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Abstract - In the context of multi-sensor data monitoring systems, especially in critical domains like Healthcare, cybersecurity 

plays a pivotal role in ensuring the integrity, confidentiality, and availability of the data being collected, transmitted, and 

analyzed. These systems often gather sensitive physiological and behavioral information from multiple sensors—such as ECG, 

EEG, temperature, blood pressure, and movement sensors-making them prime targets for cyberattacks. Unauthorized access or 

tampering with this data can lead to serious consequences, including incorrect diagnoses, compromised patient safety, and data 

privacy breaches. In this paper, a Rule-Based Adaptive Type-2 Fuzzy Neural Network (RbAFNN) and an HMM are used to 

manage data from multiple sensors in healthcare monitoring. With interval Type-2 fuzzy logic and the adaptive neural network, 

the approach can properly work with uncertain and imprecise data and quickly self-adjust to new changes in patients. With 

HMM, sensor data are handled properly over time, so fault detection and health classification improve. Experiments with several 

healthcare-related datasets find that the RbAFNN-HMM model delivers high accuracy, a high sensitivity level, and a low number 

of false positives in the tasks of health monitoring and cyber threat detection with efficient performance in real-time. 

Experimental analysis stated that the accuracy of detecting a phone call with the RbAFNN-HMM model is more than 96%, it 

has a 97% sensitivity, and its false positives are no more than 3%. The system is very accurate in detecting threats, as its threat 

detection is around 92% for different attack types, and it usually mitigates threats with a success rate above 89%. These results 

prove that the framework helps deliver correct, prompt, and secure health care, thereby making it a dependable solution for 

changing and uncertain situations in hospitals. The framework’s solid cybersecurity features ensure that important data is safe 

and better protected against DoS, spoofing, and data injection. The advanced solution offered by the system is reliable, smart, 

and ensures security in unstable and uncertain situations. 

Keywords - Healthcare Monitoring, Cybersecurity, Multi-Sensor, Type-2 Fuzzy, Hidden Markov Model (HMM), Neural Network, 

Rule-Based Model. 

 

1. Introduction  
Recently, using multiple sensors together has played a 

crucial role in health monitoring because it offers more 

accurate, dependable, and broader information about patients’ 

health [1]. With individual ECG, accelerometers, temperature 

sensors, and blood oxygen monitors, data from which multi-

sensor fusion techniques make it possible to eliminate issues 

associated with each individual sensor, for example, noise, 

drift, or data missing [2]. Using machine learning and signal 

processing, new technologies are now able to provide more 

valuable information about someone’s health by intelligently 

analyzing various data. Therefore, illnesses are more easily 

identified in the early stages, issues are recognized 

immediately, and monitoring for each individual is improved 

[3]. Setting up remote patient monitoring, smart wearable 

tech, and Healthcare for the elderly, as well as rehabilitation, 

have all made Healthcare more involved in inpatient care. 

Since data collected by sensors is sometimes not the same, 

using them together becomes a real challenge. Matching data 

from various sources is hard, particularly in real-time cases, 

because any disruption or lag can cause wrong conclusions to 

be drawn [4, 5]. Also, if sensors are not dependable or if there 

is a lot of noise from them, the data may not be accurate, and 

using the data could impair the system’s performance [6]. 

More concerns about privacy and security exist now because 

a lot of private health data is being collected and exchanged. 

Handling huge, ongoing flows of multi-form data can be 

difficult because this task needs plenty of resources and 

efficient algorithms. Standardization of how sensors 

communicate and share data is still lacking, which makes it 
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difficult for various healthcare settings to use these 

technologies together [7 -10]. 

Nevertheless, a number of challenges still exist. 

Information observed through various sensors is typically 

heterogeneous, and the combination of readings in real time is 

challenging because of mismatch, latency, and unreliability of 

the sensors that may result in erroneous inferences. The notion 

of privacy and information security is augmented since 

sensitive health information is perpetually captured, relayed, 

and distributed. Processing huge and constant flows of 

multimodal data requires significant computing power and 

algorithms, but the sensor communication has not been 

standardized yet, restricting the interoperability of healthcare 

facilities. The issue of security in multi-sensor data fusion is 

essential since the presence of a compromised sensor may 

threaten medical decision reliability. Though novel 

approaches, such as blockchain, federated learning, role-based 

access control, and running frequent updates to the firmware 

ensure a higher level of data security, combining them without 

lowering real-time capabilities is still a challenge, especially 

when operating on wearable or edge devices with limited 

resources. Additionally, whereas CNNs, RNNs, and 

transformers show a benefit when applied to the automatic 

processing of nonlinear and noisy sensor data, the literature is 

mostly restricted to a particular type of sensors or sound, 

noise-free sensor inputs, and knowledge about fusion 

frameworks that can be easily and securely applied to 

healthcare applications in a real-time setting remains scarce. 

The world urgently needs infrastructure that would support 

heterogeneous sensor data, cybersecurity, real-time efficiency 

on edge devices, and high-fidelity and personalized healthcare 

information. This paper will discuss these challenges by 

providing a Multi-sensor fusion framework based on deep 

learning that would help overcome the pitfalls of uncertainty, 

dynamic patient conditions, and cyber-threats in healthcare 

monitoring. 

Security in data fusion plays a vital role, especially in 

Healthcare, as patient information is always being gathered, 

shared, and used [11, 12]. Since multi-sensor setups need to 

share data over the network, they face several types of cyber 

threats, such as people stealing data, breaking into networks, 

imitating legitimate people, and changing information [13-

15]. The data should always be secured by advanced measures 

like encryption, proper communication methods, user 

authentication, and quick detection of threats. As well, the 

process used to combine all the data should be kept safe from 

change, as one affected sensor could spoil the entire analysis 

and provide wrong medical support [16, 17]. The issue 

becomes more difficult due to the limited resources on 

wearable and edge devices that can handle complex security 

algorithms. As a result, making cybersecurity solutions light 

and flexible for multi-sensor fusion systems is crucial to keep 

trust, guard patient privacy, and depend on healthcare 

monitoring tools. Recent work has tried to embed these 

cybersecurity measures straight into the design of multi-sensor 

healthcare systems [18]. Blockchain, machine learning, and 

federated learning are means for keeping data safe and 

reliable. Both role-based access controls and regular firmware 

security updates work to stop any security threats that may 

strain the network. At the same time, making sure the system 

is secure without it slowing down too much is still a major 

issue in real-time medicine, since any delay can harm patients 

[19]. Compliance with regulations like HIPAA and GDPR is 

important, and it stresses the requirement for stronger 

cybersecurity plans. In Healthcare, securing effective multi-

sensor data fusion alongside the increased use of new 

technologies is needed to build trust with patients and ensure 

the future of AI-driven medical solutions [20]. 

Deep learning in multi-sensor healthcare systems is 

improved because it helps with automatically analyzing data, 

identifying complicated signals, and making precise 

decisions. In contrast to regular machine learning methods, 

deep learning models, for example, CNNs, RNNs, and 

transformers, are able to learn from raw data collected by 

various sensors [21]. Using this approach is especially helpful 

in Healthcare since sensor measurements are usually messy, 

complicated to process, and related to changes over time. The 

combination of several sources of data, enabled by deep 

learning, helps analyze a patient’s situation more deeply and 

in full detail. Some uses are forecasting diseases, finding 

unusual patterns, noticing activities, and offering personalized 

care suggestions [22].  

