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Abstract - An active task distribution algorithm is presented to realize the multi-robot exploration and mapping in new 

environments. During such missions, when covering unexplored areas, coverage has to be done in an efficient manner to provide 

a good performance. Inefficient task assignment usually results in the re-use of explored regions by robots. This leads to the 

wastage of fuel, time, and communication resources. The strategy employed by the proposed approach maximizes area coverage 

by providing dynamic task assignments so that each robot can target queues or recently covered and unexplored areas. It saves 

time, increases the productivity of the individual robots, and accelerates the entire mapping process by reducing duplication. 

The configuration was experimented with using the Robot Operating System (ROS) and the Gazebo simulation platform. These 

tests were done indoors, where there were obstacles that made the environment realistic. The findings indicated significant 

increases in the exploration speed, coverage factor, and mapping completion rate as compared to those of the existing methods. 

After a visual examination of the simulation results, it was clear that very few duplicate paths were obtained. This cements the 

fact that the allocation technique assists robots in a more efficient operation and with improved resource management. This is 

achieved through enhanced coverage of areas and reduction of unintended motions, making the multi-robot performance in 

complicated and unfamiliar terrains. It offers a scalable solution to such applications as search and rescue, environmental 

monitoring, and autonomous inspection. 

Keywords - Multi-Robot Systems, Dynamic Task Allocation, Exploration of Unknown Territory, Mapping of Unknown Territory, 

Territory Coverage. 

1. Introduction 
In the last ten years, multi-robot systems have caught 

many eyes as they provide fast and efficient workplace 

coverage in both known and unknown environments, and also 

perform multiple tasks [1, 4, 19, 26]. They are used in 

planetary exploration, environmental monitoring, industrial 

inspection, and search-and-rescue applications, where the 

high-speed coordinated actions of swarms of robots have 

shown benefits over those of individual robots in coverage 

rates, robustness, and success rates [5, 6, 20, 24, 27]. The 

fundamental problem is task distribution -allocating each 

robot to venture into different and one of higher priority while 

curbing duplication in travelling, resource use, as well as 

mapping [7, 10, 15]. 

 

To address these challenges, this paper proposes a 

coverage-enhanced dynamic task allocation algorithm that 

integrates Information Gain Factor (IGF), Travel Cost (TC), 

and Proximity Penalty (PP) within a Z-score normalization 

framework to ensure balanced, adaptive, and efficient frontier 

assignment. By combining frontier detection, clustering-based 

prioritization, and dynamic reallocation, the method reduces 

redundancy, optimizes coverage, and adapts to changing 

environmental conditions in real time. 

 

The remainder of this paper is organized as follows: 

Section 2 discusses some research works related to multi-

robot systems. Section 3 formulates the problem and its 

challenges. Section 4 details the proposed methodology, 

including the allocation algorithm and coverage maximization 

strategy. Section 5 describes the experimental setup and 

scenarios. Section 6 presents results and comparative analysis. 

Section 7 discusses the broader implications and scalability of 

the approach, and Section 8 concludes with future research 

directions. 

2. Literature Review 
Initial solutions were based on the use of static or semi-

static allocation protocols [17, 25]. Although those perform 

well in structured environments, they fail in less structured 

environments when the priorities of the exploration actions 

change quickly [1, 4, 19]. Case in point, Zhao and Hwang [1] 

provided an exploitation-seeking deep deterministic policy 

gradient to active SLAM in an indoor space, and Lau et al. [2] 
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presented a multi-AGV exploration temporal memory to 

increase the level of flexibility. Yin et al. [3, 17] proposed a 

better way or improved path planning through a hybrid 

clustering-based RRT method, but its properties of adaptation 

in a highly dynamic environment were still low. By 

comparison, Feng et al. [4] promoted real-time, data-based 

tasking, and Mukhopadhyay et al. [5, 29] made developments 

in multi-robot exploration with multiple Rapid Exploring 

Randomized Tree (RRTs) to enhance mapping in unstructured 

domains. Exploration-RRT [6] was a multi-objective path 

planning and exploration framework proposed by Lindqvist et 

al, and RRT* was enhanced by heuristically sampling by Ding 

et al [7] to cover more efficiently. 

 

Further innovations have targeted exploration efficiency 

through seeded region-growing techniques [8], hierarchical 

space exploration [11], and frontier detection methods that 

improve mapping completeness [9, 10, 14, 15, 19, 20]. For 

instance, Sun et al. [10] developed frontier detection with 

reachability analysis to support 2D Graph-SLAM, whereas 

Yang et al. [11] proposed autonomous exploration for mobile 

robots in three-dimensional, multi-layer spaces. Clustering-

based map segmentation, such as the K-means approach by 

Goodwin and Nokleby [12, 25], has also been applied to 

optimize task allocation. Tian et al. [8] used seeded region 

growing for autonomous exploration, while Tran et al. [16] 

investigated frontier-led swarming to achieve robust multi-

robot coverage in unknown environments. 

