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Abstract - Accurate prediction of Remaining Useful Life (RUL) is critical for ensuring safety, reducing maintenance costs, 

and improving reliability in aircraft engines and other high-value industrial machinery. This paper introduces FusionRUL-

Net, a novel hybrid deep learning architecture that combines multi-scale 1D Convolutional Neural Networks (CNNs) with 

Transformer-based encoder blocks for robust RUL estimation using the CMAPSS dataset. Unlike traditional models that 

rely solely on recurrent layers or tree-based ensembles, FusionRUL-Net leverages localized temporal feature extraction via 

CNNs and global dependency modelling via multi-head self-attention in Transformers. A Gated Fusion Module is used to 

adaptively blend CNN and Transformer outputs, enabling the model to focus on both short-term fluctuations and long-term 

degradation trends. To evaluate the proposed model, a comprehensive comparison was conducted with nine state-of-the-art 

baselines, including LSTM, BiLSTM-Attention, CNN-LSTM, XGBoost, and the hybrid XGBoost-BiLSTM. FusionRUL-Net 

achieved an impressive accuracy of 97.23%, outperforming the best baseline (XGBoost-BiLSTM), which achieved 94.76%. 

It also recorded the lowest RMSE (9.81), MAE (6.77), and the highest R² score (0.96). These results demonstrate the model’s 

superior capability to capture multivariate sensor degradation patterns across varying operational conditions. The 

architecture is also optimized for deployment with acceptable inference latency (1.63ms/sample), making it viable for real-

time applications. This work advances state-of-the-art prognostics by introducing a scalable, interpretable, and highly 

accurate hybrid model with strong potential for future adaptation in real-world predictive maintenance systems across 

aviation and other safety-critical domains. 

 

Keywords -  Remaining Useful Life, RUL Prediction, CMAPSS, Prognostics, Hybrid Deep Learning, CNN, Transformer, 

Attention Mechanism, Temporal Modelling, Sensor Fusion. 

1. Introduction 
Maintenance of aircraft is an essential part of aviation 

safety and operational performance, which demands highly 

sophisticated methods to ensure the dependability of 

elements and systems. Remaining Useful Life (RUL) 

estimations are one of the most prominent developments in 

predictive maintenance that can move conventional 

maintenance practices to predictive ones, mitigating 

operational disruption and cutting operational expenses at 

the expense of improving operational security [1]. Proper 

part failure prediction will enable airline companies to 

anticipate component change, thus avoiding unforeseen 

failures and protecting the well-being of passengers [2]. The 

Remaining Useful Life (RUL) prediction needs the failure 

information of the past, processed by real-time sensor data 

and advanced analytical algorithms. Deep learning and 

machine learning algorithms have Recurrent Neural 

Networks (RNNs) and Convolutional Neural Networks 

(CNNs) that are effective in improving prediction accuracy 

by being utilized in a wide variety of fields [3, 4]. 

 

Other than efficiency and cost reduction, RUL 

predictions in aircraft maintenance have other benefits. 

RUL predictions assist in preventing major accidents since 

they help stop vital failures that could result in major 

accidents. RUL prediction systems help optimize resource 

management because the engineers are able to reduce non-

essential maintenance activities, and this leads to an 

extension of the lifespan of components [5]. The integration 

of RUL forecasts, IoT devices, artificial intelligence 

applications, and cloud systems keeps improving predictive 

maintenance in the aviation sector. The reliability of the 

aircrafts is enhanced by the operational performance due to 

the data-driven application of RUL-based aircraft 

maintenance plans [6]. One of the main challenges when 

making RUL predictions in aircraft maintenance is 

obtaining accurate and complete data of high quality. 

Surviving aircraft parts have to survive in various conditions 

of the environment since sensor values can often pose 

technical issues [7]. 

 

The complicated character of aircraft component 

fracture patterns offers a significant challenge in the 

development of efficient predictive models. The 

degradation of a component is a result of a variety of factors, 

such as temperature, use, and pressure changes, vibration 

exposure, and environmental factors during operation (e.g., 

flight cycles and weather conditions) [8]. Several interacting 
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conditions make it difficult to come up with general models 

that are applicable across all aircraft types or products 

produced by various manufacturers. Adaptations to RUL 

models when implemented in particular systems or 

components increase both the cost and time of 

implementing predictive maintenance. The non-linear wear 

and tear patterns exhibited by aircraft parts make the current 

complicated nature of predicting the failure times of parts 

even more difficult [9]. Figure 1 shows the prediction 

methods of RUL. 

 
Fig. 1 Prediction methods of Remaining Useful Life (RUL)  

The aviation sector has undergone a revolution in 

forecasting component maintenance due to the high 

accuracy of data-driven analysis provided by deep learning 

to monitor wear trends. Recurrent Neural Networks (RNNs) 

and Long Short-Term Memory (LSTM) networks, as well 

as Convolutional Neural Networks (CNNs) and transformer 

architectures, are modern deep learning networks that allow 

processing large amounts of sensor data to learn wear 

patterns and deterioration [10, 11]. These predictive models 

are used to produce failure estimates of aircraft parts using 

multiple aircraft sensor data streams such as temperature, 

vibration, and pressure measurements. Deep learning 

supersedes its statistical and physics-based counterparts in 

that it does not require the feature engineering effort 

required to learn complex non-linear relationships, and can 

adapt better to real operating conditions [12-14]. The 

downside associated with deep learning models is that they 

are characterized by low interpretability since engineers and 

regulatory agencies do not understand the logic used to 

make failure predictions; thus, they find it difficult to 

vindicate predictions made by deep learning models [15].  

 

RUL predictions that are AI-based require massive 

infrastructure and workforce training to fit into the existing 

maintenance systems within a highly regulated aviation 

environment. Full exploitation of deep learning in predictive 

maintenance must be able to manage these adversities to 

safeguard the reliability and safety of the aircraft, along with 

the cost-efficient operation of flight operations. The 

performance of LSTMs and CNN-LSTM hybrids is better 

as they are effective in capturing sequences in data. These 

models are not able to succeed in long-range dependency 

modelling and multi-sensor data integration. The network 

architecture of our proposed FusionRUL-Net system 

includes the combination of local feature detectors in multi-

scale 1D-CNNs and global temporal information processing 

with Transformer encoders. The prediction algorithm 

applies Gated Fusion to proactively regulate between local 

and global information processing when applied to RUL 

forecasting. 

1.1. Main Contributions of the Work 

 Design of a Hybrid CNN-Transformer Architecture: It 

proposed a new bilateral structure that integrates multi-

scale 1D Convolutional Neural Networks (CNNs) and 

Transformer encoder blocks and effectively 

summarizes both short-term degradation signals and 

long-term time-dependent relationships in multivariate 

time-series sensor data. 

 Gated Fusion Mechanism Implementation: Gated 

Fusion Module creates an adaptive feature combining 

local CNN features and global Transformer features, in 

which the model would decide the best weighting 

parameters given its degradation content. 

 Edge-Preserving Temporal Smoothing: Experimental 

Edge Temporal pre-processing filters are used to 

conserve important degradation edges and minimize 

sensor noise to enhance deep sequential learning. 

 Correlation-Based Sensor Selection: The model applies 

Spearman-based sensor selection protocols that narrow 

down the stream of redundant sensors to obtain 

improved interpretability with reduced input 

dimensions that do not lose significant information. 

