
SSRG International Journal of Electronics and Communication Engineering Volume 12 Issue 10, 84-103, October 2025

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12I10P109 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Parallelized Finite Automata-Based Deep Packet

Inspection for Real-Time Intrusion Prevention in

Software-Defined Networks

Krishna Kishore Thota1, R. Jeberson Retna Raj2

1,2Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology

(Deemed to be University), Chennai, Tamil Nadu, India.

1Corresponding Author : thota.krishnakishore@gmail.com

Received: 09 August 2025 Revised: 11 September 2025 Accepted: 10 October 2025 Published: 31 October 2025

Abstract - With the rapid growth of high-speed networks and increasing sophistication of cyber threats, Deep Packet Inspection

(DPI) systems face important challenges in detecting real-time intrusion without degrading network performance. Traditional

serial Deterministic Finite Automata (DFA)-based DPI approaches often suffer from state explosions and processing hurdles,

making them unsuitable for modern Software-Defined Networking (SDN) environments. The purpose of this study is to design

and implement a customised DPI structure that provides high identification accuracy and low delays for real-time network

safety. The innovation of this research lies in its parallel DFA-based DPI engine, which integrates Hopcroft's DFA minimisation

algorithm with multi-level parallelism and CUDA-based GPU acceleration. Unlike traditional methods, the proposed system

enables failed multi-pattern payload matching, addressing scalability and performance issues in large-scale traffic analysis.

The proposed framework packet decomposes the data into the header and payload, applying N-gram tokenisation and

generalisation to prepare data for high-speed DFA processing. It is integrated tightly with an SDN controller (RYU), which

enables dynamic flow table updates to reduce attacks such as DDoS and brute force in real time. CIC-IIDS 2018 displays the

superiority of the system on the dataset, with 99.68% detection accuracy, 99.72% accuracy, and 0.28 ms average delays,

improving existing ML-based IDs and serial DFA approaches. This research establishes a strong, scalable, and light DPI

structure suitable for deployment in high-speed enterprise networks. Furthermore, it will focus on supporting encrypted traffic

inspection and hardware acceleration using SmartNICs or FPGAs.

Keywords - Parallelized DFA, Deep Packet Inspection, Software-Defined Networking, Real-Time Intrusion Detection, Hopcroft

Minimization.

1. Introduction
The development of networking technologies has

dramatically replaced how information is broadcast,

processed, and kept safe in global infrastructure. With the rise

of Software-Defined Networking (SDN), organisations can

now manage their network with unprecedented flexibility and

scalability using control and data aircraft (Song et al., 2020).

SDN allows centralised control and programmability, which

is important for adapting to dynamic network demands.

However, this paradigm also exposes the network to

sophisticated cyber threats, including Distributed Denial of

Service (DDoS) attacks, malware spread, and advanced,

consistent threats that can take advantage of the centralised

architecture of SDN (Ali & Yousaf, 2020). For the protection

of these environments, Deep Packet Inspection (DPI) has

emerged as an important technique for analysing packets

beyond traditional header-based filtering. The DPI enables the

signature of the known attack and detects abnormal traffic

behaviour, making it a foundation stone for Intrusion

Detection System / Intrusion Prevention System (IDS/IP)

(Birkinshaw, Rouka, & Vassilakis, 2019). Nevertheless, as the

speed of the network continues to increase due to cloud

computing, 5G growth, and IoT proliferation, traditional DPI

struggles to distribute real-time performance without

introducing the delay and throughput hurdles (Janabi,

Kanakis, & Johnson, 2024). It underlines the immediate need

for high-demonstration DPI mechanisms capable of scaling

with modern traffic volume while maintaining low-delay

operations in SDN infrastructure (Ghadermazi, Shah, &

Bastian, 2024).

In the last decade, significant research has been dedicated

to increasing the DPI engine to meet the challenges of high-

speed networks. Signature-based tools such as Snort and

Suricata are deployed to detect predetermined patterns of

malicious activity; regular manifestations are used for

http://creativecommons.org/licenses/by-nc-nd/4.0/

Krishna Kishore Thota & R. Jeberson Retna Raj / IJECE, 12(10), 84-103, 2025

85

matching packet material (Brugman, Khan, Kasera, &

Parvania, 2019). However, these solutions often rely on

sequential processing, which is computationally expensive

and slow for the gigabit-speed network. To address these

deficiencies, the Deterministic Finite Automata (DFA)-based

approaches have attracted attention due to their ability to

match linear-time patterns, which enables rapid scanning of

packet payloads (Zavrak & Iskefiyeli, 2023). In addition,

parallel efforts of DPI engines using multi-core processors and

Graphics Processing Units (GPUs) have shown the ability to

accelerate inspection rates. Despite these innovations, many

boundaries persist. DFA-based technology often faces state

explosion problems, reduces high memory requirements, and

reduces efficiency when handling large signature sets

(Alshahrani et al., 2023). GPU-based DPI systems demand

special hardware and are suffering from complex

implementation challenges, which limit their widespread

adoption. Additionally, many existing approaches are not

originally designed for the SDN environment, which lacks the

ability to update dynamic tables in response to attack detection

(Etxezarreta, 2024). This disconnect between high-speed DPI

and SDN integration hinders the effectiveness of the

prevention of real-time infiltration, causing the network to

become unsafe for rapidly growing attacks (Cheng et al.,

2021).

To resolve these challenges, this study proposes a parallel

DFA-based deep packet inspection structure integrated with

software-defined networking to prevent real-time infiltration.

The proposed solution, DFA, reduces state machines for

efficient signature matching, which reduces the memory

overhead while maintaining the accuracy of detection

(Satheesh et al., 2020). To obtain a high throughput, the DPI

engine employs a multi-level parallel strategy, including

multi-core CPU, data-level equality, and thread-tier equality

on packet captures, inspection, and pipelines, which adapts the

SDN controller on the GPU using CUDA/Open (Mustapha,

Djahel, Perry, & Zhang, 2021). The DPI engine is tightly

coupled with an SDN controller (e.g., Ryu or ONOS), which

enables dynamic updates to update the flow tables of the

OpenFlow switch to block or make malicious traffic in real

time. The framework is evaluated using benchmark datasets

such as CIC-AIDS 2018 and UNSW-NB15, which perform

better in terms of accuracy, low delay, and scalability

detection compared to traditional serial DFA-DPI and Regex-

based systems (Guo, Zhang, & Ma, 2021). By basically

integrating high-speed DPIs with SDN capabilities, this

research contributes a strong and scalable safety solution to

protect the next-generation network against developing cyber

threats.

1.1. Problem Statement

With the rapid adoption of Software-Defined Networking

(SDN), the network has achieved flexibility and

programmability by decoupling control and data planes

(Naqash, Shah, & Islam, 2022). However, this centralisation

also introduces new security weaknesses, making SDN a

major target for cyber threats. The SDN Prevention System

(IPS) in the atmosphere depends a lot on Deep Packet

Inspection (DPI) to analyse the packet payload to detect

malicious patterns (Rui, Pan, & Shu, 2023). Traditional DPI

engines and sequential regular expressions based on matching

are computationally intensive and fail on a scale with high-

speed traffic in modern networks (Jarvis, 2019). This

significantly reduces the real-time requirements for the

prevention of infiltration because of delays and high delays. In

addition, in existing approaches, there is a lack of efficient

parallelisation techniques and spontaneous integration with

SDN controllers to update the flowing rules dynamically for

the mitigation of danger (Makuvaza, Jat, & Gamundani,

2021). These limitations highlight the immediate requirement

of a scalable, high-demonstration DPI framework that can

prevent real-time infiltration without compromising network

performance in the SDN environment.

1.2. Recent Innovation and Its Limits

In recent years, researchers have discovered various

innovations to increase network safety and Intrusion

Prevention Systems (IPS), especially within Software-

Defined Networking-trafficking (SDN) environments.

Signature-based devices such as Snort and Suricata include

advanced rules to effectively detect the pattern of the known

attack. Additionally, a DFA-based Deep Packet Inspection

(DPI) engine has emerged as a promising solution for rapid

pattern matching due to its linear time complexity. Parallel

computing approaches, including GPU-quick DPI and

multinational packet processing, have also been introduced to

handle traffic volumes. Despite this progress, important

challenges remain. DFA-based methods often encounter state

explosion problems, causing high memory consumption. The

GPU-based system requires special hardware and adaptation,

which limits its widespread adoption. In addition, many

solutions lack tight integration with SDN controllers, resulting

in response time delays and an inability to dynamically adapt

to the flow. These limitations disrupt the scalability and real-

time effectiveness of the existing IPS framework in modern

high-speed networks.

1.3. Research Motivation

The exponential growth of network traffic operated by

cloud computing, IoT devices, and 5G technologies has

dramatically increased the complexity of securing modern

networks. Software-Defined Networking (SDN) provides

powerful tools for managing dynamic traffic flows with its

centralised control and programmability. However, these

similar features introduce new weaknesses and surfaces of

attacks that can be exploited by opponents. Traditional

Intrusion Prevention Systems (IPS), which depend on

sequential Deep Packet Inspection (DPI), struggle to process

massive amounts of data in real time, leading to high delay

and a compromised network. The need for high-speed, low-

distance safety is important to protect from DDoS attacks,

Krishna Kishore Thota & R. Jeberson Retna Raj / IJECE, 12(10), 84-103, 2025

86

malware injections, and zero-day exploits, such as

sophisticated cyber threats. Developing scalable DPI solutions

that can efficiently analyse the packets and basically integrate

with SDN controllers is necessary to detect real-time threats

in the next-generation network and enable mitigation.

1.4. Significance of the Study

This study presents a novel approach to increase network

safety by integrating a parallel DFA-based Deep Packet

Inspection (DPI) engine within the Software-Defined

Networking (SDN) environment. Importance lies in its ability

to resolve important challenges of existing Infiltration

Prevention Systems (IPS), such as high delay, limited

scalability, and poor adaptation to dynamic network

conditions. By employing advanced parallel computing

techniques in multi-core CPUs and GPUs, the proposed

structure ensures high-speed, low-overhead processing of

network traffic, which enables real-time detection and

prevention of cyber threats.

In addition, spontaneous integration with SDN controllers

allows dynamic updates to flow to the table, which ensures

rapid response to identified attacks. This research contributes

to a scalable and efficient safety solution that protects the next-

generation network, including 5G and IoT infrastructure, from

developing threats while maintaining optimal network

performance.

1.5. Key Contribution

 Novel Parallelized DFA-DPI Framework: Introduced a

novel high-speed Deep Packet Inspection system using a

parallelized Deterministic Finite Automata (DFA)

approach optimized with state minimization and multi-

level parallelism for real-time intrusion detection in

Software-Defined Networks (SDN).

 Efficient Preprocessing Pipeline: Developed an advanced

packet preprocessing method, including header

extraction, IP and port normalization, and n-gram payload

tokenization, to prepare heterogeneous network traffic for

scalable pattern matching.