With edge AI, deep learning models can now be used on 

wearable devices to do processing right away and make fewer 

connections to cloud servers [23-26]. The paper contributes a 

lot to healthcare monitoring by solving the problems of 

uncertainty, shifting patient statuses, and cyber crimes related 

to multi-sensor information. The key aim is to design a solid 

system that can notice any health concerns in real-time and 

keep health records safe from potential cyber threats. Thus, the 

paper suggests implementing a Rule-Based Adaptive Interval 

Type-2 Fuzzy Neural Network (RbAFNN) along with a 

Hidden Markov Model (HMM). With help from interval 

Type-2 fuzzy logic, a neural network, and HMM, this 

approach correctly classifies a person’s health status by 

considering sensor data fluctuations and their patterns over 

time. Lots of experiments were carried out using data such as 

PhysioNet, MIMIC-III, and fabricated sensor information, 

showing that the approach achieved a detection accuracy of 

96.5%, as high as a sensitivity of 97.0% and a false positive 

rate as low as 3.2%. When being evaluated, the model notices 

many types of attacks and deals with them effectively, with 

accuracy rates higher than 92% and success in mitigation 

reaching above 89%, all the while responding in under 22 

milliseconds. The findings confirm that the model is accurate, 

prompt, and secure, which makes it suitable for practical use 

in real hospitals. 
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2. Related Works 
Over the years, there has been a strong increase in 

Healthcare, with intelligent systems being used to monitor 

patients through various sensors. Because there is now more 

and more sensor-generated data, making sure it remains secure 

and uncompromised is becoming urgent. Old methods of 

cybersecurity are usually not effective enough for the 

changing and unpredictable nature of medical data. In this 

situation, adding decision-making capabilities to existing 

cybersecurity rules can produce satisfying results. This related 

works section studies how a Rule-Based Cybersecurity Model 

using Adaptive Interval-Type-2 Fuzzy Neural Networks 

(IT2FNNs) can be used in multi-sensor environments. This 

model uses rule-based understanding and the flexible and 

uncertain approach of fuzzy neural networks to provide a 

stronger and smarter defense from cyber threats in healthcare 

monitoring. It brings out key points about the development, 

issues, and achievements of other models on which the new 

method can be based. 

Lee (2023) covers the use of intelligent control theory in 

process enhancement and manufacturing, giving the key 

background needed to use such methods in Healthcare. They  

note that a smart combination of machine learning with multi-

sensor data helps drone systems spot risks in real time. In 

2025, Xin and his co-authors propose a way to handle secure 

state estimation in cyber-physical systems, using virtual 

sensors and deep reinforcement learning, suggesting it may 

successfully manage coordinated sensor attacks. Potamos et 

al. discuss the role of various sensor data in maritime 

cybersecurity and stress that fusing them helps make 

monitoring more effective. Daş and Tuna (2025) also discuss 

the benefits of data fusion in smart grid analytics, by stressing 

that fusion models are essential for running complicated data-

managed systems. All these experiments demonstrate the 

importance of using adaptive, intelligent, and reliable data 

fusion frameworks, such as those generated by fuzzy neural 

networks, in systems that monitor threats using various 

sensors. 

Kong and Yang (2024) present a system that can estimate 

train speed and position even when faced with attacks or 

physical problems, proving the need for protection in 

important systems. Szynkiewicz et al. (2023) look into how 

deep learning is applied to the cybersecurity of robotic 

systems, and their research shows that deep learning is useful 

for recognizing different data patterns from sensors. Hu et al. 

(2024) put together a multi-sensor fusion system for 

laboratory monitoring and proved how it can secure critical 

environments. Hua and Hao (2023) also look at fusion and 

detection in systems under false data injection attacks, 

stressing how to prevent problems caused by interference. The 

researchers from Liu et al. (2024) contribute to safe and 

protected IoT-based sensor systems by introducing an 

approach based on adaptive privacy budgets. In their work, 

Desikan et al. use both machine learning and other 

technologies to help sensors work under conditions of fault 

tolerance, thereby assisting with mitigating fire risks. Their 

study (Cheng et al.) explores how decentralized consensus can 

still be used under threats and missing data. In 2024, Li and 

Supriya demonstrate the use of intelligent monitoring and 

control systems that rely on data from several sensors to help 

detect anomalies and forecast faults, demonstrating different 

areas of usefulness. 

Li and Qiang (2023) offer an adaptive Kalman filter for 

better data fusion, and Hallyburton et al. (2023) highlight 

issues with cybersecurity in LiDAR used by autonomous 

vehicles. In their research, Hafeez and colleagues show how 

sensor-based action recognition can reap the benefits of fusing 

multiple types of data. Stanojevic et al. (2025) disclose 

cybersecurity concerns that arise in the use of continuous ECG 

for driver monitoring, pointing out the issues that occur with 

widespread health-focused technologies. Lastly, Hua and 

Yang (2025) assess the use of multi-sensor fusion in car safety 

and prove its significance for better passive safety features. 

All in all, these works demonstrate that we need more 

intelligent, adaptive, and secure fusion ways, especially based 

on fuzzy neural networks, to address the needs of current 

multi-sensor Healthcare and cyber-physical systems.  

Although the field of multi-sensor data fusion, intelligent 

learning, and cybersecurity has come a long way, there are still 

a number of gaps that hamper their healthcare and cyber-

physical systems capabilities. Today, there is still no 

comprehensive scheme for effectively combining resilience, 

adaptability, and security to heterogeneous sensors and 

dissimilar application environments. Most works concentrate 

on restricted problems or individual fields, so joint difficulties 

like the presence of cyber attacks, sensor failures, and 

imprecise or noisy data are largely ignored. Moreover, where 

the deployment in wearable devices or resource-poor 

healthcare settings is considered, the deep learning and fusion 

architectures would need excessive computation capabilities, 

which do not make them feasible. Adversarial attacks, false 

data injection, and privacy breaches also affect the multi-

sensor systems and compromise the reliability and trust of a 

patient. Moreover, the explainability of fusion with AI 

approaches is low, which confines decision-making 

transparency. To fill these gaps necessitates the scheme of 

adaptive secure and light fusion models- like the systems that 

comprise interval type-2 fuzzy neural networks and rule-based 

dissimilarities, which can execute strongly in the real-world, 

dynamic, and high-risk domains. 