 Multi-scale Degradation Encoding to Trend Detection: 

MDE is a Multi-scale Degradation Encoding that 

employs multiple temporal feature windows to identify 

the multiple trends of wear and degradation. 

 RUL-Centric Label Transformation Strategy: 

Developed a piecewise RUL transformation function 

that prioritizes late-stage degradation by 

logarithmically compressing low RUL values, which 

helps to focus the model in critical prediction stages and 

also to be robust. 

Section 2 of this document conducts a full evaluation of 

studies related to RUL predictive research, which shows 

how traditional machine learning methods transitioned to 

contemporary hybrid deep learning techniques. In Section 3, 

the authors present the FusionRUL-Net methodology and 

details about data pre-processing techniques, along with a 

description of the model design and training process. 

Section 4 describes the experimental setup together with 

evaluation metrics, while providing an in-depth result 

analysis that compares with existing models. Section 5 

provides the conclusion along with directions for upcoming 

research, which emphasizes the deployment capacity of this 

approach. 

 

2. Related Works 
 The developments of predictive maintenance planning 

and Remaining Useful Life (RUL) prognostics happen 

because of the increasing availability of sensor monitoring 

data. The current literature is limited to RUL calculation or 

is performed with degradation assumptions for making 

maintenance decisions. Our framework is based on a data-

driven probabilistic RUL prognostics approach that allows 
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predictions about maintenance evolution to be made. The 

process uses Convolutional Neural Networks (CNNs) along 

with Monte Carlo dropout RUL distribution estimation and 

continually updates predictions using real-time information 

obtained by sensors [16]. Deep Reinforcement Learning 

(DRL) is the basis of maintenance planning optimization, as 

the approach allows predicting the RUL in real-time and 

initiating actions. When our framework is applied in aircraft 

systems in turbofan engine maintenance operations, it 

provides cost-saving results. The overall extent of 

maintenance costs saves 29.3% and the DRL method 

operates unscheduled maintenance intervention 95.6% less 

often than conventional service, where 12.81 cycles of 

wastefulness are tolerated prior to intervention. The 

suggested framework combines sensor measurements and 

probabilistic RUL prognostic predictions and AI-based 

maintenance scheduling tasks to generate a comprehensive 

predictive maintenance system.  

 

Appropriate prediction of aircraft engine Remaining 

Useful Life (RUL) is a key requirement of aircraft safety 

maintenance and financial management [17]. They created 

a deep learning paradigm of predicting RUL that boosts the 

model functionality and feature detection capabilities. The 

normalization step is used to normalize the input features, 

and then the CMAPSS dataset calculates the engine RUL. 

The key features within the input data are extracted by a 

CNN network, and the information is passed to an LSTM 

network that contains an attention mechanism to optimize 

prediction outputs. Their method validation involves 

ablation tests as well as comparison of the various models. 

The CNN-LSTM-Attention model has better predictive 

performance, as it obtains RMSE values of 15.977, 14.452, 

13.907, and 16.637 on the FD001, FD002, FD003, and 

FD004 data, respectively. Experimental findings support 

that the CNN-LSTM-Attention model is the most effective 

model compared to CNN, single LSTM, and CNN-LSTM 

models in all four datasets. The maximum accuracy on 

CMAPSS is proven in their approach, which shows that it is 

not only accurate but also reliable.  

 

Predictions of Aircraft engine lives based on past data 

need precise predictions of Remaining Useful Life (RUL) to 

design required maintenance strategies to eliminate critical 

failure. The exact calculation of the Remaining Useful Life 

cannot be achieved easily due to the lack of that data in the 

current condition monitoring. A multi-scale deep transfer 

learning system that adopts domain adaptation concepts can 

solve this issue and lead to better prediction accuracy. It 

consists of a three-part structure, which consists of a feature 

extraction module to cooperate with an encoding module 

and an RUL prediction module [18]. The pre-training step 

involves a multi-scale Convolutional Neural Network 

(CNN) that is used to extract data-specific features that cut 

across various data scales. They obtained domain transfer 

using the maximum mean discrepancy that allows an 

effective learning of shared features in both the source and 

the target domains. The improved model, which combines a 

Transformer-based architecture with multi-scale CNNs, is 

useful in the prediction of RUL in low-training data 

scenarios. They perform remarkably well based on 

experimental tests on the C-MAPSS dataset by 

outperforming the existing leading strategies. 

 

The precision of the prediction of The Remaining 

Useful Life (RUL) of aircraft engines must be high since it 

enables the prevention of failure and predictive 

maintenance. The current versions of the RUL predictive 

methods use model-based or data-driven systems, whereby 

the separate algorithm elements have limitations in 

identifying various failure modes. An ensemble deep 

learning model based on health states was used in the 

process of assessing aircraft engine degradation [19]. Any 

deterioration of the engine lifetime is divided into various 

health states once it has been determined that there is a 

health baseline. Stacked autoencoder, Convolutional Neural 

Network (CNN), and Long Short-Term Memory (LSTM) 

are base algorithms used as deep learning models in the text. 

The models are fractured in the training process to various 

health states, allowing them to learn state-dependent 

degradation properties. The final step makes use of the ridge 

regression to estimate ensemble weights of various health 

conditions that maximize the improved outcomes of 

prediction results. This was demonstrated by a study 

conducted on the PHM data challenge dataset, which 

determined that the offered HSR ensemble approach offered 

significantly better performance than single-model systems 

and traditional ensemble approaches that do not consider the 

state and provide more accurate RUL estimates. 

 

Remaining Useful Life is the longevity of aircraft 

engines that have critical implications to aviation safety in 

conjunction with flight management decisions by airline 

operators. The deep learning model implementation is based 

on the training using the real turbofan engine operational 

data collected over several years [20]. This operates on 

engine data in a realistic form rather than artificial datasets, 

as it results in higher prediction accuracy. They designed 

two deep neural net topologies that have a deep 

Convolutional Neural Network (CNN) with layers and an 

LSTM net that uses regression as the output. The same 

dataset serves as the training grounds of both models, which 

are subject to validation and testing processes, and then the 

performance of different training settings is evaluated. The 

developed models are evaluated based on the performance 

measures and the predictive convergence analysis 

techniques. A side-by-side comparison determines the 

differences between real conditions engine data and the 

virtual engine data as they are both fed into the same neural 

network structures.  

 

3. Methodology 
The FusionRUL-Net model uses a structured model to 

forecast aircraft engine RUL using the CMAPSS dataset 

multivariate time-series data. The pre-processing phase 

includes several complex processing procedures on the raw 

sensor data to produce quality-enhanced data using edge-

preserving smoothing as well as correlated sensor removal 

and multi-scale degradation encoding to reduce noise. A 

dual-path processing model uses the refined information to 
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run a 1D Convolutional Neural Network (CNN) 

computation that learns multi-dimensional characteristics at 

varying timescales, besides Transformer encoder processing 

to perform global self-attention-dependent signal analysis 

with positional encoding. Gated Fusion Mechanism 

combines the two representations of features by 

automatically setting the weight of local and global features. 

The fused representation estimates the RUL by using a 

dense regression head. 
 