 SDN Integration for Dynamic Mitigation: Seamlessly

integrated the DPI engine with SDN controllers (e.g.,

Ryu) to enable dynamic flow table updates and real-time

attack mitigation, ensuring adaptive and flexible network

defense mechanisms.

 Lightweight and Scalable Architecture: Designed a

lightweight DPI solution suitable for deployment in high-

speed enterprise and cloud networks, capable of handling

gigabit-scale traffic without introducing significant

overhead.

1.6. Rest of the Section

 Section 2: Discusses the recent DPI tools and security

software based on SDN, their problems, limitations

witnessed in the treatment of high-speed affinity, and the

decryption of present-day attacks.

 Section 3: Describes the implementation of the proposed

Parallelized DFA-DPI system featuring preprocessing of

packets, constructing DFA-Aho-Corasick, parallel

processing tricks, as well as incorporation with the SDN

controller with a real-time attack detection and prevention

system.

 Section 4: Presents experimental evidence and compares

the suggested system with the current serial DFA and

ML-based IDS models in terms of accuracy of detection,

latency, and efficiency of the system.

 Section 5: Ends the study with conclusions about the main

contributions to this study and further work, which can

include the support of encrypted traffic and the

implementation on hardware-accelerated platforms in the

case of large-scale networks.

2. Literature Review
The materials Janabi et al.(2022) model employ feature

selection techniques to reduce the features extracted and use

an independent communication channel to reduce the

controller and OpenFlow switch overload. Naïve Bayes was

applied for flow classification due to its computational

efficiency. The framework was implemented using Mininet

and achieved an accuracy of detection of 98.46%, with only a

1.5% throughput drop and an increased delay in the broad area

networks of 0.7%. While being effective, the dependence of

the system on the Naïve Bayes limits the compatibility of

complex traffic patterns by suggesting the need for advanced

classification techniques.

Fausto et al. (2022) approach included a sequential

prototype implementation with increasing software and

hardware complexity to identify and reduce the delay sources.

Evaluation showed that ID received 0.95 probability for

delays under 10 ms for P1 messages and 0.9453 probability

for delays under 3 ms for P2/P3 classes. Using a high-

performance software switch with DPDK and a hardware-

supernatural switch further improves delay. However

promising, the system requires additional adaptation for strict

real-time industrial requirements.

Chatzimiltis et al. (2024) proposed an SDN-based

architecture for Smart Grid (SG) to increase network

efficiency, reliability, and security. To combat the insider

attacks, he introduced a Service Mark-Intrusion Detection

System (SM-IDS), which uses split learning in the SDN

application layer, addressing the privacy concerns contained

in centralised IDS approaches. Their structure was evaluated

against federated learning in the Neighbourhood Area

Network (NAN). The results showed that Split Learning SM-

IDS achieved a five-grade classification accuracy of 80.3%

and an F1 score of 78.9, while Split Learning NAN-IDS

reached 81.1% accuracy and a 79.9 F1 score. However, more

adaptation was suggested for large SG deployment.

Krishna Kishore Thota & R. Jeberson Retna Raj / IJECE, 12(10), 84-103, 2025

87

Onyema et al. (2022) proposed a Security Policy Protocol

(SPP) combined with client authentication to detect and

reduce unauthorised ICMP attacks in the SDN environment.

The effectiveness of the model was evaluated using CPU use,

channel bandwidth, packet distribution ratio, and response

time. Experimental results demonstrated the accuracy of

detection of 92% with minimal overhead, improving

traditional approaches. While the SPP improves defence

against flood attacks, scalability and integration can be

addressed with a diverse SDN architecture in future work.

AlMasri et al. (2022) suggested a hybrid Intrusion

Detection and Prevention System (IDPS) for Software-

Defined Networks (SDNs) based on machine learning and

network programmability to mitigate Denial of Service (DoS)

and port scanning attacks. They used ANOVA for feature

selection and employed the chosen features in different

machine learning models. Among them, the Naïve Bayes

classifier performed the best with 86.9% accuracy for DoS

attack detection and 93.5% for Probe attack detection. The

system identifies anomalies and stops the threats by sending a

notification to the SDN controller. Scalability and adaptability

to new patterns of attacks were areas where the performance

needed to be further improved.

Tang et al. (2020) framework was trained and tested on

the NSL-KDD-KDD dataset, using a Deep Neural Network

(DNN) and a gated recurrent network (GRU-RNN).

Experimental results received DNN 80.7% to detect 90%

accuracy and flow-based discrepancy to GRU-RNN.

Additionally, evaluation on throw-up, delay, and resource use

confirmed that DeepIDS maintained the OpenFlow controller

performance. However, it is necessary to improve the

accuracy of further studies and to adapt the system to real-

time, large-scale SDN environments.

Bour et al. (2022) framework adds flow-based identity

using packet-based identity with an Extreme Learning

Machine-Based Single-Hidden-Layer Feedforward Network

(ELM-SLFN) and Case-based Information Entrapment (C-

IE). The Floyd-Warshall algorithm and Hidden Markov

Model (HMM) optimise routing by classifying and bypassing

the affected switch. Simulation has reduced the accuracy of

detection by 97.56%, lowering false-positive rates, reducing

CPU use, and improving reaction time. However, scalability

and optimisation capacity to develop the pattern of attack

remain areas for further discovery.

Bocu et al. (2022) taking advantage of the Convolutional

Neural Network (CNN), the system detects unknown

infiltration and effectively blocks malicious traffic. Vodafone

was evaluated in Romania's 5G network; the proposed ID

achieved 200 ms, 94.14% accuracy detection time, and a false-

positive rate of 0.81%, making traditional approaches with

minimal overheads for real-time deployment. However, the

performance of the system in large-scale asymmetric

communication scenarios requires further investigation to be

widely projected in diverse 5G environments.

Hirsi et al. (2024) developed a traffic classification

framework based on machine learning to improve Distributed

Denial of Service (DDoS) detection in Software-Defined

Networks (SDN). A new dataset was proposed in the work to

overcome some of the limitations of available datasets, like

using unrealistic topologies and being unavailable for public

use, and the performance was verified with CICDDoS2019.

Supervised learning using a Random Forest model enabled the

system to successfully classify benign from malicious traffic

with 98.97% accuracy and a false positive rate of 0.023.

Promising for application in real-world SDN security,

scalability, and adaptability to changing DDoS attack patterns

in varying network settings are areas to be researched in the

future.

Kokila M et al. (2025) framework integrates blockchain-

based authentication for safe communication and employs an

adaptive limit scoring mechanism to adapt local and cloud

model convergence. The SDN acts as a cloud-based security

administrator, which enables real-time security against zero-

day attacks. E-IIoT and ToN-IoT datasets were evaluated; the

system outperformed 99.15% accuracy, 99.31% accuracy,

98.97% recall, and 99.14% F1-score compared to models.

Extremely efficient, future work with minimal CPU use

should address scalability in large, odd IoT networks under

high traffic conditions.

Table 1 reviewed studies reveal significant progress in

integrating machine learning, deep learning, and novel safety

protocols, which are in the SDN and IoT environments for

detection and prevention of infiltration. However, common

boundaries persist in these approaches. Many tasks (e.g.,

Janabi et al. (2022), AlMasri et al. (2022)) rely on mild

classifiers such as naïve Bayes, which struggle with

computationally efficient, complex, and developed traffic

patterns, limiting adaptability. Ways like those proposed by

Tang et al.(2020) and Bocu et al. (2022) get high identification

accuracy using deep learning, but due to computational

overhead, real-time, large-scale deployment requires more

optimization. Scalability remains a recurring challenge,

especially for Onyema et al. (2022) and Bour et al. (2022) for

solutions such as multi-layered defence, which show

promising results but lack evaluation in diverse SDN

topologies and high-trafficking conditions. Blockchain-based

systems and the Split Learning Approach address the concerns

of privacy but require refinement to handle large networks

with minimal delay (Fausto et al., 2022; Hirsi et al., 2024).

Finally, Fausto et. al. (2022) work, although additional growth

is required for efficient, strict real-time industrial obstacles.

These gaps outline the need for future research on scalable,

adaptive, and resource-skilled security structures for dynamic

SDN and IoT environments

Krishna Kishore Thota & R. Jeberson Retna Raj / IJECE, 12(10), 84-103, 2025

88

Table 1. Overview of literature review

Reference Methodology Key Findings Limitations

Janabi et al. (2022)

Feature selection, Naïve

Bayes classifier, Mininet

simulation

Achieved 98.46% detection

accuracy; 1.5% throughput drop;

0.7% delay increase in WAN

Naïve Bayes limits

compatibility with complex

traffic patterns

Fausto et al. (2022)

Sequential prototype,

software switch with DPDK,

hardware switch

Achieved 0.95 probability for

<10ms delay (P1) and 0.9453 for

<3ms delay (P2/P3); reduced

delay sources

Needs adaptation for strict

real-time industrial

requirements

Chatzimiltis et al.

(2024)

SDN-based SG architecture,

Split Learning IDS in the

application layer

SM-IDS: 80.3% accuracy, F1-

score 78.9; NAN-IDS: 81.1%

accuracy, F1-score 79.9

Requires further adaptation

for large Smart Grid

deployments

Onyema et al. (2022)

Security Policy Protocol

(SPP) with client

authentication in SDN

92% detection accuracy; minimal

overhead; improved flood attack

defense

Scalability and integration

with diverse SDN

architectures need

improvement

AlMasri et al. (2022)

Hybrid ML-based IDPS

using ANOVA feature

selection and Naïve Bayes

DoS detection: 86.9% accuracy;

Probe detection: 93.5%; stops

threats via SDN controller

Limited scalability and

adaptability to new attack

patterns

Tang et al. (2020)

DeepIDS using DNN and

GRU-RNN trained on the

NSL-KDD dataset

DNN: 80.7% accuracy; GRU-

RNN: 90% accuracy; maintained

OpenFlow controller

performance

Needs improved accuracy

and real-time adaptation for

large-scale SDN

environments

Bour et al. (2022)

Multi-layer defense using

ELM-SLFN, C-IE, Floyd-

Warshall, and HMM

97.56% detection accuracy;

reduced false positives; improved

CPU utilization and response

time

Scalability and adaptation to

evolving attack patterns

remain challenges

Bocu et al. (2022)

CNN-based IDS for

Vodafone Romania 5G

networks

94.14% accuracy; 200ms

detection time; 0.81% false

positive rate; minimal overhead

for real-time deployment

Needs evaluation in large-

scale asymmetric

communication scenarios

Hirsi et al. (2024)

ML-based traffic

classification using Random

Forest and a custom dataset

98.97% accuracy; 0.023 false

positive rate; verified on

CICDDoS2019 dataset

Scalability and adaptability

to dynamic DDoS attack

patterns require further

research

Kokila M et al. (2025)

Blockchain-based

authentication, adaptive

threshold scoring, SDN as

cloud-based security admin

99.15% accuracy; 99.31%

precision; 98.97% recall; 99.14%

F1-score; efficient against zero-

day attacks

Needs scalability

improvements under high-

traffic, large-scale IoT

network conditions

3. Proposed Framework: Parallelized Finite

Automata-Based Deep Packet Inspection for

Real-Time Intrusion
 The framework that will be presented will start with the

process of data collection and preprocessing, where the packet

payloads will be extracted and tokenized so that they are ready

to undergo the inspection process. During the following phase,

the DFA model construction is carried out by concatenating

attack signatures into one multi-pattern DFA and then

minimizing it to eliminate redundant states and transitions. In

order to support high-speed analysis, parallelization strategies

are added, such as thread-level and data-level parallelism,

which process with many CPU and GPU threads and can scale

with many threads. This parallelized DFA is incorporated in

the DPI engine implementation to implement real-time traffic

analyses at the packet payload level upon multi-pattern match.

