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Abstract - With the rapid growth of high-speed networks and increasing sophistication of cyber threats, Deep Packet Inspection
(DPI) systems face important challenges in detecting real-time intrusion without degrading network performance. Traditional
serial Deterministic Finite Automata (DFA)-based DPI approaches often suffer from state explosions and processing hurdles,
making them unsuitable for modern Software-Defined Networking (SDN) environments. The purpose of this study is to design
and implement a customised DPI structure that provides high identification accuracy and low delays for real-time network
safety. The innovation of this research lies in its parallel DFA-based DPI engine, which integrates Hopcroft's DFA minimisation
algorithm with multi-level parallelism and CUDA-based GPU acceleration. Unlike traditional methods, the proposed system
enables failed multi-pattern payload matching, addressing scalability and performance issues in large-scale traffic analysis.
The proposed framework packet decomposes the data into the header and payload, applying N-gram tokenisation and
generalisation to prepare data for high-speed DFA processing. It is integrated tightly with an SDN controller (RYU), which
enables dynamic flow table updates to reduce attacks such as DDoS and brute force in real time. CIC-11DS 2018 displays the
superiority of the system on the dataset, with 99.68% detection accuracy, 99.72% accuracy, and 0.28 ms average delays,
improving existing ML-based IDs and serial DFA approaches. This research establishes a strong, scalable, and light DPI
structure suitable for deployment in high-speed enterprise networks. Furthermore, it will focus on supporting encrypted traffic
inspection and hardware acceleration using SmartNICs or FPGAs.

Keywords - Parallelized DFA, Deep Packet Inspection, Software-Defined Networking, Real-Time Intrusion Detection, Hopcroft
Minimization.

1. Introduction behaviour, making it a foundation stone for Intrusion

The development of networking technologies has Detection System / Intrusion Prevention System (IDS/IP)
dramatically replaced how information is broadcast, (Birkinshaw, Rouka, & Vassilakis, 2019). Nevertheless, as the
processed, and kept safe in global infrastructure. With the rise ~ speed of the network continues to increase due to cloud
of Software-Defined Networking (SDN), organisations can ~ computing, 5G growth, and loT proliferation, traditional DPI
now manage their network with unprecedented flexibility and ~ struggles to distribute real-time performance without
scalability using control and data aircraft (Song et al., 2020). ~ introducing the delay and throughput hurdles (Janabi,
SDN allows centralised control and programmability, which Kanakis, & Johnson, 2024). It underlines the immediate need
is important for adapting to dynamic network demands.  for high-demonstration DPI mechanisms capable of scaling
However, this paradigm also exposes the network to with modern traffic volume while maintaining low-delay
sophisticated cyber threats, including Distributed Denial of ~ operations in SDN infrastructure (Ghadermazi, Shah, &
Service (DDoS) attacks, malware spread, and advanced,  Bastian, 2024).
consistent threats that can take advantage of the centralised
architecture of SDN (Ali & Yousaf, 2020). For the protection In the last decade, significant research has been dedicated
of these environments, Deep Packet Inspection (DPI) has  to increasing the DPI engine to meet the challenges of high-
emerged as an important technique for analysing packets  Speed networks. Signature-based tools such as Snort and
beyond traditional header-based filtering. The DPl enablesthe ~ Suricata are deployed to detect predetermined patterns of
signature of the known attack and detects abnormal traffic ~ malicious activity; regular manifestations are used for
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matching packet material (Brugman, Khan, Kasera, &
Parvania, 2019). However, these solutions often rely on
sequential processing, which is computationally expensive
and slow for the gigabit-speed network. To address these
deficiencies, the Deterministic Finite Automata (DFA)-based
approaches have attracted attention due to their ability to
match linear-time patterns, which enables rapid scanning of
packet payloads (Zavrak & Iskefiyeli, 2023). In addition,
parallel efforts of DPI engines using multi-core processors and
Graphics Processing Units (GPUs) have shown the ability to
accelerate inspection rates. Despite these innovations, many
boundaries persist. DFA-based technology often faces state
explosion problems, reduces high memory requirements, and
reduces efficiency when handling large signature sets
(Alshahrani et al., 2023). GPU-based DPI systems demand
special hardware and are suffering from complex
implementation challenges, which limit their widespread
adoption. Additionally, many existing approaches are not
originally designed for the SDN environment, which lacks the
ability to update dynamic tables in response to attack detection
(Etxezarreta, 2024). This disconnect between high-speed DPI
and SDN integration hinders the effectiveness of the
prevention of real-time infiltration, causing the network to
become unsafe for rapidly growing attacks (Cheng et al.,
2021).

To resolve these challenges, this study proposes a parallel
DFA-based deep packet inspection structure integrated with
software-defined networking to prevent real-time infiltration.
The proposed solution, DFA, reduces state machines for
efficient signature matching, which reduces the memory
overhead while maintaining the accuracy of detection
(Satheesh et al., 2020). To obtain a high throughput, the DPI
engine employs a multi-level parallel strategy, including
multi-core CPU, data-level equality, and thread-tier equality
on packet captures, inspection, and pipelines, which adapts the
SDN controller on the GPU using CUDA/Open (Mustapha,
Djahel, Perry, & Zhang, 2021). The DPI engine is tightly
coupled with an SDN controller (e.g., Ryu or ONOS), which
enables dynamic updates to update the flow tables of the
OpenFlow switch to block or make malicious traffic in real
time. The framework is evaluated using benchmark datasets
such as CIC-AIDS 2018 and UNSW-NB15, which perform
better in terms of accuracy, low delay, and scalability
detection compared to traditional serial DFA-DPI and Regex-
based systems (Guo, Zhang, & Ma, 2021). By basically
integrating high-speed DPIs with SDN capabilities, this
research contributes a strong and scalable safety solution to
protect the next-generation network against developing cyber
threats.

1.1. Problem Statement

With the rapid adoption of Software-Defined Networking
(SDN), the network has achieved flexibility and
programmability by decoupling control and data planes
(Nagash, Shah, & Islam, 2022). However, this centralisation
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also introduces new security weaknesses, making SDN a
major target for cyber threats. The SDN Prevention System
(IPS) in the atmosphere depends a lot on Deep Packet
Inspection (DPI) to analyse the packet payload to detect
malicious patterns (Rui, Pan, & Shu, 2023). Traditional DPI
engines and sequential regular expressions based on matching
are computationally intensive and fail on a scale with high-
speed traffic in modern networks (Jarvis, 2019). This
significantly reduces the real-time requirements for the
prevention of infiltration because of delays and high delays. In
addition, in existing approaches, there is a lack of efficient
parallelisation techniques and spontaneous integration with
SDN controllers to update the flowing rules dynamically for
the mitigation of danger (Makuvaza, Jat, & Gamundani,
2021). These limitations highlight the immediate requirement
of a scalable, high-demonstration DPI framework that can
prevent real-time infiltration without compromising network
performance in the SDN environment.

1.2. Recent Innovation and Its Limits

In recent years, researchers have discovered various
innovations to increase network safety and Intrusion
Prevention Systems (IPS), especially within Software-
Defined Networking-trafficking (SDN) environments.
Signature-based devices such as Snort and Suricata include
advanced rules to effectively detect the pattern of the known
attack. Additionally, a DFA-based Deep Packet Inspection
(DPI) engine has emerged as a promising solution for rapid
pattern matching due to its linear time complexity. Parallel
computing approaches, including GPU-quick DPI and
multinational packet processing, have also been introduced to
handle traffic volumes. Despite this progress, important
challenges remain. DFA-based methods often encounter state
explosion problems, causing high memory consumption. The
GPU-based system requires special hardware and adaptation,
which limits its widespread adoption. In addition, many
solutions lack tight integration with SDN controllers, resulting
in response time delays and an inability to dynamically adapt
to the flow. These limitations disrupt the scalability and real-
time effectiveness of the existing IPS framework in modern
high-speed networks.

