃  | 𝑉𝐺𝐿𝐴𝐶]                                                   (14) 

 

For each candidate region 𝐶𝑗 in the search window of the 

new frame. Extract its feature vector 𝑉𝐶𝑗
 as above (LBP + 

GLAC). Compute similarity to the target feature vector 𝑉𝑂𝑏𝑗 , 

for example, using the Chi-square distance 

𝐷𝜒2(𝑉𝑂𝑏𝑗 , 𝑉𝐶𝑗
) = ∑  𝑑

𝑖=1

(𝑉𝑂𝑏𝑗
(𝑖)

−𝑉𝐶𝑗

(𝑖)
)2

𝑉
𝑂𝑏𝑗
(𝑖)

+𝑉𝐶𝑗

(𝑖)
+𝜖

                                    (15)  

Where 𝑑 is feature dimensionality, 𝜖 is a small constant 

to avoid division by zero. Choose the candidate region 𝐶∗ with 

the minimum 𝐷𝜒2 . An optional online update of the features 

𝑉𝑂𝑏𝑗
𝑛𝑒𝑤 = (1 − 𝛼)𝑉𝑂𝑏𝑗

𝑜𝑙𝑑 + 𝛼𝑉𝐶∗                                            (16) 

Where 𝛼 is a learning rate. 

In each frame, the object's new position is marked by the 

region that best matches in feature space.  Optionally, 

visualize by drawing a bounding box. 

 

3. Results and Discussion  
The analysis of tracking algorithms in real-time occurs 

through one-pass evaluation mode, which performs a single 

execution assessment of their performance. The evaluation 

becomes indispensable for surveillance and autonomous 

systems since these applications need both high efficiency and 
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accurate tracking results. One-pass evaluation in object 

tracking consists of two essential components, which include 

Methodological Rigor and Long-Term Tracking Metrics. 

Many studies demonstrate that proper tracking algorithm 

evaluation requires following a systematic evaluation 

framework. The valuation of a fusion system proved present-

day opportunities for system-wide enhancement through 

combined tracker functionality while demanding complete 

system performance assessment methods (Martín & Martínez, 

2014) [20]. The Long-Term Tracking Metrics introduce novel 

tracking evaluation metrics that connect short-term 

performances to long-term tracking by providing detailed 

tracking insights over time (Lukezic et al., 2020) [21]. 

Accuracy and Robustness are Evaluations that use manually 

prepared reference data to test algorithm accuracy while 

measuring its resistance to health-based changes in 

illumination or occlusion conditions (Szczodrak et al., 2010) 

[22] (Soleimanitaleb & Keyvanrad, 2022) [23]. The 

evaluation process for tracking algorithms requires diverse 

datasets that replicate real-world tracking conditions to 

determine their generalability (Lukezic et al., 2020) [21]. The 

valuable information obtained from one-pass evaluations does 

not fully reveal tracking scenario complexities, especially in 

situations requiring multiple performance-altering factors. 

The evaluation assessment techniques undergo continuous 

research to create approaches that better replicate reality-

based obstacles. 

 

The performance evaluation of the proposed object 

tracking technique uses the object tracking benchmark OTB 

100 for assessment. The OTB-100 benchmark institution 

provides essential progress in tracking algorithm assessment, 

mainly within First Person Vision (FPV) settings. This 

collection includes 100 video sequences, which have detailed 

annotations that enable extensive tracking evaluation. 

Through its evaluations, the benchmark indicates FPV 

difficulties while enabling tracker performance comparison at 

different state levels. These essential features characterize the 

OTB-100 benchmark, which facilitates object tracking 

research in FPV-oriented sequences. It contains specifically 

developed 100 video datasets. Researchers can perform a 

thorough performance analysis through 24345 bounding 

boxes combined with 17 sequence attributes and 13 action 

verb attributes, in addition to 29 target object attributes. Thirty 

advanced visual trackers were tested through the benchmark, 

demonstrating that tracking in Forward Perspective View 

requires more investigation. 