 

Cooperative and adaptive strategies have also been 

explored, including task allocation via frontier trees [13, 21], 

fast frontier-region detection with parallel path planning [14], 

and safe, reachable frontier detection algorithms [15]. Graph-

based planning methods for simultaneous coverage and 

exploration [20], coordinated exploration with limited 

connectivity [22], and low-cost cooperative indoor 

exploration [23] further demonstrate the diversity of 

approaches in this field. Map merging techniques [24], robust 

swarming control [16], and hybrid meta-heuristic 

optimization, as proposed by Romeh and Mirjalili [27], have 

shown potential for scalable deployments. Additional 

contributions from Alitappeh and Jeddisaravi [26] on multi-

robot exploration task allocation, as well as recent works by 

Soni et al. [13, 21] and Filho and Nascimento [24], reinforce 

the importance of integrated planning and allocation 

strategies. 

 

Foundational contributions in frontier-based exploration 

include the multiple RRT framework by Umari and 

Mukhopadhyay [28], extended in subsequent work [29], and 

studies on hierarchical clustering algorithms for segmentation 

and allocation [18]. Research has also addressed multi-robot 

cooperation in terrestrial environments [19], incremental 

frontier detection for safe exploration [15], and strategies for 

dynamic reallocation in changing operational contexts [30]. 

The previous works [30, 31] explored evolutionary 

optimization and cost-effective exploration strategies for 

disaster reconnaissance, while [31] reviewed state-of-the-art 

dynamic task allocation methods, identifying limitations in 

adaptability, coverage optimization, and spatial redundancy 

control. 

 

Despite these advances, persistent gaps remain: (1) many 

algorithms do not integrate spatial distribution constraints 

effectively, leading to robots converging on nearby frontiers; 

(2) real-time adaptability to environmental changes is often 

insufficient; and (3) balancing information gain, travel cost, 

and proximity penalties in a unified allocation framework 

remains underexplored. 

 

3. Problem Description 
Multi-robot mapping and exploration systems used in 

unexplored terrain aim to reduce repetitive exploration 

activities while maximizing coverage. Mathematically, this 

can be exactly expressed to provide a basis for understanding 

and solving the problem. 

● Considering: A set of robots 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} 

● An unknown environment represented as a grid of 

continuous space 𝐸 

● Each robot 𝑟𝑖 operates over a discrete time horizon 𝑇 

Let: 

● 𝑆𝑖(𝑡) Be the area covered by the robot. 𝑟𝑖At the time 𝑡. 

● 𝑆(𝑡) = ∪𝑖=1
𝑛 𝑆𝑖(𝑡) Be the total area covered by all robots 

at time 𝑡. 

● 𝐴𝑖(𝑡) Be the redundant area covered by the robot. 𝑎𝑖At a 

time 𝑡. 

The coverage 𝐶 and redundancy 𝑅 can be expressed as: 

𝑆 =  ∫ |𝑆(𝑡)|𝑑𝑡
𝑇

0
   (1) 

𝐴 = ∫ ∪(𝑖≠𝑗) |𝑆𝑖(𝑡) ∩ 𝑆𝑗(𝑡)|𝑑𝑡
𝑇

0
                        (2) 

Define the task allocation function 𝜏such that: 

 

𝜏 ∶  𝐴 𝑥 𝑇 →  𝐸 
 

For each robot 𝑎𝑖at a time𝑡, the task allocation function 

𝜏(𝑎𝑖 , 𝑡} specifies the area 𝐸 that the robot should explore.  

 

The objective is to find the optimal task allocation 𝜏that 

maximizes 𝑆 and minimizes𝐴, while also optimizing the 

exploration time 𝑇. 

 

The optimization problem can be formulated as: 

𝑚𝑎𝑥𝜏 ∫ |∪𝑖=1
𝑛 𝑆𝑖(𝑡)|𝑑𝑡    

𝑇

0
Subject to 

 

𝑚𝑖𝑛𝜏 ∫ |∪𝑖≠1
𝑛 〖(𝑆〗

𝑖
(𝑡) ∩ 𝑆𝑗(𝑡))|𝑑𝑡

𝑇

0
 Additionally, to 

incorporate the exploration time 𝑇 
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𝑚𝑖𝑛𝜏𝑇to 

𝑆(𝑇) =  𝐸    (3) 

 

This guarantees that the multi-robot system, within an 

ideal time frame, maximizes total coverage while minimizing 

redundancy in coverage, therefore enabling effective 

exploration and mapping of the unknown environment. 

 

4. Proposed Dynamic Task Allocation Strategy 
The proposed methodology follows a sequential process 

beginning with environmental perception Figure 1, where 

each robot acquires sensor data and incrementally updates its 

occupancy grid representation [1, 9, 10]. Based on the updated 

map, frontier detection is performed to locate unexplored 

boundaries that separate known and unknown regions [12, 15, 

19]. These frontiers are then spatially grouped using a 

clustering mechanism to reduce the number of candidate 

targets while preserving coverage potential [8, 25]. 