1.3. Research Motivation

The exponential growth of network traffic operated by
cloud computing, loT devices, and 5G technologies has
dramatically increased the complexity of securing modern
networks. Software-Defined Networking (SDN) provides
powerful tools for managing dynamic traffic flows with its
centralised control and programmability. However, these
similar features introduce new weaknesses and surfaces of
attacks that can be exploited by opponents. Traditional
Intrusion Prevention Systems (IPS), which depend on
sequential Deep Packet Inspection (DPI), struggle to process
massive amounts of data in real time, leading to high delay
and a compromised network. The need for high-speed, low-
distance safety is important to protect from DDoS attacks,
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malware injections, and zero-day exploits, such as
sophisticated cyber threats. Developing scalable DPI solutions
that can efficiently analyse the packets and basically integrate
with SDN controllers is necessary to detect real-time threats
in the next-generation network and enable mitigation.

1.4. Significance of the Study

This study presents a novel approach to increase network
safety by integrating a parallel DFA-based Deep Packet
Inspection (DPI) engine within the Software-Defined
Networking (SDN) environment. Importance lies in its ability
to resolve important challenges of existing Infiltration
Prevention Systems (IPS), such as high delay, limited
scalability, and poor adaptation to dynamic network
conditions. By employing advanced parallel computing
techniques in multi-core CPUs and GPUs, the proposed
structure ensures high-speed, low-overhead processing of
network traffic, which enables real-time detection and
prevention of cyber threats.

In addition, spontaneous integration with SDN controllers
allows dynamic updates to flow to the table, which ensures
rapid response to identified attacks. This research contributes
to a scalable and efficient safety solution that protects the next-
generation network, including 5G and loT infrastructure, from
developing threats while maintaining optimal network
performance.

1.5. Key Contribution

o Novel Parallelized DFA-DPI Framework: Introduced a
novel high-speed Deep Packet Inspection system using a
parallelized Deterministic Finite Automata (DFA)
approach optimized with state minimization and multi-
level parallelism for real-time intrusion detection in
Software-Defined Networks (SDN).

o Efficient Preprocessing Pipeline: Developed an advanced
packet preprocessing method, including header
extraction, IP and port normalization, and n-gram payload
tokenization, to prepare heterogeneous network traffic for
scalable pattern matching.

¢ SDN Integration for Dynamic Mitigation: Seamlessly
integrated the DPI engine with SDN controllers (e.g.,
Ryu) to enable dynamic flow table updates and real-time
attack mitigation, ensuring adaptive and flexible network
defense mechanisms.

e Lightweight and Scalable Architecture: Designed a
lightweight DPI solution suitable for deployment in high-
speed enterprise and cloud networks, capable of handling
gigabit-scale traffic without introducing significant
overhead.

. Rest of the Section

e Section 2: Discusses the recent DPI tools and security
software based on SDN, their problems, limitations
witnessed in the treatment of high-speed affinity, and the
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decryption of present-day attacks.

e Section 3: Describes the implementation of the proposed
Parallelized DFA-DPI system featuring preprocessing of
packets, constructing DFA-Aho-Corasick, parallel
processing tricks, as well as incorporation with the SDN
controller with a real-time attack detection and prevention
system.

e  Section 4: Presents experimental evidence and compares
the suggested system with the current serial DFA and
ML-based IDS models in terms of accuracy of detection,
latency, and efficiency of the system.

e Section 5: Ends the study with conclusions about the main
contributions to this study and further work, which can
include the support of encrypted traffic and the
implementation on hardware-accelerated platforms in the
case of large-scale networks.

2. Literature Review

The materials Janabi et al.(2022) model employ feature
selection techniques to reduce the features extracted and use
an independent communication channel to reduce the
controller and OpenFlow switch overload. Naive Bayes was
applied for flow classification due to its computational
efficiency. The framework was implemented using Mininet
and achieved an accuracy of detection of 98.46%, with only a
1.5% throughput drop and an increased delay in the broad area
networks of 0.7%. While being effective, the dependence of
the system on the Naive Bayes limits the compatibility of
complex traffic patterns by suggesting the need for advanced
classification techniques.

Fausto et al. (2022) approach included a sequential
prototype implementation with increasing software and
hardware complexity to identify and reduce the delay sources.
Evaluation showed that ID received 0.95 probability for
delays under 10 ms for P1 messages and 0.9453 probability
for delays under 3 ms for P2/P3 classes. Using a high-
performance software switch with DPDK and a hardware-
supernatural switch further improves delay. However
promising, the system requires additional adaptation for strict
real-time industrial requirements.

Chatzimiltis et al. (2024) proposed an SDN-based
architecture for Smart Grid (SG) to increase network
efficiency, reliability, and security. To combat the insider
attacks, he introduced a Service Mark-Intrusion Detection
System (SM-IDS), which uses split learning in the SDN
application layer, addressing the privacy concerns contained
in centralised IDS approaches. Their structure was evaluated
against federated learning in the Neighbourhood Area
Network (NAN). The results showed that Split Learning SM-
IDS achieved a five-grade classification accuracy of 80.3%
and an F1 score of 78.9, while Split Learning NAN-IDS
reached 81.1% accuracy and a 79.9 F1 score. However, more
adaptation was suggested for large SG deployment.
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Onyema et al. (2022) proposed a Security Policy Protocol
(SPP) combined with client authentication to detect and
reduce unauthorised ICMP attacks in the SDN environment.
The effectiveness of the model was evaluated using CPU use,
channel bandwidth, packet distribution ratio, and response
time. Experimental results demonstrated the accuracy of
detection of 92% with minimal overhead, improving
traditional approaches. While the SPP improves defence
against flood attacks, scalability and integration can be
addressed with a diverse SDN architecture in future work.

AlMasri et al. (2022) suggested a hybrid Intrusion
Detection and Prevention System (IDPS) for Software-
Defined Networks (SDNs) based on machine learning and
network programmability to mitigate Denial of Service (DoS)
and port scanning attacks. They used ANOVA for feature
selection and employed the chosen features in different
machine learning models. Among them, the Naive Bayes
classifier performed the best with 86.9% accuracy for DoS
attack detection and 93.5% for Probe attack detection. The
system identifies anomalies and stops the threats by sending a
notification to the SDN controller. Scalability and adaptability
to new patterns of attacks were areas where the performance
needed to be further improved.

Tang et al. (2020) framework was trained and tested on
the NSL-KDD-KDD dataset, using a Deep Neural Network
(DNN) and a gated recurrent network (GRU-RNN).
Experimental results received DNN 80.7% to detect 90%
accuracy and flow-based discrepancy to GRU-RNN.
Additionally, evaluation on throw-up, delay, and resource use
confirmed that DeeplDS maintained the OpenFlow controller
performance. However, it is necessary to improve the
accuracy of further studies and to adapt the system to real-
time, large-scale SDN environments.

Bour et al. (2022) framework adds flow-based identity
using packet-based identity with an Extreme Learning
Machine-Based Single-Hidden-Layer Feedforward Network
(ELM-SLFN) and Case-based Information Entrapment (C-
IE). The Floyd-Warshall algorithm and Hidden Markov
Model (HMM) optimise routing by classifying and bypassing
the affected switch. Simulation has reduced the accuracy of
detection by 97.56%, lowering false-positive rates, reducing
CPU use, and improving reaction time. However, scalability
and optimisation capacity to develop the pattern of attack
remain areas for further discovery.

Bocu et al. (2022) taking advantage of the Convolutional
Neural Network (CNN), the system detects unknown
infiltration and effectively blocks malicious traffic. Vodafone
was evaluated in Romania's 5G network; the proposed 1D
achieved 200 ms, 94.14% accuracy detection time, and a false-
positive rate of 0.81%, making traditional approaches with
minimal overheads for real-time deployment. However, the
performance of the system in large-scale asymmetric

87

communication scenarios requires further investigation to be
widely projected in diverse 5G environments.

Hirsi et al. (2024) developed a traffic classification
framework based on machine learning to improve Distributed
Denial of Service (DDoS) detection in Software-Defined
Networks (SDN). A new dataset was proposed in the work to
overcome some of the limitations of available datasets, like
using unrealistic topologies and being unavailable for public
use, and the performance was verified with CICDD0S2019.
Supervised learning using a Random Forest model enabled the
system to successfully classify benign from malicious traffic
with 98.97% accuracy and a false positive rate of 0.023.
Promising for application in real-world SDN security,
scalability, and adaptability to changing DDoS attack patterns
in varying network settings are areas to be researched in the
future.

