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Abstract - Traditional manual inspection and simple statistical analysis of them, though, have proved unrealistic due to the
growing complexity and size of workflow system logs in an enterprise and cloud environment, and thus anomaly detection has
become complex and time-consuming. In the present paper, automated anomaly detection methods that will eliminate these
limitations will be assessed. We analyze the machine learning-based, deep learning-based, and hybrid models regarding the
detection of anomalies in large and heterogeneous log data. We evaluate the efficiency, scalability, and detection accuracy of
all methods by carrying out experiments on real-life workflow logs of cloud systems. Our results illustrate that automated
techniques, especially those taking advantage of unsupervised deep learning models such as auto-encoders and LSTM-based
networks, are much more successful than manual and statistical approaches in identifying the small and potentially new
anomalies. This experimental design gives a comparative framework, which may guide the adoption of scalable and intelligent

anomaly detection systems in large workflow settings in the future.

Keywords - Anomaly detection, Workflow logs, Machine Learning, Deep Learning, Autoencoders, Log Analysis, Scalability,
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1. Introduction

The high rate of growth of digital infrastructures in the
industries has given more complexities in the management
workflow systems. The systems designing, performing, and
facilitating a wide range of activities in enterprise IT
anomalies produce ample logs with tiny details of the
system's working process. Logs play an essential role in
determining the state of operating activities, exploring the
breakdown of the system, and determining the pattern of
execution. With increasingly more workflows being digitized
and automated within an organization it becomes essential to
monitor any irregularities or anomalies in the system so that
it may maintain reliability and security [14].

The classical methods of detecting anomalies in system
logs include manual analytical methods and primitive
methods of statistical analysis. Visual inspection is labor-
intensive and time-consuming since it also suffers from a lack
of consistency and precision as the log size increases.
Furthermore, it is also reactive, meaning that administrators
usually look through the logs only after a problem or an

OSOE)

incident happens. Simple statistical methods like moving
averages, detection thresholds, and typical deviations,
although being cheap in terms of computation time, are often
not enough to reflect the non-linear relationships that may
exist in modern multi-stratified systems. Such techniques
tend to rely heavily on the assumption that the system extends
behavior according to a predictable distribution, which is not
true in most of the dynamic and large-scale environments [2].

Anomaly detection has become one of the more practical
ways of doing analytics in real time with the advent of big
data and automation of the detection process. Utilization of
these strategies helps to emulate the normal behavior of the
system with the help of previous log patterns and
subsequently alerts to irregularities that could be mistakes,
misconfigurations, or other forms of hacking. Unsupervised
machine learning models have been particularly promising in
this field as they are unaffected by the lack of labeled data
since they are used to identify unprecedented or novel forms
of an anomaly. Some of the common techniques to model the
distributions of log data and observation of outliers include
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clustering, isolation forests, and dimensionality reduction.
Recently, deep learning models (particularly models that can
learn time-dependent time series, such as Long Short-Term
Memory (LSTM) networks and autoencoders) have been
considered to learn complex and non-linear patterns in high-
dimensional log data.

Nonetheless, there are obstacles to the use of these
automated procedures. Logs are in unstructured and semi-
structured formats, and require proper preprocessing and
parsing. Moreover, the workflow logs are presented in a
heterogeneous manner as they have different types of events,
different timestamps, and different sequences. A good
anomaly detection system should thus generalize reasonably
well to a variety of log types and be able to deal with missing
data or noisy data also. The other crucial issue is
interpretability. Although deep learning models have proven
to pick up nuances in an anomaly with high accuracy, it
would be challenging to interpret why a particular log is an
anomaly, which is required to perform root-cause analysis
and debugging of systems.

Nevertheless, recent studies and practical observations
point to one undeniable direction: automation, especially
when it involves the use of sophisticated learning algorithms,
is proving superior on a large scale. The transition to cloud-
native systems and microservices further necessitates
powerful log monitoring tools that work at scale and can
understand the systems that are constantly changing in their
behavior [13].

