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Abstract - Traditional manual inspection and simple statistical analysis of them, though, have proved unrealistic due to the 

growing complexity and size of workflow system logs in an enterprise and cloud environment, and thus anomaly detection has 

become complex and time-consuming. In the present paper, automated anomaly detection methods that will eliminate these 

limitations will be assessed. We analyze the machine learning-based, deep learning-based, and hybrid models regarding the 

detection of anomalies in large and heterogeneous log data. We evaluate the efficiency, scalability, and detection accuracy of 

all methods by carrying out experiments on real-life workflow logs of cloud systems. Our results illustrate that automated 

techniques, especially those taking advantage of unsupervised deep learning models such as auto-encoders and LSTM-based 

networks, are much more successful than manual and statistical approaches in identifying the small and potentially new 

anomalies. This experimental design gives a comparative framework, which may guide the adoption of scalable and intelligent 

anomaly detection systems in large workflow settings in the future. 

Keywords - Anomaly detection, Workflow logs, Machine Learning, Deep Learning, Autoencoders, Log Analysis, Scalability, 

System monitoring, LSTM, Unsupervised learning. 

1. Introduction 
The high rate of growth of digital infrastructures in the 

industries has given more complexities in the management 

workflow systems. The systems designing, performing, and 

facilitating a wide range of activities in enterprise IT 

anomalies produce ample logs with tiny details of the 

system's working process. Logs play an essential role in 

determining the state of operating activities, exploring the 

breakdown of the system, and determining the pattern of 

execution. With increasingly more workflows being digitized 

and automated within an organization it becomes essential to 

monitor any irregularities or anomalies in the system so that 

it may maintain reliability and security [14]. 

The classical methods of detecting anomalies in system 

logs include manual analytical methods and primitive 

methods of statistical analysis. Visual inspection is labor-

intensive and time-consuming since it also suffers from a lack 

of consistency and precision as the log size increases. 

Furthermore, it is also reactive, meaning that administrators 

usually look through the logs only after a problem or an 

incident happens. Simple statistical methods like moving 

averages, detection thresholds, and typical deviations, 

although being cheap in terms of computation time, are often 

not enough to reflect the non-linear relationships that may 

exist in modern multi-stratified systems. Such techniques 

tend to rely heavily on the assumption that the system extends 

behavior according to a predictable distribution, which is not 

true in most of the dynamic and large-scale environments [2]. 

Anomaly detection has become one of the more practical 

ways of doing analytics in real time with the advent of big 

data and automation of the detection process. Utilization of 

these strategies helps to emulate the normal behavior of the 

system with the help of previous log patterns and 

subsequently alerts to irregularities that could be mistakes, 

misconfigurations, or other forms of hacking. Unsupervised 

machine learning models have been particularly promising in 

this field as they are unaffected by the lack of labeled data 

since they are used to identify unprecedented or novel forms 

of an anomaly. Some of the common techniques to model the 

distributions of log data and observation of outliers include 
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clustering, isolation forests, and dimensionality reduction. 

Recently, deep learning models (particularly models that can 

learn time-dependent time series, such as Long Short-Term 

Memory (LSTM) networks and autoencoders) have been 

considered to learn complex and non-linear patterns in high-

dimensional log data. 

Nonetheless, there are obstacles to the use of these 

automated procedures. Logs are in unstructured and semi-

structured formats, and require proper preprocessing and 

parsing. Moreover, the workflow logs are presented in a 

heterogeneous manner as they have different types of events, 

different timestamps, and different sequences. A good 

anomaly detection system should thus generalize reasonably 

well to a variety of log types and be able to deal with missing 

data or noisy data also. The other crucial issue is 

interpretability. Although deep learning models have proven 

to pick up nuances in an anomaly with high accuracy, it 

would be challenging to interpret why a particular log is an 

anomaly, which is required to perform root-cause analysis 

and debugging of systems. 

Nevertheless, recent studies and practical observations 

point to one undeniable direction: automation, especially 

when it involves the use of sophisticated learning algorithms, 

is proving superior on a large scale. The transition to cloud-

native systems and microservices further necessitates 

powerful log monitoring tools that work at scale and can 

understand the systems that are constantly changing in their 

behavior [13]. 

In this regard, our research will seek to critically analyze 

diverse automated anomaly detection procedures with 

workflow system logs. We contrast the two classical machine 

learning and deep learning systems in terms of the accuracy 

in the detection, efficiency of the processing, scalability, and 

ease of integration. By adopting a real-world mixture of 

purposefully created logs, we replicate various workflow 

situations and anomalies, such as deviations, time-breaking 

violations, and secure access. We hope our results can be 

useful to the community by informing them about the trade-

offs they will face implementing these methods and some 2 

options for their deployment in practice, especially in an 

enterprise or cloud-based system [3]. After all, automated 

anomaly detection in workflow logs is not just a technical 

addition; it is a strategic move forward that will contribute to 

maintaining the continuity, security, and optimization of the 

organization’s digital operations. Growing levels of 

complexity and interdependency of systems require 

intelligent, scalable monitoring tools that identify risks to 

minimize and preempt them as time goes by to maintain trust 

in automated infrastructures [12]. 

Novelty and Contribution  

By providing a full review of attempts to detect 

anomalies subject to specific analysis log data belonging to 

workflow systems of a significant size, this research can help 

to implement a general view of this rapidly developing field 

of interest to the work of automated log analysis. Although 

these unusual events within general system logs may have 

been addressed in previous studies, not many have addressed 

anomaly detection within workflow-oriented logs when they 

should have been done. 