Kokila M et al. (2025) framework integrates blockchain-
based authentication for safe communication and employs an
adaptive limit scoring mechanism to adapt local and cloud
model convergence. The SDN acts as a cloud-based security
administrator, which enables real-time security against zero-
day attacks. E-110T and ToN-loT datasets were evaluated; the
system outperformed 99.15% accuracy, 99.31% accuracy,
98.97% recall, and 99.14% F1-score compared to models.
Extremely efficient, future work with minimal CPU use
should address scalability in large, odd loT networks under
high traffic conditions.

Table 1 reviewed studies reveal significant progress in
integrating machine learning, deep learning, and novel safety
protocols, which are in the SDN and loT environments for
detection and prevention of infiltration. However, common
boundaries persist in these approaches. Many tasks (e.g.,
Janabi et al. (2022), AlMasri et al. (2022)) rely on mild
classifiers such as naive Bayes, which struggle with
computationally efficient, complex, and developed traffic
patterns, limiting adaptability. Ways like those proposed by
Tang et al.(2020) and Bocu et al. (2022) get high identification
accuracy using deep learning, but due to computational
overhead, real-time, large-scale deployment requires more
optimization. Scalability remains a recurring challenge,
especially for Onyema et al. (2022) and Bour et al. (2022) for
solutions such as multi-layered defence, which show
promising results but lack evaluation in diverse SDN
topologies and high-trafficking conditions. Blockchain-based
systems and the Split Learning Approach address the concerns
of privacy but require refinement to handle large networks
with minimal delay (Fausto et al., 2022; Hirsi et al., 2024).
Finally, Fausto et. al. (2022) work, although additional growth
is required for efficient, strict real-time industrial obstacles.
These gaps outline the need for future research on scalable,
adaptive, and resource-skilled security structures for dynamic
SDN and loT environments
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Table 1. Overview of literature review

Reference

Methodology

Key Findings

Limitations

Janabi et al. (2022)

Feature selection, Naive
Bayes classifier, Mininet
simulation

Achieved 98.46% detection
accuracy; 1.5% throughput drop;
0.7% delay increase in WAN

Naive Bayes limits
compatibility with complex
traffic patterns

Fausto et al. (2022)

Sequential prototype,
software switch with DPDK,
hardware switch

Achieved 0.95 probability for
<10ms delay (P1) and 0.9453 for
<3ms delay (P2/P3); reduced
delay sources

Needs adaptation for strict
real-time industrial
requirements

Chatzimiltis et al.
(2024)

SDN-based SG architecture,
Split Learning IDS in the
application layer

SM-IDS: 80.3% accuracy, F1-
score 78.9; NAN-IDS: 81.1%
accuracy, Fl1-score 79.9

Requires further adaptation
for large Smart Grid
deployments

Security Policy Protocol

92% detection accuracy; minimal

Scalability and integration

Onyema et al. (2022) (SPP) with client overhead; improved flood attack ::::t::i 33 Ié/tirrsees ?]Ee'\é
authentication in SDN defense :
improvement

AlMasri et al. (2022)

Hybrid ML-based IDPS
using ANOVA feature
selection and Naive Bayes

DosS detection: 86.9% accuracy;
Probe detection: 93.5%; stops
threats via SDN controller

Limited scalability and
adaptability to new attack
patterns

Tang et al. (2020)

DeeplDS using DNN and
GRU-RNN trained on the
NSL-KDD dataset

DNN: 80.7% accuracy; GRU-
RNN: 90% accuracy; maintained
OpenFlow controller
performance

Needs improved accuracy
and real-time adaptation for
large-scale SDN
environments

Bour et al. (2022)

Multi-layer defense using
ELM-SLFN, C-IE, Floyd-
Warshall, and HMM

97.56% detection accuracy;
reduced false positives; improved
CPU utilization and response
time

Scalability and adaptation to
evolving attack patterns
remain challenges

Bocu et al. (2022)

CNN-based IDS for
Vodafone Romania 5G
networks

94.14% accuracy; 200ms
detection time; 0.81% false
positive rate; minimal overhead
for real-time deployment

Needs evaluation in large-
scale asymmetric
communication scenarios

Hirsi et al. (2024)

ML-based traffic
classification using Random
Forest and a custom dataset

98.97% accuracy; 0.023 false
positive rate; verified on
CICDD0S2019 dataset

Scalability and adaptability
to dynamic DDoS attack
patterns require further
research

Kokila M et al. (2025)

Blockchain-based
authentication, adaptive
threshold scoring, SDN as
cloud-based security admin

99.15% accuracy; 99.31%
precision; 98.97% recall; 99.14%
F1-score; efficient against zero-
day attacks

Needs scalability
improvements under high-
traffic, large-scale 10T
network conditions

3. Proposed Framework: Parallelized Finite
Automata-Based Deep Packet Inspection for

Real-Time Intrusion

The framework that will be presented will start with the
process of data collection and preprocessing, where the packet
payloads will be extracted and tokenized so that they are ready
to undergo the inspection process. During the following phase,
the DFA model construction is carried out by concatenating
attack signatures into one multi-pattern DFA and then
minimizing it to eliminate redundant states and transitions. In
order to support high-speed analysis, parallelization strategies
are added, such as thread-level and data-level parallelism,
which process with many CPU and GPU threads and can scale
with many threads. This parallelized DFA is incorporated in
the DPI engine implementation to implement real-time traffic
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analyses at the packet payload level upon multi-pattern match.
Subsequently, the system will be coupled to the SDN
environment at the SDN integration and mitigation stage,
where the DPI engine will communicate with OpenFlow
switches in the system and dynamically update these tables to
block malicious traffic or reroute it. Finally, the effectiveness
of the framework is evaluated using the evaluation metrics
step, which implies the measurement of the detection
accuracy, throughput, and latency of the model prepared to
satisfy the requirements of contemporary high-performing
networks. This end-to-end architecture provides scalable,
latency intrusion detection and dynamic defences of the
network. Figure 1 shows the overall proposed framework of
Deep Packet Inspection for Real-Time Intrusion Prevention in
Software-Defined Networks.
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Fig. 1 Overall proposed framework of DPI real-time intrusion prevention in SDN

3.1. Data Collection

This study uses the CIC-DS 2018 dataset (2019) as the
primary benchmark for the evaluation of the proposed DPI
structure. The CIC-1IDS 2018 provides a broad, real-world
network traffic capture from the enterprise environment,
which includes both benign and malicious flows. The dataset
includes a diverse range of modern cyber attacks, such as
Distributed Denial of Service (DDoS), Denial of Service
(DoS), brute force, botnet, influence, and web-based attacks,
which makes it extremely suitable for testing the strength of
infiltration prevention systems. This provides full packet
capture files with detailed payload and header information,
which is necessary to apply and validate a deep packet
inspection engine. To prepare a dataset for analysis, packet
payload and related metadata were extracted using devices
such as Scapy and Tshark. The payload was then tokenised
using an N-gram encoding to facilitate efficient pattern
recognition and was assigned to the label to differentiate
between benign and malicious traffic flows for later detection
evaluation.

3.2. Data Pre-Processing

In this research, the packet pre-processing phase is
important to convert raw network traffic into structured inputs,
suitable for a parallel DFA-based DPI engine. It involves two
main operations: payload Tokenization and header extraction
and normalization.