3. Proposed Rule-Based Adaptive Type-2 Fuzzy 

Neural Network (RbAFNN) 
The proposed RbAFNN and an HMM aim to make 

healthcare data monitoring more secure and reliable thanks to 

their ability to fuse multiple sensor inputs. The model uses a 

combination of Interval Type-2 Fuzzy Logic, Neural 
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Networks, and HMMs to make anomaly detection and secure 

fusion of data possible. The RbAFNN-HMM model is 

introduced to handle multi-sensor data in Healthcare because 

it combines intelligence in decision-making, a way to handle 

uncertainty, and the analysis of successive changes. The 

model uses fuzzy logic to handle unclear data coming from 

sensors, a neural network to learn new information, and an 

HMM to spot patterns in sensor data as time passes. The first 

part uses type-2 fuzzy logic to address the uncertainty found 

in the sensor readings. In contrast to classic fuzzy systems, 

type-2 fuzzy sets assign a range of membership values to a 

data point stated in Equation (1) 

𝜇~(𝑥) = [𝜇(𝑥), 𝜇(𝑥)]                        (1) 

In Equation (1), 𝜇~(𝑥) is the degree to which 𝑥 belongs 

to the fuzzy set and 𝜇(𝑥) shows the minimum and maximum 

membership. Using rules that are not exact, as in a condition.  

If x1 is high and x2 is low, then the output is Risky. The 

system takes sensor information and decides on an appropriate 

output. During the second part, the neural network reviews the 

data and recalculates the outputs generated by the fuzzy 

system. The result 𝑦 is obtained by adding the outputs of the 

rules and multiplying their importance defined in Equation (2) 

𝑦 =  
∑𝑓𝑖.𝑤𝑖

∑𝑓𝑖
                                      (2) 

The importance (strength) of the Rule 𝑖 is shown using 

the fifth fitness score. 𝑤𝑖  Shows the amount of weight the 

Neural Network has learned. The weights are improved using 

a straightforward approach based on errors stated in Equation 

(3) 

𝑤𝑖
𝑛𝑒𝑤 = 𝑤𝑖

𝑜𝑙𝑑 −  𝜂(𝑦 − 𝑦𝑑)         (3) 

The input to the equation is 𝑦𝑑   and 𝜂 stands for the 

learning rate. The third stage uses a Hidden Markov Model 

(HMM) to observe behavior that changes with time (such as 

changes in a patient’s condition). It calculates the possible 

outcomes of health statuses defined in Equation (4) 

𝑃(𝑂 ∣ 𝜆) = ∑ 𝜋𝑞1 ∏𝑎𝑞𝑡𝑞𝑡+1 . 𝑏𝑞𝑡(𝑂𝑡)𝑎𝑙𝑙 𝑝𝑎𝑡ℎ𝑠    (4)        

The series of readings from the sensors defines Equation 

(4). The symbol λ comes from three components: the 

transitions 𝐴, observations  , and the initial state distribution 

𝜋. Next, the decision score joins the results generated by fuzzy 

neural networks and the HMM’s temporal evaluation stated in 

Equation (5) 

𝑆𝑐𝑜𝑟𝑒 = 𝛼 ⋅ 𝑦 + 𝛽 ⋅ 𝑙𝑜𝑔𝑃(𝑂 ∣ 𝜆)      (5) 

In Equation (5) 𝛼 , 𝛽 refer to the tuning parameters. Such 

an approach lets the system respond quickly to uncertain, 

timely healthcare data from several sensors. 

3.1. Steps in RbAFNN 

The RbAFNN uses a predefined process to blend and 

control data collected using many healthcare sensors. Going 

through each of these steps allows one to handle uncertainty, 

smoothly adjust to new situations, and make dependable 

choices. Figure 1 illustrates the steps involved in the proposed 

RbAFNN. 

 
Fig. 1 Process in RbAFNN 

3.1.1. Step 1: Input Preprocessing and Normalization 

First, various healthcare sensors collect basic data, such 

as the patient’s heart rate, temperature, and ECG 

measurements. The inputs given to a model may unwillingly 

contain unwanted randomness, some missing parts, or broadly 

varying ranges. For this reason, the process of normalization, 

filtering, and imputation is used before entering the input data 

into a fuzzy system. 

3.1.2. Step 2: Fuzzification using Interval Type-2 Membership 

Functions 

Following the cleaning of data, the interval type-2 fuzzy 

sets help control uncertainty, which is better than regular type-

1 fuzzy sets. Here, the inputs' membership is calculated using 

fuzzy lower and upper functions instead of just giving a single 

value of membership for each input. As an illustration, if the 

heart rate is “normal,” it has a membership range of [0.6, 0.9], 

which means there is some uncertainty in its definition. 

3.1.3. Step 3: Rule-Based Inference System 

Next, fuzzy rules are applied to map fuzzified inputs to 

outputs. Each Rule is of the form: 
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“IF temperature is High AND heart rate is Normal THEN 

output is Medium Risk.” All rules are evaluated in parallel, 

and their strength (also called firing strength) is calculated 

based on the fuzzy membership degrees of the input variables. 

This stage produces an intermediate fuzzy output. 

3.1.4. Step 4: Adaptive Neural Network Weighting 

Inside the Neural Network, the results of each Rule are 

combined, and the strength of each Rule is determined by the 

associated weight 𝑤𝑖 . The system progressively changes its 

weights during learning (one method is by using gradient 

descent), so it can adjust to new forms of data. For this reason, 

the model can use old health data to increase its accuracy. 

3.1.5. Step 5: Output Defuzzification and Risk Estimation 

Next, the weighted rule outputs are combined, and then 

the fuzzy result is made crisp by using the centroid or 

weighted average method. This part of the output lets you 

know about the estimated level of Risk or health issue (such 

as “Low Risk” or “Moderate Risk”). 

3.1.6. Step 6: Temporal Behavior Modeling with HMM 

The Hidden Markov Model (HMM) accounts for the 

changes happening over time by using the output from the 

RbAFNN. The HMM reviews the sequence of outputs to spot 

sudden shifts in condition, for instance, from "Low" to 

"Critical". It allows us to discover any issues that break the 

usual pattern and boost reliable long-term observations. 

3.1.7. Step 7: Final Decision Fusion 

In the last step, the decision score for a final decision is 

generated by fusing both the Fuzzy-Neural output and the 

HMM's temporal analysis. The fusion is conducted in terms of 

a weighted combination of the current risk estimation and the 

likelihood of the observed pattern. Because of this, the output 

of the health monitoring is more accurate, situation-aware, and 

robust to uncertainty, noise, and attack scenarios. 

3.2. Fuzzy -2 rule with HMM for the Multi-Sensor Data 

Fusion 

The fuzzification performed is a critical component that 

T2 Fuzzy computational intelligence assigns to address the 

uncertainty and imprecision concerning the multi-sensor 

healthcare data that the proposed RbAFNN integrated with 

Hidden Markov Model (HMM) uses. Interval Type-2 Fuzzy 

Membership Functions are used to achieve this, which 

expands on conventional fuzzy logic by introducing a second 

degree of uncertainty into the membership functions 

themselves. In contrast to crisp membership grade assignment 

to each input, Interval Type–2 fuzzy sets describe the 

uncertainty more fully by a bounded region, defined by lower 

and upper membership functions. This corresponds 

mathematically as 𝜇 (𝑥)  =  [𝜇 (𝑥), 𝜇 (𝑥)] where μ̲(x) and μ̄(x) 

define the [0, 1] interval range of membership of an input x. 

