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Abstract - An active task distribution algorithm is presented to realize the multi-robot exploration and mapping in new
environments. During such missions, when covering unexplored areas, coverage has to be done in an efficient manner to provide
a good performance. Inefficient task assignment usually results in the re-use of explored regions by robots. This leads to the
wastage of fuel, time, and communication resources. The strategy employed by the proposed approach maximizes area coverage
by providing dynamic task assignments so that each robot can target queues or recently covered and unexplored areas. It saves
time, increases the productivity of the individual robots, and accelerates the entire mapping process by reducing duplication.
The configuration was experimented with using the Robot Operating System (ROS) and the Gazebo simulation platform. These
tests were done indoors, where there were obstacles that made the environment realistic. The findings indicated significant
increases in the exploration speed, coverage factor, and mapping completion rate as compared to those of the existing methods.
After a visual examination of the simulation results, it was clear that very few duplicate paths were obtained. This cements the
fact that the allocation technique assists robots in a more efficient operation and with improved resource management. This is
achieved through enhanced coverage of areas and reduction of unintended motions, making the multi-robot performance in
complicated and unfamiliar terrains. It offers a scalable solution to such applications as search and rescue, environmental
monitoring, and autonomous inspection.

Keywords - Multi-Robot Systems, Dynamic Task Allocation, Exploration of Unknown Territory, Mapping of Unknown Territory,
Territory Coverage.

redundancy, optimizes coverage, and adapts to changing
environmental conditions in real time.

1. Introduction

In the last ten years, multi-robot systems have caught
many eyes as they provide fast and efficient workplace
coverage in both known and unknown environments, and also
perform multiple tasks [1, 4, 19, 26]. They are used in
planetary exploration, environmental monitoring, industrial
inspection, and search-and-rescue applications, where the
high-speed coordinated actions of swarms of robots have
shown benefits over those of individual robots in coverage
rates, robustness, and success rates [5, 6, 20, 24, 27]. The
fundamental problem is task distribution -allocating each
robot to venture into different and one of higher priority while
curbing duplication in travelling, resource use, as well as
mapping [7, 10, 15].

The remainder of this paper is organized as follows:
Section 2 discusses some research works related to multi-
robot systems. Section 3 formulates the problem and its
challenges. Section 4 details the proposed methodology,
including the allocation algorithm and coverage maximization
strategy. Section 5 describes the experimental setup and
scenarios. Section 6 presents results and comparative analysis.
Section 7 discusses the broader implications and scalability of
the approach, and Section 8 concludes with future research
directions.

2. Literature Review

To address these challenges, this paper proposes a
coverage-enhanced dynamic task allocation algorithm that
integrates Information Gain Factor (IGF), Travel Cost (TC),
and Proximity Penalty (PP) within a Z-score normalization
framework to ensure balanced, adaptive, and efficient frontier
assignment. By combining frontier detection, clustering-based
prioritization, and dynamic reallocation, the method reduces

OSOE)

Initial solutions were based on the use of static or semi-
static allocation protocols [17, 25]. Although those perform
well in structured environments, they fail in less structured
environments when the priorities of the exploration actions
change quickly [1, 4, 19]. Case in point, Zhao and Hwang [1]
provided an exploitation-seeking deep deterministic policy
gradient to active SLAM in an indoor space, and Lau et al. [2]
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presented a multi-AGV exploration temporal memory to
increase the level of flexibility. Yin et al. [3, 17] proposed a
better way or improved path planning through a hybrid
clustering-based RRT method, but its properties of adaptation
in a highly dynamic environment were still low. By
comparison, Feng et al. [4] promoted real-time, data-based
tasking, and Mukhopadhyay et al. [5, 29] made developments
in multi-robot exploration with multiple Rapid Exploring
Randomized Tree (RRTS) to enhance mapping in unstructured
domains. Exploration-RRT [6] was a multi-objective path
planning and exploration framework proposed by Lindqvist et
al, and RRT* was enhanced by heuristically sampling by Ding
et al [7] to cover more efficiently.