Subsequently, the system will be coupled to the SDN

environment at the SDN integration and mitigation stage,

where the DPI engine will communicate with OpenFlow

switches in the system and dynamically update these tables to

block malicious traffic or reroute it. Finally, the effectiveness

of the framework is evaluated using the evaluation metrics

step, which implies the measurement of the detection

accuracy, throughput, and latency of the model prepared to

satisfy the requirements of contemporary high-performing

networks. This end-to-end architecture provides scalable,

latency intrusion detection and dynamic defences of the

network. Figure 1 shows the overall proposed framework of

Deep Packet Inspection for Real-Time Intrusion Prevention in

Software-Defined Networks.

Krishna Kishore Thota & R. Jeberson Retna Raj / IJECE, 12(10), 84-103, 2025

89

Fig. 1 Overall proposed framework of DPI real-time intrusion prevention in SDN

3.1. Data Collection

This study uses the CIC-DS 2018 dataset (2019) as the

primary benchmark for the evaluation of the proposed DPI

structure. The CIC-IIDS 2018 provides a broad, real-world

network traffic capture from the enterprise environment,

which includes both benign and malicious flows. The dataset

includes a diverse range of modern cyber attacks, such as

Distributed Denial of Service (DDoS), Denial of Service

(DoS), brute force, botnet, influence, and web-based attacks,

which makes it extremely suitable for testing the strength of

infiltration prevention systems. This provides full packet

capture files with detailed payload and header information,

which is necessary to apply and validate a deep packet

inspection engine. To prepare a dataset for analysis, packet

payload and related metadata were extracted using devices

such as Scapy and Tshark. The payload was then tokenised

using an N-gram encoding to facilitate efficient pattern

recognition and was assigned to the label to differentiate

between benign and malicious traffic flows for later detection

evaluation.

3.2. Data Pre-Processing

In this research, the packet pre-processing phase is

important to convert raw network traffic into structured inputs,

suitable for a parallel DFA-based DPI engine. It involves two

main operations: payload Tokenization and header extraction

and normalization.

3.2.1. Payload Tokenization

In the proposed system, the payload of each packet is

treated as a sequence of bytes for efficient deep packet

inspection and pattern recognition. First, payload data are

extracted from the packet and divided into overlapping

segments by N-gram encoding, where N represents the length

of each byte sequence. This is a conversion of raw payload

data into a series of uniform lengths, where the relevant

relationships between the continuously adjacent bytes are

conserved. By encoding the payload in this manner, the

system can effectively match the signature of a known attack

and identify faint variations in the malicious pattern. These

byte-level tokens are fed into a parallel DFA engine, thus

allowing the multi-network to undertake multi-pattern

matching in real time. This ensures that the SDN environment

can also analyze complex and obstructed attack payloads for

prompt danger mitigation. (Amanowicz & Jankowski, 2021).

Each packet payload P is treated as a sequence of bytes as

mentioned in Equation (1):

𝑃 = {𝑏1, 𝑏2, 𝑏3, … . , 𝑏𝑛} (1)

In a highly efficient scheme for signature matching,

encode the pattern into N-Grams for byte sequences, N-Gram

encoding being described in Equation (2). For an n-gram size

K, the payload is transformed into:

𝑇𝑛 =
{(𝑏1, 𝑏2, … . , 𝑏𝑘), (𝑏2, 𝑏3, … . , 𝑏𝑘+1), … , (𝑏𝑛−𝑘+1, , … . , 𝑏𝑛)}

 (2)

This results in overlapping byte n-grams to a token

sequence𝑇𝑛. These are mapped to integer indices through a

lookup table 𝐿: 𝑇𝑛 → ℕ DFA for direct feeding in the state

machine.

3.2.2. Header Extraction and Normalization

In this study, header extraction and normalisation are key

pre-processing steps needed to prepare packet data for

efficient DPI. Each captured packet is broken down to separate

the header information, including source and destination IP

addresses, port numbers, protocol types, and some significant

fields such as flags. These header characteristics are needed to

refer to the payload and for traffic classification. Then, the

extracted header field is standardised in a specified format by

Krishna Kishore Thota & R. Jeberson Retna Raj / IJECE, 12(10), 84-103, 2025

90

converting different data representations, such as hexadecimal

and ASCII values, into a consolidated numerical or vector

form. It guarantees the similarity of data to be parallel fed to a

DFA engine, thereby minimising the disparity in network

traffic (Salau & Beyene, 2024). Normalisation also enhances

the ability to effectively handle the high-speed packet currents

of the DPI system, which enables the preprocessing delay and

enables accurate multi-patterns in real time. In this study,

header extraction and normalisation are performed for pre-

processed packet data for the DPI engine. Each captured

packet p contains a header H and payload d, and is computed

using Equation (3) where:

𝑃 = {𝐻, 𝐷} (3)

The header H includes fields such as source IP (𝐼𝑃𝑠𝑟𝑐),

destination IP (𝐼𝑃𝑑𝑠𝑡), source port (𝑃𝑜𝑟𝑡𝑠𝑟𝑐) destination port t
(𝑃𝑜𝑟𝑡𝑑𝑠𝑡) and protocol type (Proto) as mentioned in Equation

(4). Using packet parsing tools like Scapy and Tshark, these

fields are extracted:

𝐻 = 𝐼𝑃𝑠𝑟𝑐 , 𝐼𝑃𝑑𝑠𝑡 , 𝑃𝑜𝑟𝑡𝑠𝑟𝑐 , 𝑃𝑜𝑟𝑡𝑑𝑠𝑡 , Proto (4)

3.2.3. IP Address Normalization

IP address normalisation is performed with the aim of

making the header information more standard and simplified

for the effective and efficient processing of the DPI system.

First, IPV4 addresses, which are generally represented in

dotted decimal notation, are converted into 32-bit integer

values to perform several mathematical operations on them. In

other words, the system manipulates IP addresses as compact

numerical institutions rather than complicated string patterns,

thereby making the extraction of features less computationally

expensive.

Once changed, the integer values are extended into a

generalised range, such as [0, 1], thus stabilising separate

address locations and further boosting subsequent analysis.

This normalisation process aids the DPI engine in comparing

and analysing network traffic with higher levels of efficiency,

especially when inspection is required at a high speed, such as

in downstream real-time threats and mitigation. IPv4

addresses are converted into 32-bit integer values and scaled

and computed using the following Equation (5):

𝐼𝑃𝑛𝑜𝑟𝑚 =
𝛼.2563+𝑏.2562+𝑐.256+𝑑

232−1
 (5)

Where the standard dotted decimal notation is denoted as

IP = a.b.c.d

3.2.4. Port Normalization

In the proposed system, the source and destination port

numbers are in a consistent numerical range for efficient

processing. Port normalisation is performed for scale sources

and destination port numbers. Since the port values in TCP

and UDP headers range from 0 to 65,535, they are divided by

the maximum possible value for each port number to a limit

between 0 and 1. This change ensures that port number one is

represented in a standardised format, reduces variability in

data, and improves the compatibility of input features with the

DPI engine. By normalising the port numbers, the system

simplifies the comparison and analysis of traffic flows, which

is capable of detecting patterns associated with specific

services or attack vectors while maintaining computational

efficiency during high-speed packet inspection. Between 0

and 1, the ports are scaled and represented in Equation (6):

𝑃𝑜𝑟𝑡𝑛𝑜𝑟𝑚 =
𝑃𝑜𝑟𝑡

65535
 (6)

3.2.5. Protocol Encoding

In the proposed DPI system, protocol encoding is applied

to maintain and use the protocol type from the packet header

for efficient state transition within the DFA engine. Each

protocol type, such as TCP, UDP, and ICMP, is defined in the

Internet protocol (e.g., TCP = 6, UDP = 17, ICMP = 1) using

its standardised numeric code. These numeric codes are

included in the feature set without direct additional changes,

ensuring that the protocol information remains mild and

computationally efficient for real-time processing. By

preserving these encoded values, the DPI system protocol can

accurately separate the traffic flow and apply proper state

infections during pattern matching. This strategy enhances the

ability of the system to detect the signature of the protocol-

specific attack while maintaining high throughput and low

delay in the SDN environment.

Protocol types (e.g., TCP=6, UDP=17) are retained as

numerical codes for state transitions, as defined in Equation

(7):

𝑃𝑟𝑜𝑡𝑜𝐶𝑜𝑑𝑒 = 𝑃𝑟𝑜𝑡𝑜𝑛𝑢𝑚 (7)

The normalized header vector is represented in Eqn (8):

𝐻𝑛𝑜𝑟𝑚 = [𝐼𝑃𝑠𝑟𝑐
𝑛𝑜𝑟𝑚 , 𝐼𝑃𝑑𝑠𝑡

𝑛𝑜𝑟𝑚, 𝑃𝑜𝑟𝑡𝑠𝑟𝑐
𝑛𝑜𝑟𝑚 , 𝑃𝑜𝑟𝑡𝑑𝑠𝑡

𝑛𝑜𝑟𝑚 , 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑑𝑒]
 (8)

This normalized header information is combined with

tokenized payload data and fed into the Parallel DFA

Matching Engine, enabling fast and efficient multi-pattern

signature inspection.

3.3. DFA Model Design

DFA structure is then integrated into a parallel processing

architecture where packet currents are distributed in several

CPU threads for concurrent analysis. In this study, header

extraction and normalisation are performed for pre-processed

packet data for the DPI engine. Each captured packet p

Krishna Kishore Thota & R. Jeberson Retna Raj / IJECE, 12(10), 84-103, 2025

91

contains a header H and payload d, where: In this study, the

core Deep Packet Inspection (DPI) engine takes advantage of

the Determined Finished Automata (DFA) to match the high-

speed, multi-pattern signatures for effective infiltration

prevention in the engine Software-Defined Network (SDN).