3.1. Dataset Description 

The Commercial Modular Aero-Propulsion System 

Simulation (CMAPSS) dataset is used by the Prognostics 

Centre of Excellence of NASA as a reference standard to 

test data-driven approaches to aircraft engine prognostics, 

along with predictive maintenance applications. The tool 

develops refined Remaining Useful Life (RUL) prediction 

models by developing virtual degradation of turbofan 

engines through various fault modes in various operating 

conditions. The CMAPSS is made up of four sub-datasets 

called FD001, FD002, FD003, and FD004 that vary in 

complexity as they comprise varying numbers of operating 

conditions and fault modes. The simplest sub-dataset is the 

FD001, and the FD004 is the most complex structure. The 

data set contains one engine that, at a given moment, 

captures data until the system fails. Under CMAPSS, the 

user should arrive at the remaining useful life value by cycle 

analysis since it contains information on engine IDs and 

operational data, and it has a total of 21 sensor reads in its 

26 features. Time-varying characteristics of the given 

dataset, as well as its natural levels of noise, support the use 

of LSTM, along with the BiLSTM, CNN-LSTM, and 

Transformer and ensemble models in predictive 

maintenance. 
 

3.2. Data Pre-Processing 

3.2.1. Adaptive Cycle-Based Normalization (ACBN) 

The CMAPSS data has time-series data on various 

aircraft engines under varying conditions and duration of 

operation. The methods of global normalization, such as 

min-max normalization and z-score normalization, have the 

capacity to conceal characteristic patterns present in single 

engines that introduce systematic errors across individual 

units. Adaptive Cycle-Based Normalization (ACBN) 

provides a better option for data normalization by engine-

unit processing. ACBN provides a system of alignment that 

compares sensor measurements and operational parameters 

and patterns of degradation behavior that are engine-specific 

at minimum and maximum operating limits. This approach 

erases the differences between loads and environmental 

factors as RUL modeling gets enhanced without affecting 

the patterns of degradation. The natural sensor variations in 

pressure and temperature due to external effects are scaled 

so that they do not give false degradation signals. Machine 

learning programs are trained to learn natural degradation 

patterns with operational relative change focus, rather than 

absolute value measurement with ACBN. Through this 

approach, the faults are more accurately detected, and the 

predictive reliability is further spread across a range of 

engine operating conditions. 

𝑋𝑛𝑜𝑟𝑚
(𝑖) (𝑡) =

𝑋(𝑖)(𝑡) − min⁡(𝑋(𝑖))

max(𝑋(𝑖)) − min⁡(𝑋(𝑖))
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 

Where 𝑋(𝑖)(𝑡) is the sensor value at time 𝑡 for engine 

unit 𝑖. The Adaptive Cycle-Based Normalization 

standardizes the range sensor values into [0,1] ranges using 

dynamic time windows, which results in increased temporal 

stability and enhanced model interpretability alongside ideal 

fault detection limits for predicting Remaining Useful Life 

(RUL) predictions. 

3.2.2. Correlated Sensor Drift Elimination (CSDE) 

The CMAPSS housing data has 21 sensor readings that 

repeatedly measure similar engine physical factors. Not all 

specially installed sensors can provide aircraft engines with 

useful degradation cues. Conventional pre-processing 

pipelines typically retain features based on evaluation of 

their statistical properties, like variance and entropy. These 

approaches do not determine the true prognostic value that 

an individual sensor can provide, in terms of Remaining 

Useful Life (RUL). CSDE is a relatively new proposed 

feature selection method that involves correlation analysis 

to identify sensors that bear no significant relationship with 

RUL in order to discard them in the prediction system. 

𝜌̅𝑠 =
1

𝑀
∑|𝜌𝑠

(𝑖)
|

𝑀

𝑖=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2) 

Where 𝑀 is the total number of engines, and 𝜌𝑠
(𝑖)

  is the 

Spearman correlation for sensor 𝑠 in unit 𝑖. 
 

If𝜌̅𝑠 < 𝜃,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡then⁡sensor⁡𝑠⁡is⁡removed⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3) 

Where 𝜃 is the correlation threshold (e.g.,0.3). Perfect 

functioning of the RUL sensor will show the increasing 

trends prior to failure. The superior method to non-linear 

patterns is Spearman correlation, which prioritizes sensors 

by their correlation to RUL. To defend against important 

degradation trends in sensor noise, the CSDE mechanism 

eliminates untrustworthy sensors whose predictive value is 

low. The result improves the model interpretability, reduces 

the size of the input data, and prevents deep learning 

overfitting issues. 
 

3.2.3. Temporal Smoothing with Edge-Preserving Filters 

The CMAPSS data set includes sensor data with 

various noise sources due to dynamic engine processes and 

defective sensing devices, as well as environmental change. 

The effects of both moving average smoothing and 

Gaussian filtering are that they reduce random noise and 

smooth over significant time-series patterns, such that 

significant degradation periods can no longer be observed. 

Time-Based Smooth Filter with Edge-Serving Algorithms is 

an efficient algorithm that patches random noise and yet 

preserves significant structural patterns. The Savitzky-

Golay filter preserves peaks with the help of a polynomial 

fit to reduce the effects of high-frequency noise. The 

Bilateral filter smooths values with the help of proximity 

and similarity tests to identify instantaneous change events 

correlated with faults. 
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Fig. 2 System structure 
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𝑋̂(𝑡) = ∑ 𝑐𝑗 . 𝑋(𝑡 + 𝑗)

𝑘

𝑗=−𝑘

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 

Where 𝑐𝑗 are polynomial coefficients, and 2𝑘 + 1 

is the window size. 

𝑋̂(𝑡) =
1

𝑊𝑡

∑ 𝑋(𝑗). 𝑓𝑠(𝑡 − 𝑗) ∙ 𝑓𝑟(𝑋(𝑡)

𝑡+𝑘

𝑗=𝑡−𝑘

− 𝑋(𝑗))⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 

Where 𝑓𝑠 is the spatial kernel and 𝑓𝑟 is the range kernel 

based on signal similarity. 

𝑅(𝑡) = |𝑋(𝑡) − 𝑋̂(𝑡)|,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐸𝑑𝑔𝑒⁡𝑖𝑓⁡𝑅(𝑡)

> 𝜖⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6) 

Where 𝑅(𝑡) is the residual and 𝜖 is the range 

preservation threshold. The filtering involves the use of 

rolling windows together with Savitzky-Golay filters to 

reject noise without corrupting the degradation patterns. 

Local gradients are used in the Bilateral filtering to deal with 

the nonlinear signal variations. This signal smoothing 

process causes signal clarity and better feature extraction, 

BiLSTM training, and subsequent better Remaining Useful 

Life prediction accuracy and reliability, as well as better 

model performance. Figure 2 shows the structure of the 

system. 

3.2.4. Multi-Scale Degradation Encoding (MDE) 

The CMAPSS data present a unique Remaining Useful 

Life (RUL) forecasting problem since they demonstrate 

degradation behaviour at several scales. Applications of 

remolar systems are known to have both progressive fault 

formation in hundreds of cycles and immediate failure 

mechanisms that happen over limited time intervals under 

conditions of stress, environmental influence, and 

operational stress. Techniques of feature extraction with 

fixed time operations of deltas and rolling averages find it 

difficult to identify full patterns of degradation. Multi-scale 

Degradation Encoding (MDE) is the solution to this 

shortcoming. The sensor time-series data provides MDE 

with degradation features at a variety of time scales with 

both short and long time horizons, which upgrades the input 

feature space representation. 