It is a comparative and practice-related orientation that is 

new to our work. We compare not only classical approaches, 

like statistical thresholds and isolation forests, but also the 

latest models, like LSTM-based automatic encoders and log 

generation networks based on GANs. As opposed to a large 

number of previous works based on one technique or one 

dataset, our method involves both real-life logs (e.g., 

distributed file system logs) and synthetically created 

workflow logs with introduced controlled anomalies. Such a 

two-pronged strategy allows for a comprehensive study of 

how the model can be generalized and invulnerable under 

various conditions [9, 10]. 

Focusing on scalability and deployability is also another 

significant contribution of ours. We consider the details of the 

computational cost requirement of each technique, the 

preprocessing requirements, and interpretability questions of 

each technique [1]. Usually, such insights are significant to 

organizations that are interested in deploying the anomaly 

detection system into production processes in real-time.  

Moreover, we present a compartmentalized analysis 

methodology comprising five metrics: precision, recall, F1-

score, AUC, and runtime speed that establishes a clear 

benchmark to be used in future works. 

We also fill one of the most obvious gaps in the area, the 

lack of interpretability of deep models. We do not suggest 

that there is a new mechanistic way of improving 

interpretability, but we identify and examine the trade-offs in 

accuracy and explainability in techniques.  

With this realization of the gap and operational 

implications, we achieve a precursor to the future work that 

can potentially fill the performance and interpretability gap 

in an anomaly detection model [11]. 

In short, our work presents the following contributions: 

 Multiperspective, multiperspective assessment of 

anomaly detection algorithms on workflow system logs. 

 Conclusions concerning performance trade-offs, 

scalability trade-offs, and interpretability trade-offs. 

 A framework that can be used as a guiding line in taking 

appropriate methods and applying them in the real world. 

 Research gaps are identified, particularly in the 

transparency of the models and how one treats 

heterogeneity in the log data. 
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2. Related Study 
In 2025, H. F. Atlam et.al. [27] introduced that the history of 

anomaly detection of the system logs has changed 

substantially in the last 20 years, and the simple rule-based 

methods have been advanced to more sophisticated artificial 

intelligence-based models. Previously, IT administrators and 

engineers did most of their detection by manually looking 

through log files and trying to detect an abnormal pattern. 

These methods were frequently used with rather simplistic 

statistical instruments, which either employed established 

thresholds or rolling averages to indicate anomalies. These 

methods were sufficient in smaller systems or less energetic 

systems, but soon became outdated with the advent of cloud 

computing, microservices, and workflow systems on a large 

scale. They could not be flexible and adaptable to handle the 

high-dimensional, noisy, unstructured log events that are 

generated by the modern systems. 

 

As a means of combating these deficits, researchers 

started investigating the algorithmic and automated detection 

of anomalies. At its early stages, the pattern mining 

techniques involved in early automated systems were 

concerned with mining frequent log sequences with the 

identification of exceptions to the known patterns. These 

techniques were rule-based and tightly relied on the capacity 

of the system to understand repeating templates. They were, 

however, inclined to find changes in the log format and would 

not easily identify non-structural anomalies other than 

anomalous in time or context. In addition, these strategies did 

not scale down to multiservice distributed environments, in 

which hundreds of services were producing log records in 

parallel [19]. 

 

Machine learning brought a paradigm shift through the 

introduction of data-driven models that were capable of 

learning normal behavior through historical logs. One of the 

earliest to be put into use was supervised learning models, 

which include decision trees and support vector machines. 

These models needed labeled data, the availability of which 

in a real-life logging environment is usually low because it is 

not easy to define and mark anomalies. Supervised learning 

could not be used practically to detect anomalies on a large 

scale because it required ground truth to be useful. As such, 

attention shifted to unsupervised and semi-supervised models 

that would be able to identify anomalies without assigned 

labels during training [15]. 

 

A common solution came to clustering techniques, in 

particular, such an algorithm as K-means or DBSCAN. The 

aim of these models was to cluster instances of logs around 

similarities and consider anomalies as outliers. Although they 

worked well on well-organized information, they tended to 

be inefficient in processing log messages that were 

unstructured or when dealing with the large dimensions of 

event sequences [26]. The methods of dimensionality 

reduction, e.g., Principal Component Analysis (PCA), were 

used to address this issue through the removal of noise and 

identification of the most informative features. Nevertheless, 

PCA-based techniques were presumed to be linear in 

relationships of features and, therefore, were not able to 

manage non-linear tendencies commonly found in workflow 

execution. 

 

The other development was the introduction of sequence 

modeling techniques that tried to model logs as time/event 

streams. Sequence models took into consideration the time 

sequence and sequence of events, permitting not only the 

identification of aberrations in individual messages but also 

in whole execution workflows. Probabilistic suffix trees and 

Hidden Markov models were used to model a normal event 

transition. The models were quite effective in workflow 

systems where sequence is of the essence. However, they did 

not last long due to the Markov assumption that makes them 

restrictive to short-term dependencies. 
 

In 2025, J. Zhang et al. [16] suggested that the advent of deep 

learning also gave the field an added boost with mechanisms 

that can help take non-linear and inordinately large data 

patterns with a huge log database. Long Short-Term Memory 

(LSTM) models have been part of the recurrent neural 

networks and gained popularity since they can represent 

long-range dependencies and sequences. Such models 

applied well to a series of logs where the occurrence or non-

occurrence of a certain event was conditional on events 

earlier in the chain (several steps earlier). Autoencoders that 

use LSTM were particularly successful, in that they were able 

to learn compact representations of normal sequences and 

identify deviations by measuring reconstruction errors. These 

models needed huge computational power in addition to 

being difficult to interpret, and this aspect does not make 

them easy to use in operations where explainability is 

essential. 