 

Every found frontier cluster then gets evaluated based on 

three major metrics including: the Information Gain Factor 

(IGF), which approximates knowledge gained upon 

exploration [4, 14]; the Travel Cost (TC), which is the 

shortest, navigable distance between the current position of a 

given robot and a frontier [6, 7]; and the Proximity Penalty 

(PP) which forces certain frontiers to discourage redundant 

allocations by imposing a kind of penalty defined on those 

situated in close spatial proximity to other frontiers that were 

assigned to other robots [16, 22]. In order to compare them, a 

Z-score standardization process is conducted across these 

heterogeneous measurements [27], i.e., standardized values 

are generated, which can be incorporated in a consistent 

decision model. 

 

Normalization of each metric is performed, and a 

weighted sum of all the metrics and the weight is chosen based 

on specific mission priorities and the operational limitations it 

is subjected to [26]. The allocation module allocates frontiers 

to robots depending on the utility scores that rank highest and 

utilizes a priority-based arbitration mechanism in case the 

robots narrow down to the same target [5, 28]. An event in the 

environment, when the new frontiers are explored, dynamic 

obstacles are encountered, or path blockages are identified, 

prompts the real-time update of the allocation and results in 

both adaptation and sustained coverage effectiveness [3, 11, 

29]. This repeating loop goes on until there is nothing more to 

discover for available frontiers, thus accomplishing the 

mission goals...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 1 Flowchart of the developed dynamic task allocation strategy 
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4.1. Initial Robot Deployment and Calibration 

At the start of the allocation process, the relative location 

and orientations of the robots are highly tuned as they are 

deployed to pre-selected starting places. The first spatial map 

is used in the first assignment turn of the frontiers, such that 

the assignment of the tasks ensures consideration of inter-

robot distances to prevent premature redundancy of coverage 

as well as overlap. The positional calibration is also conducive 

to the vivid combination of maps, ease in motion planning, 

and predicted collision avoidance during the mission. Using 

these initial conditions, the system suffers no exploratory 

inefficiency as all robots initially launch exploration in a 

coordinated fashion and therefore has the potential to offer 

maximum coverage overall. 

 

4.2. RRT-Based Frontier Identification from Partial Maps 

 The coordinated deployment occurs at calibrated first 

positions, following which it moves to the exploration process 

that progresses into the stage of frontier detection within the 

dynamical task-allocation framework of multi-robot 

explorations. The point of this work is that it develops the 

strategies of RRT-based frontier detection suggested by Umari 

and Mukhopadhyay [28, 29], which allow finding the 

exploration targets at different distances, efficiently. The 

algorithm commences with examining the given partially 

occupied grid map in order to establish the boundaries of 

explored and unexplored parts. When a frontier has been 

located, a local RRT-based detector asks the tree established 

at the current point of the robot to regenerate itself to explore 

the local area exhaustively. Parallel to this, the world RRT-

based detector is building its search tree without reset, 

scanning the full map step-by-step, and enabling it to detect 

remote boundaries. The incorporation of local and global 

detection modes also makes the system have an equal 

coverage of the near and far regions, hence quicker in the 

establishment of the unexplored areas and less redundant. 

Identification of the frontier works is as follows: 

1. Acquire the most recent partial map generated by each 

robot. 

2. Define frontiers as the interface between explored and 

unexplored cells. 

3. Apply RRT-based frontier detection: 

– Initialize the RRT using the current known map.  

– Expand tree nodes toward unexplored regions.  

– Mark the boundary cells encountered as valid frontier 

points.

   
Table 1. Operational differences between local and global RRT frontier detection 

Step Local RRT frontier 

detection 

Global RRT frontier detection 

Initialization Set the initial vertex and edge set. 𝑉 =  {𝑥𝑖𝑛𝑖𝑡}𝐸 =  𝜙 

Iteration Sample a random point in free space. 𝑥𝑟𝑎𝑛𝑑𝜖 𝑋𝑓𝑟𝑒𝑒  

 Find the nearest vertex to the random point. 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡  =  𝑎𝑟𝑔𝑚𝑖𝑛𝑣𝜖𝑉||𝑣 −  𝑥𝑟𝑎𝑛𝑑|| 

 Generate a new point using the Steer function.  

𝑥𝑛𝑒𝑤  =  𝑆𝑡𝑒𝑒𝑟(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑥𝑟𝑎𝑛𝑑 , 𝜂) 

 Check if the new point lies in the unknown region. N 

𝐺𝑟𝑖𝑑𝐶ℎ𝑒𝑐𝑘(𝑚𝑎𝑝, 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑥𝑛𝑒𝑤) 
= {−1 𝑖𝑓 𝑢𝑛𝑘𝑛𝑜𝑤𝑛, 1 𝑖𝑓 𝑓𝑟𝑒𝑒 } 

0 𝑖𝑓 𝑜𝑐𝑐𝑢𝑝𝑖𝑒d} 

 Mark the new point as a 

frontier and reset the 

tree if it lies in the 

unknown region 

Mark the new point as a frontier if it lies in an unknown 

region  

 Add the new point to the tree if it lies in freespace. Itf 𝑥𝑛𝑒𝑤is in free space. 𝑉 ← 𝑉 ∪
 {𝑥𝑛𝑒𝑤}𝐸 ← 𝐸 ∪  {(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑥𝑛𝑒𝑤)} 

