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Abstract - In the context of multi-sensor data monitoring systems, especially in critical domains like Healthcare, cybersecurity
plays a pivotal role in ensuring the integrity, confidentiality, and availability of the data being collected, transmitted, and
analyzed. These systems often gather sensitive physiological and behavioral information from multiple sensors—such as ECG,
EEG, temperature, blood pressure, and movement sensors-making them prime targets for cyberattacks. Unauthorized access or
tampering with this data can lead to serious consequences, including incorrect diagnoses, compromised patient safety, and data
privacy breaches. In this paper, a Rule-Based Adaptive Type-2 Fuzzy Neural Network (RbAFNN) and an HMM are used to
manage data from multiple sensors in healthcare monitoring. With interval Type-2 fuzzy logic and the adaptive neural network,
the approach can properly work with uncertain and imprecise data and quickly self-adjust to new changes in patients. With
HMM, sensor data are handled properly over time, so fault detection and health classification improve. Experiments with several
healthcare-related datasets find that the RbAFNN-HMM model delivers high accuracy, a high sensitivity level, and a low number
of false positives in the tasks of health monitoring and cyber threat detection with efficient performance in real-time.
Experimental analysis stated that the accuracy of detecting a phone call with the RboAFNN-HMM model is more than 96%, it
has a 97% sensitivity, and its false positives are no more than 3%. The system is very accurate in detecting threats, as its threat
detection is around 92% for different attack types, and it usually mitigates threats with a success rate above 89%. These results
prove that the framework helps deliver correct, prompt, and secure health care, thereby making it a dependable solution for
changing and uncertain situations in hospitals. The framework’s solid cybersecurity features ensure that important data is safe
and better protected against DoS, spoofing, and data injection. The advanced solution offered by the system is reliable, smart,
and ensures security in unstable and uncertain situations.

Keywords - Healthcare Monitoring, Cybersecurity, Multi-Sensor, Type-2 Fuzzy, Hidden Markov Model (HMM), Neural Network,
Rule-Based Model.

1. Introduction

Recently, using multiple sensors together has played a
crucial role in health monitoring because it offers more
accurate, dependable, and broader information about patients’
health [1]. With individual ECG, accelerometers, temperature
sensors, and blood oxygen monitors, data from which multi-
sensor fusion techniques make it possible to eliminate issues
associated with each individual sensor, for example, noise,
drift, or data missing [2]. Using machine learning and signal
processing, new technologies are now able to provide more
valuable information about someone’s health by intelligently
analyzing various data. Therefore, illnesses are more easily
identified in the early stages, issues are recognized
immediately, and monitoring for each individual is improved
[3]. Setting up remote patient monitoring, smart wearable

OSOE)

tech, and Healthcare for the elderly, as well as rehabilitation,
have all made Healthcare more involved in inpatient care.
Since data collected by sensors is sometimes not the same,
using them together becomes a real challenge. Matching data
from various sources is hard, particularly in real-time cases,
because any disruption or lag can cause wrong conclusions to
be drawn [4, 5]. Also, if sensors are not dependable or if there
is a lot of noise from them, the data may not be accurate, and
using the data could impair the system’s performance [6].
More concerns about privacy and security exist now because
a lot of private health data is being collected and exchanged.
Handling huge, ongoing flows of multi-form data can be
difficult because this task needs plenty of resources and
efficient algorithms. Standardization of how sensors
communicate and share data is still lacking, which makes it
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difficult for wvarious healthcare settings to use these
technologies together [7 -10].

Nevertheless, a number of challenges still exist.
Information observed through various sensors is typically
heterogeneous, and the combination of readings in real time is
challenging because of mismatch, latency, and unreliability of
the sensors that may result in erroneous inferences. The notion
of privacy and information security is augmented since
sensitive health information is perpetually captured, relayed,
and distributed. Processing huge and constant flows of
multimodal data requires significant computing power and
algorithms, but the sensor communication has not been
standardized yet, restricting the interoperability of healthcare
facilities. The issue of security in multi-sensor data fusion is
essential since the presence of a compromised sensor may
threaten medical decision reliability. Though novel
approaches, such as blockchain, federated learning, role-based
access control, and running frequent updates to the firmware
ensure a higher level of data security, combining them without
lowering real-time capabilities is still a challenge, especially
when operating on wearable or edge devices with limited
resources. Additionally, whereas CNNs, RNNs, and
transformers show a benefit when applied to the automatic
processing of nonlinear and noisy sensor data, the literature is
mostly restricted to a particular type of sensors or sound,
noise-free sensor inputs, and knowledge about fusion
frameworks that can be easily and securely applied to
healthcare applications in a real-time setting remains scarce.
The world urgently needs infrastructure that would support
heterogeneous sensor data, cybersecurity, real-time efficiency
on edge devices, and high-fidelity and personalized healthcare
information. This paper will discuss these challenges by
providing a Multi-sensor fusion framework based on deep
learning that would help overcome the pitfalls of uncertainty,
dynamic patient conditions, and cyber-threats in healthcare
monitoring.

Security in data fusion plays a vital role, especially in
Healthcare, as patient information is always being gathered,
shared, and used [11, 12]. Since multi-sensor setups need to
share data over the network, they face several types of cyber
threats, such as people stealing data, breaking into networks,
imitating legitimate people, and changing information [13-
15]. The data should always be secured by advanced measures
like encryption, proper communication methods, user
authentication, and quick detection of threats. As well, the
process used to combine all the data should be kept safe from
change, as one affected sensor could spoil the entire analysis
and provide wrong medical support [16, 17]. The issue
becomes more difficult due to the limited resources on
wearable and edge devices that can handle complex security
algorithms. As a result, making cybersecurity solutions light
and flexible for multi-sensor fusion systems is crucial to keep
trust, guard patient privacy, and depend on healthcare
monitoring tools. Recent work has tried to embed these
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cybersecurity measures straight into the design of multi-sensor
healthcare systems [18]. Blockchain, machine learning, and
federated learning are means for keeping data safe and
reliable. Both role-based access controls and regular firmware
security updates work to stop any security threats that may
strain the network. At the same time, making sure the system
is secure without it slowing down too much is still a major
issue in real-time medicine, since any delay can harm patients
[19]. Compliance with regulations like HIPAA and GDPR is
important, and it stresses the requirement for stronger
cybersecurity plans. In Healthcare, securing effective multi-
sensor data fusion alongside the increased use of new
technologies is needed to build trust with patients and ensure
the future of Al-driven medical solutions [20].