 

The second advance in the field of deep learning was the 

application of Generative Adversarial Networks (GANs) in 

anomaly identification. Such models are taught to produce 

distributions of logs and detect any anomalies by comparing 

generated and actual logs. GANs are found to be unstable in 

training and are expected to consume large quantities of clean 

training data, which may be restrictive in some applications 

despite their promise. Transformer-like architectures have 

also started to appear even in recent research, and have better 

long-range dependency modeling and scalability to larger 

datasets. Nevertheless, they remain in the experimental stage 

with respect to system log anomaly detection [25]. 

 

Combined methods of preprocessing statistical and 

machine learning or deep learning models have also drawn 

interest in the sense of hybrid models. The purpose of these 

frameworks is to utilize the advantages of introducing the 

various paradigms, i.e., to filter noise statistically and then 

use the deep models to make the final detection. The result is 
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that, although such systems are capable of delivering 

improved performance and adaptability, they increase the 

complexity of the system design, integration, and 

maintenance [20-24]. 

 

Furthermore, there has also been a growing popularity in 

terms of finding methods of anomaly detection that are able 

to run in a real-time environment. Arguably, real-time log 

analytics is vital in a contemporary system where instant 

detection of breaches or failures is essential. To address this 

need, stream-based processing engines and incremental 

learning models have been added. However, the need to 

maintain high accuracy with low-latency detection, which 

emerges quite often, is difficult to achieve, especially in an 

environment of high throughput. 

 

One more severe situation that has been observed in the 

literature is the absence of universal datasets and assessment 

systems. The majority of the literature uses proprietary or 

application-specific log records. Hence, it is hard to compare 

the effectiveness of varying techniques as there is no 

objectively measured reference [17]. There have been 

attempts to develop benchmarks in the public domain, yet 

these may be either narrow in focus or old in style. Such 

outcomes have made a lot of the available work siloed and 

not easily reproducible, thereby limiting the applicability of 

the work. 
 

In 2024, O. T. Olowe et al. [8] proposed the use case 

applications of making workflow system log anomaly 

detection automated and more involved, which have grown 

tremendously, as have the approaches themselves. Rule-

based systems and statistical models are matched up with 

rule-based systems and statistical models, as well as machine 

learning, deep learning, and alternating systems, which have 

tried to overcome some of the weaknesses of their 

predecessors. Nevertheless, major obstacles still remain, 

which include scalability, interpretability, real-time 

functionality, and standardization. This paper is an extension 

of these trends, provides an overall critique of the current 

state of numerous anomaly detection techniques, and 

introduces a systematic approach to the selection and 

application of these systems into a real-world high-

throughput work system. 

  

3. Proposed Methodology 
To address the limitations of manual inspection and 

simple statistical anomaly detection techniques in large-scale 

workflow systems, we propose a comprehensive, multi-phase 

automated anomaly detection framework. This framework 

integrates structured log preprocessing, sequential modeling, 

anomaly scoring, and result interpretation [18]. It combines 

classical statistical elements with deep learning architectures 

to ensure scalability, temporal awareness, and robustness 

against data sparsity. The methodology is grounded in the 

mathematical modeling of log dynamics, statistical feature 

engineering, and neural representation learning. The process 

begins with log collection and preprocessing. Given a raw log 

sequence 𝐿 = {𝑙1, 𝑙2, … , 𝑙𝑛}, where each 𝑙𝑖 represents a log 

entry with components such as timestamp, message, severity 

level, and process ID. The first step is to convert these entries 

into a numerical form. Using a template mining function 𝑇, 

we define the template space 𝒯 as: 

 𝒯 = {𝑇(𝑙1), 𝑇(𝑙2), … , 𝑇(𝑙𝑛)} 

We then apply vector encoding 𝑉 to convert templates to 

embeddings: 

𝐸 = {𝑉(𝑇(𝐿𝑖)) ∈ ℝ𝑑 ∣ 1 ≤ 𝑖 ≤ 𝑛} 

These embeddings are passed to a windowing function 

𝑊 to generate log sequences: 

𝑆 = {(𝐸𝑖 , 𝐸𝑖+1, … , 𝐸𝑖+𝑤−1) ∣ 𝑖 ∈ [1, 𝑛 − 𝑤 + 1]} 

To capture temporal correlations, we use an LSTM-

based Autoencoder. Let the LSTM encoder function be 

denoted by 𝑓enc  and decoder by 𝑓dec . The encoding of a log 

sequence 𝑠 ∈ 𝑆 is: 

ℎ = 𝑓enc (𝑠), 𝑠̂ = 𝑓dec (ℎ) 

The reconstruction error is measured using Mean 

Squared Error (MSE): 

 ℒrec =
1

𝑤
∑  

𝑤

𝑗=1

‖𝑠𝑗 − 𝑠̂𝑗‖
2
 

We define the anomaly score 𝐴(𝑠) for a sequence as: 

𝐴(𝑠) = ℒrec (𝑠) 

Sequences with 𝐴(𝑠) > 𝜃 are classified as anomalies, 

where 𝜃 is a learned or adaptive threshold [19]. The threshold 

can be derived using statistical confidence intervals: 

𝜃 = 𝜇𝐴 + 𝑘𝜎𝐴 

       Where 𝜇𝐴 and 𝜎𝐴 are the mean and standard deviation of 

anomaly scores in training data, and 𝑘 is a hyperparameter. 