4.3. Priority Frontiers Filtering 

Following frontier detection, the system performs a 

Priority Frontier Filtering process to ensure that robots focus 

on exploration targets with the highest potential for 

information gain while avoiding redundant or low-value 

regions. This stage continuously updates the set of candidate 

frontiers based on the most recent occupancy grid information, 

enabling dynamic adaptation to changes in the environment. 
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Initially, each detected frontier point is treated as an 

individual group. The clustering process then applies 

agglomerative clustering using Ward’s linkage criterion to 

merge spatially close frontiers, thereby reducing 

computational overhead and navigation costs while preserving 

high coverage potential. The Ward’s distance between two 

clusters𝑆𝑖 And 𝑆is calculated as: 

 

𝑑(𝑆𝑖 , 𝑆) =  √
2.|𝑆𝑖|.|𝑆𝑗|

|𝑆𝑖|+|𝑆𝑗|
. ||𝑥𝑖 − 𝑥𝑗||      (4) 

 

In every iteration, the two closest clusters are measured 

using Ward distance, and are combined, and so on, until what 

you want as clusters is attained. Then, the centroid of every 

cluster is taken into account. Each point (x,y) of the centroid 

of the frontiers gets the grid value g(x,y) that is read off the 

occupancy map:g(x, y) = mapData. data[index]                (5) 

 
index =  j ×  width +  i                                                  (6) 

 

𝑖 =  (
𝑥 − 𝑋𝑥

𝑠𝑡𝑎𝑟𝑡

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
)      (7) 

 

𝑗 =  (
𝑦 − 𝑋𝑦

𝑠𝑡𝑎𝑟𝑡

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
)     (8) 

 

A frontier is considered valid for further exploration only if: 

 

g(x, y) ≤  Tobstacle    (9) 

 

Where, Tobstacleis the maximum allowable grid cost for 

safe navigation. 

 

       With the help of such filtering between the frontiers, the 

system will take care of places that have a high potential for 

exploration, and not depend on areas that are dangerous or 

have a low cost. The targeted performance can minimize 

unnecessary coverage, amplify resource usage, and elevate 

total mission efficiency in unfamiliar and on-the-fly 

conditions.  

4.4. Assigning Dynamic Tasks to Robots 
After obtaining the set of valid frontiers with the help of 

the priority filtering procedure discussed in Section 3.3, one 

must now dynamically assign the exploration targets to the 

explorer robots with the aim of maximizing coverage 

efficiency and minimizing redundancy at the same time. Such 

an allocation framework is a real-time system that reevaluates 

the assignments when new map information is gathered.  

 

The three basic decision factors, such as information gain, 

travel cost, and proximity penalty, form a part of the unified 

revenue function that makes the model able to maintain a 

balance between the quality of exploration and operational 

efficiency of the system. 

4.4.1. Allocation Model Definition 

Let 𝐴 = {𝑎1, 𝑎2, … 𝑎𝑛} Be the set of robots. F= {𝑓1

, 𝑓2, … 𝑓𝑚} And 𝑀 be the occupancy grid map of the 

environment. The objective is to determine the optimal 

mapping between robots and frontiers so that overall coverage 

efficiency is maximized. 

 

4.4.2. Metric Definitions 

Information Gain 

The information gain for a frontier point 𝑓𝑗 It is computed 

based on the number of unknown cells within a circular region 

of radius 𝑟 around the frontier. The radius in grid cells is given 

by: 

𝑟𝑟𝑒𝑔𝑖𝑜𝑛  =  (
𝑟

𝑚𝑎𝑝𝐷𝑎𝑡𝑎.𝑖𝑛𝑓𝑜.𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
)  (10) 

 

The initial index for the region scan is: 

 

𝑖𝑛𝑖𝑡𝑖𝑛𝑑𝑒𝑥 = 𝑖𝑛𝑑𝑒𝑥 −  𝑟𝑟𝑒𝑔𝑖𝑜𝑛  ×

 (𝑚𝑎𝑝𝐷𝑎𝑡𝑎. 𝑖𝑛𝑓𝑜. 𝑤𝑖𝑑𝑡ℎ +  1)  (11) 

 

The total information gain is accumulated by scanning all 

cells within the defined region: 

 

𝐼𝐺(𝑓𝑗) = ∑ 𝜖𝑟𝑒𝑔𝑖𝑜𝑛(𝑓𝑗)𝛿(𝑀(𝑘=𝑢𝑛𝑘𝑛𝑜𝑤𝑛)). 𝐴𝑘𝑘        (12) 

 

Where 𝛿(⋅) is an indicator function returning 1 for 

unknown cells and 0 otherwise, and 𝐴𝑘 is the area of cell 𝑘 

Frontiers are retained for allocation only if they satisfy both 

the information gain and obstacle proximity criteria: 

 

𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟𝑣𝑎𝑙𝑖𝑑  =  {𝐼𝐺(𝑥, 𝑦) ≥ 𝑇𝑖𝑛𝑓𝑜  𝑎𝑛𝑑 𝑔(𝑥, 𝑦) ≤

𝑇𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒}    (13) 

Travel Cost 

For each robot 𝑟𝑖 and frontier 𝑓𝑗The travel cost represents 

the Euclidean distance between the robot’s current position 

and the frontier: 

𝐶𝑖𝑗  =  ||𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑟𝑖) − 𝑓𝑗||  (14) 

 

Proximity Penalty 

This term discourages the assignment of multiple robots 

to closely located frontiers by imposing a penalty based on the 

proximity of𝑓𝑗  To the frontiers already allocated to other 

robots: 

𝑃𝑖𝑗 =
∑ 𝜖𝑟𝑘𝜖𝑅,𝑘≠𝑖

||𝑓𝑗−𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑝𝑜𝑖𝑛𝑡(𝑟𝑘)||+1
  (15) 

 

4.4.3. Normalization 

To ensure comparability among metrics with different 

scales, Z-score normalization is applied: 

 

𝑋′ =  
𝑋−𝜇𝑋

𝜎𝑋
     (16) 
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Where 𝜇
𝑥
 is the mean of 𝑥 and 𝜎𝑥 Is the standard 

deviation of 𝑥. Applying this to information gain, cost, and 

proximity penalty: 

𝐼𝐺′𝑗 = 𝑧_𝑠𝑐𝑜𝑟𝑒(𝐼𝐺(f𝑗)    (17) 

𝐶′𝑖𝑗 = 𝑧_𝑠𝑐𝑜𝑟𝑒(𝐶𝑖𝑗    (18) 

𝑃′𝑖𝑗 = 𝑧_𝑠𝑐𝑜𝑟𝑒(𝑃𝑖𝑗                   (19)  

This standardization prevents any single metric from 

disproportionately influencing the allocation decision. 

4.4.4. Revenue Model 

The allocation decision is based on a weighted revenue 

function: 
 

𝑅𝑖𝑗 =  α. 𝐼𝐺′𝑗 −  𝛽. 𝐶′𝑖𝑗 −  𝛾. 𝑃′𝑖𝑗                                    (20) 
  

Where α, β, and γ are tunable weights reflecting the 

relative importance of each factor. The optimal robot–frontier 

pair 𝑎∗, 𝑓∗Is then selected as: 

 

Select the robot-frontier pair (𝑎∗, 𝑓∗) With the highest 

revenue: 

 

(𝑎∗, 𝑓∗) =  𝑎𝑟𝑔𝑚𝑎𝑥𝑖,𝑗𝑅𝑖𝑗                                (21) 

 

4.4.5. Task Assignment Algorithm 

Algorithm 1: Task Assignment Algorithm 

Input: Robot set 𝐴, frontier set 𝐹, map 𝑀, 

𝑇𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ,𝛼, 𝛽 𝑎𝑛𝑑 𝛾 

Output: Assignment of robots to frontiers 

1. Initialize: Set robot positions, thresholds, and 

parameters 

2. Subscribe to Map data: Acquire M and detect F 

3. Loop until stopping condition: 

3.1. Check task timeouts; mark expired tasks as 

failed 

3.2. Remove failed frontiers from 𝐹 
3.3. Compute 𝐼𝐺(𝑓𝑗), 𝐶𝑖𝑗 𝑎𝑛𝑑 𝑃𝑖𝑗 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗 
3.4. Normalize metrics using Eqs. (22)–(24) 
3.5. Calculate 𝑅𝑖𝑗 using Eq. (25) 

3.6. Select (𝑎∗, 𝑓∗) =  𝑎𝑟𝑔𝑚𝑎𝑥𝑖,𝑗𝑅𝑖𝑗 

3.7. Assign 𝑎∗ 𝑡𝑜𝑓∗ And record assignment time. 

3.8. Plan path 𝑃 using RRT from 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡  to 

𝑥𝑔𝑜𝑎𝑙  

3.9. Update 𝐹𝑙𝑜𝑐𝑎𝑙  =  𝐿𝑜𝑐𝑎𝑙𝑅𝑅𝑇(𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡) and  

𝐹𝑔𝑙𝑜𝑏𝑎𝑙  =  𝐺𝑙𝑜𝑏𝑎𝑙𝑅𝑅𝑇(M) 

3.10. Navigate along the path 𝑃 while 

updating map 𝑀 =
 𝑈𝑝𝑑𝑎𝑡𝑒𝑀𝑎𝑝(𝑀, 𝑠𝑒𝑛𝑠𝑜𝑟 𝑑𝑎𝑡𝑎) 

3.11. Navigate while updating 𝑀 and re-

planning if obstacles are detected 
Upon arrival, explore locally and merge maps. 

The system achieves high-efficiency multi-robot 

exploration in unknown environments by integrating Dynamic 

Task Allocation, RRT-based path planning, frontier detection, 

and incremental map merging. The joint consideration of 

information gain, travel cost, and proximity penalty ensures 

that high-value frontiers are prioritized, redundant 

assignments are minimized, and coverage is maximized. The 

use of Z-score normalization further guarantees balanced 

decision-making, preventing any single metric from 

dominating the allocation process. 
 