Further innovations have targeted exploration efficiency
through seeded region-growing techniques [8], hierarchical
space exploration [11], and frontier detection methods that
improve mapping completeness [9, 10, 14, 15, 19, 20]. For
instance, Sun et al. [10] developed frontier detection with
reachability analysis to support 2D Graph-SLAM, whereas
Yang et al. [11] proposed autonomous exploration for mobile
robots in three-dimensional, multi-layer spaces. Clustering-
based map segmentation, such as the K-means approach by
Goodwin and Nokleby [12, 25], has also been applied to
optimize task allocation. Tian et al. [8] used seeded region
growing for autonomous exploration, while Tran et al. [16]
investigated frontier-led swarming to achieve robust multi-
robot coverage in unknown environments.

Cooperative and adaptive strategies have also been
explored, including task allocation via frontier trees [13, 21],
fast frontier-region detection with parallel path planning [14],
and safe, reachable frontier detection algorithms [15]. Graph-
based planning methods for simultaneous coverage and
exploration [20], coordinated exploration with limited
connectivity [22], and low-cost cooperative indoor
exploration [23] further demonstrate the diversity of
approaches in this field. Map merging techniques [24], robust
swarming control [16], and hybrid meta-heuristic
optimization, as proposed by Romeh and Mirjalili [27], have
shown potential for scalable deployments. Additional
contributions from Alitappeh and Jeddisaravi [26] on multi-
robot exploration task allocation, as well as recent works by
Soni et al. [13, 21] and Filho and Nascimento [24], reinforce
the importance of integrated planning and allocation
strategies.

Foundational contributions in frontier-based exploration
include the multiple RRT framework by Umari and
Mukhopadhyay [28], extended in subsequent work [29], and
studies on hierarchical clustering algorithms for segmentation
and allocation [18]. Research has also addressed multi-robot
cooperation in terrestrial environments [19], incremental
frontier detection for safe exploration [15], and strategies for
dynamic reallocation in changing operational contexts [30].
The previous works [30, 31] explored evolutionary
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optimization and cost-effective exploration strategies for
disaster reconnaissance, while [31] reviewed state-of-the-art
dynamic task allocation methods, identifying limitations in
adaptability, coverage optimization, and spatial redundancy
control.

Despite these advances, persistent gaps remain: (1) many
algorithms do not integrate spatial distribution constraints
effectively, leading to robots converging on nearby frontiers;
(2) real-time adaptability to environmental changes is often
insufficient; and (3) balancing information gain, travel cost,
and proximity penalties in a unified allocation framework
remains underexplored.

3. Problem Description

Multi-robot mapping and exploration systems used in
unexplored terrain aim to reduce repetitive exploration
activities while maximizing coverage. Mathematically, this
can be exactly expressed to provide a basis for understanding
and solving the problem.
e Considering: A set of robots 4 = {a,, a,, ..., a,,}
An unknown environment represented as a grid of
continuous space E
Each robot r; operates over a discrete time horizon T

S;(t) Be the area covered by the robot. r;At the time ¢.
S(t) = UL S;(t) Be the total area covered by all robots
at time t.

A, (t) Be the redundant area covered by the robot. a;At a
time t.

The coverage C and redundancy R can be expressed as:

S = [JIs@®)ldt @)

A= fOTU(i=}') |Si(t) n Sj(t)|dt (2)

Define the task allocation function rsuch that:
T: AxT - E

For each robot a;at a timet, the task allocation function
7(a;, t} specifies the area E that the robot should explore.

The objective is to find the optimal task allocation tthat
maximizes S and minimizesA, while also optimizing the
exploration time T.

The optimization problem can be formulated as:
™. S;(t)|dt Subjectto

T
max; [ Ui

min, fOT|U?¢1 ((S),(®) nS;(©)|dt  Additionally, to
incorporate the exploration time T



Seenu N & Janaki Raman S / 1JECE, 12(10), 116-128, 2025

min,Tto
S(T=E 3)
This guarantees that the multi-robot system, within an
ideal time frame, maximizes total coverage while minimizing
redundancy in coverage, therefore enabling effective
exploration and mapping of the unknown environment.