𝜇𝑤(𝑡) =
1

𝑤
∑ 𝑋(𝑡 − 𝑗)

𝑤−1

𝑗=0

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7) 

𝑠𝑙𝑜𝑝𝑒(𝑡) =
∑ (𝑗 − 𝑗)̅(𝑋(𝑡 − 𝑗) − 𝑋̅)𝑤−1
𝑗=0

∑ (𝑗 − 𝑗)̅2𝑤−1
𝑗=0

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(8) 

Where⁡𝑗 ̅is the mean of indices and 𝑋̅  is the mean of the 

window values. 

∆𝑤(𝑡) = 𝑋(𝑡) − 𝜇𝑤(𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9) 

Deviation of measures against the local trend. MDE, the 

system produces engineered features that can be reviewed 

by analysts with the help of the various window sizes on the 

sensor signal (5, 10, 20 cycles). Currently, MDE constructs 

features based on moving averages and rolling standard 

deviations, plus linear regression trend slopes and temporal 

gradients (differences) across each window analysis. The 

short-lived, sudden irregularities are seen with 5-cycle 

averaging, whereas the patterns of trends over several cycles 

are apparent with 20-cycle trend analysis. The overlapping 

application of variants of the scales in the model allows 

them to identify small changes that are indicative of 

premature corrosion, as well as identify long-term variables 

to verify wear progress. 

3.2.5. RUL-Centric Label Transformation (RCLT) 

Transforming the target labels is a core but widely 

overlooked aspect of any Remaining Useful Life (RUL) 

prediction challenge. The CMAPSS dataset takes the 

engine’s maximum cycle as a reference to measure RUL 

when it calculates and removes the present cycle number in 

the calculation. The data points are on a straight line because 

the variable of interest decreases from 130 to the full failure 

of the target variable at 0. The implicit modeling of labels 

poses some modeling challenges to the system. There is a 

huge difference between the correct values of the model at 

early cycle cases, where the model takes in, and at late cycle 

cases, where the model fails to perform. Linear RUL 

labeling does not accurately reflect the real-world criticality 

of predictions because errors identified during late 

degradation are much more expensive than those identified 

during early degradation. RCLT strategy is used to manage 

these challenges mentioned above. 

𝑅𝑈𝐿𝑚𝑜𝑑(𝑡)

= {
𝑅𝑈𝐿(𝑡),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑅𝑈𝐿(𝑡) > 𝑇⁡⁡(10)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑇 + log(𝑅𝑈𝐿(𝑡) + 1) ,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑅𝑈𝐿(𝑡) ≤ 𝑇⁡⁡⁡⁡⁡⁡⁡
 

𝑅𝑈𝐿(𝑡)

= {
𝑅𝑈𝐿𝑚𝑜𝑑(𝑡),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑅𝑈𝐿𝑚𝑜𝑑(𝑡) > 𝑇⁡⁡⁡⁡⁡⁡⁡

⁡exp(𝑅𝑈𝐿𝑚𝑜𝑑(𝑡) − 𝑇) − 1 ,⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒⁡(11)⁡⁡
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

RCLT has some benefits during implementation. RCLT 

method reduces the dispersion in labels and maximizes the 

loss, concentrating on late-stage deterioration of equipment, 

thereby generating more accurate low-RUL forecasts to 

implement successful predictive maintenance practices. 

3.3. Sensor Fusion Mechanism 

Different sensors monitor important parameters of an 

aircraft engine, such as the temperature, pressure, intensity 

of vibration, and rotating speed. The sensors produce 

information that fluctuates across the various measures and 

time-specific patterns and significance. The study design 

constructs a sensor fusion algorithm that converts the multi-

dimensional sensor measurements, which are diverse, into a 

single data format that enhances Remaining Useful Life 

(RUL) predictions. The sensor data streams are fed into the 

process initially by getting cycle-based synchronization and 

then transforming into common sampling time intervals. 

The fusion strategy uses early fusion and late fusion 

techniques. The early fusion methodology links sensor 

properties to deep learning models to interact with each 
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other in one supervised learning process, but the late fusion 

method uses independent sensor processing followed by the 

combination of their outputs at abstract levels. The fusion 

method preserves the sensor properties, removes noise more 

efficiently, and enhances the model. Concatenation of 

sensor values at each time step 𝑡 for an engine unit: 

𝑋(𝑡) = [𝑥𝑡
(1), 𝑥𝑡

(2), … , 𝑥𝑡
(𝑛)]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(12) 

Where 𝑥𝑡
(𝑖)

 is the reading from the 𝑖𝑡ℎ sensor at time 𝑡, 
and 𝑛 is the number of selected sensors. Assume each sensor 

stream passes through its own feature extractor, 𝑓(𝑖). The 

outputs are aggregated: 

𝑍𝑡 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑓(1)(𝑥𝑡
(1)), 𝑓(2)(𝑥𝑡

(2)),… , 𝑓(𝑛)(𝑥𝑡
(𝑛))⁡⁡⁡⁡⁡(13) 

The pipeline takes advantage of the rank correlation of 

features as proposed by Spearman in the process of feature 

selection to identify the sensors that influence the remaining 

useful life estimation. Quality improvement is achieved by 

dropping or weighting down sensors that show weak or non-

monotonic patterns. Fusion strategy enhances the feature 

space that enables deep learning models to identify the 

critical patterns of degradation. 

3.4. Temporal Feature Extraction 

Proper identification of changing trends and 

occurrences depends on the ability to obtain the time 

features of sensory data processed in the engine operation 

cycle. Proper modeling of progressive engine failures that 

change over time is required to properly estimate Remaining 

Useful Life (RUL). An appropriate network to handle this 

task is a BiLSTM network since it takes data in sequential 

directions to enable full contextual comprehension. This 

data enhancement technique at all time periods makes the 

identification of small-scale patterns of degradation more 

accurate. Temporal Attention Mechanism is also 

incorporated to enhance the attention to key time points that 

entail sensor drifts and vibration spikes. The algorithm 

involves weighted time step learning to assist the model in 

determining important time periods, aiding in the 

predictions of remaining useful life. Attention score 

computation: 

𝑒𝑡 = 𝑣𝑇 tanh(𝑊ℎℎ𝑡 + 𝑏ℎ)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(14) 

 Where 𝑊ℎ is the weight matrix, 𝑏ℎ is the bias term, and 

𝑣 is the attention vector. The combined use of BiLSTM and 

Temporal Attention, which provides better engine health 

evolution representation, optimizes the model performance. 

The model employs BiLSTM to retain long-term 

dependencies as well as attention that allows paying more 

accurate attention to significant time-related events and 

simplifies the understanding of the system. The result of 

such a mixed extraction structure is an increase in the 

prediction accuracy of the model in terms of failures, as well 

as which parts of the usage data are the most significant 

contributors in RUL predictions. The time-dependent 

transformation transforms simple multivariate time-series 

information into an in-depth, meaningful representation to 

construct predictive systems with high precision. 

Normalized attention weight (SoftMax): 

𝛼𝑡 =
exp⁡(𝑒𝑡)

∑ exp(𝑒𝑘)
𝑇
𝑡=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(15) 

3.5. FusionRUL-Net: A Novel Hybrid Model Architecture 

for RUL Prediction 

The proposed FusionRUL-Net is a new hybrid model 

structure that is specific to the Remaining Useful Life 

(RUL) prediction of complex machinery equipment like 

aircraft engines based on multivariate time-series inputs. 

