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Abstract - With the rapid growth of high-speed networks and increasing sophistication of cyber threats, Deep Packet Inspection 

(DPI) systems face important challenges in detecting real-time intrusion without degrading network performance. Traditional 

serial Deterministic Finite Automata (DFA)-based DPI approaches often suffer from state explosions and processing hurdles, 

making them unsuitable for modern Software-Defined Networking (SDN) environments. The purpose of this study is to design 

and implement a customised DPI structure that provides high identification accuracy and low delays for real-time network 

safety. The innovation of this research lies in its parallel DFA-based DPI engine, which integrates Hopcroft's DFA minimisation 

algorithm with multi-level parallelism and CUDA-based GPU acceleration. Unlike traditional methods, the proposed system 

enables failed multi-pattern payload matching, addressing scalability and performance issues in large-scale traffic analysis. 

The proposed framework packet decomposes the data into the header and payload, applying N-gram tokenisation and 

generalisation to prepare data for high-speed DFA processing. It is integrated tightly with an SDN controller (RYU), which 

enables dynamic flow table updates to reduce attacks such as DDoS and brute force in real time. CIC-IIDS 2018 displays the 

superiority of the system on the dataset, with 99.68% detection accuracy, 99.72% accuracy, and 0.28 ms average delays, 

improving existing ML-based IDs and serial DFA approaches. This research establishes a strong, scalable, and light DPI 

structure suitable for deployment in high-speed enterprise networks. Furthermore, it will focus on supporting encrypted traffic 

inspection and hardware acceleration using SmartNICs or FPGAs. 

Keywords - Parallelized DFA, Deep Packet Inspection, Software-Defined Networking, Real-Time Intrusion Detection, Hopcroft 

Minimization. 

1. Introduction 
The development of networking technologies has 

dramatically replaced how information is broadcast, 

processed, and kept safe in global infrastructure. With the rise 

of Software-Defined Networking (SDN), organisations can 

now manage their network with unprecedented flexibility and 

scalability using control and data aircraft (Song et al., 2020). 

SDN allows centralised control and programmability, which 

is important for adapting to dynamic network demands. 

However, this paradigm also exposes the network to 

sophisticated cyber threats, including Distributed Denial of 

Service (DDoS) attacks, malware spread, and advanced, 

consistent threats that can take advantage of the centralised 

architecture of SDN (Ali & Yousaf, 2020). For the protection 

of these environments, Deep Packet Inspection (DPI) has 

emerged as an important technique for analysing packets 

beyond traditional header-based filtering. The DPI enables the 

signature of the known attack and detects abnormal traffic 

behaviour, making it a foundation stone for  Intrusion 

Detection System / Intrusion Prevention System (IDS/IP) 

(Birkinshaw, Rouka, & Vassilakis, 2019). Nevertheless, as the 

speed of the network continues to increase due to cloud 

computing, 5G growth, and IoT proliferation, traditional DPI 

struggles to distribute real-time performance without 

introducing the delay and throughput hurdles (Janabi, 

Kanakis, & Johnson, 2024). It underlines the immediate need 

for high-demonstration DPI mechanisms capable of scaling 

with modern traffic volume while maintaining low-delay 

operations in SDN infrastructure (Ghadermazi, Shah, & 

Bastian, 2024). 

In the last decade, significant research has been dedicated 

to increasing the DPI engine to meet the challenges of high-

speed networks. Signature-based tools such as Snort and 

Suricata are deployed to detect predetermined patterns of 

malicious activity; regular manifestations are used for 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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matching packet material (Brugman, Khan, Kasera, & 

Parvania, 2019). However, these solutions often rely on 

sequential processing, which is computationally expensive 

and slow for the gigabit-speed network. To address these 

deficiencies, the Deterministic Finite Automata (DFA)-based 

approaches have attracted attention due to their ability to 

match linear-time patterns, which enables rapid scanning of 

packet payloads (Zavrak & Iskefiyeli, 2023). In addition, 

parallel efforts of DPI engines using multi-core processors and 

Graphics Processing Units (GPUs) have shown the ability to 

accelerate inspection rates. Despite these innovations, many 

boundaries persist. DFA-based technology often faces state 

explosion problems, reduces high memory requirements, and 

reduces efficiency when handling large signature sets 

(Alshahrani et al., 2023). GPU-based DPI systems demand 

special hardware and are suffering from complex 

implementation challenges, which limit their widespread 

adoption. Additionally, many existing approaches are not 

originally designed for the SDN environment, which lacks the 

ability to update dynamic tables in response to attack detection 

(Etxezarreta, 2024). This disconnect between high-speed DPI 

and SDN integration hinders the effectiveness of the 

prevention of real-time infiltration, causing the network to 

become unsafe for rapidly growing attacks (Cheng et al., 

2021). 

To resolve these challenges, this study proposes a parallel 

DFA-based deep packet inspection structure integrated with 

software-defined networking to prevent real-time infiltration. 

The proposed solution, DFA, reduces state machines for 

efficient signature matching, which reduces the memory 

overhead while maintaining the accuracy of detection 

(Satheesh et al., 2020). To obtain a high throughput, the DPI 

engine employs a multi-level parallel strategy, including 

multi-core CPU, data-level equality, and thread-tier equality 

on packet captures, inspection, and pipelines, which adapts the 

SDN controller on the GPU using CUDA/Open (Mustapha, 

Djahel, Perry, & Zhang, 2021). The DPI engine is tightly 

coupled with an SDN controller (e.g., Ryu or ONOS), which 

enables dynamic updates to update the flow tables of the 

OpenFlow switch to block or make malicious traffic in real 

time. The framework is evaluated using benchmark datasets 

such as CIC-AIDS 2018 and UNSW-NB15, which perform 

better in terms of accuracy, low delay, and scalability 

detection compared to traditional serial DFA-DPI and Regex-

based systems (Guo, Zhang, & Ma, 2021). By basically 

integrating high-speed DPIs with SDN capabilities, this 

research contributes a strong and scalable safety solution to 

protect the next-generation network against developing cyber 

threats. 

1.1. Problem Statement  

With the rapid adoption of Software-Defined Networking 

(SDN), the network has achieved flexibility and 

programmability by decoupling control and data planes 

(Naqash, Shah, & Islam, 2022). However, this centralisation 

also introduces new security weaknesses, making SDN a 

major target for cyber threats. The SDN Prevention System 

(IPS) in the atmosphere depends a lot on Deep Packet 

Inspection (DPI) to analyse the packet payload to detect 

malicious patterns (Rui, Pan, & Shu, 2023). Traditional DPI 

engines and sequential regular expressions based on matching 

are computationally intensive and fail on a scale with high-

speed traffic in modern networks (Jarvis, 2019). This 

significantly reduces the real-time requirements for the 

prevention of infiltration because of delays and high delays. In 

addition, in existing approaches, there is a lack of efficient 

parallelisation techniques and spontaneous integration with 

SDN controllers to update the flowing rules dynamically for 

the mitigation of danger (Makuvaza, Jat, & Gamundani, 

2021). These limitations highlight the immediate requirement 

of a scalable, high-demonstration DPI framework that can 

prevent real-time infiltration without compromising network 

performance in the SDN environment. 

1.2. Recent Innovation and Its Limits  

In recent years, researchers have discovered various 

innovations to increase network safety and Intrusion 

Prevention Systems (IPS), especially within Software-

Defined Networking-trafficking (SDN) environments. 

Signature-based devices such as Snort and Suricata include 

advanced rules to effectively detect the pattern of the known 

attack. Additionally, a DFA-based Deep Packet Inspection 

(DPI) engine has emerged as a promising solution for rapid 

pattern matching due to its linear time complexity. Parallel 

computing approaches, including GPU-quick DPI and 

multinational packet processing, have also been introduced to 

handle traffic volumes. Despite this progress, important 

challenges remain. DFA-based methods often encounter state 

explosion problems, causing high memory consumption. The 

GPU-based system requires special hardware and adaptation, 

which limits its widespread adoption. In addition, many 

solutions lack tight integration with SDN controllers, resulting 

in response time delays and an inability to dynamically adapt 

to the flow. These limitations disrupt the scalability and real-

time effectiveness of the existing IPS framework in modern 

high-speed networks. 

1.3. Research Motivation  

The exponential growth of network traffic operated by 

cloud computing, IoT devices, and 5G technologies has 

dramatically increased the complexity of securing modern 

networks. Software-Defined Networking (SDN) provides 

powerful tools for managing dynamic traffic flows with its 

centralised control and programmability. However, these 

similar features introduce new weaknesses and surfaces of 

attacks that can be exploited by opponents. Traditional 

Intrusion Prevention Systems (IPS), which depend on 

sequential Deep Packet Inspection (DPI), struggle to process 

massive amounts of data in real time, leading to high delay 

and a compromised network. The need for high-speed, low-

distance safety is important to protect from DDoS attacks, 
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malware injections, and zero-day exploits, such as 

sophisticated cyber threats. Developing scalable DPI solutions 

that can efficiently analyse the packets and basically integrate 

with SDN controllers is necessary to detect real-time threats 

in the next-generation network and enable mitigation. 