5. Experimental Setup 
In order to test the performance of the coverage-enhanced 

dynamic task allocation framework proposed in Section 3, 

several simulation experiments were performed under varied, 

but controlled and difficult conditions. It was intended to 

establish how efficiently the algorithm establishes the 

coordination of various robots to explore different 

environments with open spaces and obstacles, thus capturing 

realistic operational constraints. 
 

They were created using the Robot Operating System 

(ROS) Noetic on an Ubuntu 20.04 LTS operating system. 

Simulations were performed in Gazebo. The workstation 

provided the simulation platform, which had an Intel Core i5 

10th-generation processor. The test arena was a TurtleBot3 

world, slightly customized to include the wide open spaces 

and tightly clumped static obstacles, to allow a wide range of 

navigation challenges to the mapping and frontier distribution. 
 

The three robotic agents deployed in the experiments 

were a TurtleBot3 Waffle Pi robot, selected because it is 

compatible with the ROS navigation stack, and a frontier 

exploration work. Their inbuilt sensors and differential drive 

enabled them to easily navigate the simulated environment, 

localize, map, and plan their movements. 

 

Gazebo world had an ordered environment of walls and 

static barriers, which forced robots, through continuous path 

planning and assignment of frontiers, when they had 

navigation constraints. See Figure 2 as an exemplary 

environment where the shipwreck components are the 

navigation constraints to which the robots are forced to 

optimize a series of exploration paths according to the 

dynamic allocation plan. 
 

Diagnosis on three quantitative measures was used to 

provide a performance evaluation: 
 

Total exploration time- the total amount of time one takes 

to explore the environment. 
 

Total Traveled distance -length of path traversed by the 

complete loop of robots. 
 

Explored the area and the percentage of the environment 

that was effectively mapped during the mission. 
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These metrics have been chosen to capture the efficiency 

aspect (time and distance) and the effectiveness aspect 

(coverage) of multi-robot exploration. The evaluation 

involved a known set of constraints and a simulation 

environment in which all the experiments could be run, which 

allowed it to attribute the differences in the performance to the 

proposed allocation strategy itself and not some of the 

environmental factors. 

 
Fig. 2  Gazebo simulation environment used for evaluation of the 

proposed multi-robot task allocation 

Based on the simulation environment reported above, 

targeted test scenarios were designed to explore the execution 

behavior of the proposed task allocation algorithm with 

respect to the various operation conditions. In the main 

scenario, a fixed obstacle map was set up that contained 

several walls and other stationary objects, forcing the robots 

to work around the constraints without suffering excessive, 

inefficient mapping and exploration. As shown in Figure 2, 

such a design offered an organized but complex layout that 

successfully evaluated navigational, frontier allocation, and 

coordination skills. 

In the simulation experiments, there are three 

performance measures that were considered in order to 

examine the effectiveness of the suggested solution: 

1. Total distance traveled by the entire robot team. 

2. Total exploration time required to complete coverage. 

 

By employing a controlled simulation environment with 

known parameters, nearly all components of the task 

allocation framework, ranging from frontier detection and 

filtering to dynamic assignment and coordinated navigation, 

were rigorously exercised. This ensured that observed results 

could be directly attributed to the allocation strategy rather 

than uncontrolled environmental variability. 

6. Results and Discussion 

The experimental results demonstrate the effectiveness of 

the proposed coverage-enhanced dynamic task allocation 

strategy in addressing the multi-robot exploration problem. 

The evaluation focuses on three performance metrics: 

1. Exploration time – total time required for the team of 

robots to complete the mapping task. 

2. Travel distance – total distance traversed by each robot 

and the robot team collectively. 

Experiments were performed in both static and dynamic 

obstacle environments using the simulation setup described in 

Section 4. In all scenarios, the proposed approach achieved 

higher coverage and reduced redundant traversal, thereby 

improving the spatial distribution of exploration tasks. 

6.1. Comparative Analysis with Existing Methods 

Following the simulation configuration and performance 

metrics outlined in Section 4, a direct comparison was 

performed between the baseline method of Umari et al. [28, 

29] (without a coverage penalty parameter) and the proposed 

method (with a coverage penalty parameter integrated into the 

allocation framework). Quantitative results are presented in 

Table 2, reporting per-robot distances, total team distance, and 

start/finish times for each trial. 

From Table 2, it is evident that the integration of the 

coverage penalty parameter leads to a consistent reduction in 

both total travel distance and total mapping time. The 

parameter effectively penalizes allocation of spatially 

proximate frontiers to multiple robots, minimizing trajectory 

overlap and enhancing overall coverage efficiency. 

Across all five trials, the proposed method achieved an 

average reduction of 32.4% in total exploration time and a 

27.8% reduction in total travel distance compared to the 

baseline approach. These improvements were consistent 

across all trials, with no case in which the baseline 

outperformed the proposed method. This translates directly 

into lower energy consumption, reduced mechanical wear, and 

improved operational sustainability for extended missions. 