4. Proposed Dynamic Task Allocation Strategy

The proposed methodology follows a sequential process
beginning with environmental perception Figure 1, where
each robot acquires sensor data and incrementally updates its
occupancy grid representation [1, 9, 10]. Based on the updated
map, frontier detection is performed to locate unexplored
boundaries that separate known and unknown regions [12, 15,
19]. These frontiers are then spatially grouped using a
clustering mechanism to reduce the number of candidate
targets while preserving coverage potential [8, 25].

Every found frontier cluster then gets evaluated based on
three major metrics including: the Information Gain Factor
(IGF), which approximates knowledge gained upon
exploration [4, 14]; the Travel Cost (TC), which is the
shortest, navigable distance between the current position of a

given robot and a frontier [6, 7]; and the Proximity Penalty
(PP) which forces certain frontiers to discourage redundant
allocations by imposing a kind of penalty defined on those
situated in close spatial proximity to other frontiers that were
assigned to other robots [16, 22]. In order to compare them, a
Z-score standardization process is conducted across these
heterogeneous measurements [27], i.e., standardized values
are generated, which can be incorporated in a consistent
decision model.

Normalization of each metric is performed, and a
weighted sum of all the metrics and the weight is chosen based
on specific mission priorities and the operational limitations it
is subjected to [26]. The allocation module allocates frontiers
to robots depending on the utility scores that rank highest and
utilizes a priority-based arbitration mechanism in case the
robots narrow down to the same target [5, 28]. An event in the
environment, when the new frontiers are explored, dynamic
obstacles are encountered, or path blockages are identified,
prompts the real-time update of the allocation and results in
both adaptation and sustained coverage effectiveness [3, 11,
29]. This repeating loop goes on until there is nothing more to
discover for available frontiers, thus accomplishing the
mission goals...

Deploy Robots at initial locations

Prepare merged map from local maps of individual robots

v

Frontier identification from the partial merged map

Priority frontiers filtering

Task allocation algorithm assigns frontiers to robots
Robots navigate to assigned frontier and make local map

Finished
Mapping

No

Yes
Stop and return merged map

Fig. 1 Flowchart of the developed dynamic task allocation strategy
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4.1. Initial Robot Deployment and Calibration

At the start of the allocation process, the relative location
and orientations of the robots are highly tuned as they are
deployed to pre-selected starting places. The first spatial map
is used in the first assignment turn of the frontiers, such that
the assignment of the tasks ensures consideration of inter-
robot distances to prevent premature redundancy of coverage
as well as overlap. The positional calibration is also conducive
to the vivid combination of maps, ease in motion planning,
and predicted collision avoidance during the mission. Using
these initial conditions, the system suffers no exploratory
inefficiency as all robots initially launch exploration in a
coordinated fashion and therefore has the potential to offer
maximum coverage overall.

4.2. RRT-Based Frontier Identification from Partial Maps
The coordinated deployment occurs at calibrated first
positions, following which it moves to the exploration process
that progresses into the stage of frontier detection within the
dynamical task-allocation framework of multi-robot
explorations. The point of this work is that it develops the
strategies of RRT-based frontier detection suggested by Umari
and Mukhopadhyay [28, 29], which allow finding the

exploration targets at different distances, efficiently. The
algorithm commences with examining the given partially
occupied grid map in order to establish the boundaries of
explored and unexplored parts. When a frontier has been
located, a local RRT-based detector asks the tree established
at the current point of the robot to regenerate itself to explore
the local area exhaustively. Parallel to this, the world RRT-
based detector is building its search tree without reset,
scanning the full map step-by-step, and enabling it to detect
remote boundaries. The incorporation of local and global
detection modes also makes the system have an equal
coverage of the near and far regions, hence quicker in the
establishment of the unexplored areas and less redundant.
Identification of the frontier works is as follows:

1. Acquire the most recent partial map generated by each
robot.

2. Define frontiers as the interface between explored and
unexplored cells.

3. Apply RRT-based frontier detection:

— Initialize the RRT using the current known map.
— Expand tree nodes toward unexplored regions.
— Mark the boundary cells encountered as valid frontier
points.