Deep learning in multi-sensor healthcare systems is
improved because it helps with automatically analyzing data,
identifying complicated signals, and making precise
decisions. In contrast to regular machine learning methods,
deep learning models, for example, CNNs, RNNs, and
transformers, are able to learn from raw data collected by
various sensors [21]. Using this approach is especially helpful
in Healthcare since sensor measurements are usually messy,
complicated to process, and related to changes over time. The
combination of several sources of data, enabled by deep
learning, helps analyze a patient’s situation more deeply and
in full detail. Some uses are forecasting diseases, finding
unusual patterns, noticing activities, and offering personalized
care suggestions [22].

With edge Al, deep learning models can now be used on
wearable devices to do processing right away and make fewer
connections to cloud servers [23-26]. The paper contributes a
lot to healthcare monitoring by solving the problems of
uncertainty, shifting patient statuses, and cyber crimes related
to multi-sensor information. The key aim is to design a solid
system that can notice any health concerns in real-time and
keep health records safe from potential cyber threats. Thus, the
paper suggests implementing a Rule-Based Adaptive Interval
Type-2 Fuzzy Neural Network (RbAFNN) along with a
Hidden Markov Model (HMM). With help from interval
Type-2 fuzzy logic, a neural network, and HMM, this
approach correctly classifies a person’s health status by
considering sensor data fluctuations and their patterns over
time. Lots of experiments were carried out using data such as
PhysioNet, MIMIC-I11l, and fabricated sensor information,
showing that the approach achieved a detection accuracy of
96.5%, as high as a sensitivity of 97.0% and a false positive
rate as low as 3.2%. When being evaluated, the model notices
many types of attacks and deals with them effectively, with
accuracy rates higher than 92% and success in mitigation
reaching above 89%, all the while responding in under 22
milliseconds. The findings confirm that the model is accurate,
prompt, and secure, which makes it suitable for practical use
in real hospitals.
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2. Related Works

Over the years, there has been a strong increase in
Healthcare, with intelligent systems being used to monitor
patients through various sensors. Because there is now more
and more sensor-generated data, making sure it remains secure
and uncompromised is becoming urgent. Old methods of
cybersecurity are usually not effective enough for the
changing and unpredictable nature of medical data. In this
situation, adding decision-making capabilities to existing
cybersecurity rules can produce satisfying results. This related
works section studies how a Rule-Based Cybersecurity Model
using Adaptive Interval-Type-2 Fuzzy Neural Networks
(IT2FNNs) can be used in multi-sensor environments. This
model uses rule-based understanding and the flexible and
uncertain approach of fuzzy neural networks to provide a
stronger and smarter defense from cyber threats in healthcare
monitoring. It brings out key points about the development,
issues, and achievements of other models on which the new
method can be based.

Lee (2023) covers the use of intelligent control theory in
process enhancement and manufacturing, giving the key
background needed to use such methods in Healthcare. They
note that a smart combination of machine learning with multi-
sensor data helps drone systems spot risks in real time. In
2025, Xin and his co-authors propose a way to handle secure
state estimation in cyber-physical systems, using virtual
sensors and deep reinforcement learning, suggesting it may
successfully manage coordinated sensor attacks. Potamos et
al. discuss the role of various sensor data in maritime
cybersecurity and stress that fusing them helps make
monitoring more effective. Dag and Tuna (2025) also discuss
the benefits of data fusion in smart grid analytics, by stressing
that fusion models are essential for running complicated data-
managed systems. All these experiments demonstrate the
importance of using adaptive, intelligent, and reliable data
fusion frameworks, such as those generated by fuzzy neural
networks, in systems that monitor threats using various
sensors.

Kong and Yang (2024) present a system that can estimate
train speed and position even when faced with attacks or
physical problems, proving the need for protection in
important systems. Szynkiewicz et al. (2023) look into how
deep learning is applied to the cybersecurity of robotic
systems, and their research shows that deep learning is useful
for recognizing different data patterns from sensors. Hu et al.
(2024) put together a multi-sensor fusion system for
laboratory monitoring and proved how it can secure critical
environments. Hua and Hao (2023) also look at fusion and
detection in systems under false data injection attacks,
stressing how to prevent problems caused by interference. The
researchers from Liu et al. (2024) contribute to safe and
protected loT-based sensor systems by introducing an
approach based on adaptive privacy budgets. In their work,
Desikan et al. use both machine learning and other
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technologies to help sensors work under conditions of fault
tolerance, thereby assisting with mitigating fire risks. Their
study (Cheng et al.) explores how decentralized consensus can
still be used under threats and missing data. In 2024, Li and
Supriya demonstrate the use of intelligent monitoring and
control systems that rely on data from several sensors to help
detect anomalies and forecast faults, demonstrating different
areas of usefulness.

Li and Qiang (2023) offer an adaptive Kalman filter for
better data fusion, and Hallyburton et al. (2023) highlight
issues with cybersecurity in LIDAR used by autonomous
vehicles. In their research, Hafeez and colleagues show how
sensor-based action recognition can reap the benefits of fusing
multiple types of data. Stanojevic et al. (2025) disclose
cybersecurity concerns that arise in the use of continuous ECG
for driver monitoring, pointing out the issues that occur with
widespread health-focused technologies. Lastly, Hua and
Yang (2025) assess the use of multi-sensor fusion in car safety
and prove its significance for better passive safety features.
All in all, these works demonstrate that we need more
intelligent, adaptive, and secure fusion ways, especially based
on fuzzy neural networks, to address the needs of current
multi-sensor Healthcare and cyber-physical systems.

Although the field of multi-sensor data fusion, intelligent
learning, and cybersecurity has come a long way, there are still
a number of gaps that hamper their healthcare and cyber-
physical systems capabilities. Today, there is still no
comprehensive scheme for effectively combining resilience,
adaptability, and security to heterogeneous sensors and
dissimilar application environments. Most works concentrate
on restricted problems or individual fields, so joint difficulties
like the presence of cyber attacks, sensor failures, and
imprecise or noisy data are largely ignored. Moreover, where
the deployment in wearable devices or resource-poor
healthcare settings is considered, the deep learning and fusion
architectures would need excessive computation capabilities,
which do not make them feasible. Adversarial attacks, false
data injection, and privacy breaches also affect the multi-
sensor systems and compromise the reliability and trust of a
patient. Moreover, the explainability of fusion with Al
approaches is low, which confines decision-making
transparency. To fill these gaps necessitates the scheme of
adaptive secure and light fusion models- like the systems that
comprise interval type-2 fuzzy neural networks and rule-based
dissimilarities, which can execute strongly in the real-world,
dynamic, and high-risk domains.