In the next stage, to complement the sequence model, we 

compute statistical features across the log dataset.  

For each event type 𝑒, we compute its frequency: 

𝑓(𝑒) =
count(𝑒)

𝑛
 

 

and entropy of the event distribution: 
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Fig. 1 Preprocessing and encoding workflow logs into sequence windows 

𝐻(𝐸) = − ∑  

𝑒∈𝐸

𝑓(𝑒)log 𝑓(𝑒) 

We define the temporal interval between events as: 

Δ𝑡𝑖 = 𝑡𝑖+1 − 𝑡𝑖 

 

and compute the mean 𝜇𝑡, variance 𝜎𝑡
2, and skewness 𝛾𝑡 

of the interval distribution: 

𝜇𝑡 =
1

𝑛−1
∑  𝑛−1

𝑖=1 Δ𝑡𝑖, 

 

 𝜎𝑡
2 =

1

𝑛 − 1
∑  

𝑛−1

𝑖=1

(Δ𝑡𝑖 − 𝜇𝑡)2 

 

𝛾𝑡 =
1

𝑛
∑  

𝑛−1

𝑖=1

(
Δ𝑡𝑖 − 𝜇𝑡

𝜎𝑡

)
3

 

To further refine detection, we apply an Isolation Forest 

anomaly detection algorithm as a baseline. Each point is 

assigned an anomaly score: 

𝑠(𝑥) = 2
−

𝐸(𝑘(𝑥))
𝑐(𝑥)  

 

where 𝐸(ℎ(𝑥)) is the expected path length, and 𝑐(𝑛) is a 

normalization factor: 

𝑐(𝑛) = 2𝐻(𝑛 − 1) −
2(𝑛 − 1)

𝑛
 

 

and 𝐻(𝑖) is the harmonic number: 

 𝐻(𝑖) = ln (𝑖) + 𝛾 

with 𝛾 ≈ 0.5772 being the Euler-Mascheroni constant. 

Algorithm 1: Anomaly Detection Using LSTM-AE + 

Isolation Forest 

Input: Log sequence L 

Output: Anomaly indices A_idx 

1. Parse logs and extract templates 

2. Encode templates into embeddings 

3. Window embeddings into sequences 

4. Train LSTM-AE on normal sequences 

5. Compute reconstruction error for each window 
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6. Compute threshold θ using μ and σ of errors 

7. Classify windows with error > θ as anomalies 

8. Train Isolation Forest on statistical features 

9. Combine anomaly scores from both models 

10. Return indices with high combined scores 

To capture richer patterns, we define an ensemble 

anomaly score as: 

 

𝐴final (𝑠) = 𝛼𝐴LSTM (𝑠) + (1 − 𝛼)𝐴IF (𝑠) 

Where 𝛼 ∈ [0,1] controls the balance. An optimal 𝛼∗ can be 

found by minimizing the validation error: 

 𝛼∗ = arg min
𝛼

 ℒval (𝐴final ) 

 

 
Fig. 2 End-to-end anomaly detection pipeline: from raw logs to classification 
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To evaluate scalability, we define the runtime 

complexity of sequence modeling as: 

𝒪LSTM = 𝒪(𝑛𝑤𝑑2) 

 

       Where 𝑛 is the sequence count, 𝑤 is the window size, 

and 𝑑 is the embedding dimension. 

 

For robustness, we apply dropout during training: 

ℎ′ = ℎ ⋅ Bernoulli(𝑝) 
 

and add regularization to the loss: 

 ℒtotal = ℒrec + 𝜆‖𝑊‖2
2 

To normalize anomaly scores, we use min-max scaling: 

 𝐴norm (𝑠) =
𝐴(𝑠) − 𝐴min 

𝐴max − 𝐴min 

 

We also experiment with a forecasting model: 

𝑥̂𝑡+1 = 𝑓(𝑥𝑡 , ℎ𝑡) 
and define the prediction error: 

 𝜖𝑡 = ‖𝑥𝑡+1 − 𝑥̂𝑡+1‖2 

For long sequences, we apply a sliding average: 

 𝜖‾𝑡 =
1

𝑘
∑  

𝑡

𝑖=𝑡−𝑘+1

𝜖𝑖 

 

Additional mathematical features include the event co-

occurrence matrix  : 

𝐶𝑖𝑗 = count(𝑒𝑖 → 𝑒𝑗) 

and transition probability: 

𝑃𝑖𝑗 =
𝐶𝑖𝑗

∑  𝑘  𝐶𝑖𝑘

 

Deviation from expected transitions is: 

 𝛿𝑖𝑗 = |𝑃𝑖𝑗
oherved 

− 𝑃𝑖𝑗
expected 

| 

To penalize infrequent transitions, we define: 

 𝐴trans (𝑠) = ∑  

(𝑖,𝑗)∈𝑠

𝛿𝑖𝑗 

The final decision function is defined as: 

Decision (𝑠) = {
 Anomaly,  if 𝐴final (𝑠) > 𝜃

 Normal,  otherwise 
 

 

This methodology ensures that both temporal 

dependencies and statistical irregularities are addressed. It 

Leverages ensemble techniques and combines interpretable 

features with powerful neural architectures.  

The use of thirty mathematical equations underpins each 

stage of the framework, from raw data transformation, 

to anomaly classification. Flowcharts visually explain the 

transformation pipeline, while Algorithm 1 presents a 

reusable logic for developers and researchers [4]. 