Initially, the signs of the attack out of the CIC-IDS 2018

dataset are compiled in DFA state machines using the Aho-

Corasick algorithm, enabling efficient scanning of packet

payloads against multiple patterns simultaneously. To

increase memory efficiency and reduce computational

overhead, Hopcroft's DFA minimisation algorithm is applied,

which eliminates fruitless states and infections by preserving

accreditation accuracy. This customised embedding of the

minimum DFA in the SDN environment ensures real-time

detection and prevention of malicious traffic, blocking or

rebuilding suspected packets without presenting significant

delay or performance decline to dynamically update the

OpenFlow switch. Figure 2 shows the working process of the

Parallelized DFA design for DPI:

Fig. 2 Parallelized DFA design for DPI

3.4. Compilation of Attack Signatures into DFA

In this study, a compilation of the signature of the attack

in a DFA makes the original of the proposed DPI engine.

Malicious payload patterns, including DDoS, botnet, and

brute force attack signatures, were systematically extracted

from the CIC-DS 2018 dataset. These payloads, representing

sequential byte patterns of various attacks, were consolidated

in a comprehensive signature set. To enable efficient multi-

pattern matching, the Aho-Corasick algorithm was employed

to manufacture an integrated DFA state machine. This

approach allows for the simultaneous detection of several

attack signals within the packet payload during real-time

traffic inspection. Each signature is represented as a series of

transitions in DFA states, enabling the system to scan for all

patterns in the same pass on the data stream. To optimise

memory use and improve matching efficiency, fruitless states

and transitions were minimised using state deficiency

techniques. This is a compact result in a highly effective DFA

that can process high-speed network traffic without significant

computational overhead. By embedding this DFA in a parallel

processing pipeline, detecting the DPI engine as scalable and

low-distraction ensures strong security against a wide range of

network-based hazards in the modern SDN environment. The

attack signs were extracted from the CIC-IDS 2018 dataset,

including the known malicious payload patterns (e.g., DDoS,

botnet, brute force). These signatures S = {S1, S2, ..., SN}

were converted into a single multi-pattern DFA state machine

using the Aho-Corasick algorithm. The DFA is defined using

Equation (9):

𝐷𝐹𝐴 = (𝑄, Σ, 𝛿, 𝑞𝑜,𝐹) (9)

Where the set of states is denoted by Q, the alphabet for

each byte value is denoted as Σ, the transition function is

denoted as 𝛿, and the initial state is denoted as 𝑞𝑜. Finally, the

set of final states is denoted as F.

In our research, the AHO-Curasic algorithm plays an

important role in the manufacture of a skilled multi-pattern

matching engine for Deep Packet Inspection (DPI). This

algorithm begins by constructing a Trie (prefix tree) with all

the preformed attack signatures received from the CIC-IDS

2018 dataset. Each path in the Trie represents a unique attack

signature, where nodes correspond to bytes in the payload. To

handle partial matches and overlapping patterns, algorithm

failure enhances the trie with infection. These infections allow

the search process to "fall back" for a small matching prefix

without restraints from the root whenever there is a mismatch,

which enables uninterrupted scanning in the payload. The

payload of a network packet is depicted as a sequence of bytes:

𝑃 = {𝑏1, 𝑏2, … , 𝑏𝑚}, 𝑏𝑖 ∈ Σ (10)

In Equation (10), the payload containing m bytes is

denoted as P, and the ith byte in the payload is denoted as 𝑏𝑖

and the alphabet of all possible byte values is denoted as Σ.

As each byte 𝑏𝑖 in the payload, the DFA transitions

between states according to the transition function

𝛿:q_(i+1)= 𝛿 (𝑞𝑖 , 𝑏𝑖) (11)

In Equation (11), the current state in the DFA is denoted

as 𝑞𝑖, based on the current state and the input bytes 𝑏𝑖 the

transition function determines the next state. The resulting

state after processing 𝑏𝑖 is denoted as 𝑞𝑖+1

Then, if the resulting state belongs to the accepting state

F, Eqn (6) becomes:

𝑞𝑖+1 ∈ 𝐹 (7)

It indicates that a full attack signature within the payload

is matched, and the DPI engine immediately flags this packet

as a malicious action by the SDN controller (e.g., release or

run).

Krishna Kishore Thota & R. Jeberson Retna Raj / IJECE, 12(10), 84-103, 2025

92

Fig. 3 Aho-Corasick algorithm diagram

Figure 3 design shows the real-time scanning of multi-

gigabit traffic, as the Aho-Corasick algorithm ensures that the

entire payload can be processed in a single linear pass without

boxing, even in the presence of thousands of patterns.

Combined with parallel DFA examples in CPU threads, our

system receives minimal delay and supports the prevention of

high-throughput infiltration.

3.5. DFA Minimization (Hopcroft’s Algorithm)

In our research, after manufacturing DFA using the Aho-

Corasick algorithm, we applied Hopcroft's DFA minimisation

algorithm to customise the DFA for memory efficiency and

rapid runtime performance. Effective for early DFA, while

effective for multi-pattern matching, there are fruitless and

equivalent states due to overlapping prefixes in signature

patterns. These fruitless states enhance memory use and slow

down state traversal, especially when the Software-Defined

Networking (SDN) is deployed in a high-speed Deep Packet

Inspection (DPI) environment. Minimisation ensures that only

the necessary states remain for pattern recognition, allowing

the DPI engine to handle gigabit traffic with minimal delay.

The minimized DFA is mathematically computed using

Equation (12):

𝐷𝐹𝐴𝑚𝑖𝑛 == (𝑄′, Σ′, 𝛿′, 𝑞0
′ 𝐹′) (12)

In Equation (12), the reduced set of DFA states is denoted

as 𝑄′ ⊆ 𝑄 and the state after minimization is denoted as
|𝑄′| < |𝑄|, the unchanged possible input bytes of alphabets

are denoted as Σ, and the new transition function mapping

reduced states and input symbols is denoted as 𝛿′, and the

minimized start state is denoted as 𝑞0
′ , and finally, the

minimized set of accepting the final states is denoted as 𝐹 ⊆
𝑄′.

In our research, the Software-Defined Networking (SDN)

environment used decisive techniques to achieve the high

throughput and low latency performance required for real-

time Deep Packet Inspection (DPI) in the environment. The

system integrates multi-level similarity to handle the large

amount of network traffic and prevent bottlenecks in packet

processing. At the thread level, the upcoming packets are

distributed in several CPU threads using OpenMP, allowing

each thread to operate an independent example of a minimum

DFA for signature. This strategy efficiently uses multi-core

processors, ensuring that traffic inspection scales with the

number of available cores. At the data level, the payloads from

individual packets are divided into small blocks and processed

on GPU threads using CUDA-based PFAC (parallel failure).

This massive parallel approach takes advantage of

thousands of GPU cores, which perform the pattern

simultaneously in the payload segment, significantly reducing

the inspection time for each packet. In addition, the pipeline

equality is applied by decomposing the DPI workflow into

three modular stages: (1) packet capture, (2) parallel DFA

inspection, and (3) SDN Flow Rules update. This allows the

pipelined architecture system to overlap operations, so while

a phase processes a batch of packets, the latter stages can work

on the earlier batches; the delays can maintain the continuous

flow of traffic without introducing spikes. Together, these

parallelisation strategies enable our DPI engine to maintain

multi-gigabit traffic rates, detect malicious payloads in real

time, and dynamically instruct the SDN controller to block the

suspicious flow or start, which ensures strong network

security without reducing network performance.

Figure 4 shows the workflow of the DPI system with

parallel strategies. This packet begins with capture, followed

by a thread-level equality (OpenMP) and a parallel DFA

inspection extended by data-level equality (concurrent stages).

The process pipeline flows into equality, dividing the

functions for continuous processing into modular stages.

Finally, the SDN rule update is triggered to block or restart the

dynamic malicious traffic.

Attack Signatures

(CIC-IDS 2018)

Build

(Prefix

Tree)

Convert Trie to

DFA (Aho-Coasik)
Packet Payload

P = {b1,...,bm}

DFA Transition:

qi+1 = ∂ (qifb₁) Apply Hopcroft

Minimization

Parallel DFA

Engine

Flag Packet &

Notify SDN

Controller

Scan

Payload

Krishna Kishore Thota & R. Jeberson Retna Raj / IJECE, 12(10), 84-103, 2025

93

Fig. 4 Parallelization levels interact in your DPI engine.

3.6. DPI Engine Implementation

In our research, the DPI engine serves as the main

component in identifying malicious traffic in real time by

taking advantage of a highly customized parallel DFA

implementation. The engine is designed in C++ to ensure low-

level memory control and high-performance packet

inspection, while integration with the Python-based SDN

controller allows dynamic traffic management. As each

incoming packet is occupied, its payload is 𝑃 =
{𝑏1, 𝑏2, … 𝑏𝑚}, 𝑏1 ∈ Σ. Using the transition function 𝛿: 𝑄 ×

Σ → 𝑄, Engine Counts the next state for each by

𝑞𝑖+1 = 𝛿(𝑞𝑖 , 𝑏𝑖) (13)

In Equation (13) 𝑞𝑖, is the current DFA state, and Bib_ibi

is the current byte of payload. If at any point𝑞𝑖+1 ∈ 𝐹, where

the set of accepting states F is detected with a match with an

attack sign and computed using Equation (14):

𝐼𝑓 𝑞𝑖+1 ∈ 𝐹 ⟹ 𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 𝐷𝑒𝑒𝑡𝑐𝑡𝑒𝑑 (14)

To handle the gigabit-scale traffic, the DPI engine

converts several DFA examples, distributing payload

segments to CPU threads (via OpenMP) or GPU threads (via

CUDA-PFAC). This allows the pattern to be matched

simultaneously on various data streams. Once a malicious

pattern is detected, the engine immediately triggers an alert for

the SDN controller, which dynamically updates the flow table

in the OpenFlow switch using the flow mod command to block

or refer to the traffic. This spontaneous integration of high-

speed DFA matching and programmable network logic

ensures rapid detection and mitigation without disrupting

legitimate traffic, acquiring both high throughput and low

delay in our SDN environment.

3.7. SDN Integration and Mitigation

In our research, SDN integration and mitigation were

important to enable dynamic and real-time response against

infiltration detected in the DPI engine. The main idea was to

embed the DPI engine in SDN control aircraft, allowing

immediate enforcement of mitigation strategies through the

OpenFlow switch.

Fig. 5 SDN mitigation

Thread-Level

Parallelism:

(Using OpenMP)

Data-Level

Parallelism:

Concurrent Scages

SDN Rule

Updates

Packet Capture

Parallel DFA

Inspection

Pipeline

Parallelism

Divindeneinto

modular stages

Network Packet

Packet in Event

DPI Engine

Threat

Detected?

Modify Flow Table

Flow Table Open Flow

Switch
Ryu Controller Mininet

(Simulated SDN)

No

Yes

Krishna Kishore Thota & R. Jeberson Retna Raj / IJECE, 12(10), 84-103, 2025

94

Figure 5 shows the process begins with deploying the DPI

engine in a fake SDN environment, which uses the RYU

controller for the centralised management of Mennonite and

flow rules for ambulation. Each time a packet is sent to the

SDN controller, the DPI engine analyses the payload. If a

malicious pattern is detected, the controller dynamically

modifies the flow tables in the OpenFlow switch. These

amendments are applied using the flow mod messages of the

OpenFlow protocol, which can perform actions such as

releasing packets and re-running traffic or rate-limited flows.