3. Proposed Rule-Based Adaptive Type-2 Fuzzy

Neural Network (RbAFNN)

The proposed RbAFNN and an HMM aim to make
healthcare data monitoring more secure and reliable thanks to
their ability to fuse multiple sensor inputs. The model uses a
combination of Interval Type-2 Fuzzy Logic, Neural
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Networks, and HMMs to make anomaly detection and secure
fusion of data possible. The RbAFNN-HMM model is
introduced to handle multi-sensor data in Healthcare because
it combines intelligence in decision-making, a way to handle
uncertainty, and the analysis of successive changes. The
model uses fuzzy logic to handle unclear data coming from
sensors, a neural network to learn new information, and an
HMM to spot patterns in sensor data as time passes. The first
part uses type-2 fuzzy logic to address the uncertainty found
in the sensor readings. In contrast to classic fuzzy systems,
type-2 fuzzy sets assign a range of membership values to a
data point stated in Equation (1)
p~(x) = [u(x), p(x)] 1)
In Equation (1), u~(x) is the degree to which x belongs
to the fuzzy set and u(x) shows the minimum and maximum
membership. Using rules that are not exact, as in a condition.

If x4 is high and x is low, then the output is Risky. The
system takes sensor information and decides on an appropriate
output. During the second part, the neural network reviews the
data and recalculates the outputs generated by the fuzzy
system. The result y is obtained by adding the outputs of the
rules and multiplying their importance defined in Equation (2)

_ Zfiwi

Xfi 2)

y

The importance (strength) of the Rule i is shown using
the fifth fitness score. w; Shows the amount of weight the
Neural Network has learned. The weights are improved using
a straightforward approach based on errors stated in Equation

3) y

wie = wl' —n(y—ys) ()

The input to the equation is y; and n stands for the
learning rate. The third stage uses a Hidden Markov Model
(HMM) to observe behavior that changes with time (such as
changes in a patient’s condition). It calculates the possible
outcomes of health statuses defined in Equation (4)

POI1A) =2 paths gy [1 Agqeqrer- bqt 0 @)

The series of readings from the sensors defines Equation
(4). The symbol A comes from three components: the
transitions A, observations , and the initial state distribution
7. Next, the decision score joins the results generated by fuzzy
neural networks and the HMM’s temporal evaluation stated in
Equation (5)
Score=a-y+ B -logP(012) (5
In Equation (5) a , B refer to the tuning parameters. Such
an approach lets the system respond quickly to uncertain,
timely healthcare data from several sensors.
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3.1. Steps in RbAFNN

The RbAFNN uses a predefined process to blend and
control data collected using many healthcare sensors. Going
through each of these steps allows one to handle uncertainty,
smoothly adjust to new situations, and make dependable
choices. Figure 1 illustrates the steps involved in the proposed
RbAFNN.

Sensor Input Data
(HR, SpOz, Temp, BP, etc.)

i

Fuzzification using
Interval Type-2 Fuzzy
Membership Functions

l

Rule-Based Fuzzy Inference System
(IF-THEN Rules applied)

Adaptive Neural Network
Learning Weights from Data and
Correcting Rules

Hidden Markov Model (HMM)
for Temporal Pattern Analysis

N

Healthcare Monitoring Cybersecurity Threat Monitor
Dashboard or Alert System Detection & Mitigation

Fig. 1 Process in RbAFNN

3.1.1. Step 1: Input Preprocessing and Normalization

First, various healthcare sensors collect basic data, such
as the patient’s heart rate, temperature, and ECG
measurements. The inputs given to a model may unwillingly
contain unwanted randomness, some missing parts, or broadly
varying ranges. For this reason, the process of normalization,
filtering, and imputation is used before entering the input data
into a fuzzy system.

3.1.2. Step 2: Fuzzification using Interval Type-2 Membership
Functions

Following the cleaning of data, the interval type-2 fuzzy
sets help control uncertainty, which is better than regular type-
1 fuzzy sets. Here, the inputs' membership is calculated using
fuzzy lower and upper functions instead of just giving a single
value of membership for each input. As an illustration, if the
heart rate is “normal,” it has a membership range of [0.6, 0.9],
which means there is some uncertainty in its definition.

3.1.3. Step 3: Rule-Based Inference System
Next, fuzzy rules are applied to map fuzzified inputs to
outputs. Each Rule is of the form:
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“IF temperature is High AND heart rate is Normal THEN
output is Medium Risk.” All rules are evaluated in parallel,
and their strength (also called firing strength) is calculated
based on the fuzzy membership degrees of the input variables.
This stage produces an intermediate fuzzy output.

3.1.4. Step 4: Adaptive Neural Network Weighting

Inside the Neural Network, the results of each Rule are
combined, and the strength of each Rule is determined by the
associated weight w;. The system progressively changes its
weights during learning (one method is by using gradient
descent), so it can adjust to new forms of data. For this reason,
the model can use old health data to increase its accuracy.

3.1.5. Step 5: Output Defuzzification and Risk Estimation

Next, the weighted rule outputs are combined, and then
the fuzzy result is made crisp by using the centroid or
weighted average method. This part of the output lets you
know about the estimated level of Risk or health issue (such
as “Low Risk” or “Moderate Risk”).

3.1.6. Step 6: Temporal Behavior Modeling with HMM

The Hidden Markov Model (HMM) accounts for the
changes happening over time by using the output from the
RbAFNN. The HMM reviews the sequence of outputs to spot
sudden shifts in condition, for instance, from "Low" to
"Critical”. It allows us to discover any issues that break the
usual pattern and boost reliable long-term observations.

3.1.7. Step 7: Final Decision Fusion

In the last step, the decision score for a final decision is
generated by fusing both the Fuzzy-Neural output and the
HMM's temporal analysis. The fusion is conducted in terms of
a weighted combination of the current risk estimation and the
likelihood of the observed pattern. Because of this, the output
of the health monitoring is more accurate, situation-aware, and
robust to uncertainty, noise, and attack scenarios.