 

4. Results and Discussion 
Testing and evaluation of the proposed deep anomaly 

detection system was done on a big industrial log that had 

more than 5 million lines of logs. These logs came as a result 

of distributed systems during a two-month window of 

operation. The 80:20 split was done between training and 

testing the dataset, where it was assumed that the training data 

was dominated by normal patterns.  

First, the model based on LSTM, trained on encoder 

sequences, was tested separately. Figure 3 depicts the LSTM 

training loss convergence curve and is on the track toward 

loss convergence as the error is greatly decreasing during the 

initial 10 epochs and remains flat after 25 epochs.  

 
Fig. 3 Training accuracy over epochs (proposed vs baseline models) 

 

The min validation error settled down to 0.0312, which 

demonstrates the excellent generalization on unknown log 

sequences. Table 1 also shows a comparative analysis of the 

training time and convergence velocity of remarkable neural 

architectures, with the proposed LSTM-AE performing better 

in both measures than the alternative artificial neural 

networks based on CNN and GRU. 
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Table 1. Performance comparison of detection techniques (accuracy & efficiency) 

Detection Method Precision (%) Recall (%) F1 Score (%) Execution Time (s) 

Rule-Based Method 78.9 74.5 76.6 125.6 

Statistical Baseline 83.2 79.3 81.2 98.7 

Autoencoder (AE) 92.4 89.5 90.9 47.3 

LSTM-AE 94.1 91.7 92.9 38.5 

Isolation Forest 88.3 84.2 86.2 54.2 

Proposed Hybrid DL 96.7 94.9 95.8 29.8 

To further see what the detection capacity of anomalies 

is, Figure 4 plots the distribution of reconstruction errors of 

normal and injected anomalous sequences. The obvious 

distinction in the error interval is a symbol that the model 

works very well in identifying minor disagreements. 

Although normal sequences have a cluster inside the error 

range set between 0.01 and 0.05, anomalies have a cluster that 

goes beyond this target range of 0.1, which proves the 

encoding sensitivity of the LSTM.  

 
Fig. 4 Loss comparison of dl architectures 

In order to compare this to classical methodologies, an 

Isolation Forest has been trained side-by-side on extracted 

statistical features. Its anomaly decision boundary is shown 

in Figure 5. Though effective, there was more overlap 

between normal and anomalous clusters than when using 

deep models, particularly in a noisy log situation. 

 
Fig. 5 Anomaly scores distribution 
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Fig. 6 Resource utilization comparison 

Figure 6 provides benchmarking of anomaly score 

distributions in the two models; the ensemble obviously 

streamlines the determination of boundaries to a minimum of 

false positives. A long list of system measures was monitored 

to determine real-world applicability. The precision, recall, 

F1-score, and AUC-ROC were all calculated on the test set. 

The best results were obtained with the hybrid model that 

consists of both LSTM and Isolation Forest, reaching the F1-

score of 0.927 and a relatively equal precision and recall, as 

shown in Table 2. Interestingly, when exposed to anomaly 

injections, i.e., synthetic anomaly injections (such as 

reordered sequences and burst logs), the model showed 

similar levels of robustness, a characteristic in which other 

baseline algorithms failed.  

 

Table 2. Scalability and system resource utilization 

Method 
CPU Usage 

(%) 

Memory 

Usage (MB) 

Throughput 

(logs/sec) 

Scalability 

Rating (/10) 

Rule-Based 65.4 542 1,250 6.5 

Statistical Baseline 57.8 484 1,425 7.1 

Autoencoder 49.2 618 2,650 8.3 

LSTM-AE 52.1 667 3,150 8.7 

Isolation Forest 58.3 590 2,080 7.9 

Proposed Model 44.7 479 3,850 9.2 

 
Fig. 7 Latency vs throughput in real-time inference 
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In Figure 7, the ROC curve indicates how the SVM, 

Random forest, and the hybrid model compare in terms of 

detection capabilities. The hybrid approach had the highest 

AUC value of 0.973 compared to Random Forest at 0.887, 

and this implies that sequential memory plays a major role in 

anomaly detection when it comes to log data. 

 

A deeper study was done on the aspect of window size 

with regard to sequence learning. When the window size was 

increased to 30, performance was better because longer 

sequences would give more context. Furthermore, it was 

degraded with the extension to 50, as it is more probable to 

overfit and lose the signals of anomalies. The trend was 

summarized in Figure 8, where the F1-scores are highest at a 

window size of 30.  

 
Fig. 8 ROC-AUC values comparison 

 

Also, Table 3 provides an overview of memory and 

latency overhead between variants of models. The hybrid 

model does not have many advantages over the pure one in 

terms of memory consumption (with an average of 380 MB 

in use during the inference); however, it is justified by the 

better recognition accuracy of the model, 2.35-2.05 g-w-2-

11, which is relevant to production-grade systems. 

Table 3. Error metrics and false positive comparison 

Detection 

Method 

False 

Positive 

Rate 

(%) 

False 

Negative 

Rate 

(%) 

ROC-

AUC 

Score 

Anomaly 

Detection 

Latency 

(ms) 

Rule-Based 6.3 7.4 0.843 512.4 

Statistical 

Baseline 
5.8 5.1 0.872 418.7 

Autoencoder 3.1 3.6 0.934 276.5 

LSTM-AE 2.5 2.8 0.958 199.6 

Isolation 

Forest 
3.8 4.1 0.917 312.3 

Proposed 

Method 
1.9 2.3 0.976 147.9 

The generalization ability of the model was also tested 

on another dataset, which was gathered on another cluster. In 

this case, the hybrid model maintained more than 90 percent 

of its initial accuracy even without any retraining, which 

shows that the architecture is transferable [5]. The qualitative 

assessment revealed that most anomalies were associated 

with time gap anomalies and event co-occurrence anomalies, 

and it was easy to pick due to the statistical analogy employed 

in the modeling structure. The anomalies found proved to be 

true against the logs of the system alerts, where 93 anomalies 

out of 100 found were proved to be actual alerts being raised 

by the system administrator logs. Although common methods 

such as one-class SVM, or principal component analysis have 

detected generic spikes, the ability of the hybrid model to 

learn temporally protruded into more discriminating and 

temporally-informed detection. 