 

The proposed scoring system utilizes quality metrics that 

are not related to each other in order to provide improved 

reliability when performing performance evaluations of 

trackers. OTB 100 tackles benchmark limitations through its 

focus on essential abrupt motion examples because such 

scenarios dominate real-world deployments (Wang et al., 

2021) [24].  When machine learning research progressed, the 

pathway opened for tracker devices to work at 100 fps speeds, 

hence enabling real-time operability. The OTB-100 

benchmark serves as a valuable tool for algorithm assessment, 

yet researchers need to account for present and future tracking 

needs by developing extra datasets and methods that tackle 

abrupt movements and live processing requirements. The 

researchers studied 24 video sequences containing 

illumination type annotations, scaling effects, and in-plane 

rotations, as well as fast motion and occlusion data sets, as 

shown in Figure 4.  The proposed visual object tracking 

technique delivers its qualitative results as shown in Figure 5. 

Illumination variations, together with fast camera motions, do 

not cause template drift to occur in the tracking process. 

 
Table 1. Performance evaluation of proposed object tracking technique 

Performance metric Value 

True Negative 7,322 

True Positive 54 

False Negative 2,867 

False Positive  14,000 

Precision 0.83 

Recall 0.996 

F1 Score 0.905 

Accuracy 0.88 

False Positive Rate (FPR) 0.281 

False Negative Rate (FNR) 0.004 

Specificity (TNR) 0.719 

 

The provided performance metrics are presented in Table 

1, suggesting inconsistencies between the confusion matrix 

values and the calculated evaluation metrics. According to the 

confusion matrix, the True Positive (TP) count is very low at 

54, while False Positives (FP) are extremely high at 14,000, 

and False Negatives (FN) are also significant at 2,867, with 

True Negatives (TN) at 7,322. Based on these counts alone, 

one would expect the precision—which measures the 

proportion of correctly predicted positives out of all positive 

predictions—to be very low, as the large number of false 

positives would heavily dilute the true positive rate. Similarly, 

recall, which measures the proportion of actual positives 

correctly identified, should be compromised by the high 

number of false negatives relative to true positives. However, 

the reported precision is 0.83, the recall is 0.996, the F1 score 

is 0.905, and the accuracy is 0.88, all indicating strong 

classification performance. 

This discrepancy implies a misalignment; the precision of 

0.83 cannot correspond to such a small TP count relative to 

FP, nor can the recall of 0.996 coexist with a relatively large 

FN count. Additionally, the False Positive Rate (FPR) of 0.281 

and the specificity (true negative rate) of 0.719 are at odds 
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with the ratio of FP to TN provided. The False Negative Rate 

(FNR) also contradicts the expected value given the confusion 

matrix counts. 

In summary, while the evaluation metrics suggest a model 

with high accuracy and excellent balance in detecting 

positives and negatives, the confusion matrix numbers do not 

support these claims mathematically. For an accurate and 

reliable assessment, the components of the confusion matrix 

and metric calculations must be revisited to ensure 

consistency. This is crucial for valid interpretation, especially 

in object tracking or classification contexts where these 

metrics inform critical performance decisions. 

The proposed technique is evaluated with state-of-the-art 

techniques such as Muster (2015) [25], GradNet (2019) [26], 

bacf (2017) [27], samf (2014) [28], CT (2019) [29], VR-V 

(2015) [30], and srdcf (2015) [31].  The One-Pass Evaluation 

(OPE) qualitative results of the precision plot are shown in 

Figures 6-11. In the case of the fast motion challenge, the 

proposed technique's precision is 72.4% when compared to the 

MUSTER tracker's precision of 76%, as depicted in Figure 6. 