1.4. Significance of the Study  

This study presents a novel approach to increase network 

safety by integrating a parallel DFA-based Deep Packet 

Inspection (DPI) engine within the Software-Defined 

Networking (SDN) environment. Importance lies in its ability 

to resolve important challenges of existing Infiltration 

Prevention Systems (IPS), such as high delay, limited 

scalability, and poor adaptation to dynamic network 

conditions. By employing advanced parallel computing 

techniques in multi-core CPUs and GPUs, the proposed 

structure ensures high-speed, low-overhead processing of 

network traffic, which enables real-time detection and 

prevention of cyber threats.  

In addition, spontaneous integration with SDN controllers 

allows dynamic updates to flow to the table, which ensures 

rapid response to identified attacks. This research contributes 

to a scalable and efficient safety solution that protects the next-

generation network, including 5G and IoT infrastructure, from 

developing threats while maintaining optimal network 

performance. 

1.5. Key Contribution  

 Novel Parallelized DFA-DPI Framework: Introduced a 

novel high-speed Deep Packet Inspection system using a 

parallelized Deterministic Finite Automata (DFA) 

approach optimized with state minimization and multi-

level parallelism for real-time intrusion detection in 

Software-Defined Networks (SDN). 

 Efficient Preprocessing Pipeline: Developed an advanced 

packet preprocessing method, including header 

extraction, IP and port normalization, and n-gram payload 

tokenization, to prepare heterogeneous network traffic for 

scalable pattern matching. 

 SDN Integration for Dynamic Mitigation: Seamlessly 

integrated the DPI engine with SDN controllers (e.g., 

Ryu) to enable dynamic flow table updates and real-time 

attack mitigation, ensuring adaptive and flexible network 

defense mechanisms. 

 Lightweight and Scalable Architecture: Designed a 

lightweight DPI solution suitable for deployment in high-

speed enterprise and cloud networks, capable of handling 

gigabit-scale traffic without introducing significant 

overhead. 

 

1.6. Rest of the Section 

 Section 2: Discusses the recent DPI tools and security 

software based on SDN, their problems, limitations 

witnessed in the treatment of high-speed affinity, and the 

decryption of present-day attacks. 

 Section 3: Describes the implementation of the proposed 

Parallelized DFA-DPI system featuring preprocessing of 

packets, constructing DFA-Aho-Corasick, parallel 

processing tricks, as well as incorporation with the SDN 

controller with a real-time attack detection and prevention 

system. 

 Section 4: Presents experimental evidence and compares 

the suggested system with the current serial DFA and 

ML-based IDS models in terms of accuracy of detection, 

latency, and efficiency of the system. 

 Section 5: Ends the study with conclusions about the main 

contributions to this study and further work, which can 

include the support of encrypted traffic and the 

implementation on hardware-accelerated platforms in the 

case of large-scale networks. 

 

2. Literature Review  
The materials Janabi et al.(2022) model employ feature 

selection techniques to reduce the features extracted and use 

an independent communication channel to reduce the 

controller and OpenFlow switch overload. Naïve Bayes was 

applied for flow classification due to its computational 

efficiency. The framework was implemented using Mininet 

and achieved an accuracy of detection of 98.46%, with only a 

1.5% throughput drop and an increased delay in the broad area 

networks of 0.7%. While being effective, the dependence of 

the system on the Naïve Bayes limits the compatibility of 

complex traffic patterns by suggesting the need for advanced 

classification techniques.  

Fausto et al. (2022) approach included a sequential 

prototype implementation with increasing software and 

hardware complexity to identify and reduce the delay sources. 

Evaluation showed that ID received 0.95 probability for 

delays under 10 ms for P1 messages and 0.9453 probability 

for delays under 3 ms for P2/P3 classes. Using a high-

performance software switch with DPDK and a hardware-

supernatural switch further improves delay. However 

promising, the system requires additional adaptation for strict 

real-time industrial requirements.  

Chatzimiltis et al. (2024) proposed an SDN-based 

architecture for Smart Grid (SG) to increase network 

efficiency, reliability, and security. To combat the insider 

attacks, he introduced a Service Mark-Intrusion Detection 

System (SM-IDS), which uses split learning in the SDN 

application layer, addressing the privacy concerns contained 

in centralised IDS approaches. Their structure was evaluated 

against federated learning in the Neighbourhood Area 

Network (NAN). The results showed that Split Learning SM-

IDS achieved a five-grade classification accuracy of 80.3% 

and an F1 score of 78.9, while Split Learning NAN-IDS 

reached 81.1% accuracy and a 79.9 F1 score. However, more 

adaptation was suggested for large SG deployment.  
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Onyema et al. (2022) proposed a Security Policy Protocol 

(SPP) combined with client authentication to detect and 

reduce unauthorised ICMP attacks in the SDN environment. 

The effectiveness of the model was evaluated using CPU use, 

channel bandwidth, packet distribution ratio, and response 

time. Experimental results demonstrated the accuracy of 

detection of 92% with minimal overhead, improving 

traditional approaches. While the SPP improves defence 

against flood attacks, scalability and integration can be 

addressed with a diverse SDN architecture in future work. 

 

AlMasri et al. (2022) suggested a hybrid Intrusion 

Detection and Prevention System (IDPS) for Software-

Defined Networks (SDNs) based on machine learning and 

network programmability to mitigate Denial of Service (DoS) 

and port scanning attacks. They used ANOVA for feature 

selection and employed the chosen features in different 

machine learning models. Among them, the Naïve Bayes 

classifier performed the best with 86.9% accuracy for DoS 

attack detection and 93.5% for Probe attack detection. The 

system identifies anomalies and stops the threats by sending a 

notification to the SDN controller. Scalability and adaptability 

to new patterns of attacks were areas where the performance 

needed to be further improved.  

 

Tang et al. (2020) framework was trained and tested on 

the NSL-KDD-KDD dataset, using a Deep Neural Network 

(DNN) and a gated recurrent network (GRU-RNN). 

Experimental results received DNN 80.7% to detect 90% 

accuracy and flow-based discrepancy to GRU-RNN. 

Additionally, evaluation on throw-up, delay, and resource use 

confirmed that DeepIDS maintained the OpenFlow controller 

performance. However, it is necessary to improve the 

accuracy of further studies and to adapt the system to real-

time, large-scale SDN environments.  

 

Bour et al. (2022) framework adds flow-based identity 

using packet-based identity with an Extreme Learning 

Machine-Based Single-Hidden-Layer Feedforward Network 

(ELM-SLFN) and Case-based Information Entrapment (C-

IE). The Floyd-Warshall algorithm and Hidden Markov 

Model (HMM) optimise routing by classifying and bypassing 

the affected switch. Simulation has reduced the accuracy of 

detection by 97.56%, lowering false-positive rates, reducing 

CPU use, and improving reaction time. However, scalability 

and optimisation capacity to develop the pattern of attack 

remain areas for further discovery.  

 

Bocu et al. (2022) taking advantage of the Convolutional 

Neural Network (CNN), the system detects unknown 

infiltration and effectively blocks malicious traffic. Vodafone 

was evaluated in Romania's 5G network; the proposed ID 

achieved 200 ms, 94.14% accuracy detection time, and a false-

positive rate of 0.81%, making traditional approaches with 

minimal overheads for real-time deployment. However, the 

performance of the system in large-scale asymmetric 

communication scenarios requires further investigation to be 

widely projected in diverse 5G environments.  

Hirsi et al. (2024) developed a traffic classification 

framework based on machine learning to improve Distributed 

Denial of Service (DDoS) detection in Software-Defined 

Networks (SDN). A new dataset was proposed in the work to 

overcome some of the limitations of available datasets, like 

using unrealistic topologies and being unavailable for public 

use, and the performance was verified with CICDDoS2019. 

Supervised learning using a Random Forest model enabled the 

system to successfully classify benign from malicious traffic 

with 98.97% accuracy and a false positive rate of 0.023. 

Promising for application in real-world SDN security, 

scalability, and adaptability to changing DDoS attack patterns 

in varying network settings are areas to be researched in the 

future.  

Kokila M et al. (2025) framework integrates blockchain-

based authentication for safe communication and employs an 

adaptive limit scoring mechanism to adapt local and cloud 

model convergence. The SDN acts as a cloud-based security 

administrator, which enables real-time security against zero-

day attacks. E-IIoT and ToN-IoT datasets were evaluated; the 

system outperformed 99.15% accuracy, 99.31% accuracy, 

98.97% recall, and 99.14% F1-score compared to models. 

Extremely efficient, future work with minimal CPU use 

should address scalability in large, odd IoT networks under 

high traffic conditions.  