 

 
Fig. 3 Comparison of task completion between the algorithm with and 

without the coverage penalty parameter 
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Fig. 4 Comparison of the travel distance of all the robots between the 

algorithm with and without the coverage penalty parameter 

 

Figures 3 and 4 complement the numerical results by 

visualizing the performance differences. Figure 3 compares 

the mapping completion time across five trials, showing that 

the proposed method consistently outperforms the baseline in 

terms of speed. Figure 4 compares the total distance traveled 

by the robot team, where the proposed method yields shorter 

cumulative travel distances in every trial. 

 

6.1.1. Qualitative Analysis of Trajectories 

To further illustrate these differences, Figures 5-7 present 

the exploration trajectories generated by the baseline 

algorithm [28, 29] in three representative trials. Each color 

represents a different robot-blue (TurtleBot tb_0), red 

(TurtleBot tb_1), and green (TurtleBot tb_2). These trials 

reveal substantial trajectory overlap, with multiple robots 

visiting the same regions multiple times. This redundancy 

increases travel distance and can leave some unexplored, 

lowering mapping efficiency. 

Figures 8-10 depict the exploration trajectories for the 

proposed method with the coverage penalty parameter. Here, 

trajectory overlap is noticeably reduced, and the robots’ 

coverage is more uniformly distributed. The spatial separation 

of exploration paths minimizes wasted motion and ensures 

that all regions of the environment are efficiently mapped. 

The combination of quantitative metrics, statistical 

improvements, and qualitative trajectory analysis confirms 

that the proposed coverage penalty parameter significantly 

enhances multi-robot exploration performance. By balancing 

information gain, travel cost, and proximity penalties in the 

allocation process, the method ensures optimal distribution of 

exploration tasks, reduced redundancy, and improved overall 

mapping efficiency.

Table 2. Results and comparison of the proposed task allocation strategy and the existing RRT algorithm (Umar et al.) 

 Trial No 

  Distance travelled in meters. 

Start 

time(s) 

Finish 

time(s) 
turtlebot1 turtlebot 2 turtlebot 0 

Team of 

robots 

Without 

coverage 

penalty 

parameter 

(Umari et 

al.) 

1 38 453 42.98 43.53 56.65 143.16 

2 29 480 59.85 59.85 59.85 179.56 

3 24 450 58.27 51.29 51.29 160.84 

4 36 446 63.88 61.96 53.29 179.13 

5 28 460 30.84 16.83 64.66 112.33 

 Trial No 

  Distance travelled in meters. 

Start 

time(s) 

Finish 

time(s) 
turtlebot1 turtlebot 2 turtlebot 0 

Team of 

robots 

With 

coverage 

penalty 

parameter 

(Proposed 

concept) 

1 31 270 37.85 39.55 31.90 109.29 

2 30 258 33.49 40.30 25.33 99.12 

3 28 273 34.60 38.73 40.50 113.83 

4 22 272 44.42 31.05 39.20 114.67 

5 28 276 42.08 39.50 51.24 132.82 

In all three trials, the exploration trajectories exhibit 

substantial overlap among the robots, resulting in an increased 

cumulative travel distance for the team. Several regions are 

revisited multiple times by all three robots, while certain areas 

remain unexplored. Such redundant traversal not only leads to 

inefficient use of operational time and energy but also limits 

overall coverage, highlighting a key limitation of the baseline 

algorithm. 

The following images (Figures 7, 8, 9) are the path 

travelled by the team of robots using the algorithm with the 

coverage penalty parameter.  

It shows the path taken by these robots in the first three 

trials. The three colours, red, blue, and green, are the paths of 

the three robots. 
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Fig. 5 Trial 1 output of the task allocation algorithm without the 

coverage penalty parameter (Umari et al. [28, 29]). Exploration travel 

path trajectories of robots: Robot 0 (blue), Robot 1 (red), and Robot 

2 (green) 

 
Fig. 6 Trial 2 output of the task allocation algorithm without the 

coverage penalty parameter (Umari et al. [28, 29]). Exploration travel 

path trajectories of robots: Robot 0 (blue), Robot 1 (red), and Robot 

2 (green) 

 
Fig. 7 Trial 3 output of the task allocation algorithm without the coverage 

penalty parameter (Umari et al. [28, 29]). Exploration travel path 

trajectories of robots: Robot 0 (blue), Robot 1 (red), and Robot 2 (green) 

 

 
Fig. 8 Trial 1 output of proposed task allocation algorithm with coverage 

penalty parameter, Exploration travel path trajectories of robots: Robot 0 

(blue), Robot 1 (red), and Robot 2 (green) 
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Fig. 9 Trial 2 output of proposed task allocation algorithm with 

coverage penalty parameter, Exploration travel path trajectories of 

robots: Robot 0 (blue), Robot 1 (red), and Robot 2 (green) 

 
Fig. 10 Trial 3 output of proposed task allocation algorithm with 

coverage penalty parameter, Exploration travel path trajectories of 

robots: Robot 0 (blue), Robot 1 (red), and Robot 2 (green) 

 

Overall, the comparative trajectory analysis confirms 

that integrating the coverage penalty parameter enhances 

exploration efficiency. The proposed strategy enables the 

robot team to cover a larger proportion of the environment 

while traveling a shorter cumulative distance, ultimately 

reducing energy expenditure and operational time. These 

improvements directly contribute to more effective multi-robot 

exploration and mapping in unknown environments. 