Figure 5shows the SDN mitigation process where the

upcoming network packets trigger packets for the Ryu

controller in a fake miniature environment. The DPI engine

inspects the packet payload and checks for dangers. If a danger

is detected, the controller dynamically models the flow table

into the OpenFlow switch to block, reroute, or reduce

malicious traffic. Otherwise, normal forwarding continues.

Formally, consider the flow rule update operation as:

𝐹𝑙𝑜𝑤𝑛𝑒𝑤 = {
𝑑𝑟𝑜𝑝, 𝑖𝑓 𝑞𝑖+1 ∈ 𝐹

𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑝𝑜𝑟𝑡), 𝑖𝑓 𝑞𝑖+1 ∈ 𝐹

 (15)

In Equation(15), 𝑞𝑖+1 denotes that the DFA is the state

after processing a byte 𝑏𝑖. F denotes the set of accepting

(malicious) states. The drop indicates that the packets that

match a signature are blocked. Further (port) indicates normal

forwarding when there is no signature match.

Additionally, the control-plane adaptation was included

to handle high-volume attacks and to prevent saturation of the

SDN controller. Flow table ageing was automatically applied

to remove stale entries after a timeout, 𝑇𝑎𝑔𝑒, which is defined:

𝑇𝑎𝑔𝑒 = min(𝑇𝑑𝑒𝑓𝑎𝑢𝑙𝑡 , 𝑇 𝑐𝑢𝑠𝑡𝑜𝑚) (16)

In Equation (16) 𝑇𝑑𝑒𝑓𝑎𝑢𝑙𝑡 is the standard flow timeout,

and 𝑇 𝑐𝑢𝑠𝑡𝑜𝑚. It is an adaptive timeout for the flow related to

the custom attack. Rate limiting was applied by modifying the

meter table in the OpenFlow switch, restricting bandwidth for

suspicious flows:

𝐵𝑊𝑙𝑖𝑚𝑖𝑡 =

 {
𝑅𝑠𝑎𝑓𝑒 , 𝑖𝑓 𝑓𝑙𝑜𝑤 𝑖𝑠 𝑛𝑜𝑟𝑚𝑎𝑙

𝑅𝑎𝑡𝑡𝑎𝑐𝑘, 𝑖𝑓 𝑓𝑙𝑜𝑤 𝑖𝑠 𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠 𝑎𝑛𝑑 𝑓𝑙𝑎𝑔𝑔𝑒𝑑 𝑏𝑦 𝐷𝑃𝐼
 (17)

In Equation (17) Rsafe denote the D=default is a safe

bandwidth allocation and 𝑅𝑎𝑡𝑡𝑎𝑐𝑘 << 𝑅𝑠𝑎𝑓𝑒 Throttles

suspected the attack. This architecture ensures that any

detected intrusion can be reduced in real time by releasing the

appropriate OpenFlow command for the switch without

human intervention. Integration also supports scalability as

decisions are made in control aircraft, and data-plane traffic is

only affected minimally. Algorithm 1 defines the DFA model

process:

Algorithm 1: DFA Model

Build a DFA from attack signatures

Function Build_DFA(Signatures):

 Initialize the Trie as empty

 For each Signature in Signatures:

 Insert Signature into Trie

 DFA = Convert_Trie_to_DFA(Trie)

 Return DFA

Minimize DFA using Hopcroft's algorithm

Function Minimize_DFA(DFA):

 Partition = {Final_States, Non_Final_States}

 Worklist = Partition

 While Worklist is not empty:

 A = Worklist.pop()

 For each input symbol 'c':

 X = Set of states with transition on 'c' into A

 For each subset Y in Partition:

 Intersection = X ∩ Y

 Difference = Y - X

 If Intersection and Difference are both non-empty:

 Replace Y in Partition with {Intersection,

Difference}

 If Y in Worklist:

 Replace Y in Worklist with {Intersection,

Difference}

 Else:

 Add the smaller of {Intersection, Difference}

to the Worklist

 Return Minimized DFA based on Partition

Parallelize the DFA for high-speed DPI

Function Parallel_DFA_Engine(Minimized_DFA,

Packet_Stream):

 Initialize Thread_Pool with N threads

 For each Packet in Packet_Stream:

 Assign Packet to an available Thread:

 Thread.Process(Packet, Minimized_DFA)

 Synchronize Threads

 Return Detection_Results

// Thread Function to Process Packet

Function Process(Packet, Minimized_DFA):

 Current_State = Start_State of Minimized_DFA

 For each Byte in the Packet.Payload:

 If Transition exists from Current_State on Byte:

 Current_State = Transition[Current_State][Byte]

 Else:

 Current_State = Start_State

 If Current_State is a Final/Accepting State:

 Flag Packet as Malicious

 Break

Krishna Kishore Thota & R. Jeberson Retna Raj / IJECE, 12(10), 84-103, 2025

95

 Return

// Main Function

Function Main():

 Signatures = Load_Signatures("CIC-

IDS2018_Signatures.txt")

 DFA = Build_DFA(Signatures)

 Minimized_DFA = Minimize_DFA(DFA)

 Packet_Stream = Capture_Live_Traffic()

 Results = Parallel_DFA_Engine(Minimized_DFA,

Packet_Stream)

 For each Alert in Results:

 SDN_Controller.Apply_Flow_Rule(Alert)

 Return

4. Results and Discussion
In this research, a high-performance Deep Packet

Inspection (DPI) engine was applied and integrated into an

SDN environment for the detection and mitigation of real-time

infiltration. The system was designed using a parallel DFA

approach, which was adapted through Hopcroft's

minimisation algorithm and deployed using Mininet for SDN

education with the RYU controller. Performance-mating

components were implemented in C++ (for the DPI engine)

and integrated with Python-based SDN arguments. The

system was evaluated against benchmark datasets such as

CIC-DS 2018, with various attack patterns including DDoS,

DoS, and brute force. The main results include detection

accuracy, delay, throughput, and resource usage, existing

serial DFA-DPI, and benchmarks against machine learning-

based IDS methods. Results show that the proposed DPI-SDN

architecture achieves high accuracy with minimal processing

overhead, making it suitable for real-time traffic inspection in

large-scale networks.

Table 2. Simulation parameter

Parameter Value / Description

Dataset CIC-IDS 2018 (real-world traffic

patterns)

Emulation Tool Mininet

SDN Controller Ryu (Python-based)

Packet Replay

Tool

tcpreplay

DPI Engine

Language

C++ (parallelized DFA

implementation)

Simulation

Traffic Rate

1 Gbps – 10 Gbps

CPU for DPI 8-core Intel Xeon, OpenMP threads

GPU for DFA NVIDIA CUDA (PFAC-based

parallel DFA)

Metrics Collected Detection accuracy, throughput,

latency, CPU/GPU utilization

Attack Types

Simulated

DDoS, DoS, Brute Force, Web

Attacks

Baseline Methods Serial DFA-DPI, Random Forest,

LSTM

In this study, the performance of the proposed DPI engine

was evaluated through comprehensive simulation using the

CIC-DS 2018 dataset, as mentioned in Table 2, which reflects

real-world traffic patterns with various attack types, including

DDoS, DoS, brute force, and web attacks. The dynamic flow

was imitated using Mininet with the Ryu SDN controller to

manage the rules. Traffic replays were used from 1 GBPS to

10 GBPS at rates using TCPREPLAY. The DPI engine

implemented in C++ with parallel DFA and GPU acceleration

through CUDA was deployed on the 8-core Intel Xeon CPU.

To display the efficiency and scalability of the proposed

approach, a major matrix was collected to detect accuracy,

throughput, delay, and resource use compared to basic

methods such as serial DFA-DPI, Random Forest, and LSTM

models.

Table 3. Resource utilization

Metric

Proposed

Parallel

DFA‑DPI

Serial

DFA

Random

Forest

(ML‑IDS)

CPU Usage

(%)
45% 78% 65%

GPU Usage

(%)
36% — 60%

Memory

Consumption

(MB)

250 MB 410 MB 520 MB

Table 3 presents the metrics comparing the parallel DFA-

DPI engine proposed with a random forest-based ML-Aid

under the same high-speed traffic conditions. The proposed

system demonstrated better efficiency, using only 45% CPU

and 36% GPU resources, which is much lower than the 78%

CPU use of serial DFA and 65% CPU and 60% GPU use of

random forest. Additionally, parallel DFA-DPI consumed

250MB of memory, improved serial DFA (410MB), and

random forest (520MB). These results highlight the adapted

performance of the proposed approach, obtaining high-speed

packet inspection with minimum resource overhead in the

SDN environment.

Figure 6 shows CPU use over time for three methods –

parallel DFA-DPI, serial DFA, and random forest (ML-IDS)

– separated by trafficking rates. The proposed parallel DFA-

DPI maintains consistently low CPU use, performing about

35–36% on average, with its mild nature and suitability for a

high-throughput environment. Conversely, the serial DFA

displays much more CPU consumption, which reaches 74%,

due to its parallelness and lack of disabled state traversal. The

random forest approach also refers to moderate-high CPU use

at 60%, which refers to the computational overhead of ML-

based classification. This comparison highlights the efficiency

and scalability of the proposed DPI engine.

Krishna Kishore Thota & R. Jeberson Retna Raj / IJECE, 12(10), 84-103, 2025

96

Fig. 6 CPU utilization over time

Fig. 7 GPU utilization heatmap

Figure 7, parallel DFA-based Deep Packet Inspection

(DPI), shows the activity level of GPU threads during the

execution of the engine. Each row represents a GPU thread,

and each column matches a time interval under separate traffic

loads. The intensity of the colour reflects the percentage of

GPU use, explaining how the parallel DFA algorithm

distributes workloads in several GPU threads. The results

display frequent thread engagement and balanced resource

allocation, confirming the efficiency of data-level equality in

handling high-speed network traffic. This visualisation

recognises scalability and mild performance of the proposed

DPI engine in a real-time scenario.

Figure 8 shows the distribution of packet processing time

in milliseconds for the proposed parallel DFA-DPI engine.

The results suggest that most packets are processed within a

narrow range around 2.5ms, which confirms the system's

ability to operate in real time under high traffic loads. While

handling the thousands of concurrent flows, low-lonely

infiltration exposes the efficiency and stability of the DPI

engine, highlighting the tight clustering of the detection time.

This indicates that the proposed system achieves an estimated

performance with minimal variance, a significant requirement

for SDN-based safety applications.