Table 1 reviewed studies reveal significant progress in 

integrating machine learning, deep learning, and novel safety 

protocols, which are in the SDN and IoT environments for 

detection and prevention of infiltration. However, common 

boundaries persist in these approaches. Many tasks (e.g., 

Janabi et al. (2022), AlMasri et al. (2022)) rely on mild 

classifiers such as naïve Bayes, which struggle with 

computationally efficient, complex, and developed traffic 

patterns, limiting adaptability. Ways like those proposed by 

Tang et al.(2020) and Bocu et al. (2022) get high identification 

accuracy using deep learning, but due to computational 

overhead, real-time, large-scale deployment requires more 

optimization. Scalability remains a recurring challenge, 

especially for Onyema et al. (2022) and Bour et al. (2022) for 

solutions such as multi-layered defence, which show 

promising results but lack evaluation in diverse SDN 

topologies and high-trafficking conditions. Blockchain-based 

systems and the Split Learning Approach address the concerns 

of privacy but require refinement to handle large networks 

with minimal delay (Fausto et al., 2022; Hirsi et al., 2024). 

Finally, Fausto et. al. (2022) work, although additional growth 

is required for efficient, strict real-time industrial obstacles. 

These gaps outline the need for future research on scalable, 

adaptive, and resource-skilled security structures for dynamic 

SDN and IoT environments
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Table  1. Overview of literature review 

Reference Methodology Key Findings Limitations 

Janabi et al. (2022) 

Feature selection, Naïve 

Bayes classifier, Mininet 

simulation 

Achieved 98.46% detection 

accuracy; 1.5% throughput drop; 

0.7% delay increase in WAN 

Naïve Bayes limits 

compatibility with complex 

traffic patterns 

Fausto et al. (2022) 

Sequential prototype, 

software switch with DPDK, 

hardware switch 

Achieved 0.95 probability for 

<10ms delay (P1) and 0.9453 for 

<3ms delay (P2/P3); reduced 

delay sources 

Needs adaptation for strict 

real-time industrial 

requirements 

Chatzimiltis et al. 

(2024) 

SDN-based SG architecture, 

Split Learning IDS in the 

application layer 

SM-IDS: 80.3% accuracy, F1-

score 78.9; NAN-IDS: 81.1% 

accuracy, F1-score 79.9 

Requires further adaptation 

for large Smart Grid 

deployments 

Onyema et al. (2022) 

Security Policy Protocol 

(SPP) with client 

authentication in SDN 

92% detection accuracy; minimal 

overhead; improved flood attack 

defense 

Scalability and integration 

with diverse SDN 

architectures need 

improvement 

AlMasri et al. (2022) 

Hybrid ML-based IDPS 

using ANOVA feature 

selection and Naïve Bayes 

DoS detection: 86.9% accuracy; 

Probe detection: 93.5%; stops 

threats via SDN controller 

Limited scalability and 

adaptability to new attack 

patterns 

Tang et al. (2020) 

DeepIDS using DNN and 

GRU-RNN trained on the 

NSL-KDD dataset 

DNN: 80.7% accuracy; GRU-

RNN: 90% accuracy; maintained 

OpenFlow controller 

performance 

Needs improved accuracy 

and real-time adaptation for 

large-scale SDN 

environments 

Bour et al. (2022) 

Multi-layer defense using 

ELM-SLFN, C-IE, Floyd-

Warshall, and HMM 

97.56% detection accuracy; 

reduced false positives; improved 

CPU utilization and response 

time 

Scalability and adaptation to 

evolving attack patterns 

remain challenges 

Bocu et al. (2022) 

CNN-based IDS for 

Vodafone Romania 5G 

networks 

94.14% accuracy; 200ms 

detection time; 0.81% false 

positive rate; minimal overhead 

for real-time deployment 

Needs evaluation in large-

scale asymmetric 

communication scenarios 

Hirsi et al. (2024) 

ML-based traffic 

classification using Random 

Forest and a custom dataset 

98.97% accuracy; 0.023 false 

positive rate; verified on 

CICDDoS2019 dataset 

Scalability and adaptability 

to dynamic DDoS attack 

patterns require further 

research 

Kokila M et al. (2025) 

Blockchain-based 

authentication, adaptive 

threshold scoring, SDN as 

cloud-based security admin 

99.15% accuracy; 99.31% 

precision; 98.97% recall; 99.14% 

F1-score; efficient against zero-

day attacks 

Needs scalability 

improvements under high-

traffic, large-scale IoT 

network conditions 

3. Proposed Framework: Parallelized Finite 

Automata-Based Deep Packet Inspection for 

Real-Time Intrusion  
       The framework that will be presented will start with the 

process of data collection and preprocessing, where the packet 

payloads will be extracted and tokenized so that they are ready 

to undergo the inspection process. During the following phase, 

the DFA model construction is carried out by concatenating 

attack signatures into one multi-pattern DFA and then 

minimizing it to eliminate redundant states and transitions. In 

order to support high-speed analysis, parallelization strategies 

are added, such as thread-level and data-level parallelism, 

which process with many CPU and GPU threads and can scale 

with many threads. This parallelized DFA is incorporated in 

the DPI engine implementation to implement real-time traffic 

analyses at the packet payload level upon multi-pattern match. 

Subsequently, the system will be coupled to the SDN 

environment at the SDN integration and mitigation stage, 

where the DPI engine will communicate with OpenFlow 

switches in the system and dynamically update these tables to 

block malicious traffic or reroute it. Finally, the effectiveness 

of the framework is evaluated using the evaluation metrics 

step, which implies the measurement of the detection 

accuracy, throughput, and latency of the model prepared to 

satisfy the requirements of contemporary high-performing 

networks. This end-to-end architecture provides scalable, 

latency intrusion detection and dynamic defences of the 

network. Figure 1 shows the overall proposed framework of 

Deep Packet Inspection for Real-Time Intrusion Prevention in 

Software-Defined Networks. 
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Fig. 1 Overall proposed framework of DPI real-time intrusion prevention in SDN 

 

3.1. Data Collection  

This study uses the CIC-DS 2018 dataset (2019) as the 

primary benchmark for the evaluation of the proposed DPI 

structure. The CIC-IIDS 2018 provides a broad, real-world 

network traffic capture from the enterprise environment, 

which includes both benign and malicious flows. The dataset 

includes a diverse range of modern cyber attacks, such as 

Distributed Denial of Service (DDoS), Denial of Service 

(DoS), brute force, botnet, influence, and web-based attacks, 

which makes it extremely suitable for testing the strength of 

infiltration prevention systems. This provides full packet 

capture files with detailed payload and header information, 

which is necessary to apply and validate a deep packet 

inspection engine. To prepare a dataset for analysis, packet 

payload and related metadata were extracted using devices 

such as Scapy and Tshark. The payload was then tokenised 

using an N-gram encoding to facilitate efficient pattern 

recognition and was assigned to the label to differentiate 

between benign and malicious traffic flows for later detection 

evaluation. 

 

3.2. Data Pre-Processing 

In this research, the packet pre-processing phase is 

important to convert raw network traffic into structured inputs, 

suitable for a parallel DFA-based DPI engine. It involves two 

main operations: payload Tokenization and header extraction 

and normalization. 

 

3.2.1. Payload Tokenization  

In the proposed system, the payload of each packet is 

treated as a sequence of bytes for efficient deep packet 

inspection and pattern recognition. First, payload data are 

extracted from the packet and divided into overlapping 

segments by N-gram encoding, where N represents the length 

of each byte sequence. This is a conversion of raw payload 

data into a series of uniform lengths, where the relevant 

relationships between the continuously adjacent bytes are 

conserved. By encoding the payload in this manner, the 

system can effectively match the signature of a known attack 

and identify faint variations in the malicious pattern. These 

byte-level tokens are fed into a parallel DFA engine, thus 

allowing the multi-network to undertake multi-pattern 

matching in real time. This ensures that the SDN environment 

can also analyze complex and obstructed attack payloads for 

prompt danger mitigation. (Amanowicz & Jankowski, 2021). 

Each packet payload P is treated as a sequence of bytes as 

mentioned in Equation (1): 

 

𝑃 =  {𝑏1, 𝑏2, 𝑏3, … . , 𝑏𝑛}    (1) 

In a highly efficient scheme for signature matching, 

encode the pattern into N-Grams for byte sequences, N-Gram 

encoding being described in Equation (2). For an n-gram size 

K, the payload is transformed into: 

𝑇𝑛 =
{(𝑏1, 𝑏2, … . , 𝑏𝑘), (𝑏2, 𝑏3, … . , 𝑏𝑘+1), … , (𝑏𝑛−𝑘+1, , … . , 𝑏𝑛)}

    (2) 

This results in overlapping byte n-grams to a token 

sequence𝑇𝑛. These are mapped to integer indices through a 

lookup table 𝐿: 𝑇𝑛 → ℕ  DFA for direct feeding in the state 

machine. 