7. Discussions as to the Effectiveness of the 

Proposed Method 
Building on the comparative results presented in Figure 11, 

the analysis clearly demonstrates that the integration of the 

coverage penalty parameter into the dynamic task allocation 

framework yields measurable and consistent improvements in 

multi-robot exploration. The proposed method dynamically 

assigns tasks by evaluating multiple decision metrics-

information gain, travel cost, and proximity penalties-allowing 

for balanced allocation decisions that minimize redundant 

traversal while maximizing environment coverage. 

7.1. Efficiency 

The inclusion of the coverage penalty parameter results in a 

notable reduction in both exploration time and travel distance 

compared to the baseline method. This efficiency gain is 

particularly advantageous in scenarios where operational time 

and energy resources are limited, such as autonomous field 

surveys or missions in resource-constrained environments. 

 
Fig. 11 Comparative analysis of the proposed method with state-of-the-art 

methods in the literature section 

7.2. Coverage 

The proposed technique can reduce inter-robot overlap over 

exploration areas, as representative task assignments that result 

in spatial overlaps will be discouraged. This is a welcome step 

to discover and map unknown areas, a needed benefit in 

surveillance, search and rescue applications, and applications in 

environmental monitoring, where the coverage should be 

comprehensive and thorough. 

7.3. Scalability 

       The approach displays flexibility in different environments 

of different complexity, including those with rigid indoor design 
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and those with disorderly and unstructured outdoor grounds. 

Such scalability allows the approach to be applicable to a 

wide scope of multi-robot systems and to be efficiently 

operative in both straightforward and extremely dynamic 

operation situations. 

Additionally, the Z-score normalization procedure and 

the weighting of central indicators help prevent a situation 

where some parameter, e.g., distance, information gain, or 

the proximity penalty, prevails in the decision-making 

process. Such fair-mindedness increases the stability and 

rationality of the outcomes of the task allocation. 

All in all, the experimental results indeed show that the 

coverage-enhanced dynamic task allocation algorithm (DP) 

works much better than the current strategies discussed in 

the literature review section by minimizing redundant 

travel, leading to better coverage efficiency, and still being 

scalable. Such benefits make the strategy an interesting 

approach to autonomous multi-robot exploration and 

mapping of unknown and unstructured environments. 

8. Conclusion 
After the overall analysis and discussion given in 

Section 6, the findings convincingly support that the 

proposed coverage-enhanced dynamic task allocation 

methodology can help solve the major limitations of the 

current practices in multi-robot exploration. Within a Z-

score normalization framework, which integrates 

Information Gain Factor (IGF), Travel Cost (TC), and a 

Proximity Penalty (PP) parameter schema, the approach has 

the merit of balanced, adaptive, and computationally 

egalitarian decision-making. This would allow robots to 

divide and conquer evenly, reduce overlap of travels, and 

maximize space coverage. The effectiveness of the method 

is verified through simulation, where both the total 

exploration distance and the total completion time are decreased 

consistently, and the density of the coverage reaches an 

improvement in comparison to the reference algorithm (Umari 

et al. [28, 29]). These performance improvements prove the 

solidity of the suggested allocation strategy regarding time-

saving, spatial optimizations, and the competence of operation. 

The work is useful not only in terms of quantitative 

performance gains but also in that the framework reaches more 

strategically divided areas among the robots by explicitly 

incorporating spatial distribution constraints and proximity 

penalty in the allocation mechanism. Not only does it minimize 

energy use and extend working range, but it also increases the 

effectiveness of its mission deliverables within the sphere of 

application where resources are scarce, and decisions have to be 

made fast, e.g., environmental monitoring, disaster detection, 

industrial inspections, and search-and-rescue missions. 

Although the simulation results are promising, there should 

be an important step towards their real-world validation. The 

future work will overcome sensor noise problems, 

communication latency, and changes in the dynamics of the 

environment, and extend the technique to be used in 

heterogeneous robot teams. Also, onboard adjustment of 

parameters in real time, combined with superior perception 

features, such as 3D LiDAR and/or high-resolution stereo 

vision, is to be considered to optimize mapping quality and 

situational understanding. To sum up, the Coverage-enhanced 

dynamic task allocation approach seems to be the most viable 

way of autonomous multi-robot exploration, due to its 

scalability, flexibility, and resource consumption. As it is refined 

even more and applied to actual situations, this framework can 

lead to large gains in the field of robotic exploration by 

providing capable, safer, and sustainable operations at an 

accelerated pace, more structurally intact, and less dislocated 

missions much sooner. 
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