3.2.1. Payload Tokenization

In the proposed system, the payload of each packet is
treated as a sequence of bytes for efficient deep packet
inspection and pattern recognition. First, payload data are
extracted from the packet and divided into overlapping
segments by N-gram encoding, where N represents the length
of each byte sequence. This is a conversion of raw payload
data into a series of uniform lengths, where the relevant
relationships between the continuously adjacent bytes are
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conserved. By encoding the payload in this manner, the
system can effectively match the signature of a known attack
and identify faint variations in the malicious pattern. These
byte-level tokens are fed into a parallel DFA engine, thus
allowing the multi-network to undertake multi-pattern
matching in real time. This ensures that the SDN environment
can also analyze complex and obstructed attack payloads for
prompt danger mitigation. (Amanowicz & Jankowski, 2021).
Each packet payload P is treated as a sequence of bytes as
mentioned in Equation (1):

P = {by,by, b3, ..., b} 1)

In a highly efficient scheme for signature matching,
encode the pattern into N-Grams for byte sequences, N-Gram
encoding being described in Equation (2). For an n-gram size
K, the payload is transformed into:

T, =
{(by, by, e, bi), (Ba, by ooy bss)s s (Doiesnss ....,b,&)g
2

This results in overlapping byte n-grams to a token
sequenceT,,. These are mapped to integer indices through a
lookup table L: T,, = N DFA for direct feeding in the state
machine.

3.2.2. Header Extraction and Normalization

In this study, header extraction and normalisation are key
pre-processing steps needed to prepare packet data for
efficient DPI. Each captured packet is broken down to separate
the header information, including source and destination IP
addresses, port numbers, protocol types, and some significant
fields such as flags. These header characteristics are needed to
refer to the payload and for traffic classification. Then, the
extracted header field is standardised in a specified format by
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converting different data representations, such as hexadecimal
and ASCII values, into a consolidated numerical or vector
form. It guarantees the similarity of data to be parallel fed to a
DFA engine, thereby minimising the disparity in network
traffic (Salau & Beyene, 2024). Normalisation also enhances
the ability to effectively handle the high-speed packet currents
of the DPI system, which enables the preprocessing delay and
enables accurate multi-patterns in real time. In this study,
header extraction and normalisation are performed for pre-
processed packet data for the DPI engine. Each captured
packet p contains a header H and payload d, and is computed
using Equation (3) where:

P = {H,D} (3)

The header H includes fields such as source IP (IP,.),
destination IP (IP,;), source port (Portg,.) destination port t
(Port,,,:) and protocol type (Proto) as mentioned in Equation
(4). Using packet parsing tools like Scapy and Tshark, these
fields are extracted:

H = IP,., Py, Portg., Portyg, Proto (@)
3.2.3. IP Address Normalization

IP address normalisation is performed with the aim of
making the header information more standard and simplified
for the effective and efficient processing of the DPI system.
First, IPV4 addresses, which are generally represented in
dotted decimal notation, are converted into 32-bit integer
values to perform several mathematical operations on them. In
other words, the system manipulates IP addresses as compact
numerical institutions rather than complicated string patterns,
thereby making the extraction of features less computationally
expensive.

Once changed, the integer values are extended into a
generalised range, such as [0, 1], thus stabilising separate
address locations and further boosting subsequent analysis.
This normalisation process aids the DPI engine in comparing
and analysing network traffic with higher levels of efficiency,
especially when inspection is required at a high speed, such as
in downstream real-time threats and mitigation. IPv4
addresses are converted into 32-bit integer values and scaled
and computed using the following Equation (5):

P __ a.2563+b.2562+¢.256+d
norm — 232_1

®)
Where the standard dotted decimal notation is denoted as
IP=ab.cd

3.2.4. Port Normalization
In the proposed system, the source and destination port
numbers are in a consistent numerical range for efficient
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processing. Port normalisation is performed for scale sources
and destination port numbers. Since the port values in TCP
and UDP headers range from 0 to 65,535, they are divided by
the maximum possible value for each port number to a limit
between 0 and 1. This change ensures that port number one is
represented in a standardised format, reduces variability in
data, and improves the compatibility of input features with the
DPI engine. By normalising the port numbers, the system
simplifies the comparison and analysis of traffic flows, which
is capable of detecting patterns associated with specific
services or attack vectors while maintaining computational
efficiency during high-speed packet inspection. Between 0

and 1, the ports are scaled and represented in Equation (6):
Port

65535

(6)

Portyorm =

3.2.5. Protocol Encoding

In the proposed DPI system, protocol encoding is applied
to maintain and use the protocol type from the packet header
for efficient state transition within the DFA engine. Each
protocol type, such as TCP, UDP, and ICMP, is defined in the
Internet protocol (e.g., TCP =6, UDP = 17, ICMP = 1) using
its standardised numeric code. These numeric codes are
included in the feature set without direct additional changes,
ensuring that the protocol information remains mild and
computationally efficient for real-time processing. By
preserving these encoded values, the DPI system protocol can
accurately separate the traffic flow and apply proper state
infections during pattern matching. This strategy enhances the
ability of the system to detect the signature of the protocol-
specific attack while maintaining high throughput and low
delay in the SDN environment.

Protocol types (e.g., TCP=6, UDP=17) are retained as
numerical codes for state transitions, as defined in Equation

:
)

Protoc,qe = Proton,um
The normalized header vector is represented in Egn (8):

— [7pnorm jpnorm norm norm
Hporm = [IPge™, IPggy ™, Portgy™, Portgg ™, Protocege]

®)

This normalized header information is combined with
tokenized payload data and fed into the Parallel DFA
Matching Engine, enabling fast and efficient multi-pattern
signature inspection.

3.3. DFA Model Design

DFA structure is then integrated into a parallel processing
architecture where packet currents are distributed in several
CPU threads for concurrent analysis. In this study, header
extraction and normalisation are performed for pre-processed
packet data for the DPI engine. Each captured packet p
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contains a header H and payload d, where: In this study, the
core Deep Packet Inspection (DPI) engine takes advantage of
the Determined Finished Automata (DFA) to match the high-
speed, multi-pattern signatures for effective infiltration
prevention in the engine Software-Defined Network (SDN).
Initially, the signs of the attack out of the CIC-IDS 2018
dataset are compiled in DFA state machines using the Aho-
Corasick algorithm, enabling efficient scanning of packet
payloads against multiple patterns simultaneously. To
increase memory efficiency and reduce computational
overhead, Hopcroft's DFA minimisation algorithm is applied,
which eliminates fruitless states and infections by preserving
accreditation accuracy. This customised embedding of the
minimum DFA in the SDN environment ensures real-time
detection and prevention of malicious traffic, blocking or
rebuilding suspected packets without presenting significant
delay or performance decline to dynamically update the
OpenFlow switch. Figure 2 shows the working process of the
Parallelized DFA design for DPI:

Attack Signatures

AGET /.* HTTP/1.1$
user. =*(admin|roo).*

Parallelized
DFA Engine

Packets
Parallelized DFA Engine

Fig. 2 Parallelized DFA design for DPI

Minimized DFA

3.4. Compilation of Attack Signatures into DFA

In this study, a compilation of the signature of the attack
in a DFA makes the original of the proposed DPI engine.
Malicious payload patterns, including DDoS, botnet, and
brute force attack signatures, were systematically extracted
from the CIC-DS 2018 dataset. These payloads, representing
sequential byte patterns of various attacks, were consolidated
in a comprehensive signature set. To enable efficient multi-
pattern matching, the Aho-Corasick algorithm was employed
to manufacture an integrated DFA state machine. This
approach allows for the simultaneous detection of several
attack signals within the packet payload during real-time
traffic inspection. Each signature is represented as a series of
transitions in DFA states, enabling the system to scan for all
patterns in the same pass on the data stream. To optimise
memory use and improve matching efficiency, fruitless states
and transitions were minimised using state deficiency
techniques. This is a compact result in a highly effective DFA
that can process high-speed network traffic without significant
computational overhead. By embedding this DFA in a parallel
processing pipeline, detecting the DPI engine as scalable and
low-distraction ensures strong security against a wide range of
network-based hazards in the modern SDN environment. The
attack signs were extracted from the CIC-1DS 2018 dataset,
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including the known malicious payload patterns (e.g., DDoS,
botnet, brute force). These signatures S = {S1, S2, ..., SN}
were converted into a single multi-pattern DFA state machine
using the Aho-Corasick algorithm. The DFA is defined using
Equation (9):

DFA = (Q,%,8,q,,F) ©)

Where the set of states is denoted by Q, the alphabet for
each byte value is denoted as Z, the transition function is
denoted as &, and the initial state is denoted as q,. Finally, the
set of final states is denoted as F.