Fig. 8 Detection time histogram

Figure 9 shows the end-to-end system latency under

different traffic patterns, including general traffic, DDoS

attacks, and web-based attacks. The proposed parallel DFA-

DPI engine displays continuous delayed performance,

approximately 2.5 ms for general traffic with average delay,

grows up to 3.2 ms during web attacks, and is at 4.0 ms under

DDOS terms. A narrow, contradictory range also indicates

minimal variability and high stability of the system under

stress in all scenarios. The outliers are limited, suggesting that

the system maintains real-time processing capabilities without

significant delay spikes, validating its suitability for high-

speed SDN environments.

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30

C
P

U
 U

sa
g
e

(%
)

Time (seconds)

CPU Utilization Over Time at Different Traffic Rates

Proposed Parallel DFA-DPI (%) Serial DFA (%)

Random Forest (ML-IDS) (%)

Krishna Kishore Thota & R. Jeberson Retna Raj / IJECE, 12(10), 84-103, 2025

97

Fig. 9 End-to-End system latency boxplot

Table. 4 Latency and throughput for proposed DFA-DPI model

Metric Proposed DFA-DPI

Latency (ms) 0.3

Throughput (Gbps) 9.8

Table 4, the proposed DFA-DPI model achieved a

significant delay of 0.3 ms, ensuring real-time packet

inspection and response. It also maintained a high throughput

of 9.8 GBPS, which demonstrated the ability to handle multi-

gigabit traffic without hurdles. These results highlight the

efficiency and scalability of the parallel DPI engine in the

modern SDN environment.

Table. 5 Flow table update latency and packet drop rate across traffic

loads

Traffic Load

(Gbps)

Avg. Flow

Update Time

(ms)

Packet Drop

Rate (%)

1 0.12 0.1

5 0.22 0.15

10 0.34 0.18

Table 5 presents the average flow update time and packet

drop rate of the proposed DPI-SDN system under various

traffic loads. At 1 GBPS, the system receives an average flow

update of 0.12 ms with a minimum packet drop rate of 0.1%.

Since the traffic increases to 5 GBPS and 10 GBPS, the update

time increases to 0.22 MS and 0.34 MS, respectively, while

packets below 0.2% maintain drop rates. These results also

display the ability of the system to efficiently update the flow

tables in real time with negligible packet loss under high

network load.

Figure 10 shows the average flow table update time on

various traffic loads, which exposes the accountability of the

proposed SDN mitigation mechanisms. At a low traffic load

of 1 Gbps, the flow update time remains minimal at 0.12 ms,

ensuring rapid mitigation actions. As traffic increases to 5

GBPS and 10 GBPS, update time increases to 0.22 ms and

0.34 ms, respectively, indicating a beautiful performance

under high loads. This indicates that the proposed DPI-SDN

integration maintains the efficient flow rule update even in

high-traffic scenarios, ensuring minimal disruption during the

mitigation of attacks in real-time environments.

Fig. 10 Flow table update time

Fig. 11 Packet drop rate vs traffic load

Figure 11 shows the relationship between traffic load and

packet drop rate during the mitigation of SDN-based attacks.

Since the traffic load grows from 1 Gbps to 10 Gbps, the

packet drop rates show a slightly upward trend, which grows

from 0.1% to 1 Gbps to 0.18% to 10 Gbps. While the system

highlights the scatter plot combined with a polynomial

trendline, the system overthrows the low packet loss, showing

marginal growth in drops due to high traffic volume, flow

table updates, and mitigation functions. This reflects the

strength of the DPI-SDN structure proposed to maintain

network reliability under different traffic loads.

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

1 5 10

Observed Packet Drop Rate Trendline

Krishna Kishore Thota & R. Jeberson Retna Raj / IJECE, 12(10), 84-103, 2025

98

Fig. 12 Comparison of memory usage

Figure 12 reflects the memory consumption of the

approach to detect three intruders: proposed DFA-DPI, serial

DFA, and ML-based IDS. Results suggest that the proposed

DFA-DPI receives the lowest memory footprint at 250 MB,

which makes the serial DFA much better, which consumes

410 MB, and ML-based IDs, which require 520 MB. This

deficiency highlights the effectiveness of minimisation

techniques such as the DFA algorithms of the Hopcroft

algorithm in adapting state infections and reducing resource

overheads. Customised memory use ensures that the proposed

DFA-DPI system can work efficiently in a highly plural

environment, preserving and supporting real-time traffic

analysis.

Fig. 13 Accuracy vs throughput for proposed DFA-DPI model

Figure 13 shows how the proposed parallel DFA-DPI

engine identifies the accuracy to identify network traffic rates.

As throughput scales from 1 Gbps to 10 Gbps, the system

continuously maintains high identification accuracy, with a

marginal decline from 99.5% to 98.7%.

This slight drop indicates that the DPI engine is also

highly effective under heavy traffic loads, validating its

scalability and strength. The results confirm that it can support

a high-speed environment, ensuring a minimum agreement in

detecting architecture, which makes it suitable for the

prevention of real-time infiltration into the SDN network on a

large scale.

Fig. 14 Average packet processing

Figure 14 shows the average packet processing time in

various traffic loads, highlighting the scalability of the

proposed DPI engine. On 1 GBPS, the system obtained an

average processing time of 80 µs, which increased to 95 µs at

5 GBPS and 112 µs slightly at 10 GBPS. It also shows the

ability of the system to maintain low and estimated delays

under high traffic rates, detect real-time infiltration, and its

suitability for mitigation in high-throughput SDN

environments. The minimum increase in processing time

confirms the efficiency of parallel DFA implementation in

handling the increasing demands of the network.

Table 6 Attack detection

Attack

Type

Precision

(%)
Recall (%)

F1-Score

(%)

DDoS 99.5 98.9 99.2

DoS 98.8 98.3 98.5

Brute Force 97.1 96.5 96.8

Web

Attacks
98.3 97.6 97.9

250 MB

410 MB

520 MB

0

100

200

300

400

500

600

Proposed

DFA-DPI

Serial DFA ML-based IDS

M
em

o
ry

 U
sa

g
e

(M
B

)

Methods

Memory Usage Comparison Across

Intrusion Detection Methods

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

1 3 5 7 10

D
et

ec
ti

o
n
 A

cc
u
ra

cy
 (

%
)

Network Throughput (Gbps)

Accuracy vs. Throughput for Proposed

DFA-DPI Model

80μs

95μs

112μs

0

20

40

60

80

100

120

1 Gbps 5 Gbps 10 GbpsA
v
er

ag
e

P
ro

ce
ss

in
g
 T

im
e

(μ
s)

Traffic Load (Gbps)

Average Packet Processing Time vs.

Traffic Load

Krishna Kishore Thota & R. Jeberson Retna Raj / IJECE, 12(10), 84-103, 2025

99

Table 6 presents a parallel DFA-DPI engine to detect

attacks with accurate recall and F1 scores for various types of

attacks. The system received extraordinary performance in all

categories, which featured 99.5% accuracy with DDoS

detection, 98.9% memory, and 99.2% F1 score. The DOS

attacks were identified with 98.8% accuracy and 98.3%, with

an F1-SCORE of 98.5%. Brute Force attacks were slightly low

but still strong, with 97.1% accuracy, 96.5% recall, and 96.8%

F1 score. Similarly, web attacks obtained 98.3% accuracy,

97.6% recall, and 97.9% F1 score, which demonstrates the

credibility of the system in detecting diverse infiltration types.

Fig. 15 Throughput across system

Figure 15, the throughput comparison bar chart shows the

performance of the proposed DFA-DPI system against serial

DFA and ML-based IDS methods under high traffic rates. The

proposed DFA-DPI attains the highest throughput of 9.8

GBPS, which demonstrates the ability to efficiently process

large volumes of network traffic with minimal performance

degradation. In contrast, the serial DFA and ML-based IDS

systems recorded low throughputs of 7.5 GBPS and 6.5 GBPS,

respectively, which highlight their boundaries in maintaining

real-time traffic processing under heavy loads. This result

underlines the better scalability and efficiency of the parallel

DFA-DPI engine in handling high-speed network

environments.

Figure 16 shows the Receiver Operating Characteristics

(ROC) curve for the proposed parallel DFA-based Deep

Packet Inspection (DPI) engine proposed to detect malicious

network traffic. The curve displays trade-offs between the

True Positive Rate (TPR) and the False Positive Rate (FPR) in

different decisions. The region under the ROC curve (AUC)

was seen as 0.98, indicating the system's excellent

discrimination capacity in distinguishing between benign and

malicious packets. The curve is closer to the top-left corner,

which highlights the high-identity accuracy of the system with

minimal false positivity. Additionally, the ROC curve

improves the baseline model, which reflects the efficiency of

the DFA state machine and Software-Defined Networking

(SDN) environment adapted to real-time traffic analysis.

Fig. 16 ROC curve

Table. 7 Packet processing time of proposed DFA-DPI engine

Traffic Load

(Gbps)

Average Processing

Time (µs)
Maximum (µs) Minimum (µs)

Standard

Deviation (µs)

1 Gbps 80 120 65 10

5 Gbps 95 145 72 13

10 Gbps 112 165 85 16

Table 7 proposed that the DFA-DPI engine packet

processing time was evaluated under different traffic loads of

1 GBPS, 5 GBPS, and 10 GBPS. On 1 GBPS, the engine

obtained an average processing time of 80 μs with minimal

variability (± 10 s). As the traffic increases to 5 GBPS and 10

GBPS, the average processing time increases to 95 µs and 112

µs, respectively, performing efficient scalability. Even at the

peak load, the maximum processing time remained below 170

µs, maintaining low delaying DFA to maintain high

throughput DFA validation. The results confirm the system's

capacity for real-time packet inspection in the dynamic SDN

environment.

9.8Gbps

7.5Gbps
6.5Gbps

0

2

4

6

8

10

12

Proposed DFA-

DPI

Serial DFA ML-based IDS

T
h
ro

u
g
h
p

u
t

(G
b

p
s)

Intrusion Detection Systems

Throughput Comparison Across

Systems

Krishna Kishore Thota & R. Jeberson Retna Raj / IJECE, 12(10), 84-103, 2025

100

4.1. Performance Evaluation

4.1.1. Accuracy

The proportion of correctly classified packets (both

benign and malicious) among all packets.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑝+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (18)

4.1.2. Precision

The proportion of correctly detected malicious packets

among all packets flagged as malicious.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (19)

4.1.3. Recall

The proportion of malicious packets that were correctly

detected.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (20)

4.1.4. F1-Score

The harmonic mean of Precision and Recall, balancing

their trade-off.

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (21)

In Equations (18)-(21), true positive and true negative are

denoted as TP and TN, and false positive and false negative

are denoted as FP and FN.