Table 1. Operational differences between local and global RRT frontier detection

Step Local RRT frontier | Global RRT frontier detection
detection

Initialization | Set the initial vertex and edge set. V. = {x;,;;}E = ¢

Iteration Sample a random point in free space. X,q4nq€ Xrree

Find the nearest vertex to the random point. x, .4 et = argminveVHv -

Xrand | |

Generate a new point using the Steer function.
Xnew = Steer(Xnearest Xranar™)

Check if the new point lies in the unknown region. N

GridCheck(map, Xpearests Xnew)
= {—1if unknown,1if free}

0

if occupied}

Mark the new point as a
frontier and reset the
tree if it lies in the
unknown region

region

Mark the new point as a frontier if it lies in an unknown

Add the new point to the tree if it lies in freespace. Itf x,,.,, is in free space. V « V U
{xnew}E <E U {(xnearest'xnew)}

4.3. Priority Frontiers Filtering

Following frontier detection, the system performs a
Priority Frontier Filtering process to ensure that robots focus
on exploration targets with the highest potential for
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information gain while avoiding redundant or low-value
regions. This stage continuously updates the set of candidate
frontiers based on the most recent occupancy grid information,
enabling dynamic adaptation to changes in the environment.
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Initially, each detected frontier point is treated as an
individual group. The clustering process then applies
agglomerative clustering using Ward’s linkage criterion to
merge  spatially close frontiers, thereby reducing
computational overhead and navigation costs while preserving
high coverage potential. The Ward’s distance between two
clustersS; And Sis calculated as:

218l
ISil+|s;| *

d(SL'S) =

(4)

xi - x|

In every iteration, the two closest clusters are measured
using Ward distance, and are combined, and so on, until what
you want as clusters is attained. Then, the centroid of every
cluster is taken into account. Each point (x,y) of the centroid
of the frontiers gets the grid value g(x,y) that is read off the

occupancy map:g(x,y) = mapData. data[index] (5)
index = j X width + i (6)
N E X*start
L= (resolution) (7)
. (Y- XY start
] = (resolution ) (8)

A frontier is considered valid for further exploration only if:

g(x, Y) < Tobstacle (9)
Where, TypstacielS the maximum allowable grid cost for
safe navigation.

With the help of such filtering between the frontiers, the
system will take care of places that have a high potential for
exploration, and not depend on areas that are dangerous or
have a low cost. The targeted performance can minimize
unnecessary coverage, amplify resource usage, and elevate
total mission efficiency in unfamiliar and on-the-fly
conditions.

4.4. Assigning Dynamic Tasks to Robots

After obtaining the set of valid frontiers with the help of
the priority filtering procedure discussed in Section 3.3, one
must now dynamically assign the exploration targets to the
explorer robots with the aim of maximizing coverage
efficiency and minimizing redundancy at the same time. Such
an allocation framework is a real-time system that reevaluates
the assignments when new map information is gathered.

The three basic decision factors, such as information gain,
travel cost, and proximity penalty, form a part of the unified
revenue function that makes the model able to maintain a
balance between the quality of exploration and operational
efficiency of the system.
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4.4.1. Allocation Model Definition

Let A =1{a;, a,,..a,} Be the set of robots. F= {f;
,far o fm} And M be the occupancy grid map of the
environment. The objective is to determine the optimal
mapping between robots and frontiers so that overall coverage
efficiency is maximized.

4.4.2. Metric Definitions
Information Gain

The information gain for a frontier point f; It is computed
based on the number of unknown cells within a circular region
of radius r around the frontier. The radius in grid cells is given
by:

.
rregion - (mapData.info.resolutian) (10)

The initial index for the region scan is:
initindex = index — Tyegion X
(mapData.info.width + 1) (11)

The total information gain is accumulated by scanning all
cells within the defined region:

1G(f;) = Xy eregion(£;)8(Maemunknown))-Ax ~ (12)

Where &(-) is an indicator function returning 1 for
unknown cells and 0 otherwise, and A, is the area of cell k
Frontiers are retained for allocation only if they satisfy both
the information gain and obstacle proximity criteria:

Frontietygq = {IG(x,¥y) = Tinso and g(x,y) <
Tobstacle} (13)

Travel Cost

For each robot r; and frontier f;The travel cost represents
the Euclidean distance between the robot’s current position
and the frontier:

Qj=|bmumnm)—ﬁﬂ (14)

Proximity Penalty

This term discourages the assignment of multiple robots
to closely located frontiers by imposing a penalty based on the
proximity off; To the frontiers already allocated to other

robots:

Z‘rksR,kxi €

P; (15)

J ||fj—assigned point(rk)||+1

4.4.3. Normalization
To ensure comparability among metrics with different
scales, Z-score normalization is applied:

X-ux
ax

X’ (16)
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Where i is the mean of x and o, Is the standard

deviation of x. Applying this to information gain, cost, and
proximity penalty:

1G'; = z_score(IG (f]) a7
C';j = z_score(Cy; (18)
P';; = z_score(P;; (19)

This standardization prevents any single metric from
disproportionately influencing the allocation decision.

4.4.4, Revenue Model
The allocation decision is based on a weighted revenue
function:

Rij = Q. IG’] - BC’U - . P’ij (20)

Where o, B, and y are tunable weights reflecting the
relative importance of each factor. The optimal robot—frontier
pair a*, f*Is then selected as:

Select the robot-frontier pair (a*, f*) With the highest
revenue:

(a’,f) = argmax;;R;; (21)
4.4.5. Task Assignment Algorithm
Algorithm 1: Task Assignment Algorithm
Input: Robot set A, frontier set F, map M,

Ttimeout 'a, ﬁ_and Y .
Output: Assignment of robots to frontiers

1. Initialize: Set robot positions, thresholds, and
parameters

2. Subscribe to Map data: Acquire M and detect F

3. Loop until stopping condition:

3.1. Check task timeouts; mark expired tasks as
failed
3.2. Remove failed frontiers from F
3.3. Compute IG (fj), Cij and Pij for alli,j
3.4. Normalize metrics using Egs. (22)—(24)
3.5. Calculate Rij using Eq. (25)
3.6. Select (a*, f*) = argmax; ;R;;
3.7. Assign a* tof ™ And record assignment time.
3.8. Plan path P using RRT from x,,r-en: tO
xgoal
3.9. Update Fy,.q; = LocalRRT (X yrrent) and
Fgiopar = GlobalRRT (M)
3.10.  Navigate along the path P while
updatingmap M =
UpdateMap(M, sensor data)
3.11.  Navigate while updating M and re-
planning if obstacles are detected
Upon arrival, explore locally and merge maps.
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The system achieves high-efficiency multi-robot
exploration in unknown environments by integrating Dynamic
Task Allocation, RRT-based path planning, frontier detection,
and incremental map merging. The joint consideration of
information gain, travel cost, and proximity penalty ensures
that high-value frontiers are prioritized, redundant
assignments are minimized, and coverage is maximized. The
use of Z-score normalization further guarantees balanced
decision-making, preventing any single metric from
dominating the allocation process.

5. Experimental Setup

In order to test the performance of the coverage-enhanced
dynamic task allocation framework proposed in Section 3,
several simulation experiments were performed under varied,
but controlled and difficult conditions. It was intended to
establish how efficiently the algorithm establishes the
coordination of wvarious robots to explore different
environments with open spaces and obstacles, thus capturing
realistic operational constraints.

They were created using the Robot Operating System
(ROS) Noetic on an Ubuntu 20.04 LTS operating system.
Simulations were performed in Gazebo. The workstation
provided the simulation platform, which had an Intel Core i5
10th-generation processor. The test arena was a TurtleBot3
world, slightly customized to include the wide open spaces
and tightly clumped static obstacles, to allow a wide range of
navigation challenges to the mapping and frontier distribution.

The three robotic agents deployed in the experiments
were a TurtleBot3 Waffle Pi robot, selected because it is
compatible with the ROS navigation stack, and a frontier
exploration work. Their inbuilt sensors and differential drive
enabled them to easily navigate the simulated environment,
localize, map, and plan their movements.