In our research, the AHO-Curasic algorithm plays an
important role in the manufacture of a skilled multi-pattern
matching engine for Deep Packet Inspection (DPI). This
algorithm begins by constructing a Trie (prefix tree) with all
the preformed attack signatures received from the CIC-IDS
2018 dataset. Each path in the Trie represents a unique attack
signature, where nodes correspond to bytes in the payload. To
handle partial matches and overlapping patterns, algorithm
failure enhances the trie with infection. These infections allow
the search process to "fall back™ for a small matching prefix
without restraints from the root whenever there is a mismatch,
which enables uninterrupted scanning in the payload. The
payload of a network packet is depicted as a sequence of bytes:

P ={by,b,,..,by},b; €X (10)

In Equation (10), the payload containing m bytes is
denoted as P, and the i byte in the payload is denoted as b;
and the alphabet of all possible byte values is denoted as Z.

As each byte b; in the payload, the DFA transitions
between states according to the transition function
6:0_(i+1)= 6 (qi, by) (11)

In Equation (11), the current state in the DFA is denoted

as q;, based on the current state and the input bytes b; the

transition function determines the next state. The resulting
state after processing b; is denoted as q; 1

Then, if the resulting state belongs to the accepting state
F, Eqn (6) becomes:

Gi+1 €F )

It indicates that a full attack signature within the payload
is matched, and the DPI engine immediately flags this packet
as a malicious action by the SDN controller (e.g., release or
run).
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Fig. 3 Aho-Corasick algorithm diagram

Figure 3 design shows the real-time scanning of multi-
gigabit traffic, as the Aho-Corasick algorithm ensures that the
entire payload can be processed in a single linear pass without
boxing, even in the presence of thousands of patterns.
Combined with parallel DFA examples in CPU threads, our
system receives minimal delay and supports the prevention of
high-throughput infiltration.

3.5. DFA Minimization (Hopcroft’s Algorithm)

In our research, after manufacturing DFA using the Aho-
Corasick algorithm, we applied Hopcroft's DFA minimisation
algorithm to customise the DFA for memory efficiency and
rapid runtime performance. Effective for early DFA, while
effective for multi-pattern matching, there are fruitless and
equivalent states due to overlapping prefixes in signature
patterns. These fruitless states enhance memory use and slow
down state traversal, especially when the Software-Defined
Networking (SDN) is deployed in a high-speed Deep Packet
Inspection (DPI) environment. Minimisation ensures that only
the necessary states remain for pattern recognition, allowing
the DPI engine to handle gigabit traffic with minimal delay.
The minimized DFA is mathematically computed using
Equation (12):

DFAmin == (Q', X', 8", qoF") (12)

In Equation (12), the reduced set of DFA states is denoted
as Q' € Q and the state after minimization is denoted as
Q'] < ]Q], the unchanged possible input bytes of alphabets
are denoted as X, and the new transition function mapping
reduced states and input symbols is denoted as &', and the
minimized start state is denoted as g, and finally, the
minimized set of accepting the final states is denoted as F <

Q.

In our research, the Software-Defined Networking (SDN)
environment used decisive techniques to achieve the high
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throughput and low latency performance required for real-
time Deep Packet Inspection (DPI) in the environment. The
system integrates multi-level similarity to handle the large
amount of network traffic and prevent bottlenecks in packet
processing. At the thread level, the upcoming packets are
distributed in several CPU threads using OpenMP, allowing
each thread to operate an independent example of a minimum
DFA for signature. This strategy efficiently uses multi-core
processors, ensuring that traffic inspection scales with the
number of available cores. At the data level, the payloads from
individual packets are divided into small blocks and processed
on GPU threads using CUDA-based PFAC (parallel failure).

This massive parallel approach takes advantage of
thousands of GPU cores, which perform the pattern
simultaneously in the payload segment, significantly reducing
the inspection time for each packet. In addition, the pipeline
equality is applied by decomposing the DPI workflow into
three modular stages: (1) packet capture, (2) parallel DFA
inspection, and (3) SDN Flow Rules update. This allows the
pipelined architecture system to overlap operations, so while
a phase processes a batch of packets, the latter stages can work
on the earlier batches; the delays can maintain the continuous
flow of traffic without introducing spikes. Together, these
parallelisation strategies enable our DPI engine to maintain
multi-gigabit traffic rates, detect malicious payloads in real
time, and dynamically instruct the SDN controller to block the
suspicious flow or start, which ensures strong network
security without reducing network performance.

Figure 4 shows the workflow of the DPI system with
parallel strategies. This packet begins with capture, followed
by a thread-level equality (OpenMP) and a parallel DFA
inspection extended by data-level equality (concurrent stages).
The process pipeline flows into equality, dividing the
functions for continuous processing into modular stages.
Finally, the SDN rule update is triggered to block or restart the
dynamic malicious traffic.
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Fig. 4 Parallelization levels interact in your DPI engine.

3.6. DPI Engine Implementation

In our research, the DPI engine serves as the main
component in identifying malicious traffic in real time by
taking advantage of a highly customized parallel DFA
implementation. The engine is designed in C++ to ensure low-
level memory control and high-performance packet
inspection, while integration with the Python-based SDN
controller allows dynamic traffic management. As each
incoming packet is occupied, its payload is P =
{by, by, ...by,},b; € T. Using the transition function §:Q X

T — @, Engine Counts the next state for each by
gi+1 = 6(qi, by) (13)

In Equation (13) g;, is the current DFA state, and Bib_ibi
is the current byte of payload. If at any pointg;,, € F, where
the set of accepting states F is detected with a match with an
attack sign and computed using Equation (14):

If qiy1 € F = Malicious Pattern Deetcted (14)

To handle the gigabit-scale traffic, the DPI engine
converts several DFA examples, distributing payload
segments to CPU threads (via OpenMP) or GPU threads (via
CUDA-PFAC). This allows the pattern to be matched
simultaneously on various data streams. Once a malicious
pattern is detected, the engine immediately triggers an alert for
the SDN controller, which dynamically updates the flow table
in the OpenFlow switch using the flow mod command to block
or refer to the traffic. This spontaneous integration of high-
speed DFA matching and programmable network logic
ensures rapid detection and mitigation without disrupting
legitimate traffic, acquiring both high throughput and low
delay in our SDN environment.

3.7. SDN Integration and Mitigation

In our research, SDN integration and mitigation were
important to enable dynamic and real-time response against
infiltration detected in the DPI engine. The main idea was to
embed the DPI engine in SDN control aircraft, allowing
immediate enforcement of mitigation strategies through the
OpenFlow switch.

Network Packet

Packet in Event

Ryu Controller Mininet
(Simulated SDN)

DPI Engine

Threat
Detected?

Flow Table Open Flow
Switch

Modify Flow Table

Fig. 5 SDN mitigation
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Figure 5 shows the process begins with deploying the DPI
engine in a fake SDN environment, which uses the RYU
controller for the centralised management of Mennonite and
flow rules for ambulation. Each time a packet is sent to the
SDN controller, the DPI engine analyses the payload. If a
malicious pattern is detected, the controller dynamically
modifies the flow tables in the OpenFlow switch. These
amendments are applied using the flow mod messages of the
OpenFlow protocol, which can perform actions such as
releasing packets and re-running traffic or rate-limited flows.
Figure 5shows the SDN mitigation process where the
upcoming network packets trigger packets for the Ryu
controller in a fake miniature environment. The DPI engine
inspects the packet payload and checks for dangers. If a danger
is detected, the controller dynamically models the flow table
into the OpenFlow switch to block, reroute, or reduce
malicious traffic. Otherwise, normal forwarding continues.

Formally, consider the flow rule update operation as:

_ drop, if qis1 EF
Flowye,, = {forward(port); if g1 EF

(15)

In Equation(15), q;,, denotes that the DFA is the state
after processing a byte b;. F denotes the set of accepting
(malicious) states. The drop indicates that the packets that
match a signature are blocked. Further (port) indicates normal
forwarding when there is no signature match.