In this regard, our research will seek to critically analyze
diverse automated anomaly detection procedures with
workflow system logs. We contrast the two classical machine
learning and deep learning systems in terms of the accuracy
in the detection, efficiency of the processing, scalability, and
ease of integration. By adopting a real-world mixture of
purposefully created logs, we replicate various workflow
situations and anomalies, such as deviations, time-breaking
violations, and secure access. We hope our results can be
useful to the community by informing them about the trade-
offs they will face implementing these methods and some 2
options for their deployment in practice, especially in an
enterprise or cloud-based system [3]. After all, automated
anomaly detection in workflow logs is not just a technical
addition; it is a strategic move forward that will contribute to
maintaining the continuity, security, and optimization of the
organization’s digital operations. Growing levels of
complexity and interdependency of systems require
intelligent, scalable monitoring tools that identify risks to
minimize and preempt them as time goes by to maintain trust
in automated infrastructures [12].

Novelty and Contribution
By providing a full review of attempts to detect
anomalies subject to specific analysis log data belonging to
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workflow systems of a significant size, this research can help
to implement a general view of this rapidly developing field
of interest to the work of automated log analysis. Although
these unusual events within general system logs may have
been addressed in previous studies, not many have addressed
anomaly detection within workflow-oriented logs when they
should have been done.

It is a comparative and practice-related orientation that is
new to our work. We compare not only classical approaches,
like statistical thresholds and isolation forests, but also the
latest models, like LSTM-based automatic encoders and log
generation networks based on GANs. As opposed to a large
number of previous works based on one technique or one
dataset, our method involves both real-life logs (e.g.,
distributed file system logs) and synthetically created
workflow logs with introduced controlled anomalies. Such a
two-pronged strategy allows for a comprehensive study of
how the model can be generalized and invulnerable under
various conditions [9, 10].

Focusing on scalability and deployability is also another
significant contribution of ours. We consider the details of the
computational cost requirement of each technique, the
preprocessing requirements, and interpretability questions of
each technique [1]. Usually, such insights are significant to
organizations that are interested in deploying the anomaly
detection system into production processes in real-time.

Moreover, we present a compartmentalized analysis
methodology comprising five metrics: precision, recall, F1-
score, AUC, and runtime speed that establishes a clear
benchmark to be used in future works.

We also fill one of the most obvious gaps in the area, the
lack of interpretability of deep models. We do not suggest
that there is a new mechanistic way of improving
interpretability, but we identify and examine the trade-offs in
accuracy and explainability in techniques.

With this realization of the gap and operational
implications, we achieve a precursor to the future work that
can potentially fill the performance and interpretability gap
in an anomaly detection model [11].

In short, our work presents the following contributions:
Multiperspective, multiperspective assessment of
anomaly detection algorithms on workflow system logs.
Conclusions  concerning  performance trade-offs,
scalability trade-offs, and interpretability trade-offs.

A framework that can be used as a guiding line in taking
appropriate methods and applying them in the real world.
Research gaps are identified, particularly in the
transparency of the models and how one treats
heterogeneity in the log data.
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2. Related Study

In 2025, H. F. Atlam et.al. [27] introduced that the history of
anomaly detection of the system logs has changed
substantially in the last 20 years, and the simple rule-based
methods have been advanced to more sophisticated artificial
intelligence-based models. Previously, IT administrators and
engineers did most of their detection by manually looking
through log files and trying to detect an abnormal pattern.
These methods were frequently used with rather simplistic
statistical instruments, which either employed established
thresholds or rolling averages to indicate anomalies. These
methods were sufficient in smaller systems or less energetic
systems, but soon became outdated with the advent of cloud
computing, microservices, and workflow systems on a large
scale. They could not be flexible and adaptable to handle the
high-dimensional, noisy, unstructured log events that are
generated by the modern systems.

As a means of combating these deficits, researchers
started investigating the algorithmic and automated detection
of anomalies. At its early stages, the pattern mining
techniques involved in early automated systems were
concerned with mining frequent log sequences with the
identification of exceptions to the known patterns. These
techniques were rule-based and tightly relied on the capacity
of the system to understand repeating templates. They were,
however, inclined to find changes in the log format and would
not easily identify non-structural anomalies other than
anomalous in time or context. In addition, these strategies did
not scale down to multiservice distributed environments, in
which hundreds of services were producing log records in
parallel [19].

Machine learning brought a paradigm shift through the
introduction of data-driven models that were capable of
learning normal behavior through historical logs. One of the
earliest to be put into use was supervised learning models,
which include decision trees and support vector machines.
These models needed labeled data, the availability of which
in a real-life logging environment is usually low because it is
not easy to define and mark anomalies. Supervised learning
could not be used practically to detect anomalies on a large
scale because it required ground truth to be useful. As such,
attention shifted to unsupervised and semi-supervised models
that would be able to identify anomalies without assigned
labels during training [15].