3.2. Fuzzy -2 rule with HMM for the Multi-Sensor Data
Fusion

The fuzzification performed is a critical component that
T2 Fuzzy computational intelligence assigns to address the
uncertainty and imprecision concerning the multi-sensor
healthcare data that the proposed RbAFNN integrated with
Hidden Markov Model (HMM) uses. Interval Type-2 Fuzzy
Membership Functions are used to achieve this, which
expands on conventional fuzzy logic by introducing a second
degree of uncertainty into the membership functions
themselves. In contrast to crisp membership grade assignment
to each input, Interval Type-2 fuzzy sets describe the
uncertainty more fully by a bounded region, defined by lower
and upper membership functions. This corresponds
mathematically as fi(x) = [u(x), fi(x)] where u(x) and 1i(X)
define the [0, 1] interval range of membership of an input x.
With this more expressive representation, the system can
produce more accurate models of vague and noisy sensor
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inputs (e.g., fluctuating heart rate or spotty temperature
readings). Linguistic rules are applied as part of fuzzification
to map combinations of sensor inputs to qualitative outputs
(e.g., ‘IF heart rate IS High AND oxygen level IS Low THEN
condition IS Risky”), providing an intuitive yet flexible first
pass at the initial data interpretation. This stage provides a
basis for the following adaptive learning and temporal
modeling stages, making sure that uncertainty is taken into
account at the start of the decision pipeline. The process of
fuzzifying is mapping crisp sensor inputs into fuzzy values
denoting imprecision and uncertainty. For an Interval Type-2
Fuzzy Logic System (IT2-FLS), each input is mapped to a
range of possible membership values and not a single
membership value, like in a type-1 fuzzy logic system; that
range can be represented by upper and lower membership
functions. A traditional Type-1 fuzzy set’s membership
function of a crisp input x is u(x) € [0,1]. In the case of an
Interval Type-2 fuzzy set, however, the membership is no
longer a single value but an interval defined in Equation (6)
p~(x) = [pu(x), p(x)Jwhered < u(x) < p(x) <1 (6)
Lower Membership Function (LMF) p(x) stated as the
Upper Membership Function (UMF); p (x) = u(x)Upper
Membership Function (UMF). Doing this will produce a
footprint of uncertainty (FOU), which represents the
uncertainty in the membership grade for those values x. IT2-
FLS  defines the following types of fuzzy
rules IF x; is Ay; AND x, is A,; THEN y; = f;, where x;

and x, are Sensor inputs (e.g., heart rate, SpO,); A;; and A,;
stated as 1T2 fuzzy sets for Rule i and f; stated as Consequent
fuzzy output. The firing strength f; of a fuzzy rule in IT2 logic
is also an interval using Equation (7)

fi=1fu fil ()

= [min(udy; (1), pAzi(x1)]
This interval in particular represents the extent to which
the input (x1, x2) activates Rule i , taking into consideration
membership uncertainty. The output of fuzzy rules is a fuzzy
interval, and so a process called type reduction must be used
to compute a crisp output. The centre of sets (COS) type
reduction is a common one, defined in Equations (8) and (9)

Zi(Fiw)

=50 ®
= Si(flwy)
v= Zi(FY) ©)

In Equations (8) and (9) w; , the Weight (output)
associated with the Rule iis learned by the neural network, Y
defined as the Lower and upper bounds of the type-reduced
output. The crisp output y is the average of the interval
computed using Equation (10)
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(10)

In order to adaptively tune the outputs of the rules, the
neural weights w; are updated using error correction: 1T2
fuzzy sets are utilized in which the system deals with the real
uncertainty present in healthcare sensor data. By performing

the fuzzification process, sensor readings can vary due to
noise, calibration error, or patient motion, but the decision will
still be robust. The integrated result is a reliable, adaptive, and
time-aware Healthcare monitoring framework obtained by
combining fuzzified input with neural learning and temporal
modeling (via HMMs), presented in Table 1. The proposed
RbAFNN model flow chart is presented in Figure 2.

Table 1. Rules in RbAFNN

Rule No. Fuzzy Condition (Antecedent) Fuzzy Output (Consequent)
R1 IF HR is High AND SpQO, is Low THEN Risk is High
R2 IF HR is Normal AND SpO., is Normal THEN Risk is Low
R3 IF HR is Low AND SpO, is High THEN Risk is Low
R4 IF HR is High AND SpO, is Normal THEN Risk is Medium
R5 IF HR is Low AND SpO, is Low THEN Risk is Medium
R6 IF HR is Normal AND SpO, is Low THEN Risk is Medium
R7 IF HR is High AND SpO, is High THEN Risk is Medium
R8 IF HR is Low AND SpO, is Normal THEN Risk is Low
R9 IF HR is Normal AND SpO, is High THEN Risk is Low
R10 IF HR is High AND SpQO, is Low AND Temp is High THEN Risk is High
R11 IF HR is Normal AND SpO, is Low AND Temp is High | THEN Risk is Medium
R12 IF HR is Low AND SpO, is Low AND Temp is Low THEN Risk is Medium

Acquire Sensor Input Data

Fuzzify Input Data

Apply Rule-Based Inference

Learn Adaptive Neural
Network Parameters

Perform Decision Fusion

Is Anomaly
Detected?

Raise Healthcare or Security
Alert

Fig. 2 Flow chart of proposed RbAFNN
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4. Cybersecurity Model with RbAFNN for

Healthcare Data Monitoring

The proposed model for the Rule-Based Adaptive Fuzzy
Neural Network (RbAFNN) in multi-sensor healthcare
monitoring is designed on the basis of cybersecurity,
considering the integrity, confidentiality, and trustworthiness
of sensor data that are used for critical medical decision-
making. The anomaly detector, lightweight encryption, and
trust-based filtering are the three main components that are
part of the model.

Firstly, Interval Type-2 Membership Functions are used
to fuzzify the sensor inputs since they can represent the
uncertainty in physiological measurements. Fuzzy rules
process these fuzzified values and use the firing strengths of
different rules to determine the final result, which is an
adaptive neural network. The output y is a weighted average
of its inputs, stated in Equation (11)

_ Xfiwi
TO3f (11)

The corresponding weights w;were adapted using the
Rule w*¥ = w?'® — n(y — y4). Any abnormal behaviour
in the sensor data is detected by using an anomaly score
A(t) =l y(t) —yd(t) |, and if the score is greater than the
threshold 00\theta, the data is marked as potentially
compromised. A lightweight encryption scheme is applied to
ensure the security of data transmission, i.e., each sensor value
x;(t) is encrypted with a pseudo-random key

ki(t) as C;(t) = x;(t) @D k;(t). This means that data cannot
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be messed with or intercepted when communicating. The
encrypted data are decrypted and fed to the RbAFNN on the
receiving side. Finally, each sensor is also assigned a trust
score T;(t) calculated as T;(t+1)= yT;(t) + (1 —
y)(1 — A(t)) where y is a memory factor. This decay with
the detected anomalous event helps filter out unreliable
sensors from the data fusion process. Lastly, a Hidden Markov
Model (HMM) is incorporated in the model to examine the
temporal sequence of the sensor outputs and estimate the
likelihood logP(0 | 1), which signifies the likelihood of
seeing the observed data in healthy data. As a weighted sum,
the final score of the secure health state is computed using
Equation (12)
Score=a-y+ B -logP(0 | 1) (12)
In Equation (12) @, tuning parameters are used. By this
composite approach, the RbAFNN can accurately infer the
health status from uncertain and multi-source data while at the
same time guaranteeing that the decision-making process is
guarded, dependable, and resilient against cyber threats.
Cybersecurity attacks pose an important risk for multi-sensor
healthcare monitoring systems such as the Rule-Based
Adaptive Fuzzy Neural Network (RbAFNN), which may
jeopardize data integrity, patient safety, and system reliability.
The data injection attack is one of the most important threats,
since an attacker inserts false or manipulated values in the
sensor values in order to deceive the system’s decision-
making.