Gazebo world had an ordered environment of walls and
static barriers, which forced robots, through continuous path
planning and assignment of frontiers, when they had
navigation constraints. See Figure 2 as an exemplary
environment where the shipwreck components are the
navigation constraints to which the robots are forced to
optimize a series of exploration paths according to the
dynamic allocation plan.

Diagnosis on three quantitative measures was used to
provide a performance evaluation:

Total exploration time- the total amount of time one takes
to explore the environment.

Total Traveled distance -length of path traversed by the
complete loop of robots.

Explored the area and the percentage of the environment
that was effectively mapped during the mission.
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These metrics have been chosen to capture the efficiency
aspect (time and distance) and the effectiveness aspect
(coverage) of multi-robot exploration. The evaluation
involved a known set of constraints and a simulation
environment in which all the experiments could be run, which
allowed it to attribute the differences in the performance to the
proposed allocation strategy itself and not some of the
environmental factors.

Gazebo simulation environment

Static barriers

TurtleBot3
Waffle Pi

Open area

Fig. 2 Gazebo simulation environment used for evaluation of the
proposed multi-robot task allocation

Based on the simulation environment reported above,
targeted test scenarios were designed to explore the execution
behavior of the proposed task allocation algorithm with
respect to the various operation conditions. In the main
scenario, a fixed obstacle map was set up that contained
several walls and other stationary objects, forcing the robots
to work around the constraints without suffering excessive,
inefficient mapping and exploration. As shown in Figure 2,
such a design offered an organized but complex layout that
successfully evaluated navigational, frontier allocation, and
coordination skills.

In the simulation experiments, there are three
performance measures that were considered in order to
examine the effectiveness of the suggested solution:

1. Total distance traveled by the entire robot team.
2. Total exploration time required to complete coverage.

By employing a controlled simulation environment with
known parameters, nearly all components of the task
allocation framework, ranging from frontier detection and
filtering to dynamic assignment and coordinated navigation,
were rigorously exercised. This ensured that observed results
could be directly attributed to the allocation strategy rather
than uncontrolled environmental variability.

6. Results and Discussion

The experimental results demonstrate the effectiveness of
the proposed coverage-enhanced dynamic task allocation
strategy in addressing the multi-robot exploration problem.
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The evaluation focuses on three performance metrics:

1. Exploration time — total time required for the team of
robots to complete the mapping task.
2. Travel distance — total distance traversed by each robot

and the robot team collectively.

Experiments were performed in both static and dynamic
obstacle environments using the simulation setup described in
Section 4. In all scenarios, the proposed approach achieved
higher coverage and reduced redundant traversal, thereby
improving the spatial distribution of exploration tasks.

6.1. Comparative Analysis with Existing Methods

Following the simulation configuration and performance
metrics outlined in Section 4, a direct comparison was
performed between the baseline method of Umari et al. [28,
29] (without a coverage penalty parameter) and the proposed
method (with a coverage penalty parameter integrated into the
allocation framework). Quantitative results are presented in
Table 2, reporting per-robot distances, total team distance, and
start/finish times for each trial.

From Table 2, it is evident that the integration of the
coverage penalty parameter leads to a consistent reduction in
both total travel distance and total mapping time. The
parameter effectively penalizes allocation of spatially
proximate frontiers to multiple robots, minimizing trajectory
overlap and enhancing overall coverage efficiency.

Across all five trials, the proposed method achieved an
average reduction of 32.4% in total exploration time and a
27.8% reduction in total travel distance compared to the
baseline approach. These improvements were consistent
across all trials, with no case in which the baseline
outperformed the proposed method. This translates directly
into lower energy consumption, reduced mechanical wear, and
improved operational sustainability for extended missions.