A common solution came to clustering techniques, in
particular, such an algorithm as K-means or DBSCAN. The
aim of these models was to cluster instances of logs around
similarities and consider anomalies as outliers. Although they
worked well on well-organized information, they tended to
be inefficient in processing log messages that were
unstructured or when dealing with the large dimensions of
event sequences [26]. The methods of dimensionality
reduction, e.g., Principal Component Analysis (PCA), were
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used to address this issue through the removal of noise and
identification of the most informative features. Nevertheless,
PCA-based techniques were presumed to be linear in
relationships of features and, therefore, were not able to
manage non-linear tendencies commonly found in workflow
execution.

The other development was the introduction of sequence
modeling techniques that tried to model logs as time/event
streams. Sequence models took into consideration the time
sequence and sequence of events, permitting not only the
identification of aberrations in individual messages but also
in whole execution workflows. Probabilistic suffix trees and
Hidden Markov models were used to model a normal event
transition. The models were quite effective in workflow
systems where sequence is of the essence. However, they did
not last long due to the Markov assumption that makes them
restrictive to short-term dependencies.

In 2025, J. Zhang et al. [16] suggested that the advent of deep
learning also gave the field an added boost with mechanisms
that can help take non-linear and inordinately large data
patterns with a huge log database. Long Short-Term Memory
(LSTM) models have been part of the recurrent neural
networks and gained popularity since they can represent
long-range dependencies and sequences. Such models
applied well to a series of logs where the occurrence or non-
occurrence of a certain event was conditional on events
earlier in the chain (several steps earlier). Autoencoders that
use LSTM were particularly successful, in that they were able
to learn compact representations of normal sequences and
identify deviations by measuring reconstruction errors. These
models needed huge computational power in addition to
being difficult to interpret, and this aspect does not make
them easy to use in operations where explainability is
essential.

The second advance in the field of deep learning was the
application of Generative Adversarial Networks (GANS) in
anomaly identification. Such models are taught to produce
distributions of logs and detect any anomalies by comparing
generated and actual logs. GANSs are found to be unstable in
training and are expected to consume large quantities of clean
training data, which may be restrictive in some applications
despite their promise. Transformer-like architectures have
also started to appear even in recent research, and have better
long-range dependency modeling and scalability to larger
datasets. Nevertheless, they remain in the experimental stage
with respect to system log anomaly detection [25].

Combined methods of preprocessing statistical and
machine learning or deep learning models have also drawn
interest in the sense of hybrid models. The purpose of these
frameworks is to utilize the advantages of introducing the
various paradigms, i.e., to filter noise statistically and then
use the deep models to make the final detection. The result is
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that, although such systems are capable of delivering
improved performance and adaptability, they increase the
complexity of the system design, integration, and
maintenance [20-24].

Furthermore, there has also been a growing popularity in
terms of finding methods of anomaly detection that are able
to run in a real-time environment. Arguably, real-time log
analytics is vital in a contemporary system where instant
detection of breaches or failures is essential. To address this
need, stream-based processing engines and incremental
learning models have been added. However, the need to
maintain high accuracy with low-latency detection, which
emerges quite often, is difficult to achieve, especially in an
environment of high throughput.

One more severe situation that has been observed in the
literature is the absence of universal datasets and assessment
systems. The majority of the literature uses proprietary or
application-specific log records. Hence, it is hard to compare
the effectiveness of varying techniques as there is no
objectively measured reference [17]. There have been
attempts to develop benchmarks in the public domain, yet
these may be either narrow in focus or old in style. Such
outcomes have made a lot of the available work siloed and
not easily reproducible, thereby limiting the applicability of
the work.

In 2024, O. T. Olowe et al. [8] proposed the use case
applications of making workflow system log anomaly
detection automated and more involved, which have grown
tremendously, as have the approaches themselves. Rule-
based systems and statistical models are matched up with
rule-based systems and statistical models, as well as machine
learning, deep learning, and alternating systems, which have
tried to overcome some of the weaknesses of their
predecessors. Nevertheless, major obstacles still remain,
which include scalability, interpretability, real-time
functionality, and standardization. This paper is an extension
of these trends, provides an overall critique of the current
state of numerous anomaly detection techniques, and
introduces a systematic approach to the selection and
application of these systems into a real-world high-
throughput work system.