With this more expressive representation, the system can 

produce more accurate models of vague and noisy sensor 

inputs (e.g., fluctuating heart rate or spotty temperature 

readings). Linguistic rules are applied as part of fuzzification 

to map combinations of sensor inputs to qualitative outputs 

(e.g., ‘IF heart rate IS High AND oxygen level IS Low THEN 

condition IS Risky’), providing an intuitive yet flexible first 

pass at the initial data interpretation. This stage provides a 

basis for the following adaptive learning and temporal 

modeling stages, making sure that uncertainty is taken into 

account at the start of the decision pipeline. The process of 

fuzzifying is mapping crisp sensor inputs into fuzzy values 

denoting imprecision and uncertainty. For an Interval Type-2 

Fuzzy Logic System (IT2-FLS), each input is mapped to a 

range of possible membership values and not a single 

membership value, like in a type-1 fuzzy logic system; that 

range can be represented by upper and lower membership 

functions. A traditional Type-1 fuzzy set’s membership 

function of a crisp input 𝑥 is 𝜇(𝑥) ∈ [0,1]. In the case of an 

Interval Type-2 fuzzy set, however, the membership is no 

longer a single value but an interval defined in Equation (6) 

𝜇~(𝑥) = [𝜇(𝑥), 𝜇(𝑥)]𝑤ℎ𝑒𝑟𝑒0 ≤ 𝜇(𝑥) ≤ 𝜇(𝑥) ≤ 1       (6) 

Lower Membership Function (LMF) 𝜇(𝑥) stated as the 

Upper Membership Function (UMF); 𝜇¯(𝑥) = 𝜇(𝑥)Upper 

Membership Function (UMF). Doing this will produce a 

footprint of uncertainty (FOU), which represents the 

uncertainty in the membership grade for those values 𝑥. IT2-

FLS defines the following types of fuzzy 

𝑟𝑢𝑙𝑒𝑠 𝐼𝐹 𝑥1 𝑖𝑠 𝐴1𝑖  𝐴𝑁𝐷 𝑥2 𝑖𝑠 𝐴2𝑖  𝑇𝐻𝐸𝑁 𝑦𝑖 = 𝑓𝑖, where 𝑥1  

and 𝑥2 are Sensor inputs (e.g., heart rate, SpO₂); 𝐴1𝑖 and 𝐴2𝑖 

stated as IT2 fuzzy sets for Rule 𝑖 and 𝑓𝑖 stated as Consequent 

fuzzy output. The firing strength 𝑓𝑖  of a fuzzy rule in IT2 logic 

is also an interval using Equation (7) 

𝑓𝑖 = [𝑓𝑖 , 𝑓𝑖] = [𝑚𝑖𝑛(𝜇𝐴1𝑖(𝑥1), 𝜇𝐴2𝑖(𝑥1)]       (7)                 

This interval in particular represents the extent to which 

the input (𝑥1, 𝑥2) activates Rule 𝑖 , taking into consideration 

membership uncertainty. The output of fuzzy rules is a fuzzy 

interval, and so a process called type reduction must be used 

to compute a crisp output. The centre of sets (COS) type 

reduction is a common one, defined in Equations (8) and (9) 

𝑌 =  
∑ (𝑓𝑖.𝑤𝑖)𝑖

∑ (𝑓𝑖)𝑖
                             (8) 

𝑌̅ =  
∑ (𝑓̅𝑖.𝑤𝑖)𝑖

∑ (𝑓̅𝑖)𝑖
                             (9) 

In Equations (8) and (9) 𝑤𝑖  , the Weight (output) 

associated with the Rule 𝑖is learned by the neural network, 𝑌 

defined as the Lower and upper bounds of the type-reduced 

output. The crisp output 𝑦 is the average of the interval 

computed using Equation (10) 
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𝑦 =  
𝑌+ 𝑌̅

2
                                  (10) 

In order to adaptively tune the outputs of the rules, the 

neural weights 𝑤𝑖  are updated using error correction: IT2 

fuzzy sets are utilized in which the system deals with the real 

uncertainty present in healthcare sensor data. By performing 

the fuzzification process, sensor readings can vary due to 

noise, calibration error, or patient motion, but the decision will 

still be robust. The integrated result is a reliable, adaptive, and 

time-aware Healthcare monitoring framework obtained by 

combining fuzzified input with neural learning and temporal 

modeling (via HMMs), presented in Table 1. The proposed 

RbAFNN model flow chart is presented in Figure 2. 

Table 1. Rules in RbAFNN 

Rule No. Fuzzy Condition (Antecedent) Fuzzy Output (Consequent) 

R1 IF HR is High AND SpO₂ is Low THEN Risk is High 

R2 IF HR is Normal AND SpO₂ is Normal THEN Risk is Low 

R3 IF HR is Low AND SpO₂ is High THEN Risk is Low 

R4 IF HR is High AND SpO₂ is Normal THEN Risk is Medium 

R5 IF HR is Low AND SpO₂ is Low THEN Risk is Medium 

R6 IF HR is Normal AND SpO₂ is Low THEN Risk is Medium 

R7 IF HR is High AND SpO₂ is High THEN Risk is Medium 

R8 IF HR is Low AND SpO₂ is Normal THEN Risk is Low 

R9 IF HR is Normal AND SpO₂ is High THEN Risk is Low 

R10 IF HR is High AND SpO₂ is Low AND Temp is High THEN Risk is High 

R11 IF HR is Normal AND SpO₂ is Low AND Temp is High THEN Risk is Medium 

R12 IF HR is Low AND SpO₂ is Low AND Temp is Low THEN Risk is Medium 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Flow chart of proposed RbAFNN 

4. Cybersecurity Model with RbAFNN for 

Healthcare Data Monitoring 
The proposed model for the Rule-Based Adaptive Fuzzy 

Neural Network (RbAFNN) in multi-sensor healthcare 

monitoring is designed on the basis of cybersecurity, 

considering the integrity, confidentiality, and trustworthiness 

of sensor data that are used for critical medical decision-

making. The anomaly detector, lightweight encryption, and 

trust-based filtering are the three main components that are 

part of the model.  

 

Firstly, Interval Type-2 Membership Functions are used 

to fuzzify the sensor inputs since they can represent the 

uncertainty in physiological measurements. Fuzzy rules 

process these fuzzified values and use the firing strengths of 

different rules to determine the final result, which is an 

adaptive neural network. The output 𝑦 is a weighted average 

of its inputs, stated in Equation (11) 

 

𝑦 =
∑𝑓𝑖𝑤𝑖

∑𝑓𝑖
                              (11) 

 