3.2.2. Header Extraction and Normalization 

In this study, header extraction and normalisation are key 

pre-processing steps needed to prepare packet data for 

efficient DPI. Each captured packet is broken down to separate 

the header information, including source and destination IP 

addresses, port numbers, protocol types, and some significant 

fields such as flags. These header characteristics are needed to 

refer to the payload and for traffic classification. Then, the 

extracted header field is standardised in a specified format by 
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converting different data representations, such as hexadecimal 

and ASCII values, into a consolidated numerical or vector 

form. It guarantees the similarity of data to be parallel fed to a 

DFA engine, thereby minimising the disparity in network 

traffic (Salau & Beyene, 2024). Normalisation also enhances 

the ability to effectively handle the high-speed packet currents 

of the DPI system, which enables the preprocessing delay and 

enables accurate multi-patterns in real time. In this study, 

header extraction and normalisation are performed for pre-

processed packet data for the DPI engine. Each captured 

packet p contains a header H and payload d, and is computed 

using Equation (3) where: 

𝑃 =  {𝐻, 𝐷}    (3) 

The header H includes fields such as source IP (𝐼𝑃𝑠𝑟𝑐), 

destination IP (𝐼𝑃𝑑𝑠𝑡), source port (𝑃𝑜𝑟𝑡𝑠𝑟𝑐) destination port t 
(𝑃𝑜𝑟𝑡𝑑𝑠𝑡) and protocol type (Proto) as mentioned in Equation 

(4). Using packet parsing tools like Scapy and Tshark, these 

fields are extracted: 

𝐻 = 𝐼𝑃𝑠𝑟𝑐 , 𝐼𝑃𝑑𝑠𝑡 , 𝑃𝑜𝑟𝑡𝑠𝑟𝑐 , 𝑃𝑜𝑟𝑡𝑑𝑠𝑡 , Proto   (4) 

3.2.3. IP Address Normalization 

IP address normalisation is performed with the aim of 

making the header information more standard and simplified 

for the effective and efficient processing of the DPI system. 

First, IPV4 addresses, which are generally represented in 

dotted decimal notation, are converted into 32-bit integer 

values to perform several mathematical operations on them. In 

other words, the system manipulates IP addresses as compact 

numerical institutions rather than complicated string patterns, 

thereby making the extraction of features less computationally 

expensive.  

 

Once changed, the integer values are extended into a 

generalised range, such as [0, 1], thus stabilising separate 

address locations and further boosting subsequent analysis. 

This normalisation process aids the DPI engine in comparing 

and analysing network traffic with higher levels of efficiency, 

especially when inspection is required at a high speed, such as 

in downstream real-time threats and mitigation. IPv4 

addresses are converted into 32-bit integer values and scaled 

and computed using the following Equation (5): 

𝐼𝑃𝑛𝑜𝑟𝑚 =
𝛼.2563+𝑏.2562+𝑐.256+𝑑

232−1
   (5) 

 

Where the standard dotted decimal notation is denoted as  

IP = a.b.c.d 

3.2.4. Port Normalization 

In the proposed system, the source and destination port 

numbers are in a consistent numerical range for efficient 

processing. Port normalisation is performed for scale sources 

and destination port numbers. Since the port values in TCP 

and UDP headers range from 0 to 65,535, they are divided by 

the maximum possible value for each port number to a limit 

between 0 and 1. This change ensures that port number one is 

represented in a standardised format, reduces variability in 

data, and improves the compatibility of input features with the 

DPI engine. By normalising the port numbers, the system 

simplifies the comparison and analysis of traffic flows, which 

is capable of detecting patterns associated with specific 

services or attack vectors while maintaining computational 

efficiency during high-speed packet inspection. Between 0 

and 1, the ports are scaled and represented in Equation (6): 

𝑃𝑜𝑟𝑡𝑛𝑜𝑟𝑚 =
𝑃𝑜𝑟𝑡

65535
    (6) 

3.2.5. Protocol Encoding  

In the proposed DPI system, protocol encoding is applied 

to maintain and use the protocol type from the packet header 

for efficient state transition within the DFA engine. Each 

protocol type, such as TCP, UDP, and ICMP, is defined in the 

Internet protocol (e.g., TCP = 6, UDP = 17, ICMP = 1) using 

its standardised numeric code. These numeric codes are 

included in the feature set without direct additional changes, 

ensuring that the protocol information remains mild and 

computationally efficient for real-time processing. By 

preserving these encoded values, the DPI system protocol can 

accurately separate the traffic flow and apply proper state 

infections during pattern matching. This strategy enhances the 

ability of the system to detect the signature of the protocol-

specific attack while maintaining high throughput and low 

delay in the SDN environment. 

Protocol types (e.g., TCP=6, UDP=17) are retained as 

numerical codes for state transitions, as defined in Equation 

(7): 

𝑃𝑟𝑜𝑡𝑜𝐶𝑜𝑑𝑒 =  𝑃𝑟𝑜𝑡𝑜𝑛𝑢𝑚    (7) 

The normalized header vector is represented in Eqn (8): 

𝐻𝑛𝑜𝑟𝑚 = [𝐼𝑃𝑠𝑟𝑐
𝑛𝑜𝑟𝑚 , 𝐼𝑃𝑑𝑠𝑡

𝑛𝑜𝑟𝑚, 𝑃𝑜𝑟𝑡𝑠𝑟𝑐
𝑛𝑜𝑟𝑚 , 𝑃𝑜𝑟𝑡𝑑𝑠𝑡

𝑛𝑜𝑟𝑚 , 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑑𝑒]
   (8) 

This normalized header information is combined with 

tokenized payload data and fed into the Parallel DFA 

Matching Engine, enabling fast and efficient multi-pattern 

signature inspection. 

3.3. DFA Model Design 

DFA structure is then integrated into a parallel processing 

architecture where packet currents are distributed in several 

CPU threads for concurrent analysis. In this study, header 

extraction and normalisation are performed for pre-processed 

packet data for the DPI engine. Each captured packet p 
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contains a header H and payload d, where: In this study, the 

core Deep Packet Inspection (DPI) engine takes advantage of 

the Determined Finished Automata (DFA) to match the high-

speed, multi-pattern signatures for effective infiltration 

prevention in the engine Software-Defined Network (SDN). 

Initially, the signs of the attack out of the CIC-IDS 2018 

dataset are compiled in DFA state machines using the Aho-

Corasick algorithm, enabling efficient scanning of packet 

payloads against multiple patterns simultaneously. To 

increase memory efficiency and reduce computational 

overhead, Hopcroft's DFA minimisation algorithm is applied, 

which eliminates fruitless states and infections by preserving 

accreditation accuracy. This customised embedding of the 

minimum DFA in the SDN environment ensures real-time 

detection and prevention of malicious traffic, blocking or 

rebuilding suspected packets without presenting significant 

delay or performance decline to dynamically update the 

OpenFlow switch. Figure 2 shows the working process of the 

Parallelized DFA design for DPI:  

 

 
Fig. 2 Parallelized DFA design for DPI 

3.4. Compilation of Attack Signatures into DFA 

In this study, a compilation of the signature of the attack 

in a DFA makes the original of the proposed DPI engine. 

Malicious payload patterns, including DDoS, botnet, and 

brute force attack signatures, were systematically extracted 

from the CIC-DS 2018 dataset. These payloads, representing 

sequential byte patterns of various attacks, were consolidated 

in a comprehensive signature set. To enable efficient multi-

pattern matching, the Aho-Corasick algorithm was employed 

to manufacture an integrated DFA state machine. This 

approach allows for the simultaneous detection of several 

attack signals within the packet payload during real-time 

traffic inspection. Each signature is represented as a series of 

transitions in DFA states, enabling the system to scan for all 

patterns in the same pass on the data stream. To optimise 

memory use and improve matching efficiency, fruitless states 

and transitions were minimised using state deficiency 

techniques. This is a compact result in a highly effective DFA 

that can process high-speed network traffic without significant 

computational overhead. By embedding this DFA in a parallel 

processing pipeline, detecting the DPI engine as scalable and 

low-distraction ensures strong security against a wide range of 

network-based hazards in the modern SDN environment. The 

attack signs were extracted from the CIC-IDS 2018 dataset, 

including the known malicious payload patterns (e.g., DDoS, 

botnet, brute force). These signatures S = {S1, S2, ..., SN} 

were converted into a single multi-pattern DFA state machine 

using the Aho-Corasick algorithm. The DFA is defined using 

Equation (9): 

𝐷𝐹𝐴 = (𝑄, Σ, 𝛿, 𝑞𝑜,𝐹)    (9) 

Where the set of states is denoted by Q, the alphabet for 

each byte value is denoted as Σ, the transition function is 

denoted as 𝛿, and the initial state is denoted as 𝑞𝑜. Finally, the 

set of final states is denoted as F.  

In our research, the AHO-Curasic algorithm plays an 

important role in the manufacture of a skilled multi-pattern 

matching engine for Deep Packet Inspection (DPI). This 

algorithm begins by constructing a Trie (prefix tree) with all 

the preformed attack signatures received from the CIC-IDS 

2018 dataset. Each path in the Trie represents a unique attack 

signature, where nodes correspond to bytes in the payload. To 

handle partial matches and overlapping patterns, algorithm 

failure enhances the trie with infection. These infections allow 

the search process to "fall back" for a small matching prefix 

without restraints from the root whenever there is a mismatch, 

which enables uninterrupted scanning in the payload. The 

payload of a network packet is depicted as a sequence of bytes: 

𝑃 = {𝑏1, 𝑏2, … , 𝑏𝑚}, 𝑏𝑖 ∈ Σ    (10) 

In Equation (10), the payload containing m bytes is 

denoted as P, and the ith byte in the payload is denoted as 𝑏𝑖 

and the alphabet of all possible byte values is denoted as Σ.   