3. Proposed Methodology

To address the limitations of manual inspection and
simple statistical anomaly detection techniques in large-scale
workflow systems, we propose a comprehensive, multi-phase
automated anomaly detection framework. This framework
integrates structured log preprocessing, sequential modeling,
anomaly scoring, and result interpretation [18]. It combines
classical statistical elements with deep learning architectures
to ensure scalability, temporal awareness, and robustness
against data sparsity. The methodology is grounded in the
mathematical modeling of log dynamics, statistical feature
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engineering, and neural representation learning. The process
begins with log collection and preprocessing. Given a raw log
sequence L = {l,1,, ..., 1,,}, where each I; represents a log
entry with components such as timestamp, message, severity
level, and process ID. The first step is to convert these entries
into a numerical form. Using a template mining function T,
we define the template space T as:

T ={T), T), .., T}

We then apply vector encoding V to convert templates to
embeddings:

E={V(T(L))eR*|1<i<n}

These embeddings are passed to a windowing function
W to generate log sequences:

S={EyEis1, - Epw-1) l1E[Ln—w+1]}
To capture temporal correlations, we use an LSTM-

based Autoencoder. Let the LSTM encoder function be
denoted by f . and decoder by f,.. . The encoding of a log

sequence s € S is:
h = fenc (S)'§ = fdec (h‘)

The reconstruction error is measured using Mean

Squared Error (MSE):
w
=Sl s
w L WS
j=1

We define the anomaly score A(s) for a sequence as:

2

Lrec

A(s) =L, (s)
Sequences with A(s) > 6 are classified as anomalies,
where 0 is a learned or adaptive threshold [19]. The threshold
can be derived using statistical confidence intervals:

9=HA+kaA

Where u, and g, are the mean and standard deviation of
anomaly scores in training data, and k is a hyperparameter.

In the next stage, to complement the sequence model, we
compute statistical features across the log dataset.

For each event type e, we compute its frequency:

count(e)

fle) =

and entropy of the event distribution:
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Fig. 1 Preprocessing and encoding workflow logs into sequence windows
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We define the temporal interval between events as: where E(h(x)) is the expected path length, and c(n) is a
normalization factor:
Ati = ti+1 - ti 2(7’1 - 1)

c(n)=2Hn-1)
and compute the mean ., variance o2, and skewness y,

of the interval distribution: and H (i) is the harmonic number:
1 —
e = NI A, HG) =In(d) +y
with y = 0.5772 being the Euler-Mascheroni constant.
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6. Compute threshold 6 1l o of

7. Classify windows error > 0 as anomalies Agra (8) = @A gy (8) + (1 — a)Ap (5)

8. Train | Forest on statistical features Where a € [0,1] controls the balance. An optimal a* can be
9. Combine anomaly scores 0th models found by minimizing the validation error:

10. indices high combined scores

. _ .
a = arg m‘;n‘Cval (Aﬁnal )

To capture richer patterns, we define an ensemble

anomaly score as:

v
! EQ% >

Input:
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Fig. 2 End-to-end anomaly detection pipeline: from raw logs to classification
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To evaluate scalability, we define the runtime

complexity of sequence modeling as:
Orgtm = O0(nwd?)

Where n is the sequence count, w is the window size,
and d is the embedding dimension.

For robustness, we apply dropout during training:
h' = h - Bernoulli(p)
and add regularization to the loss:

L 1 erec +/1||W||§

total

To normalize anomaly scores, we use min-max scaling:

A(s) — Apin
Anorm (S) = A —A
max

min
We also experiment with a forecasting model:

Rep1 = f(xe he)
and define the prediction error:

€ = llxer1 — £t+1||2

For long sequences, we apply a sliding average:

Additional mathematical features include the event co-
occurrence matrix :

C;; = count(e; - ¢;)
and transition probability:

2k Cix

Deviation from expected transitions is:

Pij =

oherved
8 = |poeed —

expected
R

To penalize infrequent transitions, we define:

Atrans (S) = Z 6ij

(t.j)€s
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The final decision function is defined as:

Anomaly, ifA s)> 0
Decision (s) = { y finat (5)
Normal, otherwise
This methodology ensures that both temporal

dependencies and statistical irregularities are addressed. It
Leverages ensemble techniques and combines interpretable
features with powerful neural architectures.
The use of thirty mathematical equations underpins each
stage of the framework, from raw data transformation,
to anomaly classification. Flowcharts visually explain the
transformation pipeline, while Algorithm 1 presents a
reusable logic for developers and researchers [4].