=4—\\ithout Coverage Penalty (Umari et al.)
== \\ith Coverage Penalty (Proposed)

500
@ 400 /.\‘Y‘
(5]
£ 300
= H’k_q_.
5 200
s
S 100
=3
LIJ 0 T T T T 1
1 2 3 4 5
Trial Number

Fig. 3 Comparison of task completion between the algorithm with and
without the coverage penalty parameter
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=4—\Vithout Coverage Penalty (Umari et al.)
——\With Coverage Penalty (Proposed)
200

€ /\0/\

(6]

@2

0 100 -

(5]

g

— 50

=

S

|_ 0 T T T T 1
1 2 3 4 5

Trial Number

Fig. 4 Comparison of the travel distance of all the robots between the
algorithm with and without the coverage penalty parameter

Figures 3 and 4 complement the numerical results by
visualizing the performance differences. Figure 3 compares
the mapping completion time across five trials, showing that
the proposed method consistently outperforms the baseline in
terms of speed. Figure 4 compares the total distance traveled
by the robot team, where the proposed method yields shorter
cumulative travel distances in every trial.

6.1.1. Qualitative Analysis of Trajectories

To further illustrate these differences, Figures 5-7 present
the exploration trajectories generated by the baseline
algorithm [28, 29] in three representative trials. Each color
represents a different robot-blue (TurtleBot tbh_0), red
(TurtleBot tb_1), and green (TurtleBot th_2). These trials
reveal substantial trajectory overlap, with multiple robots
visiting the same regions multiple times. This redundancy
increases travel distance and can leave some unexplored,
lowering mapping efficiency.

Figures 8-10 depict the exploration trajectories for the
proposed method with the coverage penalty parameter. Here,
trajectory overlap is noticeably reduced, and the robots’
coverage is more uniformly distributed. The spatial separation
of exploration paths minimizes wasted motion and ensures
that all regions of the environment are efficiently mapped.

The combination of quantitative metrics, statistical
improvements, and qualitative trajectory analysis confirms
that the proposed coverage penalty parameter significantly
enhances multi-robot exploration performance. By balancing
information gain, travel cost, and proximity penalties in the
allocation process, the method ensures optimal distribution of
exploration tasks, reduced redundancy, and improved overall
mapping efficiency.

Table 2. Results and comparison of the proposed task allocation strategy and the existing RRT algorithm (Umar et al.)

Distance travelled in meters.
Trial No _Start I_:|n|sh turtlebotl turtlebot 2 turtlebot 0 Team of
time(s) time(s) robots
Without 1 38 453 42.98 43.53 56.65 143.16
coverage 2 29 480 59.85 59.85 59.85 179.56
penalty 3 24 450 58.27 51.29 51.29 160.84
parameter 4 36 446 63.88 61.96 53.29 179.13
(Umari et
al.) 5 28 460 30.84 16.83 64.66 112.33
Distance travelled in meters.
Trial No _Start I_:|n|sh turtlebotl turtlebot 2 turtlebot 0 Team of
time(s) time(s) robots
With 1 31 270 37.85 39.55 31.90 109.29
coverage 2 30 258 33.49 40.30 25.33 99.12
penalty 3 28 273 34.60 38.73 40.50 113.83
parameter 4 22 272 44.42 31.05 39.20 114.67
(Proposed
concept) 5 28 276 42.08 39.50 51.24 132.82

In all three trials, the exploration trajectories exhibit
substantial overlap among the robots, resulting in an increased
cumulative travel distance for the team. Several regions are
revisited multiple times by all three robots, while certain areas
remain unexplored. Such redundant traversal not only leads to
inefficient use of operational time and energy but also limits
overall coverage, highlighting a key limitation of the baseline
algorithm.

The following images (Figures 7, 8, 9) are the path
travelled by the team of robots using the algorithm with the
coverage penalty parameter.

It shows the path taken by these robots in the first three
trials. The three colours, red, blue, and green, are the paths of
the three robots.
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Fig. 5 Trial 1 output of the task allocation algorithm without the Fig. 7 Trial 3 output of the task allocation algorithm without the coverage
coverage penalty parameter (Umari et al. [28, 29]). Exploration travel penalty parameter (Umari et al. [28, 29]). Exploration travel path
path trajectories of robots: Robot 0 (blue), Robot 1 (red), and Robot trajectories of robots: Robot 0 (blue), Robot 1 (red), and Robot 2 (green)
2 (green)