Additionally, the control-plane adaptation was included
to handle high-volume attacks and to prevent saturation of the
SDN controller. Flow table ageing was automatically applied
to remove stale entries after a timeout, 7,4, which is defined:

Tage = min(Tdefault' T custom) (16)

In Equation (16) Tgefauie is the standard flow timeout,
and T .,st0m- It 1S an adaptive timeout for the flow related to
the custom attack. Rate limiting was applied by modifying the
meter table in the OpenFlow switch, restricting bandwidth for
suspicious flows:

BWiimic =

Rsage, if flow is normal
{Ratmck’ if flow is suspicious and flagged by DPI
(17

In Equation (17) Ry, denote the D=default is a safe
bandwidth allocation and Rgerqek << Rgqpe  Throttles
suspected the attack. This architecture ensures that any
detected intrusion can be reduced in real time by releasing the
appropriate OpenFlow command for the switch without
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human intervention. Integration also supports scalability as
decisions are made in control aircraft, and data-plane traffic is
only affected minimally. Algorithm 1 defines the DFA model
process:

Algorithm 1: DFA Model

Build a DFA from attack signatures
Function Build_DFA(Signatures):
Initialize the Trie as empty
For each Signature in Signatures:
Insert Signature into Trie
DFA = Convert_Trie_to DFA(Trie)
Return DFA
Minimize DFA using Hopcroft's algorithm
Function Minimize_DFA(DFA):
Partition = {Final_States, Non_Final_States}
Worklist = Partition
While Worklist is not empty:
A = Worklist.pop()
For each input symbol 'c":
X = Set of states with transition on 'c' into A
For each subset Y in Partition:
Intersection=X NY
Difference =Y - X
If Intersection and Difference are both non-empty:
Replace Y in Partition with {lIntersection,
Difference}
If Y in Worklist:
Replace Y in Worklist with {Intersection,
Difference}
Else:
Add the smaller of {Intersection, Difference}
to the Worklist
Return Minimized DFA based on Partition

Parallelize the DFA for high-speed DPI
Function Parallel_DFA_Engine(Minimized_DFA,
Packet_Stream):
Initialize Thread_Pool with N threads
For each Packet in Packet_Stream:
Assign Packet to an available Thread:
Thread.Process(Packet, Minimized_DFA)
Synchronize Threads
Return Detection_Results
I/l Thread Function to Process Packet
Function Process(Packet, Minimized_DFA):
Current_State = Start_State of Minimized_DFA
For each Byte in the Packet.Payload:
If Transition exists from Current_State on Byte:
Current_State = Transition[Current_State][Byte]
Else:
Current_State = Start_State
If Current_State is a Final/Accepting State:
Flag Packet as Malicious
Break
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Return
/l Main Function
Function Main():

Signatures =
IDS2018_Signatures.txt™)

DFA = Build_DFA(Signatures)

Minimized_DFA = Minimize_DFA(DFA)

Packet_Stream = Capture_Live Traffic()

Results = Parallel_DFA_Engine(Minimized_DFA,
Packet_Stream)

For each Alert in Results:

SDN_Controller.Apply_Flow_Rule(Alert)
Return

Load_Signatures("CIC-

4. Results and Discussion

In this research, a high-performance Deep Packet
Inspection (DPI) engine was applied and integrated into an
SDN environment for the detection and mitigation of real-time
infiltration. The system was designed using a parallel DFA
approach, which was adapted through Hopcroft's
minimisation algorithm and deployed using Mininet for SDN
education with the RYU controller. Performance-mating
components were implemented in C++ (for the DPI engine)
and integrated with Python-based SDN arguments. The
system was evaluated against benchmark datasets such as
CIC-DS 2018, with various attack patterns including DDoS,
DoS, and brute force. The main results include detection
accuracy, delay, throughput, and resource usage, existing
serial DFA-DPI, and benchmarks against machine learning-
based IDS methods. Results show that the proposed DPI-SDN
architecture achieves high accuracy with minimal processing
overhead, making it suitable for real-time traffic inspection in
large-scale networks.

Table 2. Simulation parameter

Parameter Value / Description

Dataset CIC-IDS 2018 (real-world traffic
patterns)

Emulation Tool Mininet

SDN Controller Ryu (Python-based)

Packet  Replay | tcpreplay

Tool

DPI Engine | C++ (parallelized DFA

Language implementation)

Simulation 1 Gbps — 10 Gbps

Traffic Rate

CPU for DPI 8-core Intel Xeon, OpenMP threads

GPU for DFA NVIDIA CUDA (PFAC-based

parallel DFA)
Detection accuracy, throughput,
latency, CPU/GPU utilization

Metrics Collected

Attack Types | DDoS, DoS, Brute Force, Web

Simulated Attacks

Baseline Methods | Serial DFA-DPI, Random Forest,
LSTM
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In this study, the performance of the proposed DPI engine
was evaluated through comprehensive simulation using the
CIC-DS 2018 dataset, as mentioned in Table 2, which reflects
real-world traffic patterns with various attack types, including
DDoS, DoS, brute force, and web attacks. The dynamic flow
was imitated using Mininet with the Ryu SDN controller to
manage the rules. Traffic replays were used from 1 GBPS to
10 GBPS at rates using TCPREPLAY. The DPI engine
implemented in C++ with parallel DFA and GPU acceleration
through CUDA was deployed on the 8-core Intel Xeon CPU.
To display the efficiency and scalability of the proposed
approach, a major matrix was collected to detect accuracy,
throughput, delay, and resource use compared to basic
methods such as serial DFA-DPI, Random Forest, and LSTM
models.

Table 3. Resource utilization

Proposed Serial Random
Metric Parallel DEA Forest
DFA-DPI (ML-IDS)
CPU Usage 0 0 0
%) 45% 78% 65%
GPU Usage 0 0
(%) 36% — 60%
Memory
Consumption 250 MB 410 MB 520 MB
(MB)

Table 3 presents the metrics comparing the parallel DFA-
DPI engine proposed with a random forest-based ML-Aid
under the same high-speed traffic conditions. The proposed
system demonstrated better efficiency, using only 45% CPU
and 36% GPU resources, which is much lower than the 78%
CPU use of serial DFA and 65% CPU and 60% GPU use of
random forest. Additionally, parallel DFA-DPI consumed
250MB of memory, improved serial DFA (410MB), and
random forest (520MB). These results highlight the adapted
performance of the proposed approach, obtaining high-speed
packet inspection with minimum resource overhead in the
SDN environment.

Figure 6 shows CPU use over time for three methods —
parallel DFA-DPI, serial DFA, and random forest (ML-IDS)
— separated by trafficking rates. The proposed parallel DFA-
DPI maintains consistently low CPU use, performing about
35-36% on average, with its mild nature and suitability for a
high-throughput environment. Conversely, the serial DFA
displays much more CPU consumption, which reaches 74%,
due to its parallelness and lack of disabled state traversal. The
random forest approach also refers to moderate-high CPU use
at 60%, which refers to the computational overhead of ML-
based classification. This comparison highlights the efficiency
and scalability of the proposed DPI engine.
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CPU Utilization Over Time at Different Traffic Rates
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Fig. 6 CPU utilization over time

GPU Utilization Heatmap During Parallel DFA Processing
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Fig. 7 GPU utilization heatmap

Figure 7, parallel DFA-based Deep Packet Inspection
(DPI), shows the activity level of GPU threads during the
execution of the engine. Each row represents a GPU thread,
and each column matches a time interval under separate traffic
loads. The intensity of the colour reflects the percentage of
GPU use, explaining how the parallel DFA algorithm
distributes workloads in several GPU threads. The results
display frequent thread engagement and balanced resource
allocation, confirming the efficiency of data-level equality in
handling high-speed network traffic. This visualisation
recognises scalability and mild performance of the proposed
DPI engine in a real-time scenario.

Figure 8 shows the distribution of packet processing time
in milliseconds for the proposed parallel DFA-DPI engine.
The results suggest that most packets are processed within a
narrow range around 2.5ms, which confirms the system's
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ability to operate in real time under high traffic loads. While
handling the thousands of concurrent flows, low-lonely
infiltration exposes the efficiency and stability of the DPI
engine, highlighting the tight clustering of the detection time.
This indicates that the proposed system achieves an estimated
performance with minimal variance, a significant requirement
for SDN-based safety applications.