This can be used to, for example, fake a normal heart rate,
where, for reality it is dangerously high thereby preventing
timely medical intervention shown in Figure 3. The second
most common attack is the Man in the Middle attack (MitM),
wherein the malicious agents intercept the signals between
sensors and the central processing unit and modify or even
reroute the medical data. The attacks of spoofing rely on
manipulating the identity of the verification mechanisms,
consisting of sink devices as trusted sensors, so that the
attacker feeds malicious inputs. Besides, denial-of-service
(DoS) attacks can flood the system with resource redundancy
or malicious requests so that the system's processing resources
will be occupied and the critical real-time analysis will be
delayed.

A second threat lies in the emergence of eavesdropping
attacks, which are able to read unencrypted or weakly
protected sensor data and hence allow for privacy breaches
and the misuse of personal health information. Besides posing
a threat to the confidentiality and authenticity of healthcare
data, these cybersecurity threats also affect the reliability of
the healthcare provider’s Al-driven diagnostic decisions.
Integrating robust anomaly detection, encryption, and trust
mechanisms within models such as RbAFNN is therefore
imperative to withstand such attacks and obtain secure and
reliable healthcare monitoring.
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Feature Selection Data Set

Rule-Based Adaptive
Fuzzy Neural Network

Defuzzification
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Anomalous Detection Traffic

Anomalous -
Traffic

Response

Response

Fig. 3 Cyberthreat estimation with RbAFNN

4.1. Classification with RbAFNN

The Rule-Based Adaptive Fuzzy Neural Network
(RbAFNN) based classification in a healthcare monitoring
system adopts characteristics of fuzzy logic, adaptive learning,
and deep learning for proper patient state classification and
real-time, accurate diagnosis of illnesses. The signals from
multiple sensors, such as heart rate, oxygen saturation, and
body temperature, are first processed by Interval Type-2
Fuzzy Logic, an approach that has the ability to account for
uncertainty and imprecision by assigning input variables to
fuzzy sets having upper and lower membership bounds. The
proposed system applies a rule-based inference system using
the given expert rules (e.g., If heart rate is High and SpO, is
Low Then Risk is High), which are passed through a fuzzy
decision process. Then, the outputs of the fuzzy rule base are
made to feed an adaptive neural layer, which learns weights of
the rules via a gradient-based learning algorithm. In order to
do the learning from the labeled patient data and to change the

decision boundary, the final classification output y is achieved
as a normalized weighted sum of all the rule outputs.
However, this layer represents a fuzzy rule-based shallow
neural network production of experience-based expert
knowledge. To extend classification performance, the
RbAFNN is combined with a deep learning model like a Long
Short-Term Memory network or a Convolution Neural
Network, which processes high-dimensional features (e.g.,
ECG waveforms or motion sensor data) in a temporal manner.
The output of the deep model is the input of a fuzzy system,
along with the other inputs, and captures the latent patterns
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and time-dependent health variations. For instance, the output
of an LSTM can capture evolving trends of heart rate
variability, and it can be followed by the fuzzy layer that
assigns clinical meaning to those trends. The system is capable
of separating patient health status in different states, like
Healthy, At Risk, or Critical, and updating its rule weights in
real time. The RDAFNN brings together deep learning with
symbolic reasoning and enables an explainable, adaptive, and
robust classifier that relies on deep learning but can still make
interpretable decisions over noisy real-world sensor data. For

each input x; (heart rate or oxygen level, for example), a fuzzy
membership value is constructed using Equation (13)

1A (x;) € [0,1] (13)

This represents how much the input belongs to a fuzzy set
(e.g., Low, Medium, High). For each fuzzy Rule r, calculate
its firing strength by combining the membership values of all
inputs involved, as stated in Equation (14)

fr = min(uA;(x1), pAr2(x3), ...) (14)
Each Rule has a weight w,. representing its importance or

output class value. The overall output y is a weighted average
of rule outputs, which are stated in Equation (15)

— Y frXwy

S fr (15)

y

Adjust weights based on the error between the desired
output y, and predicted output y stated in Equation (16)

new

W = wold — p(y — yg) x L (16)

w
Xrfr

In this case, n it is the learning rate. In the Rule-Based
Adaptive Fuzzy Neural Network (RbAFNN) for healthcare
monitoring, classification is processed through converting raw
sensor inputs, such as heart rate or oxygen saturation, into
fuzzy membership values, which tell how much each input
belongs to linguistic categories like Low, Medium, and High.
Each Rule’s firing strength, i.e., its value that is usually
calculated as the minimum membership value among the
inputs involved, is then evaluated as a set of fuzzy if-then rules
such as “IF heart rate is High AND SpO, is Low THEN Risk
is High”. The following weights are assigned to each Rule,
which determines its effect on the final decision. And finally,
the system computes the overall output as a weighted average
of all rule outputs, with the weights being adaptively updated
according to the discrepancies between the predicted and
desired classifications, such that the model is allowed to learn
from new data. The patient’s health status is then classified,
for example, to estimate whether the Risk is high or low.
RbAFNN by employing the fuzzy logic technique in handling
uncertainty and a neural network for learning unifies these two
and creates a flexible and adaptive framework for qualitative
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analysis, which is capable of handling the imprecise nature of
data with the ability to increase the diagnostic accuracy over
time.