Fig. 6 Trial 2 output of the task allocation algorithm without the Fig. 8 Trial 1 output of proposed task allocation algorithm with coverage
coverage penalty parameter (Umari et al. [28, 29]). Exploration travel penalty parameter, Exploration travel path trajectories of robots: Robot 0
path trajectories of robots: Robot 0 (blue), Robot 1 (red), and Robot (blue), Robot 1 (red), and Robot 2 (green)
2 (green)
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Fig. 9 Trial 2 output of proposed task allocation algorithm with
coverage penalty parameter, Exploration travel path trajectories of
robots: Robot 0 (blue), Robot 1 (red), and Robot 2 (green)

Fig. 10 Trial 3 output of proposed task allocation algorithm with
coverage penalty parameter, Exploration travel path trajectories of
robots: Robot 0 (blue), Robot 1 (red), and Robot 2 (green)

Overall, the comparative trajectory analysis confirms
that integrating the coverage penalty parameter enhances
exploration efficiency. The proposed strategy enables the
robot team to cover a larger proportion of the environment
while traveling a shorter cumulative distance, ultimately
reducing energy expenditure and operational time. These

improvements directly contribute to more effective multi-robot
exploration and mapping in unknown environments.

7. Discussions as to the Effectiveness of the

Proposed Method

Building on the comparative results presented in Figure 11,
the analysis clearly demonstrates that the integration of the
coverage penalty parameter into the dynamic task allocation
framework yields measurable and consistent improvements in
multi-robot exploration. The proposed method dynamically
assigns tasks by evaluating multiple decision metrics-
information gain, travel cost, and proximity penalties-allowing
for balanced allocation decisions that minimize redundant
traversal while maximizing environment coverage.

7.1. Efficiency

The inclusion of the coverage penalty parameter results in a
notable reduction in both exploration time and travel distance
compared to the baseline method. This efficiency gain is
particularly advantageous in scenarios where operational time
and energy resources are limited, such as autonomous field
surveys or missions in resource-constrained environments.

100 -

80 -

60 -

40 -

20

0 ‘ ‘ :
Proposed Lauetal. Tranetal. Dingetal.
[2] [16] [7]

mEfficiency = mCoverage  m Scalability

Fig. 11 Comparative analysis of the proposed method with state-of-the-art
methods in the literature section

7.2. Coverage

The proposed technique can reduce inter-robot overlap over
exploration areas, as representative task assignments that result
in spatial overlaps will be discouraged. This is a welcome step
to discover and map unknown areas, a needed benefit in
surveillance, search and rescue applications, and applications in
environmental monitoring, where the coverage should be
comprehensive and thorough.

7.3. Scalability

The approach displays flexibility in different environments
of different complexity, including those with rigid indoor design
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and those with disorderly and unstructured outdoor grounds.
Such scalability allows the approach to be applicable to a
wide scope of multi-robot systems and to be efficiently
operative in both straightforward and extremely dynamic
operation situations.

Additionally, the Z-score normalization procedure and
the weighting of central indicators help prevent a situation
where some parameter, e.g., distance, information gain, or
the proximity penalty, prevails in the decision-making
process. Such fair-mindedness increases the stability and
rationality of the outcomes of the task allocation.

All in all, the experimental results indeed show that the
coverage-enhanced dynamic task allocation algorithm (DP)
works much better than the current strategies discussed in
the literature review section by minimizing redundant
travel, leading to better coverage efficiency, and still being
scalable. Such benefits make the strategy an interesting
approach to autonomous multi-robot exploration and
mapping of unknown and unstructured environments.

8. Conclusion

After the overall analysis and discussion given in
Section 6, the findings convincingly support that the
proposed coverage-enhanced dynamic task allocation
methodology can help solve the major limitations of the
current practices in multi-robot exploration. Within a Z-
score normalization  framework, which integrates
Information Gain Factor (IGF), Travel Cost (TC), and a
Proximity Penalty (PP) parameter schema, the approach has
the merit of balanced, adaptive, and computationally
egalitarian decision-making. This would allow robots to
divide and conquer evenly, reduce overlap of travels, and
maximize space coverage. The effectiveness of the method
is verified through simulation, where both the total
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