100

=3 ®
=1 <

=
=

Number of Packets

1.5 2.0 2:5 3.0 3.5
Detection Time (ms)

Fig. 8 Detection time histogram

Figure 9 shows the end-to-end system latency under
different traffic patterns, including general traffic, DDoS
attacks, and web-based attacks. The proposed parallel DFA-
DPI engine displays continuous delayed performance,
approximately 2.5 ms for general traffic with average delay,
grows up to 3.2 ms during web attacks, and is at 4.0 ms under
DDOS terms. A narrow, contradictory range also indicates
minimal variability and high stability of the system under
stress in all scenarios. The outliers are limited, suggesting that
the system maintains real-time processing capabilities without
significant delay spikes, validating its suitability for high-
speed SDN environments.
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Table. 4 Latency and throughput for proposed DFA-DPI model

Metric Proposed DFA-DPI
Latency (ms) 0.3
Throughput (Gbps) 9.8

Table 4, the proposed DFA-DPI model achieved a
significant delay of 0.3 ms, ensuring real-time packet
inspection and response. It also maintained a high throughput
of 9.8 GBPS, which demonstrated the ability to handle multi-
gigabit traffic without hurdles. These results highlight the
efficiency and scalability of the parallel DPI engine in the
modern SDN environment.

Table. 5 Flow table update latency and packet drop rate across traffic

loads
Traffic Load Uﬁc\jlg.teF'lﬁvr;e Packet Drop
(Gbps) (ms) Rate (%0)
1 0.12 0.1
5 0.22 0.15
10 0.34 0.18

Table 5 presents the average flow update time and packet
drop rate of the proposed DPI-SDN system under various
traffic loads. At 1 GBPS, the system receives an average flow
update of 0.12 ms with a minimum packet drop rate of 0.1%.
Since the traffic increases to 5 GBPS and 10 GBPS, the update
time increases to 0.22 MS and 0.34 MS, respectively, while
packets below 0.2% maintain drop rates. These results also
display the ability of the system to efficiently update the flow
tables in real time with negligible packet loss under high
network load.

Figure 10 shows the average flow table update time on
various traffic loads, which exposes the accountability of the
proposed SDN mitigation mechanisms. At a low traffic load
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of 1 Ghps, the flow update time remains minimal at 0.12 ms,
ensuring rapid mitigation actions. As traffic increases to 5
GBPS and 10 GBPS, update time increases to 0.22 ms and
0.34 ms, respectively, indicating a beautiful performance
under high loads. This indicates that the proposed DPI-SDN
integration maintains the efficient flow rule update even in
high-traffic scenarios, ensuring minimal disruption during the
mitigation of attacks in real-time environments.

Flow Table Update Time at Different Traffic Loads
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Fig. 10 Flow table update time
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Fig. 11 Packet drop rate vs traffic load

Figure 11 shows the relationship between traffic load and
packet drop rate during the mitigation of SDN-based attacks.
Since the traffic load grows from 1 Gbps to 10 Ghps, the
packet drop rates show a slightly upward trend, which grows
from 0.1% to 1 Gbps to 0.18% to 10 Gbps. While the system
highlights the scatter plot combined with a polynomial
trendline, the system overthrows the low packet loss, showing
marginal growth in drops due to high traffic volume, flow
table updates, and mitigation functions. This reflects the
strength of the DPI-SDN structure proposed to maintain
network reliability under different traffic loads.
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Figure 12 reflects the memory consumption of the
approach to detect three intruders: proposed DFA-DPI, serial
DFA, and ML-based IDS. Results suggest that the proposed
DFA-DPI receives the lowest memory footprint at 250 MB,
which makes the serial DFA much better, which consumes
410 MB, and ML-based IDs, which require 520 MB. This
deficiency highlights the effectiveness of minimisation
techniques such as the DFA algorithms of the Hopcroft
algorithm in adapting state infections and reducing resource
overheads. Customised memory use ensures that the proposed
DFA-DPI system can work efficiently in a highly plural
environment, preserving and supporting real-time traffic
analysis.

Accuracy vs. Throughput for Proposed
DFA-DPI Model
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Fig. 13 Accuracy vs throughput for proposed DFA-DPI model
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Figure 13 shows how the proposed parallel DFA-DPI
engine identifies the accuracy to identify network traffic rates.
As throughput scales from 1 Gbps to 10 Gbps, the system
continuously maintains high identification accuracy, with a
marginal decline from 99.5% to 98.7%.

This slight drop indicates that the DPI engine is also
highly effective under heavy traffic loads, validating its
scalability and strength. The results confirm that it can support
a high-speed environment, ensuring a minimum agreement in
detecting architecture, which makes it suitable for the
prevention of real-time infiltration into the SDN network on a
large scale.

Average Packet Processing Time vs.
Traffic Load
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Fig. 14 Average packet processing

Figure 14 shows the average packet processing time in
various traffic loads, highlighting the scalability of the
proposed DPI engine. On 1 GBPS, the system obtained an
average processing time of 80 ps, which increased to 95 ps at
5 GBPS and 112 ps slightly at 10 GBPS. It also shows the
ability of the system to maintain low and estimated delays
under high traffic rates, detect real-time infiltration, and its
suitability for mitigation in high-throughput SDN
environments. The minimum increase in processing time
confirms the efficiency of parallel DFA implementation in
handling the increasing demands of the network.

Table 6 Attack detection
Attack Precision o F1-Score

Type (%) Recall (%) (%)
DDoS 99.5 98.9 99.2
DoS 98.8 98.3 98.5
Brute Force 97.1 96.5 96.8
Web
Attacks 98.3 97.6 97.9
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Table 6 presents a parallel DFA-DPI engine to detect
attacks with accurate recall and F1 scores for various types of
attacks. The system received extraordinary performance in all
categories, which featured 99.5% accuracy with DDoS
detection, 98.9% memory, and 99.2% F1 score. The DOS
attacks were identified with 98.8% accuracy and 98.3%, with
an F1-SCORE of 98.5%. Brute Force attacks were slightly low
but still strong, with 97.1% accuracy, 96.5% recall, and 96.8%
F1 score. Similarly, web attacks obtained 98.3% accuracy,
97.6% recall, and 97.9% F1 score, which demonstrates the

credibility of the system in detecting diverse infiltration types.

Throughput Comparison Across
Systems
12
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Fig. 15 Throughput across system

Figure 15, the throughput comparison bar chart shows the
performance of the proposed DFA-DPI system against serial
DFA and ML-based IDS methods under high traffic rates. The
proposed DFA-DPI attains the highest throughput of 9.8
GBPS, which demonstrates the ability to efficiently process
large volumes of network traffic with minimal performance
degradation. In contrast, the serial DFA and ML-based IDS
systems recorded low throughputs of 7.5 GBPS and 6.5 GBPS,

respectively, which highlight their boundaries in maintaining
real-time traffic processing under heavy loads. This result
underlines the better scalability and efficiency of the parallel
DFA-DPI engine in handling high-speed network
environments.

Figure 16 shows the Receiver Operating Characteristics
(ROC) curve for the proposed parallel DFA-based Deep
Packet Inspection (DPI) engine proposed to detect malicious
network traffic. The curve displays trade-offs between the
True Positive Rate (TPR) and the False Positive Rate (FPR) in
different decisions. The region under the ROC curve (AUC)
was seen as 0.98, indicating the system's excellent
discrimination capacity in distinguishing between benign and
malicious packets. The curve is closer to the top-left corner,
which highlights the high-identity accuracy of the system with
minimal false positivity. Additionally, the ROC curve
improves the baseline model, which reflects the efficiency of
the DFA state machine and Software-Defined Networking
(SDN) environment adapted to real-time traffic analysis.