5. Experimental Analysis and Discussion

To evaluate Rule-Based Adaptive Fuzzy Neural Network
(RbAFNN) in  healthcare monitoring, multi-sensor
physiological data, viz., heart rate, blood oxygen saturation
(Sp0O,), and body temperature, are collected from patient
simulators or real-world datasets. The healthcare monitoring
scenarios are simulated by incorporating noisy and uncertain
sensor inputs, which the system can handle. Labeled data is
used to implement and train the Rbafan model, where the
estimated fuzzy membership function and rule set are defined
by domain experts at the outset. Backpropagation is used to
train the adaptive neural network component to adjust rule
weights, and a Hidden Markov Model (HMM) is used to
approximate temporal dependencies in a sequence of sensor
data. Classification accuracy, sensitivity, and specificity are
recorded as performance metrics and computation time. The
aim of the setup is to evaluate the model’s robustness, its
learning ability, and real-time classification performance
under different simulated patient conditions and under data
uncertainty. The simulation environment for the proposed
model is presented in Table 2.

Table 2. Simulation environment
Parameter Details
Software Platform Python 3.9 or higher
Fuzzy Logic Library scikit-fuzzy (skfuzzy)

Neural Network | TensorFlow / Keras or PyTorch
Library

Dataset PhysioNet, simulated datasets
Hardware Intel i7 CPU, 16GB RAM

Training Method Adam Optimizer / Gradient
Descent
24 hours of sensor data

1 Hz (once per second)

Simulation Duration
Sampling Rate

5.1. Experimental Analysis

The experimental analysis of the Rule-Based Adaptive
Fuzzy Neural Network (RbAFNN) for healthcare monitoring
has been conducted by testing the model on a multi-sensor
dataset that mimics the real patient’s physiological signals.
This analysis was conducted in order to determine the sense
of the system’s ability to accurately classify patient health
status as noise and uncertainty in the sensor is varied. During
the experiments, the RDAFNN was shown to adapt very much,
to successfully learn from training data and update the rule
weights to reduce classification errors. Diagnostic
effectiveness of the model was measured using performance
metrics such as accuracy, sensitivity, and specificity. These
results indicated that the combination of interval type 2 fuzzy
logic and neural network adaptation performed better with
respect to handling inputs with ambiguous meaning relative to
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traditional fuzzy systems. In addition, it has maintained
robustness with temporal data sequences by incorporating

temporal dependencies of data sequences through the Hidden
Markov Model component.

Table 3. Multi-sensor fusion with Type-2 fuzzy HMM

o o F1- .
N Accuracy | Sensitivity Specificity Processing
Sensor Combination (%) (%) (%) S(%zr)e Time (ms)
Heart Rate (HR) + SpO- 93.5 92.8 94.1 934 13
HR + SpO2 + Body Temp 94.8 93.9 95.6 94.7 14
AR+ Sp02+ Body Temp | g5.4 945 96.1 95.3 16
HR + SpO2 + BP 94.2 93.1 95.3 94.0 15
HR + Body Temp + BP 93.8 925 95.1 93.6 15
Accuracy vs Sensor Combination
96
95.5 /\
95 // \
S 945
S o4 / \‘\
5 / T
38 935 ¥
<
93
92.5 ‘ ;
HR + SpO: HR +SpO.+  HR+SpO.+ HR+SpO.+BP HR + Body
Body Temp Body Temp + BP Temp + BP
Sensor Combination
(@)
Sensitivity vs Sensor Combination
95
94.5 /\
g . / \
2935 / \
>
=2 93 o
% \
n 925 -
92
91.5 ‘ ;
HR + SpO: HR + SpO. + HR +SpO.+ HR +SpO.+BP HR + Body
Body Temp Body Temp + BP Temp + BP
Sensor Combination

(b)
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Specificity vs Sensor Combination
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Fig. 4 Type-2 Fuzzy with HMM (a) Accuracy (b) Sensitivity (c) Specificity (d) F1-Score (e) Processing Time
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The performance results of the proposed Type-2 Fuzzy
Hidden Markov Model (HMM) approach are shown in Table
3 for multi-sensor data fusion in healthcare monitoring, as
shown in Figure 4(a) — (e). The table considers the
combinations of the vital sensors such as Heart Rate (HR),
Blood Oxygen Saturation (SpO;), Body Temperature, and
Blood Pressure (BP). The experiments show that their fusion
results in high accuracy, sensitivity, specificity, and F1-score
values for the classification of the health status, which means
that the fusion conveys an effective and reliable classifier of
the health status. With the combined effects of the HR and
SpO, sensors alone obtaining an accuracy of 93.5%, strong
sensitivity (92.8%), and specificity (94.1%), it is an indication
of excellent detection. Including Body Temperature along
with the HR and SpO, improves performance metrics with the

addition of 94.8% accuracy and 94.7% F1-Score,
demonstrating the gain of adding more physiological
conditions. The most accurate results are provided by fusing
all four sensors (HR, SpO2, Body Temperature, and BP),
achieving an accuracy of 95.4%, sensitivity of 94.5% and
specificity of 96.1% which indicates that the accuracy of
classification is improved by taking the input of all four
sensors. Adding more sensors merely increases processing
time, from 13ms even with two sensors to 16ms even with four
sensors, but the overall computational cost is low, making it
suitable for real-time healthcare monitoring applications. The
results validate the concept that incorporating multi-sensor
fusion through the Type 2 Fuzzy HMM framework, equipped
to address uncertainty and variations across time in sensor data
more effectively than the baseline techniques, enhances
decision-making accuracy and robustness.

Table 4. Rule-based classification for healthcare monitoring with Type-2 fuzzy

Sensitivity

Specificity Processing Time

. Accuracy F1-Score

Test Scenario (%) (%) (%) (%) (ms)
Normal Condition 95.2 94.8 95.6 95.0 12
Noisy Sensor Data 91.7 90.5 92.8 91.4 15
Data with Missing Values 89.3 87.6 90.9 89.1 16
Sudden Health 935 92.9 94.0 93.4 13

Deterioration

Long-term Monitoring 94.0 93.8 94.2 94.0 14

The performance of the based classification system
integrated with Type 2 Fuzzy logic for healthcare monitoring
is summarized in Table 4 for various test scenarios. In normal
conditions, the system is capable of getting its highest
accuracy of 95.2%, sensitivity (94.8%), and specificity
(95.6%) to distinguish health from risky states with minimum
error. This demonstrates the model’s ability to survive in the
presence of clean and reliable sensor data. This comes at the
cost of performance when tested with noisy sensor data, where
accuracy decreases to 91.7% and F1 score to 91.4% which
nevertheless points to the system’s capability to be reliable
under measurement noise without significant loss in
reliability. In the missing data setting, the accuracy of 89.3%

is even lower, yet the system remains sensitive and specific
enough to suggest that the Type-2 fuzzy approach is able to
handle missing data and cope with uncertainty. The model also
achieves a good performance under sudden health
deteriorations and performs well with 93.5% accuracy, having
a balanced sensitivity and specificity to detect value changes
of patient condition in a timely manner. Results for the long-
term monitoring confirm the robustness of the system in
achieving a steady accuracy of 94.0% and prove its suitability
for continuous office and healthcare applications. The
processing time for all scenarios is low (12 to 16 ms),
supporting real-time monitoring requirements.