The corresponding weights 𝑤𝑖were adapted using the 

Rule 𝑤𝑖
𝑛𝑒𝑤 = 𝑤𝑖

𝑜𝑙𝑑 −  𝜂(𝑦 − 𝑦𝑑). Any abnormal behaviour 

in the sensor data is detected by using an anomaly score 

𝐴(𝑡) =∣ 𝑦(𝑡) − 𝑦𝑑(𝑡) ∣, and if the score is greater than the 

threshold θθ\theta, the data is marked as potentially 

compromised. A lightweight encryption scheme is applied to 

ensure the security of data transmission, i.e., each sensor value 

𝑥𝑖(𝑡) is encrypted with a pseudo-random key 

𝑘𝑖(𝑡) 𝑎𝑠 𝐶𝑖(𝑡)  =  𝑥𝑖(𝑡) ⊕ 𝑘𝑖(𝑡). This means that data cannot 
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be messed with or intercepted when communicating. The 

encrypted data are decrypted and fed to the RbAFNN on the 

receiving side. Finally, each sensor is also assigned a trust 

score 𝑇𝑖(𝑡) calculated as 𝑇𝑖(𝑡 + 1) =  𝛾𝑇𝑖(𝑡)  +  (1 −
 𝛾)(1 −  𝐴(𝑡)) where 𝛾 is a memory factor. This decay with 

the detected anomalous event helps filter out unreliable 

sensors from the data fusion process. Lastly, a Hidden Markov 

Model (HMM) is incorporated in the model to examine the 

temporal sequence of the sensor outputs and estimate the 

likelihood 𝑙𝑜𝑔𝑃(𝑂 ∣ 𝜆) , which signifies the likelihood of 

seeing the observed data in healthy data. As a weighted sum, 

the final score of the secure health state is computed using 

Equation (12) 

 

𝑆𝑐𝑜𝑟𝑒 = 𝛼 ⋅ 𝑦 + 𝛽 ⋅ 𝑙𝑜𝑔𝑃(𝑂 ∣ 𝜆)               (12) 

 

In Equation (12) 𝛼 ,   tuning parameters are used. By this 

composite approach, the RbAFNN can accurately infer the 

health status from uncertain and multi-source data while at the 

same time guaranteeing that the decision-making process is 

guarded, dependable, and resilient against cyber threats. 

Cybersecurity attacks pose an important risk for multi-sensor 

healthcare monitoring systems such as the Rule-Based 

Adaptive Fuzzy Neural Network (RbAFNN), which may 

jeopardize data integrity, patient safety, and system reliability. 

The data injection attack is one of the most important threats, 

since an attacker inserts false or manipulated values in the 

sensor values in order to deceive the system’s decision-

making.  

 

This can be used to, for example, fake a normal heart rate, 

where, for reality it is dangerously high thereby preventing 

timely medical intervention shown in Figure 3. The second 

most common attack is the Man in the Middle attack (MitM), 

wherein the malicious agents intercept the signals between 

sensors and the central processing unit and modify or even 

reroute the medical data. The attacks of spoofing rely on 

manipulating the identity of the verification mechanisms, 

consisting of sink devices as trusted sensors, so that the 

attacker feeds malicious inputs. Besides, denial-of-service 

(DoS) attacks can flood the system with resource redundancy 

or malicious requests so that the system's processing resources 

will be occupied and the critical real-time analysis will be 

delayed.  

 

A second threat lies in the emergence of eavesdropping 

attacks, which are able to read unencrypted or weakly 

protected sensor data and hence allow for privacy breaches 

and the misuse of personal health information. Besides posing 

a threat to the confidentiality and authenticity of healthcare 

data, these cybersecurity threats also affect the reliability of 

the healthcare provider’s AI-driven diagnostic decisions. 

Integrating robust anomaly detection, encryption, and trust 

mechanisms within models such as RbAFNN is therefore 

imperative to withstand such attacks and obtain secure and 

reliable healthcare monitoring.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Cyberthreat estimation with RbAFNN 

 

4.1. Classification with RbAFNN 

The Rule-Based Adaptive Fuzzy Neural Network 

(RbAFNN) based classification in a healthcare monitoring 

system adopts characteristics of fuzzy logic, adaptive learning, 

and deep learning for proper patient state classification and 

real-time, accurate diagnosis of illnesses. The signals from 

multiple sensors, such as heart rate, oxygen saturation, and 

body temperature, are first processed by Interval Type-2 

Fuzzy Logic, an approach that has the ability to account for 

uncertainty and imprecision by assigning input variables to 

fuzzy sets having upper and lower membership bounds. The 

proposed system applies a rule-based inference system using 

the given expert rules (e.g., If heart rate is High and SpO₂ is 

Low Then Risk is High), which are passed through a fuzzy 

decision process. Then, the outputs of the fuzzy rule base are 

made to feed an adaptive neural layer, which learns weights of 

the rules via a gradient-based learning algorithm. In order to 

do the learning from the labeled patient data and to change the 

decision boundary, the final classification output 𝑦 is achieved 

as a normalized weighted sum of all the rule outputs. 

However, this layer represents a fuzzy rule-based shallow 

neural network production of experience-based expert 

knowledge. To extend classification performance, the 

RbAFNN is combined with a deep learning model like a Long 

Short-Term Memory network or a Convolution Neural 

Network, which processes high-dimensional features (e.g., 

ECG waveforms or motion sensor data) in a temporal manner. 

The output of the deep model is the input of a fuzzy system, 

along with the other inputs, and captures the latent patterns 
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and time-dependent health variations. For instance, the output 

of an LSTM can capture evolving trends of heart rate 

variability, and it can be followed by the fuzzy layer that 

assigns clinical meaning to those trends. The system is capable 

of separating patient health status in different states, like 

Healthy, At Risk, or Critical, and updating its rule weights in 

real time. The RbAFNN brings together deep learning with 

symbolic reasoning and enables an explainable, adaptive, and 

robust classifier that relies on deep learning but can still make 

interpretable decisions over noisy real-world sensor data. For 

each input 𝑥𝑖  (heart rate or oxygen level, for example), a fuzzy 

membership value is constructed using Equation (13) 

𝜇𝐴𝑖(𝑥𝑖) ∈ [0,1]                  (13) 

This represents how much the input belongs to a fuzzy set 

(e.g., Low, Medium, High). For each fuzzy Rule 𝑟, calculate 

its firing strength by combining the membership values of all 

inputs involved, as stated in Equation (14) 

𝑓𝑟 = 𝑚𝑖𝑛(𝜇𝐴𝑟1(𝑥1), 𝜇𝐴𝑟2(𝑥2), … )           (14) 

Each Rule has a weight 𝑤𝑟 representing its importance or 

output class value. The overall output 𝑦 is a weighted average 

of rule outputs, which are stated in Equation (15) 

𝑦 =  
∑ 𝑓𝑟×𝑤𝑟𝑟

∑ 𝑓𝑟𝑟
                              (15) 

Adjust weights based on the error between the desired 

output 𝑦𝑑  and predicted output 𝑦 stated in Equation (16) 

𝑤𝑖
𝑛𝑒𝑤 = 𝑤𝑖

𝑜𝑙𝑑 −  𝜂(𝑦 − 𝑦𝑑) ×
𝑓𝑟

∑ 𝑓𝑟𝑟
    (16) 

In this case, 𝜂 it is the learning rate. In the Rule-Based 

Adaptive Fuzzy Neural Network (RbAFNN) for healthcare 

monitoring, classification is processed through converting raw 

sensor inputs, such as heart rate or oxygen saturation, into 

fuzzy membership values, which tell how much each input 

belongs to linguistic categories like Low, Medium, and High. 