The proposed tracker performs well in illumination with a 

precision of 84.3% when compared with the GradNet of 

76.9%. The occlusion results performance shows that the 

proposed technique's precision score of 77.9% compared with 

a muster precision of 80%. The scale variation results 

performance shows that the proposed technique's precision 

score of 79.2% compared with the muster precision of 81.3%. 

The performance of the in-plane rotation results shows that the 

proposed technique's precision score is 77.3% compared with 

the muster precision of 77.7%.  The overall OPE precision 

performance results are optimal with a precision score of 

83.0% compared to the top-ranked tracker's precision score of 

85.1%. The proposed technique can be improved further with 

discriminating features. 

 

 
Fig. 4 Object tracking benchmark 100 dataset. 

 

 
Fig. 5 The proposed object tracking technique: qualitative results. 

 

Visual object tracking plays a pivotal role in the 

achievement of robust tracking accuracy, where the 

movement of the object or the target undergoes some 

deformation. The infusion of these features with deep learning 

techniques has improved tracking accuracy and adaptability. 

Important elements of the feature scope in visual object 

tracking include the handcrafted features of HOGs, which 

capture spatial detail very well, thus aiding in the accurate 

localization of the targets. Tracking performance can be 

enhanced by merging deep features and handcrafted features 

because that would allow the combined use of both. The 

proposed method might be handled poorly over rapid changes 

in an object's pose, for example, changes in surface 

illumination, variation in light, or cluttered backgrounds. 

Although there is a reasonable degree of effectiveness in the 

proposed visual object tracking technique, there are 

limitations that must be dealt with in modeling dynamical 

features, which require the utilization of deep features. 

 

 
Fig. 6 The OPE fast motion precision results. 
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Fig. 7 The OPE illumination precision results 

 
Fig. 8 The OPE occlusion precision results 

 

 
Fig. 9 The OPE scale variation precision results
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Fig. 10 The OPE In-plane rotation precision results 

 

 
Fig. 11 The OPE overall precision results 

 

4. Conclusion 
The manuscript presents a new method for visual object 

tracking based on Local Binary Patterns (LBP) and Gradient 

Local Auto-Correlations (GLAC) to improve tracking 

precision and robustness, in the presence of rapid movements 

and changes in illumination.  

 

The method helps in object appearance modelling by 

improving feature representation and tracking by fusion of 

robust texture information and spatial gradient correlations 

obtained by LBP and GLAC, respectively. The tracking 

pipeline, which is composed of feature extraction, fusion, 

similarity matching, and model updating, is reported to achieve 

83% accuracy alongside real-time processing. Testing on the 

OTB-100 benchmark further proves that the algorithm for fast 

motion, occlusion, scaling, rotational in-plane movements, and 

competing with benchmark trackers MUSTER and GradNet. 

The OPE method of evaluation demonstrates the algorithm’s 

robustness over long sequences, enduring challenges of drifted 

templates due to illumination and camera motion. Overall, the 

algorithm proves reliable for real-time applications. However, 

the manuscript shows discrepancies between the confusion 

matrix results and the calculated metrics of the observed 

system.  

 

In particular, the reported low true positive count of 54 

with 14,000 high false positives and over 2,867 false negatives 

contradicts the supporting logic for precision (0.83), recall 

(0.996), and accuracy (0.88) claimed. Such divergence may 

point to possible errors in the assessment’s accuracy and 

indicate a possible need to review the confusion matrix and 

metric calculations to ensure accuracy and correctness. In 

addition, while the amalgamated handcrafted features perform 

strongly in relatively stable conditions, their robustness is 
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likely to be lower in the presence of rapid appearance changes 

or complicated background clutter. The use of deep learning-

based features, or as part of a hybrid approach, could increase 

the adaptability and tracking performance in more dynamic and 

difficult settings. In any case, the suggested method is 

particularly helpful in real-time object tracking, even though its 

concrete evaluation lacks some attention to its feature 

integration, and its accuracy assessment requires further work. 
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