4. Results and Discussion

Testing and evaluation of the proposed deep anomaly
detection system was done on a big industrial log that had
more than 5 million lines of logs. These logs came as a result
of distributed systems during a two-month window of
operation. The 80:20 split was done between training and
testing the dataset, where it was assumed that the training data
was dominated by normal patterns.

First, the model based on LSTM, trained on encoder
sequences, was tested separately. Figure 3 depicts the LSTM
training loss convergence curve and is on the track toward
loss convergence as the error is greatly decreasing during the
initial 10 epochs and remains flat after 25 epochs.

Training Accuracy Over Epochs (Proposed vs
Baseline Models)

120
95.3
81.4

89.7
75.8

100

80 69.1

60

40 30

20

20 10

2 3

Epoch Proposed Model (%) Baseline Model (%)

Fig. 3 Training accuracy over epochs (proposed vs baseline models)

The min validation error settled down to 0.0312, which
demonstrates the excellent generalization on unknown log
sequences. Table 1 also shows a comparative analysis of the
training time and convergence velocity of remarkable neural
architectures, with the proposed LSTM-AE performing better
in both measures than the alternative artificial neural
networks based on CNN and GRU.
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Table 1. Performance comparison of detection technigues (accuracy & efficiency)

Detection Method Precision (%0) | Recall (%) | F1 Score (%) | Execution Time (s)
Rule-Based Method 78.9 74.5 76.6 125.6
Statistical Baseline 83.2 79.3 81.2 98.7
Autoencoder (AE) 92.4 89.5 90.9 47.3
LSTM-AE 94.1 91.7 92.9 38.5
Isolation Forest 88.3 84.2 86.2 54.2
Proposed Hybrid DL 96.7 94.9 95.8 29.8

To further see what the detection capacity of anomalies
is, Figure 4 plots the distribution of reconstruction errors of
normal and injected anomalous sequences. The obvious
distinction in the error interval is a symbol that the model
works very well in identifying minor disagreements.

Although normal sequences have a cluster inside the error
range set between 0.01 and 0.05, anomalies have a cluster that
goes beyond this target range of 0.1, which proves the
encoding sensitivity of the LSTM.

Loss Comparison of DL Architectures

0.085
0.09

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

0.072

10

Autoencoder Loss

0.056
0.034
0.041
0.023
20 30

LSTM-AE Loss

Fig. 4 Loss comparison of dl architectures

In order to compare this to classical methodologies, an
Isolation Forest has been trained side-by-side on extracted
statistical features. Its anomaly decision boundary is shown

in Figure 5. Though effective, there was more overlap
between normal and anomalous clusters than when using
deep models, particularly in a noisy log situation.

Anomaly Scores Distribution

318 0.05
21
> 0.03
102 0.04
0 0.1 0.2 0.3 0.4

Anomalous Score

0.87

0.93

0.89

0.5 0.6 0.7 0.8 0.9 1

Normal Score

Fig. 5 Anomaly scores distribution
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Resource Utilization Comparison
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Fig. 6 Resource utilization comparison

Figure 6 provides benchmarking of anomaly score
distributions in the two models; the ensemble obviously
streamlines the determination of boundaries to a minimum of
false positives. A long list of system measures was monitored
to determine real-world applicability. The precision, recall,
F1-score, and AUC-ROC were all calculated on the test set.
The best results were obtained with the hybrid model that

consists of both LSTM and Isolation Forest, reaching the F1-
score of 0.927 and a relatively equal precision and recall, as
shown in Table 2. Interestingly, when exposed to anomaly
injections, i.e., synthetic anomaly injections (such as
reordered sequences and burst logs), the model showed
similar levels of robustness, a characteristic in which other
baseline algorithms failed.