Table 5. HMM-based associative rules for RbAFNN

Time Heart SpO: Body HMM State Probability Observation Probability
©) Rate (%) Temp State P(qt)P(g_t)P(qt) bgt(Ot)b_{qg_t}(O_t)bqt(Ot)
(bpm) G
1 78 97 36.7 Normal 0.85 0.90
2 82 95 36.8 Normal 0.80 0.88
3 90 92 37.0 At Risk 0.60 0.75
4 95 89 37.3 At Risk 0.70 0.78
5 105 85 375 Critical 0.50 0.65
6 110 82 37.7 Critical 0.55 0.60
7 88 90 37.1 At Risk 0.65 0.72
8 80 94 36.9 Normal 0.75 0.85
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The results of HMM-based associative rules applied
within the RbAFNN framework for healthcare monitoring are
presented in Table 5. On the other hand, the table records at
different time instances patient vital signs such as: Heart Rate
(bpm), Blood Oxygen Saturation (SpO.), and Body
Temperature (°C) along with the HMM state labels: Normal,
At Risk, and Critical. When we calculate the state probability
and the observation probability of each state, it reflects how
confident the model is in the current health status. Early time
points (1 and 2 seconds) are associated with stable conditions
indicated by HRs of 78-82 bpm, SpO ,s above 95% and
normal body temperature that result in high probabilities
(above 0.80) of the Normal state. With time (c.a. 3 to 4
seconds), the At Risk state sees parallels in elevated heart
rates, lowered oxygen saturation, and decreasing but still
elevated state and observation probabilities that are low
enough to prompt cautionary alerts. In time 5 and 6 seconds,
the vital signs continue to worsen to a point in time where we
reach a Critical state with more probabilities reduced, which
means that although the chances are on the decline, the
likelihood that something severe is happening has increased.
Realings at later time points (7 and 8 seconds) trend back in
safer ranges and switch back and forth between At Risk and

Normal, indicative of dynamic patient status and the ability of
the system to capture temporal health changes.

Gazebo simulation environment
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Fig. 5 Cyberthreat analysis with RbDAFNN
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Table 6. Cyber threat estimation with RbAFNN

Attack Tvpe Detection Accuracy | False Positive Rate | Response Time | Mitigation Success Rate

yP (%) (%) (ms) (%)

Denial of Service
(DoS) 96.5 3.2 15 94.7
Data Injection Attack 94.8 4.1 18 92.5
Spoofing Attack 95.3 3.5 16 93.8

Man-in-the-Middle

(MITM) 93.7 4.7 20 90.9
Malware Attack 92.9 5.0 22 89.5

Table 6 provides a summary of the cybersecurity threat
detection and mitigation performance of the Rule-Based
Adaptive Type-2 Fuzzy Neural Network (RbAFNN) for
different types of common attacks in healthcare monitoring
systems. Experiments performed on a real-life system show
the model has good detection accuracy for each Type of
attack, but is more effective at detecting Denial of Service
(DoS) attack (96.5%), Spoofing (91.5%), and Data Injection
(92.9%).

The result of this high accuracy demonstrates the model’s
ability to categorize malicious activities that may be utilized
to breach the integrity and availability of healthcare data.
Overall, the false positive rate stays low across all attack types,
from 3.2% for DoS attacks to 5.0% for Malware attacks,
indicating that the model is precise enough to avoid providing
false alerts that security personnel would have to deal with
otherwise. From 15 ms to 22 ms, the response time is

moderately variant, and therefore, the system is capable of
detecting and responding very fast enough for real-time
protection without compromising healthcare data processing.

Furthermore, the mitigation success rates are
commendable, so DoS attacks achieved the highest success
rate  of 94.7%, which indicates how successful

countermeasures are in stopping an attack after it is detected.
With the exception of Man-In-The-Middle (MITM) and
Malware, which have slightly better success rates in
mitigation than Earthquake attacks, both attacks display
remarkable capability in neutralizing an attack.

In general, the results indicate that RbAFNN is an
effective cybersecurity framework for accurately and in a
timely manner detecting and maintaining diverse cyber threats
in a healthcare environment.
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Table 7. Cyber threat estimation for different epochs with RbAFNN

Epochs Detection Precision Recall F1-Score | False Positive Response
P Accuracy (%) (%) (Sensitivity) (%) (%) Rate (%) Time (ms)
10 88.5 87.2 89.1 88.1 7.5 25
20 91.8 90.6 92.3 91.4 5.8 22
30 94.2 93.5 94.8 94.1 4.3 18
40 95.7 95.1 96.0 95.5 3.6 16
50 96.5 95.8 97.0 96.4 3.2 15
Detection Accuracy vs Epochs
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94 /
~ 92
S 90 ——
g 88 ~—
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F1-Score vs Epochs
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Fig. 6 Classification with RbAFNN (a) Accuracy, (b) Precision, (c) Recall, (d) F1-Score, (e) False positive rate, and (f) Response time.

Figure 6(a) — (f) and Table 7 illustrate the performance of
the Rule-Based Adaptive Type-2 Fuzzy Neural Network
(RbAFNN) in cybersecurity threat detection across different
training epochs. As the number of epochs increases from 10 to
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50, the model’s detection accuracy steadily improves from
88.5% to 96.5%, indicating enhanced learning and better
generalization with more training iterations. Correspondingly,
precision and recall (sensitivity) also increase, reaching 95.8%
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and 97.0% respectively, at 50 epochs, which reflects the
model’s growing ability to correctly identify true threats while
minimizing missed detections. The F1-score, representing the
harmonic mean of precision and recall, follows a similar
upward trend, achieving 96.4% at 50 epochs, demonstrating
balanced performance in threat classification. Importantly, the

false positive rate decreases from 7.5% at 10 epochs to just
3.2% at 50 epochs, reducing the incidence of incorrect alerts
and thus improving reliability. Additionally, response time
improves as training progresses, dropping from 25 ms to 15
ms, suggesting that the model becomes more efficient in
processing and reacting to threats with increased training.