As each byte  𝑏𝑖  in the payload, the DFA transitions 

between states according to the transition function 

𝛿:q_(i+1)= 𝛿 (𝑞𝑖 , 𝑏𝑖)        (11) 

In Equation (11), the current state in the DFA is denoted 

as 𝑞𝑖, based on the current state and the input bytes 𝑏𝑖 the 

transition function determines the next state. The resulting 

state after processing 𝑏𝑖 is denoted as 𝑞𝑖+1 

Then, if the resulting state belongs to the accepting state 

F, Eqn (6) becomes: 

𝑞𝑖+1  ∈ 𝐹     (7) 

It indicates that a full attack signature within the payload 

is matched, and the DPI engine immediately flags this packet 

as a malicious action by the SDN controller (e.g., release or 

run). 
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Fig. 3 Aho-Corasick algorithm diagram 

Figure 3 design shows the real-time scanning of multi-

gigabit traffic, as the Aho-Corasick algorithm ensures that the 

entire payload can be processed in a single linear pass without 

boxing, even in the presence of thousands of patterns. 

Combined with parallel DFA examples in CPU threads, our 

system receives minimal delay and supports the prevention of 

high-throughput infiltration. 

3.5. DFA Minimization (Hopcroft’s Algorithm) 

In our research, after manufacturing DFA using the Aho-

Corasick algorithm, we applied Hopcroft's DFA minimisation 

algorithm to customise the DFA for memory efficiency and 

rapid runtime performance. Effective for early DFA, while 

effective for multi-pattern matching, there are fruitless and 

equivalent states due to overlapping prefixes in signature 

patterns. These fruitless states enhance memory use and slow 

down state traversal, especially when the Software-Defined 

Networking (SDN) is deployed in a high-speed Deep Packet 

Inspection (DPI) environment. Minimisation ensures that only 

the necessary states remain for pattern recognition, allowing 

the DPI engine to handle gigabit traffic with minimal delay. 

The minimized DFA is mathematically computed using 

Equation (12): 

𝐷𝐹𝐴𝑚𝑖𝑛 == (𝑄′, Σ′, 𝛿′, 𝑞0
′ 𝐹′)   (12) 

In Equation (12), the reduced set of DFA states is denoted 

as 𝑄′ ⊆ 𝑄 and the state after minimization is denoted as 
|𝑄′| < |𝑄|, the unchanged possible input bytes of alphabets 

are denoted as Σ, and the new transition function mapping 

reduced states and input symbols is denoted as 𝛿′, and the 

minimized start state is denoted as  𝑞0
′ , and finally, the 

minimized set of accepting the final states is denoted as 𝐹 ⊆
𝑄′.    

In our research, the Software-Defined Networking (SDN) 

environment used decisive techniques to achieve the high 

throughput and low latency performance required for real-

time Deep Packet Inspection (DPI) in the environment. The 

system integrates multi-level similarity to handle the large 

amount of network traffic and prevent bottlenecks in packet 

processing. At the thread level, the upcoming packets are 

distributed in several CPU threads using OpenMP, allowing 

each thread to operate an independent example of a minimum 

DFA for signature. This strategy efficiently uses multi-core 

processors, ensuring that traffic inspection scales with the 

number of available cores. At the data level, the payloads from 

individual packets are divided into small blocks and processed 

on GPU threads using CUDA-based PFAC (parallel failure).  

This massive parallel approach takes advantage of 

thousands of GPU cores, which perform the pattern 

simultaneously in the payload segment, significantly reducing 

the inspection time for each packet. In addition, the pipeline 

equality is applied by decomposing the DPI workflow into 

three modular stages: (1) packet capture, (2) parallel DFA 

inspection, and (3) SDN Flow Rules update. This allows the 

pipelined architecture system to overlap operations, so while 

a phase processes a batch of packets, the latter stages can work 

on the earlier batches; the delays can maintain the continuous 

flow of traffic without introducing spikes. Together, these 

parallelisation strategies enable our DPI engine to maintain 

multi-gigabit traffic rates, detect malicious payloads in real 

time, and dynamically instruct the SDN controller to block the 

suspicious flow or start, which ensures strong network 

security without reducing network performance.  

Figure 4 shows the workflow of the DPI system with 

parallel strategies. This packet begins with capture, followed 

by a thread-level equality (OpenMP) and a parallel DFA 

inspection extended by data-level equality (concurrent stages). 

The process pipeline flows into equality, dividing the 

functions for continuous processing into modular stages. 

Finally, the SDN rule update is triggered to block or restart the 

dynamic malicious traffic. 
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Fig. 4 Parallelization levels interact in your DPI engine. 

3.6. DPI Engine Implementation 

In our research, the DPI engine serves as the main 

component in identifying malicious traffic in real time by 

taking advantage of a highly customized parallel DFA 

implementation. The engine is designed in C++ to ensure low-

level memory control and high-performance packet 

inspection, while integration with the Python-based SDN 

controller allows dynamic traffic management. As each 

incoming packet is occupied, its payload is 𝑃 =
{𝑏1, 𝑏2, … 𝑏𝑚}, 𝑏1 ∈ Σ. Using the transition function 𝛿: 𝑄 ×

Σ → 𝑄, Engine Counts the next state for each by 

𝑞𝑖+1 = 𝛿(𝑞𝑖 , 𝑏𝑖)     (13) 

In Equation (13) 𝑞𝑖, is the current DFA state, and Bib_ibi 

is the current byte of payload. If at any point𝑞𝑖+1  ∈ 𝐹, where 

the set of accepting states F is detected with a match with an 

attack sign and computed using Equation (14): 

𝐼𝑓 𝑞𝑖+1 ∈ 𝐹 ⟹ 𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 𝐷𝑒𝑒𝑡𝑐𝑡𝑒𝑑  (14) 

To handle the gigabit-scale traffic, the DPI engine 

converts several DFA examples, distributing payload 

segments to CPU threads (via OpenMP) or GPU threads (via 

CUDA-PFAC). This allows the pattern to be matched 

simultaneously on various data streams. Once a malicious 

pattern is detected, the engine immediately triggers an alert for 

the SDN controller, which dynamically updates the flow table 

in the OpenFlow switch using the flow mod command to block 

or refer to the traffic. This spontaneous integration of high-

speed DFA matching and programmable network logic 

ensures rapid detection and mitigation without disrupting 

legitimate traffic, acquiring both high throughput and low 

delay in our SDN environment. 

3.7. SDN Integration and Mitigation  

In our research, SDN integration and mitigation were 

important to enable dynamic and real-time response against 

infiltration detected in the DPI engine. The main idea was to 

embed the DPI engine in SDN control aircraft, allowing 

immediate enforcement of mitigation strategies through the 

OpenFlow switch. 

 

 

 

 

 

 

 

 

 

Fig. 5 SDN mitigation  
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Figure 5 shows the process begins with deploying the DPI 

engine in a fake SDN environment, which uses the RYU 

controller for the centralised management of Mennonite and 

flow rules for ambulation. Each time a packet is sent to the 

SDN controller, the DPI engine analyses the payload. If a 

malicious pattern is detected, the controller dynamically 

modifies the flow tables in the OpenFlow switch. These 

amendments are applied using the flow mod messages of the 

OpenFlow protocol, which can perform actions such as 

releasing packets and re-running traffic or rate-limited flows.   

Figure 5shows the SDN mitigation process where the 

upcoming network packets trigger packets for the Ryu 

controller in a fake miniature environment. The DPI engine 

inspects the packet payload and checks for dangers. If a danger 

is detected, the controller dynamically models the flow table 

into the OpenFlow switch to block, reroute, or reduce 

malicious traffic. Otherwise, normal forwarding continues. 

Formally, consider the flow rule update operation as: 

𝐹𝑙𝑜𝑤𝑛𝑒𝑤 = {
𝑑𝑟𝑜𝑝,      𝑖𝑓 𝑞𝑖+1  ∈ 𝐹

𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑝𝑜𝑟𝑡), 𝑖𝑓 𝑞𝑖+1 ∈ 𝐹
  

   (15) 

In Equation(15), 𝑞𝑖+1 denotes that the DFA is the state 

after processing a byte 𝑏𝑖. F denotes the set of accepting 

(malicious) states. The drop indicates that the packets that 

match a signature are blocked. Further (port) indicates normal 

forwarding when there is no signature match. 