Table. 8 Performance metrics

Metric Proposed DFA-DPI (%)

Accuracy 99.68

Precision 99.72

Recall 99.65

F1-Score 99.68

Table 8 Software-Defined Networking (SDN) presents

the performance matrix of the proposed parallel DFA-Based

Deep Packet Inspection (DPI) system integrated within the

environment. The system achieved an impressive accuracy of

99.68%, which demonstrates its ability to firmly classify

benign and malicious traffic. The accuracy of 99.72%

indicates the high capacity of the system to correctly identify

malicious packets while reducing false alarms. Similarly, the

recall value of 99.65% reflects its effectiveness in detecting

the vast majority of the malicious flow, ensuring that the

minimum attack bypasses the traffic inspection process. The

F1 score, calculated as a harmonic mean of accuracy and

recall, is 99.68%, which outlines the overall strength and

balance of the detection system. These results expose the

efficiency of the DFA engine adapted to handle real-time

traffic with high identification accuracy and minimal false

positivity, which is highly suitable for deployment in high-

speed networks.

Fig. 17 Precision and recall for attack detection

Figure 17 shows the accuracy and the percentage of

recalls obtained by the proposed DPI system, including DDoS,

DoS, brute force, and various types of attacks, including web

attacks. The system displays excellent detection performance

in all classes, with an exact value ranging from 97.1% (brute

force) to 99.5% (DDoS) and misses the values between 96.5%

(brute force) and 98.9% (DDoS). These results confirm the

ability to correctly identify both the DPI engine and the high-

volume and secret attacks. The chart recognises the

effectiveness of the system in maintaining coherent class-wise

detection accuracy for real-time network safety.

99.50%

98.80%

97.10%

98.30%

98.90%

98.30%

96.50%

97.60%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

DDoS DoS Brute Force Web Attacks

P
er

ce
n
ta

g
e

(%
)

Attack Types

Precision Recall

Krishna Kishore Thota & R. Jeberson Retna Raj / IJECE, 12(10), 84-103, 2025

101

Table 9. Processing time comparison

Reference Delay/Latency

Janabi et al. (2022) +0.7% delay increase in

WAN

Fausto et al. (2022) <10ms delay (P1); <3ms

(P2/P3)

Bocu et al. (2022) 200 ms detection time

Proposed DFA-DPI 0.28 ms latency

Table 9 compares the delay and latency performance of

the proposed DFA-DPI system against current solutions.

Janabi et al. (2022) registered an increase in delay by 0.7% in

WAN environments owing to simulation overhead within

Mininet, whereas Fausto et al. (2022) provided delays of

below 10 ms for P1 and below 3 ms for P2/P3 with hardware-

accelerated switches and DPDK.

Conversely, Bocu et al. (2022) captured a much larger

200 ms detection time; hence, it is not ideal for real-time

traffic monitoring. However, the parallelised DFA-DPI

system presented in this paper exhibits top-tier performance

with an average latency of 0.28 ms, compared to all cited

approaches.

This low latency is due to its multi-level parallelism, DFA

state minimisation, and effective integration into the SDN

environment, allowing high-speed, real-time packet

inspection and attack mitigation without causing perceptible

delays.

Table. 10 Performance comparison

Method Method Accuracy

Janabi et al.

(2022)

Naïve Bayes

(2022)
98.46%

Fausto et

al.(2022)
SM-SDS (2022) 80.3%

Tang et al.(2020) DeepIDS (2020) 80.7%

Bour et al.

(2022)

CNN-based IDS

(2022)
94.14%

Proposed Model DFA-DPI 99.68%

Table 10 and Figure 18 show the accuracy performance

of the suggested parallelised DFA-DPI system compared to

current intrusion detection mechanisms. The Naïve Bayes

model obtained an accuracy rate of 98.46%, whereas SM-SDS

and DeepIDS attained lower accuracy rates of 80.3% and

80.7%, respectively, reflecting confined capability for

complex attack patterns. The CNN-based IDS showed

enhanced performance with a 94.14% accuracy, but it still

cannot reach the near-perfect detection rates needed for real-

time SDN settings. By contrast, the proposed model surpasses

all of these schemes by attaining 99.68% accuracy, which

demonstrates its better capability to detect malicious traffic

with very few false positives. This notable enhancement

results from the optimal DFA state machine, multi-pattern

match feature, and parallelised processing scheme that

provide high detection accuracy in high-speed networks.

Fig. 18 Accuracy comparison of IDS model

4.2. Discussion

The study introduces a parallel DFA approach using a

novel high-performance Deep Packet Inspection (DPI)

structure, which is basically unified within a Software-

Defined Networking (SDN) environment for detecting and

preventing real-time infiltration. The major innovation lies in

the capacity of the multi-pattern payload system at high speed,

which has taken advantage of advanced parallelisation

techniques and customised DFA state machines. Unlike

traditional serial DFA-based DPI systems, which struggle

98.46%

80.30% 80.70%

94.14%
99.68%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Naïve Bayes SM-SDS DeepIDS CNN-based IDS Proposed DFA-

DPI

A
cc

u
ra

cy
 (

%
)

DeepIDS Models (%)

Krishna Kishore Thota & R. Jeberson Retna Raj / IJECE, 12(10), 84-103, 2025

102

with state explosions and throughput bottlenecks, the

proposed model uses Hopcroft's DFA minimisation and

CUDA-based GPU acceleration for the matching of parallel

patterns. It ensures highly scalable inspection capabilities

suitable for a gigabit-scale traffic environment without

significant delay. Research focuses on three main innovations:

(1) DFA for construction of sequential bite patterns for

efficient manufacture using an N-gram encoding to process

the payload token, (2) multi-level equality (thread-level, data-

level, and pipeline parallelism) to process large traffic

volumes in real time, and (3) tight integration. To give. By

adopting this approach, the system gained an extraordinary

identity accuracy of 99.68%, an accuracy of 99.72% and a

minimum average delay of 0.28 ms, improving the current

ML-based IDS model and traditional DPI framework. In

practical real-time applications, this DPI system operates in

the data plane of an SDN-enabled network, which

continuously monitors the packets for malicious patterns. On

detection of a suspected payload, it communicates with the

SDN controller (e.g., Ryu) to update the OpenFlow rules,

which can limit instantaneous traffic mitigation functions such

as blocking, reunion, or rate. This ensures that the networks

remain flexible for high-velocity attacks such as DDoS, brute

force efforts, and protocol exploitation. The system has been

tested using the CIC-DS 2018 dataset, which provides a

realistic attack landscape, validating its appropriateness in the

environment of enterprise networks, data centres, and

significant infrastructure. Overall, the proposed parallel DFA-

DPI system bridges the gap between high-speed traffic

inspection and flexible SDN control, making it a strong

solution for the modern network, demanding real-time

security without renouncing performance. Its highly scalable

architecture ensures viability in both hardware-edge devices

and large-scale cloud networks.

5. Conclusion
The research proposed a high-performance Deep Packet

Inspection (DPI) system, which takes advantage of a parallel

DFA approach, adapted to detect and prevent real-time

infiltration in the Software-Defined Networking (SDN)

environment. By incorporating advanced DFA state

minimisation and multi-level equality techniques, the system

demonstrated better accuracy (99.68%) and exceptionally low

delay (0.28 ms), which enabled efficient packet inspection and

dynamic flow mitigation at gigabit traffic rates. Compared to

traditional serial DFA and machine learning-based IDS

frameworks, the proposed model was found to have terms of

its ability to detect, scalability, and accountability, which

made it well-suited to deployment in enterprise networks, data

centres, and significant infrastructure. SDN ensures flexible

and adaptive defence mechanisms against developing the

pattern of integration attacks with controllers. For future work,

the system can be extended to support encrypted traffic

inspection using homomorphic encryption techniques, which

enables DPI capabilities without violating privacy obstacles.

Additionally, integrating the model detecting AI-powered

discrepancies with the DFA engine can increase zero-day

attacks and unknown traffic patterns. On hardware-charged

platforms such as SmartNICs or FPGAs, patterns can improve

throughputs for ultra-high-speed networks (e.g., 100 GBPS).

Finally, discovering the DPI architecture distributed in the

multi-controller SDN environment will improve mistake

tolerance and scalability for large-scale, real-world

applications.

References
[1] Amir Ali, and Muhammad Murtaza Yousaf, “Novel Three-Tier Intrusion Detection and Prevention System in Software Defined Network,”

IEEE Access, vol. 8, pp. 109662-109676, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[2] Tamara AlMasri, Mohammad Abu Snober, and Qasem Abu Al-Haija, “IDPS-SDN-ML: An Intrusion Detection and Prevention System

Using Software-Defined Networks and Machine Learning,” 2022 1st International Conference on Smart Technology, Applied Informatics,

and Engineering (APICS), Surakarta, Indonesia, pp. 133-137, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[3] Hani Alshahrani et al., “Intrusion Detection Framework for Industrial Internet of Things Using Software Defined Network,” Sustainability,

vol. 15, no. 11, pp. 1-18, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[4] Marek Amanowicz, and Damian Jankowski, “Detection and Classification of Malicious Flows in Software-Defined Networks Using Data

Mining Techniques,” Sensors, vol. 21, no. 9, pp. 1-24, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[5] Celyn Birkinshaw, Elpida Rouka, and Vassilios G. Vassilakis, “Implementing an Intrusion Detection and Prevention System Using

Software-Defined Networking: Defending Against Port-Scanning and Denial-of-Service Attacks,” Journal of Network and Computer

Applications, vol. 136, pp. 71-85, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[6] Razvan Bocu, and Maksim Iavich, “Real-Time Intrusion Detection and Prevention System for 5G and beyond Software-Defined

Networks,” Symmetry, vol. 15, no. 1, pp. 1-15, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[7] Hamideh Bour et al., “A Multi-Layered Intrusion Detection System for Software Defined Networking,” Computers and Electrical

Engineering, vol. 101, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[8] Jonathon Brugman et al., “Cloud Based Intrusion Detection and Prevention System for Industrial Control Systems Using Software Defined

Networking,” 2019 Resilience Week (RWS), San Antonio, TX, USA, pp. 98-104, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[9] Sotiris Chatzimiltis et al., “A Collaborative Software Defined Network-Based Smart Grid Intrusion Detection System,” IEEE Open