Confusion Matrix for Proposed
Model with Different Datasets
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Fig. 7 Confusion matrix for different datasets
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Fig. 8 Comparative analysis of RbAFNN with different datasets
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Table 8. Comparative analysis of cyber threat estimation with RbAFNN

Dataset Dataset Detection Precision | Recall Slzc};e PE?iItSi?/e Response
1nti 0) (0) 0, i
Name Description Accuracy (%) (%) (%) (%) Rate (%) Time (ms)
PhysioNet | Multi-sensor ICU 95.2 94.6 958 | 952 35 16
Challenge patient data
ICU patient
MIMIC-1I electronic health 94.7 93.9 94.5 94.2 3.8 17
records
UCI Epileptic |  EEG signals for 92.8 91.7 925 | 921 4.2 18
Seizure seizure detection
Kaggle Heart | Cardiac sensor and 93.6 92.9 938 | 933 3.9 15
Disease clinical data
Simulated Synthetic multi-
sensor healthcare 94.1 93.5 94.0 93.7 3.6 14
Sensor Data data

Figure 7 presents the confusion matrix for the proposed
model, and Figure 8 and Table 8 present a comparative
analysis of the cyber threat estimation performance of the
Rule-Based Adaptive Type-2 Fuzzy Neural Network
(RbAFNN) across different healthcare datasets. The model
demonstrates consistently high detection accuracy, ranging
from 92.8% on the UCI Epileptic Seizure dataset to 95.2% on
the PhysioNet Challenge dataset, which involves multi-sensor
ICU patient data. This indicates RbAFNN’s strong capability
to generalize across diverse healthcare data types, including
electronic health records, EEG signals, and synthetic sensor
data. Precision and recall metrics are similarly robust, with
values above 91% for all datasets, reflecting the model’s
effectiveness in correctly identifying true cyber threats while
minimizing missed detections. The F1-scores, which balance
precision and recall, confirm this consistent performance.
False positive rates remain low across all datasets, between
3.5% and 4.2%, ensuring that the system avoids excessive
false alarms that could disrupt healthcare operations.
Response times range from 14 ms to 18 ms, demonstrating that
RbAFNN operates efficiently in real-time scenarios,
regardless of the dataset complexity. Overall, these results
highlight the adaptability and reliability of RbAFNN in
securing a wide variety of healthcare data environments
against cyber threats.

6.2. Discussions and Findings

The proposed Rule-Based Adaptive Type-2 Fuzzy Neural
Network (RbAFNN) integrated with a Hidden Markov Model
(HMM) has demonstrated strong potential for secure and
reliable healthcare data monitoring. By fusing multiple
physiological sensor inputs, the model effectively addresses
three key challenges: uncertainty in sensor readings,
adaptability to new patterns, and temporal variations in patient
conditions. The use of Interval Type-2 fuzzy logic allowed the
system to handle noisy and imprecise inputs more accurately
compared to conventional Type-1 fuzzy systems, while the
adaptive neural layer successfully refined rule weights
through continuous learning. Experimental results confirmed
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that the integration of HMM enhanced temporal pattern
recognition, enabling the system to detect sudden health
deteriorations and long-term changes with high sensitivity and
specificity. Multi-sensor fusion experiments revealed that
combining vital signs such as heart rate, SpO,, body
temperature, and blood pressure significantly improved
classification performance, achieving accuracies above 95%
with minimal processing overhead (13-16 ms), making it
suitable for real-time monitoring. Furthermore, cybersecurity
evaluations highlighted the robustness of the RbAFNN
framework against common threats such as DoS, spoofing,
and data injection attacks, with detection accuracies exceeding
94% and response times under 22 ms. The adaptive nature of
the system ensured a steady improvement in detection
accuracy, precision, and recall across training epochs, while
maintaining a low false positive rate. Comparative analyses
across multiple healthcare datasets—including PhysioNet,
MIMIC-II, and UCI seizure datasets—demonstrated
consistent  performance, confirming the  model’s
generalizability.

1. Improved Handling of Uncertainty — The use of Interval
Type-2 Fuzzy Logic enabled the model to manage noisy,
imprecise, and uncertain healthcare sensor data more
effectively than traditional Type-1 systems.

Adaptive Learning — The neural network component
dynamically adjusted rule weights, improving system
adaptability and performance over time with changing
patient conditions.

Temporal Pattern Recognition — Integration with HMM
enhanced the detection of both sudden health
deteriorations and long-term variations by capturing
temporal dependencies in sensor data.

High Classification Accuracy — Multi-sensor fusion
(heart rate, SpO,, temperature, blood pressure) achieved
accuracies above 95%, confirming the reliability of the
RbAFNN-HMM model in clinical monitoring.
Real-Time Suitability — The system maintained low
processing latency (13-16 ms), making it feasible for
real-time healthcare applications.
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6. Robust Cybersecurity Performance — The model Markov Model (HMM) for enhanced multi-sensor data fusion
demonstrated strong resilience against cyber threats such and cybersecurity in healthcare monitoring systems. The
as DoS, spoofing, and data injection attacks, with proposed hybrid framework effectively addresses uncertainty
detection accuracies above 94% and response times under  in sensor data through interval Type-2 fuzzy logic, adapts
22 ms. dynamically using neural networks, and captures temporal

7. Balanced Detection Metrics — Across training epochs, the  patterns via HMM to provide accurate and reliable health
model consistently showed improvements in accuracy, status classification. Experimental results across diverse
precision, recall, and F1-score, while keeping false  datasets demonstrate that ROAFNN achieves high accuracy,
positive rates low. sensitivity, and low false positive rates while maintaining

8. Cross-Dataset Generalizability — Testing on diverse  efficient real-time processing. Furthermore, the model
datasets (PhysioNet, MIMIC-III, UCI seizure datasets) exhibits strong performance in detecting and mitigating
confirmed consistent performance and scalability across  various cyber threats, ensuring robust security for sensitive
different healthcare monitoring contexts. healthcare information. Overall, the integration of advanced

9. Enhanced Decision-Making — The hybrid RbAFNN-  fuzzy logic, neural learning, and temporal modeling
HMM framework improved both anomaly detection and establishes RbAFNN as a powerful and practical solution for
secure data fusion, resulting in more trustworthy and  secure, intelligent healthcare monitoring in complex and
actionable healthcare insights. uncertain environments. Future work can explore extending

this approach to larger-scale deployments and incorporating

6. Conclusion additional contextual factors to further improve system

This paper presents a novel Rule-Based Adaptive Type-2  resilience and adaptability.

Fuzzy Neural Network (RDAFNN) integrated with a Hidden
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