Past models, such as BiLSTM, CNN-LSTM, and XGBoost-

based models, provided limited success but could not 

combine local degradation patterns with long-term overall 

temporal patterns at the same time. To address these 

concerns, the modular design of FusionRUL-Net solves 

these challenges by integrating 1D Convolutional Neural 

Networks with Transformer Encoders to form one unified 

pipeline. It has three key ideas that are focused on by the 

system framework: local-global feature cooperation, 

attention-based intelligibility, and resistance to time-

dependent data dependencies at different levels of time. 

The input tensor acts as the heart of the model since it 

has a time-based sliding window that receives the pre-

processed sensor data, provided by the CMAPSS database. 

The model shows readings that are a result of certain sensors 

within specific time intervals of between 30 and 50 cycles. 

The data structure of inputs follows a scheme of [B, T, F][B, 

T, F][B, T, F], where the first dimension is the batch size, 

the second one is the time steps, and the third one is the 

fused sensor channel. The structured data format that 

preserves its connection with the natural sequence of events 

in the first application stage of the architecture lets a multi-

scale 1D Convolutional Neural Network (1D-CNN) block 

extract local temporal features of the input. The block 

consists of a few convolutional layers that use various sizes 

of kernels (3, 5, 7) at the same time. In the process, sensor 

dynamics will be extracted with various resolutions in time. 

Small kernel filters abrupt anomalies as well as very tiny 

disruptions, in contrast to longer kernels that detect 

slowness in patterns of performance deterioration. The CNN 

operation traverses time, preserving signal variables without 

any loss.ReLU activation functions and batch normalization 

are added to the implementation, creating network non-

linearity and stabilizing training. The results of all the 

convolutional paths are merged into an output map, which 

gathers various local features. Each convolutional path is a 

temporal receptive field generator that summarizes transient 

sensor behavioural patterns before critical failure events. 

Each convolutional path is applied as a 1D kernel to the 

time-series data to capture degradation patterns at a given 

scale. 

𝐹(𝑘)(𝑡) = 𝑅𝑒𝐿𝑈 (∑𝑊𝑖
(𝑘) ∙ 𝑋(𝑡 + 𝑖)

𝑘−1

𝑖=0

+ 𝑏(𝑘))⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(16) 
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Where 𝐹(𝑘)(𝑡) is the feature output at time 𝑡 for kernel 

size 𝑘. 𝑊𝑖
(𝑘)

 is the weight of the convolution filter. 𝑋(𝑡 + 𝑖) 

is the input sensor value at time 𝑡 + 𝑖 and 𝑅𝑒𝐿𝑈(∙) is the 

Activation function. CNNs are aware of short-term 

variations but not the identification of long-term 

relationships. The Transformer Encoders also have a self-

attention capability to form connections among all time 

point references and also calculate weight values 

automatically. Positional encoding provides a time structure 

for CNNs’ output. This combination in sequence modeling 

allows parallel computing capabilities to identify general 

degradation patterns, without which RUL prediction cannot 

be adequately predicted. To maintain order in the 

sequence before feeding to the Transformer: 

𝑃𝐸(𝑡, 2𝑖) = sin (
𝑡

100002𝑖/𝑑
)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(17) 

𝑃𝐸(𝑡, 2𝑖 + 1) = 𝑐𝑜𝑠 (
𝑡

100002𝑖/𝑑
)⁡⁡⁡⁡⁡⁡⁡⁡⁡(18) 

Where 𝑡 is the time index, 𝑖 is the feature dimension, 

and 𝑑 is the total dimension of the model. Dual-Path Fusion 

Layer: An encoder of local (CNN) features, along with 

global (Transformer) features, is processed with extracted 

features. Direct combination of these features does not offer 

the best results because of its neglect of the real relevance 

of local and global information. The Gated Fusion 

Mechanism of FusionRUL-Net automatically adjusts itself 

to merge various items from the information sources. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉)

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(19) 

Where 𝑄,𝐾, 𝑉 are the Query, Key, and Value 

matrices,⁡𝑑𝑘 is the dimensionality of key vectors, and the 

output is a weighted sum over all time steps based on 

relevance. The fusion gate dynamically weights CNN 

and Transformer outputs: 

𝑍 = 𝜎(𝑊𝑔 ∙ [𝐹𝑐𝑛𝑛; 𝐹𝑡𝑟𝑎𝑛𝑠]) ⊙ 𝐹𝑐𝑛𝑛

+ (1

− 𝜎(𝑊𝑔

∙ [𝐹𝑐𝑛𝑛; 𝐹𝑡𝑟𝑎𝑛𝑠]))⨀𝐹𝑡𝑟𝑎𝑛𝑠⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(20) 

Where [𝐹𝑐𝑛𝑛; 𝐹𝑡𝑟𝑎𝑛𝑠] is the concatenated feature 

vectors, 𝜎 is the sigmoid activation, ⨀ is the element-wise 

multiplication, and 𝑊𝑔 is the learnable gating weights. The 

fuse output 𝑍 is mapped to a scalar RUL estimate: 

𝑦̂𝑅𝑈𝐿 = 𝑊𝑜 ⋅ 𝑍 + 𝑏𝑜⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(21) 

Where 𝑊𝑜 is the output layer weights, 𝑏𝑜 is the bias 

term, and 𝑦̂𝑅𝑈𝐿 denotes the predicted RUL. The 

concatenated aspects are then passed to the fully connected 

regression head, which has two or three thick layers that use 

dropout with ReLU activations. In the final step, the single-

node linear neuron calculates the predicted engine unit. 

FusionRUL-Net relies on special loss functions to determine 

failure points, which are the basis of the RUL forecasting 

ability. Because of Layer normalization and Early Stopping 

in combination with data augmentation, stability and 

robustness are improved when using Dropout.  

Readers enjoy temporal attention heatmaps and 

controlled management, which enhances reading. It is 

possible to use edge deployment due to its lightweight 

CNN-Transformer architecture, which proves to be more 

efficient in terms of its ability to predictively maintain 

CMAPSS than LSTM and XGBoost. To penalize more for 

late-stage prediction errors (closer to failure): 

ℒ =∑𝑤(𝑡) ∙ (𝑦𝑡 − 𝑦̂𝑡)
2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(22)

𝑇

𝑡−1

 

Where 𝑦𝑡  denotes the true RUL at time 𝑡,𝑦̂𝑡 is the 

predicted RUL,⁡𝑤(𝑡) denotes the dynamic weight, which is 

higher as RUL gets smaller, and 𝜖 is a small constant for 

stability. The FusionRUL-Net training was performed to 

optimize the model against stable convergence, along with 

a high potential of generalizing the results and exhibiting 

high sensitivity to various degradation patterns that were 

observed in the CMAPSS dataset.  

This training methodology brings together three 

elements that specifically deal with the time-series 

prognostic modelling and comprise adaptive learning rate 

scheduling with regularization and time-conscious cross-

validation. 

3.6. Model Training and Optimization 

3.6.1. Adaptive Learning Rate Scheduling Using 

ReduceLROnPlateau 

Finding the appropriate value of learning rate that 

ensures stability and rapid convergence of the hybrid 

structures, especially FusionRUL-Net, is the biggest 

challenge in the training of deep neural networks. 