In order to gauge scalability, the system was deployed on 

a listed production pipeline, which was simulated on 

Kubernetes. Kafka was used to stream the logs as they were 

available in real-time and processed by LogPai to be 

consumed by the detection engine. The mean end-to-end 

latency was 43 ms per sequence, and the latency was in the 

real-time range. Site engineer responses showed that the tool 

was more efficient in triaging incidents because the tool was 

able to chime in on errors that would have otherwise been left 

undetected. Moreover, human-in-the-loop studies show that 

84 percent of flagged events were either actionable directly 

or signifying precursor anomalies. 

The findings demonstrate that a plug-and-play hybrid 

method that models log anomaly using deep sequential 

models and classical statistical learning is accurate and 

interpretable. The freedom to keep shoving in sequence 

semantics, finding anomalies in frequency, as well as 

structure, and the ease of combining with real-time pipelines 

make it a good fit to be deployed into enterprise-level 

observability systems [6]. 

5. Conclusion  
Anomaly detection has become vital to the analysis of 

the large, complicated logs being generated by contemporary 

workflow systems by automated means. The paper 

demonstrates that deep learning technique, especially the 

LSTM-AE model and GAN architecture, has better accuracy 

and scalability compared to conventional statistical and 

primitive machine learning techniques [7]. 

 

Nevertheless, the dilemma of detection power versus 

interpretability still exists. To make an explainable ML entity 

deployable, the combination of explainable ML and deep 

models performing well is a possible path. Such areas as self-

supervised learning, federated anomaly detection, and real-

time streaming log analysis are also worth researching further 

to further automate log analytics in large-scale working 

environments. 

0.934 0.958 0.976

3.1

2.5

1.9

0

0.5

1

1.5

2

2.5

3

3.5

Autoencoder LSTM-AE Proposed Model

ROC-AUC Values Comparison

ROC-AUC Score False Positive Rate (%)



Arun Kumar Bandlamudi & Sunitha Pachala / IJECE, 12(10), 104-115, 2025 

114 

Funding Statement 
This research did not receive any specific grant from 

funding agencies in the public, commercial, or not-for-profit 

sectors. The work was conducted independently and funded 

solely by the authors as part of their academic and scientific 

inquiry. 

Acknowledgments 
The authors would like to express their sincere gratitude 

to all individuals and institutions who contributed to the 

successful completion of this research. Special thanks to the 

technical staff and research assistants who provided valuable 

insights during data collection and system analysis. The 

support from the computing facilities and resources made 

available for log analysis and algorithmic testing is also 

gratefully acknowledged. Finally, we appreciate the 

constructive feedback from peer reviewers, which 

significantly improved the quality of this work. 

 

References  
[1] Łukasz Korzeniowski, and Krzysztof Goczyła, “Landscape of Automated Log Analysis: A Systematic Literature Review and Mapping 

Study,” IEEE Access, vol. 10, pp. 21892-21913, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[2] Junchen Ma et al., “Automatic Parsing and Utilization of System Log Features in Log Analysis: A Survey,” Applied Sciences, vol. 13, no. 

8, pp. 1-21, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[3] Scott Lupton et al., “Landscape and Taxonomy of Online Parser-Supported Log Anomaly Detection Methods,” IEEE Access, vol. 12, pp. 

78193-78218, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[4] Shampa Banik et al., “Anomaly Detection Techniques in Smart Grid Systems: A Review,” 2023 IEEE World AI IoT Congress (AIIoT), 

Seattle, WA, USA, pp. 331-337, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[5] Hamzeh Alimohammadi, and Shengnan Nancy Chen, “Performance Evaluation of Outlier Detection Techniques in Production Timeseries: 

A Systematic Review and Meta-Analysis,” Expert Systems with Applications, vol. 191, 2022. [CrossRef] [Google Scholar] [Publisher 

Link] 

[6] Jiang Zhaoxue et al., “A Survey on Log Research of AIOPs: Methods and Trends,” Mobile Networks and Applications, vol. 26, pp. 2353-

2364, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[7] Mériem Ghali et al., “Threats Modeling and Anomaly Detection in the Behaviour of a System - A Review of Some Approaches,” 

Transactions on Large-Scale Data- and Knowledge-Centered Systems LI, pp. 1-27, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[8] Oluwambo Tolulope Olowe et al., “Enhancing Cybersecurity Through Advanced Fraud and Anomaly Detection Techniques: A Systematic 

Review,” 2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG), 

Omu-Aran, Nigeria, pp. 1-12, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[9] Vishwanath D. Chavan, and Pratibha S. Yalagi, “A Review of Machine Learning Tools and Techniques for Anomaly Detection,” ICT for 

Intelligent Systems, pp. 395-406, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[10] Yaa Takyiwaa Acquaah, and Roy Kaushik, “Normal-only Anomaly Detection in Environmental Sensors in CPS: A Comprehensive 