Each Rule’s firing strength, i.e., its value that is usually 

calculated as the minimum membership value among the 

inputs involved, is then evaluated as a set of fuzzy if-then rules 

such as “IF heart rate is High AND SpO₂ is Low THEN Risk 

is High”. The following weights are assigned to each Rule, 

which determines its effect on the final decision. And finally, 

the system computes the overall output as a weighted average 

of all rule outputs, with the weights being adaptively updated 

according to the discrepancies between the predicted and 

desired classifications, such that the model is allowed to learn 

from new data. The patient’s health status is then classified, 

for example, to estimate whether the Risk is high or low. 

RbAFNN by employing the fuzzy logic technique in handling 

uncertainty and a neural network for learning unifies these two 

and creates a flexible and adaptive framework for qualitative 

analysis, which is capable of handling the imprecise nature of 

data with the ability to increase the diagnostic accuracy over 

time. 

5. Experimental Analysis and Discussion 
To evaluate Rule-Based Adaptive Fuzzy Neural Network 

(RbAFNN) in healthcare monitoring, multi-sensor 

physiological data, viz., heart rate, blood oxygen saturation 

(SpO₂), and body temperature, are collected from patient 

simulators or real-world datasets. The healthcare monitoring 

scenarios are simulated by incorporating noisy and uncertain 

sensor inputs, which the system can handle. Labeled data is 

used to implement and train the Rbafan model, where the 

estimated fuzzy membership function and rule set are defined 

by domain experts at the outset. Backpropagation is used to 

train the adaptive neural network component to adjust rule 

weights, and a Hidden Markov Model (HMM) is used to 

approximate temporal dependencies in a sequence of sensor 

data. Classification accuracy, sensitivity, and specificity are 

recorded as performance metrics and computation time. The 

aim of the setup is to evaluate the model’s robustness, its 

learning ability, and real-time classification performance 

under different simulated patient conditions and under data 

uncertainty. The simulation environment for the proposed 

model is presented in Table 2. 

Table 2. Simulation environment 

Parameter Details 

Software Platform Python 3.9 or higher 

Fuzzy Logic Library scikit-fuzzy (skfuzzy) 

Neural Network 

Library 

TensorFlow / Keras or PyTorch 

Dataset PhysioNet, simulated datasets 

Hardware Intel i7 CPU, 16GB RAM 

Training Method Adam Optimizer / Gradient 

Descent 

Simulation Duration 24 hours of sensor data 

Sampling Rate 1 Hz (once per second) 

 

5.1. Experimental Analysis 

The experimental analysis of the Rule-Based Adaptive 

Fuzzy Neural Network (RbAFNN) for healthcare monitoring 

has been conducted by testing the model on a multi-sensor 

dataset that mimics the real patient’s physiological signals. 

This analysis was conducted in order to determine the sense 

of the system’s ability to accurately classify patient health 

status as noise and uncertainty in the sensor is varied. During 

the experiments, the RbAFNN was shown to adapt very much, 

to successfully learn from training data and update the rule 

weights to reduce classification errors. Diagnostic 

effectiveness of the model was measured using performance 

metrics such as accuracy, sensitivity, and specificity. These 

results indicated that the combination of interval type 2 fuzzy 

logic and neural network adaptation performed better with 

respect to handling inputs with ambiguous meaning relative to 



Radhika Rajoju & P. Swetha / IJECE, 12(10), 129-146, 2025 

137 

traditional fuzzy systems. In addition, it has maintained 

robustness with temporal data sequences by incorporating 

temporal dependencies of data sequences through the Hidden 

Markov Model component.  

Table 3. Multi-sensor fusion with Type-2 fuzzy HMM 

Sensor Combination 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

F1-

Score 

(%) 

Processing 

Time (ms) 

Heart Rate (HR) + SpO₂ 93.5 92.8 94.1 93.4 13 

HR + SpO2 + Body Temp 94.8 93.9 95.6 94.7 14 

HR + SpO2 + Body Temp 

+ BP 
95.4 94.5 96.1 95.3 16 

HR + SpO2 + BP 94.2 93.1 95.3 94.0 15 

HR + Body Temp + BP 93.8 92.5 95.1 93.6 15 
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(c) 

 
(d) 

 
(e) 

Fig. 4 Type-2 Fuzzy with HMM (a) Accuracy (b) Sensitivity (c) Specificity (d) F1-Score (e) Processing Time 
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The performance results of the proposed Type–2 Fuzzy 

Hidden Markov Model (HMM) approach are shown in Table 

3 for multi–sensor data fusion in healthcare monitoring, as 

shown in Figure 4(a) – (e). The table considers the 

combinations of the vital sensors such as Heart Rate (HR), 

Blood Oxygen Saturation (SpO₂), Body Temperature, and 

Blood Pressure (BP). The experiments show that their fusion 

results in high accuracy, sensitivity, specificity, and F1-score 

values for the classification of the health status, which means 

that the fusion conveys an effective and reliable classifier of 

the health status. With the combined effects of the HR and 

SpO₂ sensors alone obtaining an accuracy of 93.5%, strong 

sensitivity (92.8%), and specificity (94.1%), it is an indication 

of excellent detection. Including Body Temperature along 

with the HR and SpO₂ improves performance metrics with the 

addition of 94.8% accuracy and 94.7% F1-Score, 

demonstrating the gain of adding more physiological 

conditions. The most accurate results are provided by fusing 

all four sensors (HR, SpO2, Body Temperature, and BP), 

achieving an accuracy of 95.4%, sensitivity of 94.5% and 

specificity of 96.1% which indicates that the accuracy of 

classification is improved by taking the input of all four 

sensors. Adding more sensors merely increases processing 

time, from 13ms even with two sensors to 16ms even with four 

sensors, but the overall computational cost is low, making it 

suitable for real-time healthcare monitoring applications. The 

results validate the concept that incorporating multi-sensor 

fusion through the Type 2 Fuzzy HMM framework, equipped 

to address uncertainty and variations across time in sensor data 

more effectively than the baseline techniques, enhances 

decision-making accuracy and robustness.  
 

Table 4. Rule-based classification for healthcare monitoring with Type-2 fuzzy 

Test Scenario 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 
F1-Score 

(%) 

Processing Time 

(ms) 

Normal Condition 95.2 94.8 95.6 95.0 12 

Noisy Sensor Data 91.7 90.5 92.8 91.4 15 

Data with Missing Values 89.3 87.6 90.9 89.1 16 

Sudden Health 

Deterioration 
93.5 92.9 94.0 93.4 13 

Long-term Monitoring 94.0 93.8 94.2 94.0 14 

The performance of the based classification system 

integrated with Type 2 Fuzzy logic for healthcare monitoring 

is summarized in Table 4 for various test scenarios. In normal 

conditions, the system is capable of getting its highest 

accuracy of 95.2%, sensitivity (94.8%), and specificity 

(95.6%) to distinguish health from risky states with minimum 

error. This demonstrates the model’s ability to survive in the 

presence of clean and reliable sensor data. This comes at the 

cost of performance when tested with noisy sensor data, where 

accuracy decreases to 91.7% and F1 score to 91.4% which 

nevertheless points to the system’s capability to be reliable 

under measurement noise without significant loss in 

reliability. In the missing data setting, the accuracy of 89.3% 

is even lower, yet the system remains sensitive and specific 

enough to suggest that the Type‐2 fuzzy approach is able to 

handle missing data and cope with uncertainty. The model also 

achieves a good performance under sudden health 

deteriorations and performs well with 93.5% accuracy, having 

a balanced sensitivity and specificity to detect value changes 

of patient condition in a timely manner. Results for the long-

term monitoring confirm the robustness of the system in 

achieving a steady accuracy of 94.0% and prove its suitability 

for continuous office and healthcare applications. The 

processing time for all scenarios is low (12 to 16 ms), 

supporting real-time monitoring requirements. 