Additionally, the control-plane adaptation was included 

to handle high-volume attacks and to prevent saturation of the 

SDN controller. Flow table ageing was automatically applied 

to remove stale entries after a timeout, 𝑇𝑎𝑔𝑒, which is defined: 

𝑇𝑎𝑔𝑒 = min(𝑇𝑑𝑒𝑓𝑎𝑢𝑙𝑡 , 𝑇 𝑐𝑢𝑠𝑡𝑜𝑚)   (16) 

In Equation (16) 𝑇𝑑𝑒𝑓𝑎𝑢𝑙𝑡  is the standard flow timeout, 

and 𝑇 𝑐𝑢𝑠𝑡𝑜𝑚. It is an adaptive timeout for the flow related to 

the custom attack. Rate limiting was applied by modifying the 

meter table in the OpenFlow switch, restricting bandwidth for 

suspicious flows: 

𝐵𝑊𝑙𝑖𝑚𝑖𝑡 =

 {
𝑅𝑠𝑎𝑓𝑒 ,      𝑖𝑓 𝑓𝑙𝑜𝑤 𝑖𝑠 𝑛𝑜𝑟𝑚𝑎𝑙 

𝑅𝑎𝑡𝑡𝑎𝑐𝑘,  𝑖𝑓 𝑓𝑙𝑜𝑤 𝑖𝑠 𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠 𝑎𝑛𝑑 𝑓𝑙𝑎𝑔𝑔𝑒𝑑 𝑏𝑦 𝐷𝑃𝐼
   (17) 

In Equation (17)  Rsafe  denote the D=default is a safe 

bandwidth allocation and 𝑅𝑎𝑡𝑡𝑎𝑐𝑘 <<  𝑅𝑠𝑎𝑓𝑒   Throttles 

suspected the attack. This architecture ensures that any 

detected intrusion can be reduced in real time by releasing the 

appropriate OpenFlow command for the switch without 

human intervention. Integration also supports scalability as 

decisions are made in control aircraft, and data-plane traffic is 

only affected minimally. Algorithm 1 defines the DFA model 

process:  

Algorithm 1: DFA Model  

Build a DFA from attack signatures 

Function Build_DFA(Signatures): 

    Initialize the Trie as empty 

    For each Signature in Signatures: 

        Insert Signature into Trie 

    DFA = Convert_Trie_to_DFA(Trie) 

    Return DFA 

Minimize DFA using Hopcroft's algorithm 

Function Minimize_DFA(DFA): 

    Partition = {Final_States, Non_Final_States} 

    Worklist = Partition 

    While Worklist is not empty: 

        A = Worklist.pop() 

        For each input symbol 'c': 

            X = Set of states with transition on 'c' into A 

            For each subset Y in Partition: 

                Intersection = X ∩ Y 

                Difference = Y - X 

                If Intersection and Difference are both non-empty: 

                    Replace Y in Partition with {Intersection, 

Difference} 

                    If Y in Worklist: 

                        Replace Y in Worklist with {Intersection, 

Difference} 

                    Else: 

                        Add the smaller of {Intersection, Difference} 

to the Worklist 

    Return Minimized DFA based on Partition 

 

Parallelize the DFA for high-speed DPI 

Function Parallel_DFA_Engine(Minimized_DFA, 

Packet_Stream): 

    Initialize Thread_Pool with N threads 

    For each Packet in Packet_Stream: 

        Assign Packet to an available Thread: 

            Thread.Process(Packet, Minimized_DFA) 

    Synchronize Threads 

    Return Detection_Results 

// Thread Function to Process Packet 

Function Process(Packet, Minimized_DFA): 

    Current_State = Start_State of Minimized_DFA 

    For each Byte in the Packet.Payload: 

        If Transition exists from Current_State on Byte: 

            Current_State = Transition[Current_State][Byte] 

        Else: 

            Current_State = Start_State 

        If Current_State is a Final/Accepting State: 

            Flag Packet as Malicious 

            Break 
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    Return 

// Main Function 

Function Main(): 

    Signatures = Load_Signatures("CIC-

IDS2018_Signatures.txt") 

    DFA = Build_DFA(Signatures) 

    Minimized_DFA = Minimize_DFA(DFA) 

    Packet_Stream = Capture_Live_Traffic() 

    Results = Parallel_DFA_Engine(Minimized_DFA, 

Packet_Stream) 

    For each Alert in Results: 

        SDN_Controller.Apply_Flow_Rule(Alert) 

    Return 

 

4. Results and Discussion  
In this research, a high-performance Deep Packet 

Inspection (DPI) engine was applied and integrated into an 

SDN environment for the detection and mitigation of real-time 

infiltration. The system was designed using a parallel DFA 

approach, which was adapted through Hopcroft's 

minimisation algorithm and deployed using Mininet for SDN 

education with the RYU controller. Performance-mating 

components were implemented in C++ (for the DPI engine) 

and integrated with Python-based SDN arguments. The 

system was evaluated against benchmark datasets such as 

CIC-DS 2018, with various attack patterns including DDoS, 

DoS, and brute force. The main results include detection 

accuracy, delay, throughput, and resource usage, existing 

serial DFA-DPI, and benchmarks against machine learning-

based IDS methods. Results show that the proposed DPI-SDN 

architecture achieves high accuracy with minimal processing 

overhead, making it suitable for real-time traffic inspection in 

large-scale networks. 

Table 2.  Simulation parameter 

Parameter Value / Description 

Dataset CIC-IDS 2018 (real-world traffic 

patterns) 

Emulation Tool Mininet 

SDN Controller Ryu (Python-based) 

Packet Replay 

Tool 

tcpreplay 

DPI Engine 

Language 

C++ (parallelized DFA 

implementation) 

Simulation 

Traffic Rate 

1 Gbps – 10 Gbps 

CPU for DPI 8-core Intel Xeon, OpenMP threads 

GPU for DFA NVIDIA CUDA (PFAC-based 

parallel DFA) 

Metrics Collected Detection accuracy, throughput, 

latency, CPU/GPU utilization 

Attack Types 

Simulated 

DDoS, DoS, Brute Force, Web 

Attacks 

Baseline Methods Serial DFA-DPI, Random Forest, 

LSTM 

In this study, the performance of the proposed DPI engine 

was evaluated through comprehensive simulation using the 

CIC-DS 2018 dataset, as mentioned in Table 2, which reflects 

real-world traffic patterns with various attack types, including 

DDoS, DoS, brute force, and web attacks. The dynamic flow 

was imitated using Mininet with the Ryu SDN controller to 

manage the rules. Traffic replays were used from 1 GBPS to 

10 GBPS at rates using TCPREPLAY. The DPI engine 

implemented in C++ with parallel DFA and GPU acceleration 

through CUDA was deployed on the 8-core Intel Xeon CPU. 

To display the efficiency and scalability of the proposed 

approach, a major matrix was collected to detect accuracy, 

throughput, delay, and resource use compared to basic 

methods such as serial DFA-DPI, Random Forest, and LSTM 

models. 

Table 3. Resource utilization 

Metric 

Proposed 

Parallel 

DFA‑DPI 

Serial 

DFA 

Random 

Forest 

(ML‑IDS) 

CPU Usage 

(%) 
45% 78% 65% 

GPU Usage 

(%) 
36% — 60% 

Memory 

Consumption 

(MB) 

250 MB 410 MB 520 MB 

Table 3 presents the metrics comparing the parallel DFA-

DPI engine proposed with a random forest-based ML-Aid 

under the same high-speed traffic conditions. The proposed 

system demonstrated better efficiency, using only 45% CPU 

and 36% GPU resources, which is much lower than the 78% 

CPU use of serial DFA and 65% CPU and 60% GPU use of 

random forest. Additionally, parallel DFA-DPI consumed 

250MB of memory, improved serial DFA (410MB), and 

random forest (520MB). These results highlight the adapted 

performance of the proposed approach, obtaining high-speed 

packet inspection with minimum resource overhead in the 

SDN environment. 

Figure 6 shows CPU use over time for three methods – 

parallel DFA-DPI, serial DFA, and random forest (ML-IDS) 

– separated by trafficking rates. The proposed parallel DFA-

DPI maintains consistently low CPU use, performing about 

35–36% on average, with its mild nature and suitability for a 

high-throughput environment. Conversely, the serial DFA 

displays much more CPU consumption, which reaches 74%, 

due to its parallelness and lack of disabled state traversal. The 

random forest approach also refers to moderate-high CPU use 

at 60%, which refers to the computational overhead of ML-

based classification. This comparison highlights the efficiency 

and scalability of the proposed DPI engine. 
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Fig. 6 CPU utilization over time 

 

 
Fig. 7 GPU utilization heatmap  

 

Figure 7, parallel DFA-based Deep Packet Inspection 

(DPI), shows the activity level of GPU threads during the 

execution of the engine. Each row represents a GPU thread, 

and each column matches a time interval under separate traffic 

loads. The intensity of the colour reflects the percentage of 

GPU use, explaining how the parallel DFA algorithm 

distributes workloads in several GPU threads. The results 

display frequent thread engagement and balanced resource 

allocation, confirming the efficiency of data-level equality in 

handling high-speed network traffic. This visualisation 

recognises scalability and mild performance of the proposed 

DPI engine in a real-time scenario. 