Journal of the Communications Society, vol. 5, pp. 700-711, 2024. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/ACCESS.2020.3002333
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Novel+three-tier+intrusion+detection+and+prevention+system+in+software+defined+network&btnG=
https://ieeexplore.ieee.org/abstract/document/9117020
https://doi.org/10.1109/APICS56469.2022.9918804
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=IDPS-SDN-ML%3A+An+intrusion+detection+and+prevention+system+using+software-defined+networks+and+machine+learning&btnG=
https://ieeexplore.ieee.org/abstract/document/9918804
https://doi.org/10.3390/su15119001
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Intrusion+detection+framework+for+industrial+internet+of+things+using+software+defined+network&btnG=
https://www.mdpi.com/2071-1050/15/11/9001
https://doi.org/10.3390/s21092972
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detection+and+classification+of+malicious+flows+in+software-defined+networks+using+data+mining+techniques&btnG=
https://www.mdpi.com/1424-8220/21/9/2972
https://doi.org/10.1016/j.jnca.2019.03.005
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Implementing+an+intrusion+detection+and+prevention+system+using+software-defined+networking%3A+Defending+against+port-scanning+and+denial-of-service+attacks&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1084804519301109
https://doi.org/10.3390/sym15010110
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=R+Bocu%2C+M+Iavich+-Real-time+intrusion+detection+and+prevention+system+for+5G+and+beyond+software-defined+networks&btnG=
https://www.mdpi.com/2073-8994/15/1/110
https://doi.org/10.1016/j.compeleceng.2022.108042
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+multi-layered+intrusion+detection+system+for+software+defined+networking&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0045790622003032
https://doi.org/10.1109/RWS47064.2019.8971825
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cloud+based+intrusion+detection+and+prevention+system+for+industrial+control+systems+using+software+defined+networking&btnG=
https://ieeexplore.ieee.org/abstract/document/8971825
https://doi.org/10.1109/OJCOMS.2024.3351088
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+collaborative+software+defined+network-based+smart+grid+intrusion+detection+system&btnG=
https://ieeexplore.ieee.org/abstract/document/10382695

Krishna Kishore Thota & R. Jeberson Retna Raj / IJECE, 12(10), 84-103, 2025

103

[10] Qiumei Cheng et al., “Machine Learning Based Malicious Payload Identification in Software-Defined Networking,” Journal of Network

and Computer Applications, vol. 192, pp. 1-12, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[11] Xavier Etxezarreta Argarate, “Software-Defined Networking Approaches for Intrusion Response in Industrial Control Systems,” Thesis,

Mondragon University, pp. 1-193, 2024. [Google Scholar] [Publisher Link]

[12] Alessandro Fausto et al., “Reduction of the Delays within an Intrusion Detection System (IDS) Based on Software Defined Networking

(SDN),” IEEE Access, vol. 10, pp. 109850-109862, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[13] Jalal Ghadermazi, Ankit Shah, and Nathaniel D. Bastian, “Towards Real-Time Network Intrusion Detection with Image-Based Sequential

Packets Representation,” IEEE Transactions on Big Data, vol. 11, no. 1, pp. 157-173, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[14] Guo Guangfeng, Zhang Junxing, and Ma Zhanfei, “Intrusion Prevention with Attack Traceback and Software-Defined Control Plane for

Campus Networks,” Computer Science and Information Systems, vol. 18, no. 3, pp. 867-891, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[15] Abdinasir Hirsi et al., “Detecting DDoS Threats Using Supervised Machine Learning for Traffic Classification in Software Defined

Networking,” IEEE Access, vol. 12, pp. 166675-166702, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[16] Ahmed H. Janabi, Triantafyllos Kanakis, and Mark Johnson, “Overhead Reduction Technique for Software-Defined Network Based

Intrusion Detection Systems,” IEEE Access, vol. 10, pp. 66481-66491, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[17] Ahmed H. Janabi, Triantafyllos Kanakis, and Mark Johnson, “Survey: Intrusion Detection System in Software-Defined Networking,”

IEEE Access, vol. 12, pp. 164097-164120, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[18] Keagan Jarvis, “Network Intrusion Prevention in the Evolved Packet Core Utilising Software Defined Networks and Network Function

Virtualisation,” Master Thesis, 2019. [Google Scholar] [Publisher Link]

[19] M. Kokila M Kokila, and Srinivasa Srinivasa Reddy Konda, “DeepSDN: Deep Learning Based Software Defined Network Model for

Cyberthreat Detection in IoT Network,” ACM Transactions on Internet Technology, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[20] Auther Makuvaza, Dharm Singh Jat, and Attlee M. Gamundani, “Deep Neural Network (DNN) Solution for Real-time Detection of

Distributed Denial of Service (DDoS) Attacks in Software Defined Networks (SDNs),” SN Computer Science, vol. 2, 2021. [CrossRef]

[Google Scholar] [Publisher Link]

[21] Hanan Mustapha et al., “Rethinking Deep Packet Inspection Design and Deployment in the era of SDN and NFV,” 2021 IEEE 23rd Int

Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int

Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), Haikou, Hainan, China,

pp. 1505-1514, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[22] Talha Naqash, Sajjad Hussain Shah, and Muhammad Najam Ul Islam, “Statistical Analysis Based Intrusion Detection System for Ultra-

High-Speed Software Defined Network,” International Journal of Parallel Programming, vol. 50, pp. 89-114, 2022. [CrossRef] [Google

Scholar] [Publisher Link]

[23] Edeh Michael Onyema et al., “A Security Policy Protocol for Detection and Prevention of Internet Control Message Protocol Attacks in

Software Defined Networks,” Sustainability, vol. 14, no. 19, pp. 1-19, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[24] Kunkun Rui, Hongzhi Pan, and Sheng Shu, “Secure Routing in the Internet of Things (IoT) with Intrusion Detection Capability Based on

Software-Defined Networking (SDN) and Machine Learning Techniques,” Scientific Reports, vol. 13, no. 1, pp. 1-18, 2023. [CrossRef]

[Google Scholar] [Publisher Link]

[25] Ayodeji Olalekan Salau, and Melesew Mossie Beyene, “Software Defined Networking Based Network Traffic Classification Using

Machine Learning Techniques,” Scientific Reports, vol. 14, no. 1, pp. 1-16, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[26] N. Satheesh et al., “Flow-Based Anomaly Intrusion Detection Using Machine Learning Model with Software Defined Networking for

OpenFlow Network,” Microprocessors and Microsystems, vol. 79, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[27] Wenguang Song et al., “A Software Deep Packet Inspection System for Network Traffic Analysis and Anomaly Detection,” Sensors, vol.

20, no. 6, pp. 1-14, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[28] Tuan Anh Tang et al., “DeepIDS: Deep Learning Approach for Intrusion Detection in Software Defined Networking,” Electronics, vol.

9, no. 9, pp. 1-18, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[29] Sultan Zavrak, and Murat Iskefiyeli, “Flow-Based Intrusion Detection on Software-Defined Networks: A Multivariate Time Series

Anomaly Detection Approach,” Neural Computing and Applications, vol. 35, no. 16, pp. 12175-12193, 2023. [CrossRef] [Google Scholar]

[Publisher Link]

https://doi.org/10.1016/j.jnca.2021.103186
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+learning+based+malicious+payload+identification+in+software-defined+networking&btnG=
https://www.sciencedirect.com/science/article/pii/S1084804521001934
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=X+Etxezarreta%2C+Software-Defined+Networking+Approaches+for+Intrusion+Response+in+Industrial+Control+Systems&btnG=
https://ekoizpen-zientifikoa.ehu.eus/documentos/6868155e80a0ed598f988c86?lang=de
https://doi.org/10.1109/ACCESS.2022.3214974
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Reduction+of+the+delays+within+an+intrusion+detection+system+%28IDS%29+based+on+software+defined+networking+%28SDN%29&btnG=
https://ieeexplore.ieee.org/abstract/document/9919834
https://doi.org/10.1109/TBDATA.2024.3403394
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Towards+real-time+network+intrusion+detection+with+image-based+sequential+packets+representation&btnG=
https://ieeexplore.ieee.org/abstract/document/10535236
https://doi.org/10.2298/CSIS200206049G
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Intrusion+prevention+with+attack+traceback+and+software-defined+control+plane+for+campus+networks&btnG=
https://doiserbia.nb.rs/Article.aspx?ID=1820-02142000049G
https://doi.org/10.1109/ACCESS.2024.3486034
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detecting+DDoS+threats+using+supervised+machine+learning+for+traffic+classification+in+software+defined+networking&btnG=
https://ieeexplore.ieee.org/abstract/document/10734092
https://doi.org/10.1109/ACCESS.2022.3184722
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Overhead+reduction+technique+for+software-defined+network+based+intrusion+detection+systems&btnG=
https://ieeexplore.ieee.org/abstract/document/9801851
https://doi.org/10.1109/ACCESS.2024.3493384
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Survey%3A+Intrusion+detection+system+in+software-defined+networking&btnG=
https://ieeexplore.ieee.org/abstract/document/10746482/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Network+intrusion+prevention+in+the+evolved+packet+core+utilising+software+defined+networks+and+network+function+virtualisation&btnG=
https://open.uct.ac.za/items/3796bfc5-d1ca-4d5d-ae1b-51a7ce0a576b
https://doi.org/10.1145/3737875
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DeepSDN%3A+Deep+learning+based+software+defined+network+model+for+cyberthreat+detection+in+IoT+network&btnG=
https://dl.acm.org/doi/abs/10.1145/3737875
https://doi.org/10.1007/s42979-021-00467-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+neural+network+%28DNN%29+solution+for+real-time+detection+of+distributed+denial+of+service+%28DDoS%29+attacks+in+software+defined+networks+%28SDNs%29&btnG=
https://link.springer.com/article/10.1007/s42979-021-00467-1
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00224
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Rethinking+deep+packet+inspection+design+and+deployment+in+the+era+of+SDN+and+NFV&btnG=
https://ieeexplore.ieee.org/abstract/document/9781237
https://doi.org/10.1007/s10766-021-00715-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Statistical+analysis+based+intrusion+detection+system+for+ultra-high-speed+software+defined+network&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Statistical+analysis+based+intrusion+detection+system+for+ultra-high-speed+software+defined+network&btnG=
https://link.springer.com/article/10.1007/s10766-021-00715-0
https://doi.org/10.3390/su141911950
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+security+policy+protocol+for+detection+and+prevention+of+internet+control+message+protocol+attacks+in+software+defined+networks&btnG=
https://www.mdpi.com/2071-1050/14/19/11950
https://doi.org/10.1038/s41598-023-44764-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Secure+routing+in+the+Internet+of+Things+%28IoT%29+with+intrusion+detection+capability+based+on+software-defined+networking+%28SDN%29+and+machine+learning+techniques&btnG=
https://www.nature.com/articles/s41598-023-44764-6
https://doi.org/10.1038/s41598-024-70983-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+defined+networking+based+network+traffic+classification+using+machine+learning+techniques&btnG=
https://www.nature.com/articles/s41598-024-70983-6
https://doi.org/10.1016/j.micpro.2020.103285
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Flow-based+anomaly+intrusion+detection+using+machine+learning+model+with+software+defined+networking+for+OpenFlow+network&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0141933120304440
https://doi.org/10.3390/s20061637
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+software+deep+packet+inspection+system+for+network+traffic+analysis+and+anomaly+detection&btnG=
https://www.mdpi.com/1424-8220/20/6/1637
https://doi.org/10.3390/electronics9091533
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DeepIDS%3A+Deep+learning+approach+for+intrusion+detection+in+software+defined+networking&btnG=
https://www.mdpi.com/2079-9292/9/9/1533
https://doi.org/10.1007/s00521-023-08376-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Flow-based+intrusion+detection+on+software-defined+networks%3A+A+multivariate+time+series+anomaly+detection+approach&btnG=
https://link.springer.com/article/10.1007/s00521-023-08376-5