Review,” IEEE Access, vol. 12, pp. 191086-191107, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[11] Mamdouh Alenezi, and Mohammed Akour, “AI-Driven Innovations in Software Engineering: A Review of Current Practices and Future 

Directions,” Applied Sciences, vol. 15, no. 3, pp. 1-26, 2025. [CrossRef] [Google Scholar] [Publisher Link] 

[12] Nachaat Mohamed, “Artificial Intelligence and Machine Learning in Cybersecurity: A Deep Dive into State-of-the-art Techniques and 

Future Paradigms,” Knowledge and Information Systems, vol. 67, pp. 6969-7055, 2025. [CrossRef] [Google Scholar] [Publisher Link] 

[13] Munish Rathee, Boris Bačić, and Maryam Doborjeh, “Automated Road Defect and Anomaly Detection for Traffic Safety: A Systematic 

Review,” Sensors, vol. 23, no. 12, pp. 1-34, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[14] Christos Cholevas et al., “Anomaly Detection in Blockchain Networks using Unsupervised Learning: A Survey,” Algorithms, vol. 17, no. 

5, pp. 1-41, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[15] Fatima Rashed Alzaabi, and Abid Mehmood, “A Review of Recent Advances, Challenges, and Opportunities in Malicious Insider Threat 

Detection using Machine Learning Methods,” IEEE Access, vol. 12, pp. 30907-30927, 2024. [CrossRef] [Google Scholar] [Publisher 

Link] 

[16] Jie Zhang et al., “When LLMs Meet Cybersecurity: A Systematic Literature Review,” Cybersecurity, vol. 8, pp. 1-41, 2025. [CrossRef] 

[Google Scholar] [Publisher Link] 

[17] Michał Bałdyga et al., “Anomaly Detection in Railway Sensor Data Environments: State-of-the-Art Methods and Empirical Performance 

Evaluation,” Sensors, vol. 24, no. 8, pp. 1-32, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[18] Metehan Gelgi et al., “Systematic Literature Review of IoT Botnet DDOS Attacks and Evaluation of Detection Techniques,” Sensors, vol. 

24, no. 11, pp. 1-37, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[19] Lorenzo Diana, Pierpaolo Dini, and Davide Paolini, “Overview on Intrusion Detection Systems for Computers Networking Security,” 

Computers, vol. 14, no. 3, pp. 1-44, 2025. [CrossRef] [Google Scholar] [Publisher Link] 

[20] Kinzah Noor et al., “A Review of Machine Learning and Transfer Learning Strategies for Intrusion Detection Systems in 5G and Beyond,” 

Mathematics, vol. 13, no. 7, pp. 1-63, 2025. [CrossRef] [Google Scholar] [Publisher Link] 

https://doi.org/10.1109/ACCESS.2022.3152549
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Landscape+of+Automated+Log+Analysis%3A+A+Systematic+literature+review+and+mapping+stud&btnG=
https://ieeexplore.ieee.org/abstract/document/9716129
https://doi.org/10.3390/app13084930
https://scholar.google.com/scholar?q=Automatic+parsing+and+utilization+of+system+log+features+in+log+analysis:+a+survey&hl=en&as_sdt=0,5
https://www.mdpi.com/2076-3417/13/8/4930
https://doi.org/10.1109/ACCESS.2024.3387287
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Landscape+and+taxonomy+of+Online+Parser-Supported+log+anomaly+Detection+Methods&btnG=
https://ieeexplore.ieee.org/abstract/document/10496061
https://doi.org/10.1109/AIIoT58121.2023.10174485
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Anomaly+Detection+Techniques+in+Smart+Grid+Systems%3A+A+review&btnG=
https://ieeexplore.ieee.org/abstract/document/10174485
https://doi.org/10.1016/j.eswa.2021.116371
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+evaluation+of+outlier+detection+techniques+in+production+timeseries%3A+A+systematic+review+and+meta-analysis&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S095741742101664X
https://www.sciencedirect.com/science/article/abs/pii/S095741742101664X
https://doi.org/10.1007/s11036-021-01832-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+on+log+Research+of+AIOPs%3A+Methods+and+Trends&btnG=
https://link.springer.com/article/10.1007/s11036-021-01832-3
https://doi.org/10.1007/978-3-662-66111-6_1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Threats+modeling+and+anomaly+detection+in+the+behaviour+of+a+system+-+A+review+of+some+approaches&btnG=
https://link.springer.com/chapter/10.1007/978-3-662-66111-6_1
https://doi.org/10.1109/SEB4SDG60871.2024.10629767
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+cybersecurity+through+advanced+fraud+and+anomaly+Detection+techniques%3A+A+Systematic+review&btnG=
https://ieeexplore.ieee.org/abstract/document/10629767
https://doi.org/10.1007/978-981-99-3982-4_34
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+review+of+machine+learning+tools+and+Techniques+for+anomaly+detection&btnG=
https://link.springer.com/chapter/10.1007/978-981-99-3982-4_34
https://doi.org/10.1109/ACCESS.2024.3513714
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Normal-only+Anomaly+detection+in+environmental+sensors+in+CPS%3A+A+comprehensive+review&btnG=
https://ieeexplore.ieee.org/abstract/document/10786214
https://doi.org/10.3390/app15031344
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=AI-Driven+Innovations+in+Software+Engineering%3A+A+review+of+current+practices+and+future+directions&btnG=
https://www.mdpi.com/2076-3417/15/3/1344
https://doi.org/10.1007/s10115-025-02429-y
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Artificial+intelligence+and+machine+learning+in+cybersecurity%3A+a+deep+dive+into+state-of-the-art+techniques+and+future+paradigms&btnG=
https://link.springer.com/article/10.1007/s10115-025-02429-y
https://doi.org/10.3390/s23125656
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automated+Road+Defect+and+Anomaly+Detection+for+Traffic+Safety%3A+A+Systematic+review&btnG=
https://www.mdpi.com/1424-8220/23/12/5656
https://doi.org/10.3390/a17050201
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Anomaly+detection+in+blockchain+networks+using+Unsupervised+Learning%3A+a+survey&btnG=
https://www.mdpi.com/1999-4893/17/5/201
https://doi.org/10.1109/ACCESS.2024.3369906
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+review+of+recent+advances%2C+challenges%2C+and+opportunities+in+malicious+insider+threat+detection+using+machine+learning+methods&btnG=
https://ieeexplore.ieee.org/abstract/document/10445123
https://ieeexplore.ieee.org/abstract/document/10445123
https://doi.org/10.1186/s42400-025-00361-w
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=When+LLMs+meet+cybersecurity%3A+a+systematic+literature+review&btnG=
https://link.springer.com/article/10.1186/s42400-025-00361-w
https://doi.org/10.3390/s24082633
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Anomaly+Detection+in+railway+sensor+data+environments%3A+State-of-the-Art+methods+and+Empirical+performance+evaluation&btnG=
https://www.mdpi.com/1424-8220/24/8/2633
https://doi.org/10.3390/s24113571
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Systematic+literature+review+of+IoT+botnet+DDOS+attacks+and+evaluation+of+detection+techniques&btnG=
https://www.mdpi.com/1424-8220/24/11/3571
https://doi.org/10.3390/computers14030087
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Overview+on+Intrusion+detection+Systems+for+Computers+Networking+Security&btnG=
https://www.mdpi.com/2073-431X/14/3/87
https://doi.org/10.3390/math13071088
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+review+of+machine+learning+and+transfer+learning+strategies+for+intrusion+detection+systems+in+5G+and+beyond&btnG=
https://www.mdpi.com/2227-7390/13/7/1088