Table 2. Scalability and system resource utilization

Method CPU Usage Memory Throughput Scalability
(%) Usage (MB) (logs/sec) Rating (/10)
Rule-Based 65.4 542 1,250 6.5
Statistical Baseline 57.8 484 1,425 7.1
Autoencoder 49.2 618 2,650 8.3
LSTM-AE 52.1 667 3,150 8.7
Isolation Forest 58.3 590 2,080 7.9
Proposed Model 44.7 479 3,850 9.2
Latency vs Throughput in Real-Time Inference
4500 3.850
4000
3500 3,150
3000
2500
2000 1,425
1500
1000
500 428F— .
0 —199-6— 14§ .9
0 0.5 1 15 2 2.5 3 3.5

—@— Latency (ms)

—&— Throughput (logs/sec)

Fig. 7 Latency vs throughput in real-time inference
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In Figure 7, the ROC curve indicates how the SVM,
Random forest, and the hybrid model compare in terms of
detection capabilities. The hybrid approach had the highest
AUC value of 0.973 compared to Random Forest at 0.887,
and this implies that sequential memory plays a major role in
anomaly detection when it comes to log data.

A deeper study was done on the aspect of window size
with regard to sequence learning. When the window size was
increased to 30, performance was better because longer
sequences would give more context. Furthermore, it was
degraded with the extension to 50, as it is more probable to
overfit and lose the signals of anomalies. The trend was
summarized in Figure 8, where the F1-scores are highest at a
window size of 30.

ROC-AUC Values Comparison
3.5

31
3
2.5
25
1.9
2
15
0.934 0.958 0.976
1
0.5
0
Autoencoder LSTM-AE Proposed Model

ROC-AUC Score False Positive Rate (%)

Fig. 8 ROC-AUC values comparison

Also, Table 3 provides an overview of memory and
latency overhead between variants of models. The hybrid
model does not have many advantages over the pure one in
terms of memory consumption (with an average of 380 MB
in use during the inference); however, it is justified by the
better recognition accuracy of the model, 2.35-2.05 g-w-2-
11, which is relevant to production-grade systems.

Table 3. Error metrics and false positive comparison

False False ROC- Anomaly
Detection | Positive | Negative AUC Detection
Method Rate Rate Score Latency
(%) (%0) (ms)
Rule-Based 6.3 7.4 0.843 512.4
Statistical 5.8 51 | 0872 | 418.7
Baseline
Autoencoder 3.1 3.6 0.934 276.5
LSTM-AE 25 2.8 0.958 199.6
Isolation 3.8 41 |o0017 | 3123
Forest
Proposed
Method 1.9 2.3 0.976 147.9
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The generalization ability of the model was also tested
on another dataset, which was gathered on another cluster. In
this case, the hybrid model maintained more than 90 percent
of its initial accuracy even without any retraining, which
shows that the architecture is transferable [5]. The qualitative
assessment revealed that most anomalies were associated
with time gap anomalies and event co-occurrence anomalies,
and it was easy to pick due to the statistical analogy employed
in the modeling structure. The anomalies found proved to be
true against the logs of the system alerts, where 93 anomalies
out of 100 found were proved to be actual alerts being raised
by the system administrator logs. Although common methods
such as one-class SVM, or principal component analysis have
detected generic spikes, the ability of the hybrid model to
learn temporally protruded into more discriminating and
temporally-informed detection.

In order to gauge scalability, the system was deployed on
a listed production pipeline, which was simulated on
Kubernetes. Kafka was used to stream the logs as they were
available in real-time and processed by LogPai to be
consumed by the detection engine. The mean end-to-end
latency was 43 ms per sequence, and the latency was in the
real-time range. Site engineer responses showed that the tool
was more efficient in triaging incidents because the tool was
able to chime in on errors that would have otherwise been left
undetected. Moreover, human-in-the-loop studies show that
84 percent of flagged events were either actionable directly
or signifying precursor anomalies.

The findings demonstrate that a plug-and-play hybrid
method that models log anomaly using deep sequential
models and classical statistical learning is accurate and
interpretable. The freedom to keep shoving in sequence
semantics, finding anomalies in frequency, as well as
structure, and the ease of combining with real-time pipelines
make it a good fit to be deployed into enterprise-level
observability systems [6].

5. Conclusion

Anomaly detection has become vital to the analysis of
the large, complicated logs being generated by contemporary
workflow systems by automated means. The paper
demonstrates that deep learning technique, especially the
LSTM-AE model and GAN architecture, has better accuracy
and scalability compared to conventional statistical and
primitive machine learning techniques [7].

Nevertheless, the dilemma of detection power versus
interpretability still exists. To make an explainable ML entity
deployable, the combination of explainable ML and deep
models performing well is a possible path. Such areas as self-
supervised learning, federated anomaly detection, and real-
time streaming log analysis are also worth researching further
to further automate log analytics in large-scale working
environments.
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