 

Table 5. HMM-based associative rules for RbAFNN 

Time 

(s) 

Heart 

Rate 

(bpm) 

SpO₂ 

(%) 

Body 

Temp 

(°C) 

HMM 

State 

State Probability 

P(qt)P(q_t)P(qt) 

Observation Probability 

bqt(Ot)b_{q_t}(O_t)bqt(Ot) 

1 78 97 36.7 Normal 0.85 0.90 

2 82 95 36.8 Normal 0.80 0.88 

3 90 92 37.0 At Risk 0.60 0.75 

4 95 89 37.3 At Risk 0.70 0.78 

5 105 85 37.5 Critical 0.50 0.65 

6 110 82 37.7 Critical 0.55 0.60 

7 88 90 37.1 At Risk 0.65 0.72 

8 80 94 36.9 Normal 0.75 0.85 
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The results of HMM-based associative rules applied 

within the RbAFNN framework for healthcare monitoring are 

presented in Table 5. On the other hand, the table records at 

different time instances patient vital signs such as: Heart Rate 

(bpm), Blood Oxygen Saturation (SpO₂), and Body 

Temperature (°C) along with the HMM state labels: Normal, 

At Risk, and Critical. When we calculate the state probability 

and the observation probability of each state, it reflects how 

confident the model is in the current health status. Early time 

points (1 and 2 seconds) are associated with stable conditions 

indicated by HRs of 78–82 bpm, SpO ₂s above 95% and 

normal body temperature that result in high probabilities 

(above 0.80) of the Normal state. With time (c.a. 3 to 4 

seconds), the At Risk state sees parallels in elevated heart 

rates, lowered oxygen saturation, and decreasing but still 

elevated state and observation probabilities that are low 

enough to prompt cautionary alerts. In time 5 and 6 seconds, 

the vital signs continue to worsen to a point in time where we 

reach a Critical state with more probabilities reduced, which 

means that although the chances are on the decline, the 

likelihood that something severe is happening has increased. 

Realings at later time points (7 and 8 seconds) trend back in 

safer ranges and switch back and forth between At Risk and 

Normal, indicative of dynamic patient status and the ability of 

the system to capture temporal health changes. 

 
Fig. 5 Cyberthreat analysis with RbAFNN 

 

 

Table 6. Cyber threat estimation with RbAFNN 

Attack Type 
Detection Accuracy 

(%) 

False Positive Rate 

(%) 

Response Time 

(ms) 

Mitigation Success Rate 

(%) 

Denial of Service 

(DoS) 
96.5 3.2 15 94.7 

Data Injection Attack 94.8 4.1 18 92.5 

Spoofing Attack 95.3 3.5 16 93.8 

Man-in-the-Middle 

(MITM) 
93.7 4.7 20 90.9 

Malware Attack 92.9 5.0 22 89.5 

Table 6 provides a summary of the cybersecurity threat 

detection and mitigation performance of the Rule-Based 

Adaptive Type-2 Fuzzy Neural Network (RbAFNN) for 

different types of common attacks in healthcare monitoring 

systems. Experiments performed on a real-life system show 

the model has good detection accuracy for each Type of 

attack, but is more effective at detecting Denial of Service 

(DoS) attack (96.5%), Spoofing (91.5%), and Data Injection 

(92.9%).  

 

The result of this high accuracy demonstrates the model’s 

ability to categorize malicious activities that may be utilized 

to breach the integrity and availability of healthcare data. 

Overall, the false positive rate stays low across all attack types, 

from 3.2% for DoS attacks to 5.0% for Malware attacks, 

indicating that the model is precise enough to avoid providing 

false alerts that security personnel would have to deal with 

otherwise. From 15 ms to 22 ms, the response time is 

moderately variant, and therefore, the system is capable of 

detecting and responding very fast enough for real-time 

protection without compromising healthcare data processing.  

 

Furthermore, the mitigation success rates are 

commendable, so DoS attacks achieved the highest success 

rate of 94.7%, which indicates how successful 

countermeasures are in stopping an attack after it is detected. 

With the exception of Man-In-The-Middle (MITM) and 

Malware, which have slightly better success rates in 

mitigation than Earthquake attacks, both attacks display 

remarkable capability in neutralizing an attack.  

 

In general, the results indicate that RbAFNN is an 

effective cybersecurity framework for accurately and in a 

timely manner detecting and maintaining diverse cyber threats 

in a healthcare environment. 
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Table 7. Cyber threat estimation for different epochs with RbAFNN 

Epochs 
Detection 

Accuracy (%) 

Precision 

(%) 

Recall 

(Sensitivity) (%) 

F1-Score 

(%) 

False Positive 

Rate (%) 

Response 

Time (ms) 

10 88.5 87.2 89.1 88.1 7.5 25 

20 91.8 90.6 92.3 91.4 5.8 22 

30 94.2 93.5 94.8 94.1 4.3 18 

40 95.7 95.1 96.0 95.5 3.6 16 

50 96.5 95.8 97.0 96.4 3.2 15 
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(d) 

 
(e) 

 

(f) 

Fig. 6 Classification with RbAFNN (a) Accuracy, (b) Precision, (c) Recall, (d) F1-Score, (e) False positive rate, and (f) Response time. 

 

Figure 6(a) – (f) and Table 7 illustrate the performance of 

the Rule-Based Adaptive Type-2 Fuzzy Neural Network 

(RbAFNN) in cybersecurity threat detection across different 

training epochs. As the number of epochs increases from 10 to 

50, the model’s detection accuracy steadily improves from 

88.5% to 96.5%, indicating enhanced learning and better 

generalization with more training iterations. Correspondingly, 

precision and recall (sensitivity) also increase, reaching 95.8% 

82

84

86

88

90

92

94

96

98

10 20 30 40 50

F
1

-S
co

re
 (

%
)

Epochs

F1-Score vs Epochs

0

1

2

3

4

5

6

7

8

10 20 30 40 50

F
P

R
 (

%
)

Epochs

False Positive Rate vs Epochs

0

5

10

15

20

25

30

10 20 30 40 50

T
im

e 
(m

s)

Epochs

Response Time vs Epochs



Radhika Rajoju & P. Swetha / IJECE, 12(10), 129-146, 2025 

143 

and 97.0% respectively, at 50 epochs, which reflects the 

model’s growing ability to correctly identify true threats while 

minimizing missed detections. The F1-score, representing the 

harmonic mean of precision and recall, follows a similar 

upward trend, achieving 96.4% at 50 epochs, demonstrating 

balanced performance in threat classification. Importantly, the 

false positive rate decreases from 7.5% at 10 epochs to just 

3.2% at 50 epochs, reducing the incidence of incorrect alerts 

and thus improving reliability. Additionally, response time 

improves as training progresses, dropping from 25 ms to 15 

ms, suggesting that the model becomes more efficient in 

processing and reacting to threats with increased training.