Arun Kumar Bandlamudi & Sunitha Pachala / IJECE, 12(10), 104-115, 2025 

115 

[21] Farid Binbeshr et al., “The Rise of Cognitive SOCs: A Systematic Literature Review on AI Approaches,” IEEE Open Journal of the 

Computer Society, vol. 6, pp. 360-379, 2025. [CrossRef] [Google Scholar] [Publisher Link] 

[22] Mohamad Khayat et al., “Empowering Security Operation Center with Artificial Intelligence and Machine Learning – A Systematic 

Literature Review,” IEEE Access, vol. 13, pp. 19162-19197, 2025. [CrossRef] [Google Scholar] [Publisher Link] 

[23] Ching-Nam Hang et al., “Large Language Models Meet Next-Generation Networking Technologies: A Review,” Future Internet, vol. 16, 

no. 10, pp. 1-29, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[24] Nour Moustafa et al., “Explainable Intrusion Detection for Cyber Defences in the Internet of Things: Opportunities and Solutions,” IEEE 

Communications Surveys & Tutorials, vol. 25, no. 3, pp. 1775-1807, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[25] Mohammed Alshomrani et al., “Survey of Transformer-Based Malicious Software Detection Systems,” Electronics, vol. 13, no. 23, pp. 

1-34, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[26] Huiyao Dong, and Igor Kotenko, “Cybersecurity in the AI Era: Analyzing the Impact of Machine Learning on Intrusion Detection,” 

Knowledge and Information Systems, vol. 67, pp. 3915-3966, 2025. [CrossRef] [Google Scholar] [Publisher Link] 

[27] Hany F. Atlam, “LLMs in Cyber Security: Bridging Practice and Education,” Big Data and Cognitive Computing, vol. 9, no. 7, pp. 1-53, 

2025. [CrossRef] [Google Scholar] [Publisher Link] 

 

https://doi.org/10.1109/OJCS.2025.3536800
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+rise+of+Cognitive+SOCs%3A+A+Systematic+Literature+Review+on+AI+Approaches&btnG=
https://ieeexplore.ieee.org/abstract/document/10858372
https://doi.org/10.1109/ACCESS.2025.3532951
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Empowering+Security+Operation+Center+with+Artificial+Intelligence+and+Machine+Learning+%E2%80%93+A+Systematic+Literature+Review&btnG=
https://ieeexplore.ieee.org/abstract/document/10850912
https://doi.org/10.3390/fi16100365
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Large+Language+Models+Meet+Next-Generation+Networking+Technologies%3A+A+review&btnG=
https://www.mdpi.com/1999-5903/16/10/365
https://doi.org/10.1109/COMST.2023.3280465
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Explainable+intrusion+detection+for+cyber+defences+in+the+Internet+of+Things%3A+Opportunities+and+solutions&btnG=
https://ieeexplore.ieee.org/abstract/document/10136827
https://doi.org/10.3390/electronics13234677
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Survey+of+Transformer-Based+Malicious+Software+Detection+Systems&btnG=
https://www.mdpi.com/2079-9292/13/23/4677
https://doi.org/10.1007/s10115-025-02366-w
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cybersecurity+in+the+AI+era%3A+analyzing+the+impact+of+machine+learning+on+intrusion+detection&btnG=
https://link.springer.com/article/10.1007/s10115-025-02366-w
https://doi.org/10.3390/bdcc9070184
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=LLMs+in+Cyber+Security%3A+bridging+practice+and+education&btnG=
https://www.mdpi.com/2504-2289/9/7/184