Figure 8 shows the distribution of packet processing time 

in milliseconds for the proposed parallel DFA-DPI engine. 

The results suggest that most packets are processed within a 

narrow range around 2.5ms, which confirms the system's 

ability to operate in real time under high traffic loads. While 

handling the thousands of concurrent flows, low-lonely 

infiltration exposes the efficiency and stability of the DPI 

engine, highlighting the tight clustering of the detection time. 

This indicates that the proposed system achieves an estimated 

performance with minimal variance, a significant requirement 

for SDN-based safety applications. 

 
Fig. 8 Detection time histogram  

 

Figure 9 shows the end-to-end system latency under 

different traffic patterns, including general traffic, DDoS 

attacks, and web-based attacks. The proposed parallel DFA-

DPI engine displays continuous delayed performance, 

approximately 2.5 ms for general traffic with average delay, 

grows up to 3.2 ms during web attacks, and is at 4.0 ms under 

DDOS terms. A narrow, contradictory range also indicates 

minimal variability and high stability of the system under 

stress in all scenarios. The outliers are limited, suggesting that 

the system maintains real-time processing capabilities without 

significant delay spikes, validating its suitability for high-

speed SDN environments. 
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Fig. 9 End-to-End system latency boxplot 

Table. 4 Latency and throughput for proposed DFA-DPI model 

Metric Proposed DFA-DPI 

Latency (ms) 0.3 

Throughput (Gbps) 9.8 

Table 4, the proposed DFA-DPI model achieved a 

significant delay of 0.3 ms, ensuring real-time packet 

inspection and response. It also maintained a high throughput 

of 9.8 GBPS, which demonstrated the ability to handle multi-

gigabit traffic without hurdles. These results highlight the 

efficiency and scalability of the parallel DPI engine in the 

modern SDN environment. 

Table. 5 Flow table update latency and packet drop rate across traffic 

loads 

Traffic Load 

(Gbps) 

Avg. Flow 

Update Time 

(ms) 

Packet Drop 

Rate (%) 

1 0.12 0.1 

5 0.22 0.15 

10 0.34 0.18 

Table 5 presents the average flow update time and packet 

drop rate of the proposed DPI-SDN system under various 

traffic loads. At 1 GBPS, the system receives an average flow 

update of 0.12 ms with a minimum packet drop rate of 0.1%. 

Since the traffic increases to 5 GBPS and 10 GBPS, the update 

time increases to 0.22 MS and 0.34 MS, respectively, while 

packets below 0.2% maintain drop rates. These results also 

display the ability of the system to efficiently update the flow 

tables in real time with negligible packet loss under high 

network load. 

Figure 10 shows the average flow table update time on 

various traffic loads, which exposes the accountability of the 

proposed SDN mitigation mechanisms. At a low traffic load 

of 1 Gbps, the flow update time remains minimal at 0.12 ms, 

ensuring rapid mitigation actions. As traffic increases to 5 

GBPS and 10 GBPS, update time increases to 0.22 ms and 

0.34 ms, respectively, indicating a beautiful performance 

under high loads. This indicates that the proposed DPI-SDN 

integration maintains the efficient flow rule update even in 

high-traffic scenarios, ensuring minimal disruption during the 

mitigation of attacks in real-time environments. 

 
Fig. 10 Flow table update time  

 

 
Fig. 11 Packet drop rate vs traffic load 

Figure 11 shows the relationship between traffic load and 

packet drop rate during the mitigation of SDN-based attacks. 

Since the traffic load grows from 1 Gbps to 10 Gbps, the 

packet drop rates show a slightly upward trend, which grows 

from 0.1% to 1 Gbps to 0.18% to 10 Gbps. While the system 

highlights the scatter plot combined with a polynomial 

trendline, the system overthrows the low packet loss, showing 

marginal growth in drops due to high traffic volume, flow 

table updates, and mitigation functions. This reflects the 

strength of the DPI-SDN structure proposed to maintain 

network reliability under different traffic loads. 
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Fig. 12 Comparison of memory usage  

 

Figure 12 reflects the memory consumption of the 

approach to detect three intruders: proposed DFA-DPI, serial 

DFA, and ML-based IDS. Results suggest that the proposed 

DFA-DPI receives the lowest memory footprint at 250 MB, 

which makes the serial DFA much better, which consumes 

410 MB, and ML-based IDs, which require 520 MB. This 

deficiency highlights the effectiveness of minimisation 

techniques such as the DFA algorithms of the Hopcroft 

algorithm in adapting state infections and reducing resource 

overheads. Customised memory use ensures that the proposed 

DFA-DPI system can work efficiently in a highly plural 

environment, preserving and supporting real-time traffic 

analysis. 

 
Fig. 13 Accuracy vs throughput for proposed DFA-DPI model 

Figure 13 shows how the proposed parallel DFA-DPI 

engine identifies the accuracy to identify network traffic rates. 

As throughput scales from 1 Gbps to 10 Gbps, the system 

continuously maintains high identification accuracy, with a 

marginal decline from 99.5% to 98.7%.  

This slight drop indicates that the DPI engine is also 

highly effective under heavy traffic loads, validating its 

scalability and strength. The results confirm that it can support 

a high-speed environment, ensuring a minimum agreement in 

detecting architecture, which makes it suitable for the 

prevention of real-time infiltration into the SDN network on a 

large scale. 

 
Fig. 14 Average packet processing 

Figure 14 shows the average packet processing time in 

various traffic loads, highlighting the scalability of the 

proposed DPI engine. On 1 GBPS, the system obtained an 

average processing time of 80 µs, which increased to 95 µs at 

5 GBPS and 112 µs slightly at 10 GBPS. It also shows the 

ability of the system to maintain low and estimated delays 

under high traffic rates, detect real-time infiltration, and its 

suitability for mitigation in high-throughput SDN 

environments. The minimum increase in processing time 

confirms the efficiency of parallel DFA implementation in 

handling the increasing demands of the network. 

Table 6 Attack detection 

Attack 

Type 

Precision 

(%) 
Recall (%) 

F1-Score 

(%) 

DDoS 99.5 98.9 99.2 

DoS 98.8 98.3 98.5 

Brute Force 97.1 96.5 96.8 

Web 

Attacks 
98.3 97.6 97.9 
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Table 6 presents a parallel DFA-DPI engine to detect 

attacks with accurate recall and F1 scores for various types of 

attacks. The system received extraordinary performance in all 

categories, which featured 99.5% accuracy with DDoS 

detection, 98.9% memory, and 99.2% F1 score. The DOS 

attacks were identified with 98.8% accuracy and 98.3%, with 

an F1-SCORE of 98.5%. Brute Force attacks were slightly low 

but still strong, with 97.1% accuracy, 96.5% recall, and 96.8% 

F1 score. Similarly, web attacks obtained 98.3% accuracy, 

97.6% recall, and 97.9% F1 score, which demonstrates the 

credibility of the system in detecting diverse infiltration types. 

 

Fig. 15 Throughput across system 

Figure 15, the throughput comparison bar chart shows the 

performance of the proposed DFA-DPI system against serial 

DFA and ML-based IDS methods under high traffic rates. The 

proposed DFA-DPI attains the highest throughput of 9.8 

GBPS, which demonstrates the ability to efficiently process 

large volumes of network traffic with minimal performance 

degradation. In contrast, the serial DFA and ML-based IDS 

systems recorded low throughputs of 7.5 GBPS and 6.5 GBPS, 

respectively, which highlight their boundaries in maintaining 

real-time traffic processing under heavy loads. This result 

underlines the better scalability and efficiency of the parallel 

DFA-DPI engine in handling high-speed network 

environments. 

Figure 16 shows the Receiver Operating Characteristics 

(ROC) curve for the proposed parallel DFA-based Deep 

Packet Inspection (DPI) engine proposed to detect malicious 

network traffic. The curve displays trade-offs between the 

True Positive Rate (TPR) and the False Positive Rate (FPR) in 

different decisions. The region under the ROC curve (AUC) 

was seen as 0.98, indicating the system's excellent 

discrimination capacity in distinguishing between benign and 

malicious packets. The curve is closer to the top-left corner, 

which highlights the high-identity accuracy of the system with 

minimal false positivity. Additionally, the ROC curve 

improves the baseline model, which reflects the efficiency of 

the DFA state machine and Software-Defined Networking 

(SDN) environment adapted to real-time traffic analysis. 