ROC Curve for Parallel DFA-Based SDN-DPI
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Table. 7 Packet processing time of proposed DFA-DPI engine

Traffic Load Average Processing Maximum (us) | Minimum (us) Standard
(Gbps) Time (us) H H Deviation (us)
1 Gbps 80 120 65 10
5 Ghbps 95 145 72 13
10 Gbps 112 165 85 16

Table 7 proposed that the DFA-DPI engine packet
processing time was evaluated under different traffic loads of
1 GBPS, 5 GBPS, and 10 GBPS. On 1 GBPS, the engine
obtained an average processing time of 80 ps with minimal
variability (+ 10 s). As the traffic increases to 5 GBPS and 10
GBPS, the average processing time increases to 95 s and 112

99

us, respectively, performing efficient scalability. Even at the
peak load, the maximum processing time remained below 170
Ms, maintaining low delaying DFA to maintain high
throughput DFA validation. The results confirm the system's
capacity for real-time packet inspection in the dynamic SDN
environment.
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4.1. Performance Evaluation
4.1.1. Accuracy

The proportion of correctly classified packets (both
benign and malicious) among all packets.

TP+TN
Tp+TN+FP+FN

Accuracy = (18)

4.1.2. Precision
The proportion of correctly detected malicious packets
among all packets flagged as malicious.

TP
TP+FP

Precision = (19)

4.1.3. Recall
The proportion of malicious packets that were correctly
detected.

TP
TP+FN

Recall = (20)

4.1.4. F1-Score
The harmonic mean of Precision and Recall, balancing
their trade-off.

F1— Score = 2 X Precision XRecall (21)

Precision+Recall

In Equations (18)-(21), true positive and true negative are
denoted as TP and TN, and false positive and false negative
are denoted as FP and FN.

Table. 8 Performance metrics

Metric Proposed DFA-DPI (%)
Accuracy 99.68
Precision 99.72

Recall 99.65
F1-Score 99.68

Table 8 Software-Defined Networking (SDN) presents
the performance matrix of the proposed parallel DFA-Based
Deep Packet Inspection (DPI) system integrated within the
environment. The system achieved an impressive accuracy of
99.68%, which demonstrates its ability to firmly classify
benign and malicious traffic. The accuracy of 99.72%
indicates the high capacity of the system to correctly identify
malicious packets while reducing false alarms. Similarly, the
recall value of 99.65% reflects its effectiveness in detecting
the vast majority of the malicious flow, ensuring that the
minimum attack bypasses the traffic inspection process. The
F1 score, calculated as a harmonic mean of accuracy and
recall, is 99.68%, which outlines the overall strength and
balance of the detection system. These results expose the
efficiency of the DFA engine adapted to handle real-time
traffic with high identification accuracy and minimal false
positivity, which is highly suitable for deployment in high-
speed networks.

m Precision mRecall
100.00% 99.50%
98.80%
99.00%
< ° 8.30% 98.30%
o 98.00%
(@]
*2 97.10%
& 97.00%
>
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DDoS DoS Brute Force Web Attacks
Attack Types

Fig. 17 Precision and recall for attack detection

Figure 17 shows the accuracy and the percentage of
recalls obtained by the proposed DPI system, including DDoS,
DosS, brute force, and various types of attacks, including web
attacks. The system displays excellent detection performance
in all classes, with an exact value ranging from 97.1% (brute
force) to 99.5% (DDoS) and misses the values between 96.5%

100

(brute force) and 98.9% (DDoS). These results confirm the
ability to correctly identify both the DPI engine and the high-
volume and secret attacks. The chart recognises the
effectiveness of the system in maintaining coherent class-wise
detection accuracy for real-time network safety.
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Table 9. Processing time comparison

Table. 10 Performance comparison

Reference Delay/Latency Method Method Accuracy
Janabi et al. (2022) +0.7% delay increase in Janabi et al. Naive Bayes 98.46%
WAN (2022) (2022) '
Fausto et al. (2022) <10ms delay (P1); <3ms Fausto et
(P2/P3) al.(2022) SM-SDS (2022) 80.3%
Bocu et al. (2022) 200 ms detection time Tang et al.(2020) | DeepIDS (2020) 80.7%
Proposed DFA-DPI 0.28 ms latency
Bour et al. CNN-based IDS 94.14%
Table 9 compares the delay and latency performance of (2022) (2022) .
Proposed Model DFA-DPI 99.68%

the proposed DFA-DPI system against current solutions.
Janabi et al. (2022) registered an increase in delay by 0.7% in
WAN environments owing to simulation overhead within
Mininet, whereas Fausto et al. (2022) provided delays of
below 10 ms for P1 and below 3 ms for P2/P3 with hardware-
accelerated switches and DPDK.

Conversely, Bocu et al. (2022) captured a much larger
200 ms detection time; hence, it is not ideal for real-time
traffic monitoring. However, the parallelised DFA-DPI
system presented in this paper exhibits top-tier performance
with an average latency of 0.28 ms, compared to all cited
approaches.

This low latency is due to its multi-level parallelism, DFA
state minimisation, and effective integration into the SDN
environment, allowing high-speed, real-time packet
inspection and attack mitigation without causing perceptible
delays.

Table 10 and Figure 18 show the accuracy performance
of the suggested parallelised DFA-DPI system compared to
current intrusion detection mechanisms. The Naive Bayes
model obtained an accuracy rate of 98.46%, whereas SM-SDS
and DeeplDS attained lower accuracy rates of 80.3% and
80.7%, respectively, reflecting confined capability for
complex attack patterns. The CNN-based IDS showed
enhanced performance with a 94.14% accuracy, but it still
cannot reach the near-perfect detection rates needed for real-
time SDN settings. By contrast, the proposed model surpasses
all of these schemes by attaining 99.68% accuracy, which
demonstrates its better capability to detect malicious traffic
with very few false positives. This notable enhancement
results from the optimal DFA state machine, multi-pattern
match feature, and parallelised processing scheme that
provide high detection accuracy in high-speed networks.

120.00%
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100.00% |0 0% 94.14% 2o
80.30% 80.70%
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g
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Naive Bayes SM-SDS DeepIDS  CNN-based IDS Proposed DFA-
DPI
DeepIDS Models (%)

Fig. 18 Accuracy comparison of IDS model

4.2. Discussion

The study introduces a parallel DFA approach using a
novel high-performance Deep Packet Inspection (DPI)
structure, which is basically unified within a Software-
Defined Networking (SDN) environment for detecting and

101

preventing real-time infiltration. The major innovation lies in
the capacity of the multi-pattern payload system at high speed,
which has taken advantage of advanced parallelisation
techniques and customised DFA state machines. Unlike
traditional serial DFA-based DPI systems, which struggle
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with state explosions and throughput bottlenecks, the
proposed model uses Hopcroft's DFA minimisation and
CUDA-based GPU acceleration for the matching of parallel
patterns. It ensures highly scalable inspection capabilities
suitable for a gigabit-scale traffic environment without
significant delay. Research focuses on three main innovations:
(1) DFA for construction of sequential bite patterns for
efficient manufacture using an N-gram encoding to process
the payload token, (2) multi-level equality (thread-level, data-
level, and pipeline parallelism) to process large traffic
volumes in real time, and (3) tight integration. To give. By
adopting this approach, the system gained an extraordinary
identity accuracy of 99.68%, an accuracy of 99.72% and a
minimum average delay of 0.28 ms, improving the current
ML-based IDS model and traditional DPI framework. In
practical real-time applications, this DPI system operates in
the data plane of an SDN-enabled network, which
continuously monitors the packets for malicious patterns. On
detection of a suspected payload, it communicates with the
SDN controller (e.g., Ryu) to update the OpenFlow rules,
which can limit instantaneous traffic mitigation functions such
as blocking, reunion, or rate. This ensures that the networks
remain flexible for high-velocity attacks such as DDoS, brute
force efforts, and protocol exploitation. The system has been
tested using the CIC-DS 2018 dataset, which provides a
realistic attack landscape, validating its appropriateness in the
environment of enterprise networks, data centres, and
significant infrastructure. Overall, the proposed parallel DFA-
DPI system bridges the gap between high-speed traffic
inspection and flexible SDN control, making it a strong
solution for the modern network, demanding real-time
security without renouncing performance. Its highly scalable
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enables DPI capabilities without violating privacy obstacles.
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attacks and unknown traffic patterns. On hardware-charged
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Finally, discovering the DPI architecture distributed in the
multi-controller SDN environment will improve mistake
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applications.
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