ReduceLROnPlateau scheduler is used to adjust the learning 

rate during the training process. This method monitors the 

validation loss metric that indicates the stagnation of the 

learning rate once the improvement ceases to prevent the 

model from reaching optimal minima. In our 

implementation, we used the following parameters: 

 Initial learning rate (lr): 0.001 

 Factor: 0.5 (the learning rate is halved on a plateau) 

 Patience: 5 epochs (waits for 5 epochs with no 

improvement before reducing the rate) 

 Minimum learning rate (min_lr): 1e-6 

 Cooldown: 2 epochs (waits before resuming normal 

operation after reducing the rate) 

 Monitor: Validation Mean Squared Error (MSE) 

The method allows the optimizer to begin training with 

a high starting momentum and then make a gradual 

increment in its learning steps in the convergence phase. The 

technique prevents oscillation and overfitting that can easily 

occur on the approach to training completion. 
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3.6.2. Regularization Techniques: Dropout and L2 

Regularization 

Two forms of regularization, Dropout and L2 

regularization, are used to mitigate the overfitting bias of 

deep learning models when using multivariate time series 

data. 

 Dropout: The significant application of this layer is 

done in fully connected layers, as well as Transformer 

feed-forward units. A dropout probability value of 0.3 

was selected by means of experimental tests. Random 

deactivation of neurons in 30 percent of selected layers 

on training updates makes the network more resilient. 

 L2 Regularization (Weight Decay): The optimizer uses 

the weight decay on all the model trainable parameters. 

The additional loss penalty functional is based on the 

square magnitude of the model weight values. A small 

value 𝜆⁡ = ⁡1𝑒 − 4 has been chosen, which allows 

reducing the complexity of the model without a 

significant compromise with the learning capacity. The 

regularized loss function becomes: 

ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝑚𝑠𝑒 + 𝜆∑‖𝑤𝑖‖
2

𝑖

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(23) 

Where 𝑤𝑖,  are the model parameters. These 

regularization techniques work interactively to prevent 

overfitting as applied to training data, such that the model 

performs well on unseen engine units with different 

degradation data points. 

3.6.3. Cross-Validation with Time-Series Aware Splitting 

RUL prediction offers temporal sequences on its data 

structure, which the traditional random cross-validation 

algorithms lead to data leakage, as it discloses future cases 

to the training data. To avoid this issue, a time-series aware 

cross-validation method that integrates GroupKFold and 

Sliding Window Validation is presented, where: 

 Each fold of engine units involves the use of different 

complete engine sets. 

 The sliding window approach uses the samples of 

lifecycle phases between the first phases and the final 

phases within individual units. 

 The evaluation uses a 5-fold cross-validation approach 

as part of the robustness and maintenance of statistical 

consistency between the training and evaluation. 

To avoid the over-representation of precautions, early-

cycle samples are included in the model training process 

since this misrepresentation might lead the model to predict 

RUL values that are too high. The decay-conscious 

windowing option uses the method of sample balancing to 

create a consistent training representation of all RUL stages, 

starting early in the training cycles and continuing late in the 

training cycles. 

Algorithm: FusionRUL-Net for Remaining Useful Life 

(RUL) Prediction using CMAPSS Dataset 

Input: Time-series engine dataset 𝐷 = {𝐸1, 𝐸2, … , 𝐸𝑛} 

    Each 𝐸𝑖 = {𝑋𝑡
(𝑖), 𝑡 = 1,2, … , 𝑇} where 𝑋𝑡

(𝑖) ∈ 𝑅𝐹 

   Hyperparameters: Window size 𝑤, Threshold 𝜃, 
Dropout 𝑑, Learning rate 𝑟, Smoothing window 𝑘, 

Regularization 𝜆, Loss weight epsilon 𝜖 

 

Output: Predicted Remaining Useful Life 𝑦̂𝑅𝑈𝐿 

Data Pre-processing 

 Adaptive Cycle-Based Normalization (ACBN) 

  For each engine unit 𝐸𝑖 
   Normalize each sensor channel 𝑠 by: 

    𝑋𝑠
(𝑖)(𝑡) =

𝑋𝑠
(𝑖)(𝑡)−min⁡(𝑋𝑠

(𝑖)
)

max(𝑋𝑠
(𝑖)
)−min(𝑋𝑠

(𝑖)
)
 

  

Correlated Sensor Drift Elimination (CSDE) 

  For each sensor 𝑠: 

   Compute Spearman correlation 𝜌𝑠 with RUL 

   If𝜌̅𝑠 < 𝜃 

    Remove sensor 𝑠 

  

Temporal Smoothing with Edge Preservation 

  𝑋̂(𝑡) = ∑ 𝑐𝑗 . 𝑋(𝑡 + 𝑗)𝑘
𝑗=−𝑘    

 // Apply Savitzky-Golay smoothing 

  𝑅(𝑡) = |𝑋(𝑡) − 𝑋̂(𝑡)|,⁡⁡⁡⁡⁡⁡⁡⁡𝐸𝑑𝑔𝑒⁡𝑖𝑓⁡𝑅(𝑡) > 𝜖 

 // Edge detection residual 

  𝑋̂(𝑡) =
1

𝑊𝑡
∑ 𝑋(𝑗). 𝑓𝑠(𝑡 − 𝑗) ∙ 𝑓𝑟(𝑋(𝑡) − 𝑋(𝑗))𝑡+𝑘
𝑗=𝑡−𝑘

 // Bilateral filtering 

  

Multi-scale Degradation Encoding (MDE) 

  For window size 𝑤, extract: 

   𝜇𝑤(𝑡) =
1

𝑤
∑ 𝑋(𝑡 − 𝑗)𝑤−1
𝑗=0    

 // Moving average 

   𝑠𝑙𝑜𝑝𝑒(𝑡) =
∑ (𝑗−𝑗̅)(𝑋(𝑡−𝑗)−𝑋̅)𝑤−1
𝑗=0

∑ (𝑗−𝑗̅)2𝑤−1
𝑗=0

  

 // Rolling slope 

   ∆𝑤(𝑡) = 𝑋(𝑡) − 𝜇𝑤(𝑡)   
 //Multi-scale Delta 

  

RUL-Centric Label Transformation (RCLT) 

  𝑅𝑈𝐿𝑚𝑜𝑑(𝑡) = {
𝑅𝑈𝐿(𝑡),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑅𝑈𝐿(𝑡) > 𝑇

𝑇 + log(𝑅𝑈𝐿(𝑡) + 1) ,⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 // Transform RUL values 

  𝑅𝑈𝐿(𝑡) =

{
𝑅𝑈𝐿𝑚𝑜𝑑(𝑡),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑅𝑈𝐿𝑚𝑜𝑑(𝑡) > 𝑇⁡

exp(𝑅𝑈𝐿𝑚𝑜𝑑(𝑡) − 𝑇) − 1 ,⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒⁡⁡⁡⁡
 // 

Inverse transformation post-prediction 

 

Sensor Fusion 

 𝑋(𝑡) = [𝑥𝑡
(1), 𝑥𝑡

(2), … , 𝑥𝑡
(𝑛))]   

 // Early Fusion 

 𝑍𝑡 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑓(1)(𝑥𝑡
(1)), 𝑓(2)(𝑥𝑡

(2)), … , 𝑓(𝑛)(𝑥𝑡
(𝑛)) 