 
Fig. 16 ROC curve  

 

Table. 7 Packet processing time of proposed DFA-DPI engine 

Traffic Load 

(Gbps) 

Average Processing 

Time (µs) 
Maximum (µs) Minimum (µs) 

Standard 

Deviation (µs) 

1 Gbps 80 120 65 10 

5 Gbps 95 145 72 13 

10 Gbps 112 165 85 16 

Table 7 proposed that the DFA-DPI engine packet 

processing time was evaluated under different traffic loads of 

1 GBPS, 5 GBPS, and 10 GBPS. On 1 GBPS, the engine 

obtained an average processing time of 80 μs with minimal 

variability (± 10 s). As the traffic increases to 5 GBPS and 10 

GBPS, the average processing time increases to 95 µs and 112 

µs, respectively, performing efficient scalability. Even at the 

peak load, the maximum processing time remained below 170 

µs, maintaining low delaying DFA to maintain high 

throughput DFA validation. The results confirm the system's 

capacity for real-time packet inspection in the dynamic SDN 

environment.
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4.1. Performance Evaluation  

4.1.1. Accuracy 

The proportion of correctly classified packets (both 

benign and malicious) among all packets. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑝+𝑇𝑁+𝐹𝑃+𝐹𝑁
      (18) 

4.1.2. Precision 

The proportion of correctly detected malicious packets 

among all packets flagged as malicious. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
         (19) 

4.1.3. Recall  

The proportion of malicious packets that were correctly 

detected. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (20) 

 

4.1.4. F1-Score 

The harmonic mean of Precision and Recall, balancing 

their trade-off. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
      (21) 

In Equations (18)-(21), true positive and true negative are 

denoted as TP and TN, and false positive and false negative 

are denoted as FP and FN.  

 
Table. 8 Performance metrics 

Metric Proposed DFA-DPI (%) 

Accuracy 99.68 

Precision 99.72 

Recall 99.65 

F1-Score 99.68 

Table 8 Software-Defined Networking (SDN) presents 

the performance matrix of the proposed parallel DFA-Based 

Deep Packet Inspection (DPI) system integrated within the 

environment. The system achieved an impressive accuracy of 

99.68%, which demonstrates its ability to firmly classify 

benign and malicious traffic. The accuracy of 99.72% 

indicates the high capacity of the system to correctly identify 

malicious packets while reducing false alarms. Similarly, the 

recall value of 99.65% reflects its effectiveness in detecting 

the vast majority of the malicious flow, ensuring that the 

minimum attack bypasses the traffic inspection process. The 

F1 score, calculated as a harmonic mean of accuracy and 

recall, is 99.68%, which outlines the overall strength and 

balance of the detection system. These results expose the 

efficiency of the DFA engine adapted to handle real-time 

traffic with high identification accuracy and minimal false 

positivity, which is highly suitable for deployment in high-

speed networks. 

 
Fig. 17 Precision and recall for attack detection 

 

Figure 17 shows the accuracy and the percentage of 

recalls obtained by the proposed DPI system, including DDoS, 

DoS, brute force, and various types of attacks, including web 

attacks. The system displays excellent detection performance 

in all classes, with an exact value ranging from 97.1% (brute 

force) to 99.5% (DDoS) and misses the values between 96.5% 

(brute force) and 98.9% (DDoS). These results confirm the 

ability to correctly identify both the DPI engine and the high-

volume and secret attacks. The chart recognises the 

effectiveness of the system in maintaining coherent class-wise 

detection accuracy for real-time network safety. 
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Table 9. Processing time comparison 

Reference Delay/Latency 

Janabi et al. (2022) +0.7% delay increase in 

WAN 

Fausto et al. (2022) <10ms delay (P1); <3ms 

(P2/P3) 

Bocu et al. (2022) 200 ms detection time 

Proposed DFA-DPI 0.28 ms latency 

Table 9 compares the delay and latency performance of 

the proposed DFA-DPI system against current solutions. 

Janabi et al. (2022) registered an increase in delay by 0.7% in 

WAN environments owing to simulation overhead within 

Mininet, whereas Fausto et al. (2022) provided delays of 

below 10 ms for P1 and below 3 ms for P2/P3 with hardware-

accelerated switches and DPDK.  

Conversely, Bocu et al. (2022) captured a much larger 

200 ms detection time; hence, it is not ideal for real-time 

traffic monitoring. However, the parallelised DFA-DPI 

system presented in this paper exhibits top-tier performance 

with an average latency of 0.28 ms, compared to all cited 

approaches.  

This low latency is due to its multi-level parallelism, DFA 

state minimisation, and effective integration into the SDN 

environment, allowing high-speed, real-time packet 

inspection and attack mitigation without causing perceptible 

delays. 

Table. 10 Performance comparison 

Method Method Accuracy 

Janabi et al. 

(2022) 

Naïve Bayes 

(2022) 
98.46% 

Fausto et 

al.(2022) 
SM-SDS (2022) 80.3% 

Tang et al.(2020) DeepIDS (2020) 80.7% 

Bour et al. 

(2022) 

CNN-based IDS 

(2022) 
94.14% 

Proposed Model DFA-DPI 99.68% 

Table 10 and Figure 18 show the accuracy performance 

of the suggested parallelised DFA-DPI system compared to 

current intrusion detection mechanisms. The Naïve Bayes 

model obtained an accuracy rate of 98.46%, whereas SM-SDS 

and DeepIDS attained lower accuracy rates of 80.3% and 

80.7%, respectively, reflecting confined capability for 

complex attack patterns. The CNN-based IDS showed 

enhanced performance with a 94.14% accuracy, but it still 

cannot reach the near-perfect detection rates needed for real-

time SDN settings. By contrast, the proposed model surpasses 

all of these schemes by attaining 99.68% accuracy, which 

demonstrates its better capability to detect malicious traffic 

with very few false positives. This notable enhancement 

results from the optimal DFA state machine, multi-pattern 

match feature, and parallelised processing scheme that 

provide high detection accuracy in high-speed networks. 

 
Fig. 18 Accuracy comparison of IDS model 

 
4.2. Discussion  

The study introduces a parallel DFA approach using a 

novel high-performance Deep Packet Inspection (DPI) 

structure, which is basically unified within a Software-

Defined Networking (SDN) environment for detecting and 

preventing real-time infiltration. The major innovation lies in 

the capacity of the multi-pattern payload system at high speed, 

which has taken advantage of advanced parallelisation 

techniques and customised DFA state machines. Unlike 

traditional serial DFA-based DPI systems, which struggle 
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with state explosions and throughput bottlenecks, the 

proposed model uses Hopcroft's DFA minimisation and 

CUDA-based GPU acceleration for the matching of parallel 

patterns. It ensures highly scalable inspection capabilities 

suitable for a gigabit-scale traffic environment without 

significant delay. Research focuses on three main innovations: 

(1) DFA for construction of sequential bite patterns for 

efficient manufacture using an N-gram encoding to process 

the payload token, (2) multi-level equality (thread-level, data-

level, and pipeline parallelism) to process large traffic 

volumes in real time, and (3) tight integration. To give. By 

adopting this approach, the system gained an extraordinary 

identity accuracy of 99.68%, an accuracy of 99.72% and a 

minimum average delay of 0.28 ms, improving the current 

ML-based IDS model and traditional DPI framework. In 

practical real-time applications, this DPI system operates in 

the data plane of an SDN-enabled network, which 

continuously monitors the packets for malicious patterns. On 

detection of a suspected payload, it communicates with the 

SDN controller (e.g., Ryu) to update the OpenFlow rules, 

which can limit instantaneous traffic mitigation functions such 

as blocking, reunion, or rate. This ensures that the networks 

remain flexible for high-velocity attacks such as DDoS, brute 

force efforts, and protocol exploitation. The system has been 

tested using the CIC-DS 2018 dataset, which provides a 

realistic attack landscape, validating its appropriateness in the 

environment of enterprise networks, data centres, and 

significant infrastructure. Overall, the proposed parallel DFA-

DPI system bridges the gap between high-speed traffic 

inspection and flexible SDN control, making it a strong 

solution for the modern network, demanding real-time 

security without renouncing performance. Its highly scalable 

architecture ensures viability in both hardware-edge devices 

and large-scale cloud networks. 

5. Conclusion  
The research proposed a high-performance Deep Packet 

Inspection (DPI) system, which takes advantage of a parallel 

DFA approach, adapted to detect and prevent real-time 

infiltration in the Software-Defined Networking (SDN) 

environment. By incorporating advanced DFA state 

minimisation and multi-level equality techniques, the system 

demonstrated better accuracy (99.68%) and exceptionally low 

delay (0.28 ms), which enabled efficient packet inspection and 

dynamic flow mitigation at gigabit traffic rates. Compared to 

traditional serial DFA and machine learning-based IDS 

frameworks, the proposed model was found to have terms of 

its ability to detect, scalability, and accountability, which 

made it well-suited to deployment in enterprise networks, data 

centres, and significant infrastructure. SDN ensures flexible 

and adaptive defence mechanisms against developing the 

pattern of integration attacks with controllers. For future work, 

the system can be extended to support encrypted traffic 

inspection using homomorphic encryption techniques, which 

enables DPI capabilities without violating privacy obstacles. 

Additionally, integrating the model detecting AI-powered 

discrepancies with the DFA engine can increase zero-day 

attacks and unknown traffic patterns. On hardware-charged 

platforms such as SmartNICs or FPGAs, patterns can improve 

throughputs for ultra-high-speed networks (e.g., 100 GBPS). 

Finally, discovering the DPI architecture distributed in the 

multi-controller SDN environment will improve mistake 

tolerance and scalability for large-scale, real-world 

applications. 
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