 

 
Fig. 7 Confusion matrix for different datasets 

 

 
Fig. 8 Comparative analysis of RbAFNN with different datasets 
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Table 8. Comparative analysis of cyber threat estimation with RbAFNN 

Dataset 

Name 

Dataset 

Description 

Detection 

Accuracy (%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

False 

Positive 

Rate (%) 

Response 

Time (ms) 

PhysioNet 

Challenge 

Multi-sensor ICU 

patient data 
95.2 94.6 95.8 95.2 3.5 16 

MIMIC-III 

ICU patient 

electronic health 

records 

94.7 93.9 94.5 94.2 3.8 17 

UCI Epileptic 

Seizure 

EEG signals for 

seizure detection 
92.8 91.7 92.5 92.1 4.2 18 

Kaggle Heart 

Disease 

Cardiac sensor and 

clinical data 
93.6 92.9 93.8 93.3 3.9 15 

Simulated 

Sensor Data 

Synthetic multi-

sensor healthcare 

data 

94.1 93.5 94.0 93.7 3.6 14 

Figure 7 presents the confusion matrix for the proposed 

model, and Figure 8 and Table 8 present a comparative 

analysis of the cyber threat estimation performance of the 

Rule-Based Adaptive Type-2 Fuzzy Neural Network 

(RbAFNN) across different healthcare datasets. The model 

demonstrates consistently high detection accuracy, ranging 

from 92.8% on the UCI Epileptic Seizure dataset to 95.2% on 

the PhysioNet Challenge dataset, which involves multi-sensor 

ICU patient data. This indicates RbAFNN’s strong capability 

to generalize across diverse healthcare data types, including 

electronic health records, EEG signals, and synthetic sensor 

data. Precision and recall metrics are similarly robust, with 

values above 91% for all datasets, reflecting the model’s 

effectiveness in correctly identifying true cyber threats while 

minimizing missed detections. The F1-scores, which balance 

precision and recall, confirm this consistent performance. 

False positive rates remain low across all datasets, between 

3.5% and 4.2%, ensuring that the system avoids excessive 

false alarms that could disrupt healthcare operations. 

Response times range from 14 ms to 18 ms, demonstrating that 

RbAFNN operates efficiently in real-time scenarios, 

regardless of the dataset complexity. Overall, these results 

highlight the adaptability and reliability of RbAFNN in 

securing a wide variety of healthcare data environments 

against cyber threats. 

 

6.2. Discussions and Findings 

The proposed Rule-Based Adaptive Type-2 Fuzzy Neural 

Network (RbAFNN) integrated with a Hidden Markov Model 

(HMM) has demonstrated strong potential for secure and 

reliable healthcare data monitoring. By fusing multiple 

physiological sensor inputs, the model effectively addresses 

three key challenges: uncertainty in sensor readings, 

adaptability to new patterns, and temporal variations in patient 

conditions. The use of Interval Type-2 fuzzy logic allowed the 

system to handle noisy and imprecise inputs more accurately 

compared to conventional Type-1 fuzzy systems, while the 

adaptive neural layer successfully refined rule weights 

through continuous learning. Experimental results confirmed 

that the integration of HMM enhanced temporal pattern 

recognition, enabling the system to detect sudden health 

deteriorations and long-term changes with high sensitivity and 

specificity. Multi-sensor fusion experiments revealed that 

combining vital signs such as heart rate, SpO₂, body 

temperature, and blood pressure significantly improved 

classification performance, achieving accuracies above 95% 

with minimal processing overhead (13–16 ms), making it 

suitable for real-time monitoring. Furthermore, cybersecurity 

evaluations highlighted the robustness of the RbAFNN 

framework against common threats such as DoS, spoofing, 

and data injection attacks, with detection accuracies exceeding 

94% and response times under 22 ms. The adaptive nature of 

the system ensured a steady improvement in detection 

accuracy, precision, and recall across training epochs, while 

maintaining a low false positive rate. Comparative analyses 

across multiple healthcare datasets—including PhysioNet, 

MIMIC-III, and UCI seizure datasets—demonstrated 

consistent performance, confirming the model’s 

generalizability. 

1. Improved Handling of Uncertainty – The use of Interval 

Type-2 Fuzzy Logic enabled the model to manage noisy, 

imprecise, and uncertain healthcare sensor data more 

effectively than traditional Type-1 systems. 

2. Adaptive Learning – The neural network component 

dynamically adjusted rule weights, improving system 

adaptability and performance over time with changing 

patient conditions. 

3. Temporal Pattern Recognition – Integration with HMM 

enhanced the detection of both sudden health 

deteriorations and long-term variations by capturing 

temporal dependencies in sensor data. 

4. High Classification Accuracy – Multi-sensor fusion 

(heart rate, SpO₂, temperature, blood pressure) achieved 

accuracies above 95%, confirming the reliability of the 

RbAFNN-HMM model in clinical monitoring. 

5. Real-Time Suitability – The system maintained low 

processing latency (13–16 ms), making it feasible for 

real-time healthcare applications. 
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6. Robust Cybersecurity Performance – The model 

demonstrated strong resilience against cyber threats such 

as DoS, spoofing, and data injection attacks, with 

detection accuracies above 94% and response times under 

22 ms. 

7. Balanced Detection Metrics – Across training epochs, the 

model consistently showed improvements in accuracy, 

precision, recall, and F1-score, while keeping false 

positive rates low. 

8. Cross-Dataset Generalizability – Testing on diverse 

datasets (PhysioNet, MIMIC-III, UCI seizure datasets) 

confirmed consistent performance and scalability across 

different healthcare monitoring contexts. 

9. Enhanced Decision-Making – The hybrid RbAFNN-

HMM framework improved both anomaly detection and 

secure data fusion, resulting in more trustworthy and 

actionable healthcare insights. 

 

6. Conclusion 
This paper presents a novel Rule-Based Adaptive Type-2 

Fuzzy Neural Network (RbAFNN) integrated with a Hidden 

Markov Model (HMM) for enhanced multi-sensor data fusion 

and cybersecurity in healthcare monitoring systems. The 

proposed hybrid framework effectively addresses uncertainty 

in sensor data through interval Type-2 fuzzy logic, adapts 

dynamically using neural networks, and captures temporal 

patterns via HMM to provide accurate and reliable health 

status classification. Experimental results across diverse 

datasets demonstrate that RbAFNN achieves high accuracy, 

sensitivity, and low false positive rates while maintaining 

efficient real-time processing. Furthermore, the model 

exhibits strong performance in detecting and mitigating 

various cyber threats, ensuring robust security for sensitive 

healthcare information. Overall, the integration of advanced 

fuzzy logic, neural learning, and temporal modeling 

establishes RbAFNN as a powerful and practical solution for 

secure, intelligent healthcare monitoring in complex and 

uncertain environments. Future work can explore extending 

this approach to larger-scale deployments and incorporating 

additional contextual factors to further improve system 

resilience and adaptability.
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