 // Late Fusion 

 

Feature Extraction 

 𝐹(𝑘)(𝑡) = 𝑅𝑒𝐿𝑈(∑ 𝑊𝑖
(𝑘) ∙ 𝑋(𝑡 + 𝑖) + 𝑏(𝑘)𝑘−1

𝑖=0 ) 
 // Convolution with multiple kernel sizes 

 Add Positional encoding and Apply Transformer self-

attention 
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Dual-Path Feature Fusion 

 𝑍 = 𝜎(𝑊𝑔 ∙ [𝐹𝑐𝑛𝑛; 𝐹𝑡𝑟𝑎𝑛𝑠]) ⊙ 𝐹𝑐𝑛𝑛 + (1 − 𝜎(𝑊𝑔 ∙

[𝐹𝑐𝑛𝑛; 𝐹𝑡𝑟𝑎𝑛𝑠]))⨀𝐹𝑡𝑟𝑎𝑛𝑠 // Fuse CNN and Transformer 

 

RUL Regression 

 𝑦̂𝑅𝑈𝐿 = 𝑊𝑜 ⋅ 𝑍 + 𝑏𝑜    
 // Pass fused representation 

 

Model Training 

 Optimizer: Adam (𝛽₁⁡ = ⁡0.9, 𝛽₂⁡ = ⁡0.999, 𝜀⁡ = ⁡1𝑒 − 8) 
 Learning Rate Scheduler: ReduceLROnPlateau 

 Dropout Rate: 0.3 in dense and attention layers 

 Early Stopping: patience = 10 epochs 

 

Inference 

 For a test engine 𝐸𝑡𝑒𝑠𝑡  
  𝑦̂𝑅𝑈𝐿(𝑡) = 𝐹𝑢𝑠𝑖𝑜𝑛𝑅𝑈𝐿 − 𝑁𝑒𝑡(𝑋𝑡−𝑤+1

𝑡 ) 
 // Generate prediction 

  Optionally apply inverse RCLT to retrieve raw RUL 

values 

End Algorithm 

3.7. Novelty of this Work 

The novelty of this work is that FusionRUL-Net- a 

hybrid deep learning framework was designed and 

developed that presents a completely new way to predict 

Remaining Useful Life (RUL) by combining multi-scale 

convolutional features with attention-based global temporal 

modelling. In contrast to other traditional RUL models that 

use only either a Statistical regressor or a Recurrent 

architecture, FusionRUL-Net combines the advantages of 

both 1D Convolutional Neural Networks (CNNs) and 

Transformer encoder blocks in a single architecture. This 

allows the model to capture both local sensor variations and 

long-range relationships, which is necessary when 

considering the non-linear and multi-phase nature of 

mechanical degradation. One of the fundamental novelties 

of this architecture is the Gated Fusion Mechanism, which 

is adaptively trained to integrate CNN-based local features 

and Transformer-based global features. This is the opposite 

of fixed or manual fusion strategies occurring in the existing 

literature. Further, the model is facilitated by a distinct pre-

processing pipeline composed of Correlation-Based Sensor 

Drift Elimination, Multi-scale Degradation Encoding, and a 

RUL-Centric Label Transformation that are aimed at 

enhancing signal intelligibility, time representation, and 

relevance of labels, respectively. 

4. Results and Discussions 
The FusionRUL-Net model was implemented with the 

help of Jupyter Notebook and Python frameworks that 

included deep learning libraries in their integration, namely 

TensorFlow and Keras. The system was run on Windows, 

and it was powered by an Intel Core i7 14700HX processor 

with a 33MB Cache, 5.50 GHz, with no addition of a 

graphics card, and had 8GB RAM. Membership in resource-

constrained edge platforms. Resource-constrained edge 

platforms, FusionRUL-Net, were highly efficient in terms 

of their operations prior to the computerization of the tasks 

on which they could be deployed in a realistic predictive 

maintenance system. Due to its special design construct, 

FusionRUL-Net executes two functionalities to identify the 

lifespan anticipation of aircraft-engine components by the 

local formation of degradation, along with global time 

analysis. The sensor data processing eliminates drifts and 

employs edge-smoothing alongside multi-scale degradation 

encoding to come up with meaningful patterns with noise 

abated. Multi-scale 1D CNNs are used in the first path to 

detect short-term anomalies and local patterns at the same 

time, whereas Transformer encoders are used in the second 

path to build the relationships between the global temporal 

entities given the multi-head self-attention. The Gated 

Fusion Mechanism brings together the regional and holistic 

information through the application of adaptive weight 

assigning and feature integration operations. The 

computation of the RUL value is a final computation done 

in fully connected layers in the network. The modular 

FusionRUL-Net architecture, based on attention, generates 

strong predictive performance with high accuracy levels and 

interpretability, which predisposes it to be an effective 

solution in aviation and other critical safety-related 

scenarios. 

Table 1. Accuracy comparison with State-of-the-Art models 

Model Accuracy (%) 

Linear Regression (LR) 72.84 

Support Vector Regression 

(SVR) 
78.12 

Random Forest (RF) 81.55 

Gradient Boosting (GBM) 83.44 

XGBoost 85.77 

LSTM 89.1 

CNN-LSTM 91.63 

BiLSTM-Attention 93.38 

XGBoost-BiLSTM 94.76 

FusionRUL-Net (Proposed) 97.23 

During the accuracy analysis, there was a steady 

improvement in the predictive performance as more 

elaborate architectures were used, with Table 1 and Figure 

3 showing the results. The accuracy of Linear Regression 

(72.84%) and Support Vector Regression (78.12%) is poor 

since they do not identify complex relationships in the data. 

The combination of many weak learners used in Random 

Forest (81.55) and Gradient Boosting (83.44) proves better 

accuracy. By using XGBoost, the prediction system 

achieved 85.77% accuracy. Deep learning models are more 

effective than the usual methods and ensembling methods, 

which are overtaken by LSTM at 89.1% and CNN-LSTM 

reaches 91.63% because they can manage sequential 

patterns of data. The BiLSTM-Attention model achieves a 

93.38% accuracy level through the use of attention 

mechanisms in order to recognize significant time steps. 

XGBoost + BiLSTM achieved 94.76 percent performance 

due to the combination of feature selection and time learning 

in the system. Being the best in terms of accuracy, 

FusionRUL-Net provides the best result of 97.23%, which 

proves that it takes first place. The large improvement in 
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performance means that FusionRUL-Net can effectively 

combine various methods to maximize the feature detection 

and prediction accuracy. Hybrid systems that incorporate 

both machine learning and deep learning tasks exhibit a 

higher accuracy scale in predictive modelling systems based 

on the results obtained. The gradual transition to hybrid 

models illustrates the reason why advanced architectures are 

important to achieve the present-day optimal performance 

in task domain complexities.

  

 
Fig. 3 Accuracy comparison of models 

 

 
Fig. 4 RMSE comparison of models 

Table 2. Root Mean Squared Error (RMSE) Comparison 

Model RMSE 

Linear Regression (LR) 38.42 

Support Vector Regression 

(SVR) 
31.75 

Random Forest (RF) 27.89 

Gradient Boosting (GBM) 24.66 

XGBoost 22.03 

LSTM 18.58 

CNN-LSTM 16.11 

BiLSTM-Attention 13.89 

XGBoost-BiLSTM 11.38 

FusionRUL-Net (Proposed) 9.81 

Table 2 and Figure 4 present the Root Mean Squared 

Error (RMSE) values that determine how the various 

models are doing in minimizing their prediction errors. 

Linear Regression (38.42) and Support Vector Regression 

(31.75) yield high values of RMSE, and this indicates their 

inability to provide the complex predictive relationships.  

 

Root Mean Squared Error is significantly reduced by 

the use of numerous decision trees in Ensemble-based 

models like Random Forest (27.89), Gradient Boosting 

(24.66), and XGBoost (22.03). The deep learning model 

works much better with LSTM (18.58) and CNN-LSTM 

(16.11), resulting in increased temporal feature extraction 

abilities. The addition of BiLSTM-Attention (13.89) 
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reduces the RMSE since this model is a combination of a 

bidirectional sequence learning model and attention models 

to emphasize significant time points by combining XGBoost 

with BiLSTM to the final model, achieving an RMSE of 

11.38 due to its ability to utilize helpful features and identify 

patterns of temporal sequences.  

 

The FusionRUL-Net proposed has a better performance 

due to a low RMSE of 9.81, which is the smallest in all the 

models tried. Several models present an overall reduction in 

RMSE, with evidence indicating that hybrid approaches that 

utilize machine learning and deep learning strategies offer 

an excellent result. The sophisticated architectural designs 

are very crucial in providing high predictive accuracy in 

complex forecasting problems. 

Table 3. Mean Absolute Error (MAE) comparison 

Model MAE 

Linear Regression (LR) 29.65 

Support Vector 

Regression (SVR) 
24.53 

Random Forest (RF) 20.81 

Gradient Boosting (GBM) 18.44 

XGBoost 16.02 

LSTM 13.39 

CNN-LSTM 11.25 

BiLSTM-Attention 9.41 

XGBoost-BiLSTM 7.95 

FusionRUL-Net 

(Proposed) 
6.77 

 

 
Fig. 5 MAE comparison of models 

 

Table 3 displays the performance data on different 

forecasting models, along with Figure 5, which depicts the 

results of Mean Absolute Error. The low performance of 

Linear Regression (29.65) and Support Vector Regression 

(24.53) models is a result of inadequate capacity when 

dealing with complex data patterns.  

 
Several forecast models are more accurate with 

combinations of decision trees, as XGBoost (16.02) 

improves over Gradient Boosting (18.44), which, in its turn, 

is better than Random Forest (20.81). Deep learning models 

reduce MAE values to 13.39 with LSTM models down to 

11.25 with CNN-LSTM models, and finally to as little as 

9.41 with BiLSTM-Attention models.  

 
XGBoost-BiLSTM hybrid has a result of 7.95. 

FusionRUL-Net achieves its optimal level of predictive 

performance by getting an MAE of 6.77. The use of hybrid 

deep learning systems can offer significant gains to the 

precision of the remaining useful life predictions. 

Table 4. R² score (coefficient of determination) comparison 

Model R² Score 

Linear Regression (LR) 0.53 

Support Vector Regression (SVR) 0.61 

Random Forest (RF) 0.68 

Gradient Boosting (GBM) 0.72 

XGBoost 0.76 

LSTM 0.82 

CNN-LSTM 0.87 

BiLSTM-Attention 0.9 

XGBoost-BiLSTM 0.94 

FusionRUL-Net (Proposed) 0.96 

 

Assessing the Model data variance explanation depends 

on the R2 Score (Coefficient of Determination) as indicated 

in Table 4 and Figure 6. Linear Regression (0.53) and 

Support Vector Regression (0.61) have a low capability of 

identifying complex relationships between variables. The 

precision of ensemble models is higher in Random Forest 
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with 0.68, XGBoost with 0.76, and Gradient Boosting with 

0.72 since they combine several decision trees to discover 

superior features. Before BiLSTM-Attention applies 

bidirectional processing and attention to achieve 0.90, 

LSTM attains 0.82, and CNN-LSTM achieves 0.87. The 

XGBoost-BiLSTM hybrid has the best score of 0.94. 

FusionRUL-Net performs best in the area of prediction 

performance since it takes first place with a dominant R 2 

value of 0.96. 

 

 
Fig. 6 R2 Score comparison of models 

 
Table 5. Prognostic Horizon (PH@10) comparison 

Model PH@10 (Cycles) 

Linear Regression (LR) 15 

Support Vector Regression 

(SVR) 
18 

Random Forest (RF) 21 

Gradient Boosting (GBM) 23 

XGBoost 26 

LSTM 31 

CNN-LSTM 34 

BiLSTM-Attention 37 

XGBoost-BiLSTM 40 

FusionRUL-Net (Proposed) 45 

Prognostic Horizon (PH@10) metrics have been 

introduced in Table 5 and Figure 7 in order to identify the 

earliest models that can detect failures with 10% accuracy. 

The detection capacity indicates a higher potential for early 

warning with an increase in PH at 10. Linear Regression and 

SVR produce PH at 10 cycles and 18 cycles, thereby 

proving poor prognostics. Predictive maintenance systems 

have better performance with Ensemble models, Random 

Forest (21), Gradient Boosting (23), and XGBoost (26). 

There is an enhancement in the early prediction capability 

of LSTM (31) and CNN-LSTM (34), and BiLSTM-

Attention (37) deep learning models due to their sequence-

based and spatial analysis capabilities. XGBoost-BiLSTM 

takes 40 cycles. FusionRUL-Net has the most promising 

performance with 45 cycles before determining the 

remaining useful life periods in predictive maintenance 

systems. 

 

 

 
Fig. 7 Prognostic horizon comparison 
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Table 6. Performance under different window sizes (sliding window length) 

Window 

Size 
LSTM BiLSTM Transformer 

XGBoost-

BiLSTM 
FusionRUL-Net 

20 87.19 89.03 92.11 93.74 95.26 

30 88.95 91.22 94.13 94.35 96.41 

40 89.6 92.18 94.85 94.76 96.87 

50 89.91 92.96 95.02 94.76 97.23 

 
Fig. 8 Performance under different window sizes 

Table 6 and Figure 8 illustrate the predictive accuracy 

performance of the alternative models using different 

sliding window sizes in order to indicate the effect of the 

input sequence length on model effectiveness. More 

complex patterns are then identified by the system through 

bigger sliding window settings, which results in better 

model performance. The dependency capabilities of LSTM 

in the long-term result in the high accuracy measures 

starting at 87.19 and 89.91, respectively, with the window 

size of 20 and 50, respectively. BiLSTM performs better 

than LSTM because it has an accuracy of 92.96 percent at a 

50-word window size. Transformer achieves its highest 

accuracy of 95.02% because this neural network has a self-

attention mechanism that involves learning 

interdependencies between long sequences. The XGBoost-

BiLSTM hybrid system achieves the highest accuracy of 

94.76 percent for analysis of window sizes 40 and 50 in the 

combination of feature selection and sequential learning. 

The proposed FusionRUL-Net achieves the highest 

accuracy across the window size range, beginning with the 

highest accuracy of 95.26 at 20, reaching 97.23 at 50 

because of the high-quality deep learning and feature 

extraction. The study findings demonstrate that increasing 

the window size enhances prediction accuracy, and 

FusionRUL-Net is better than the traditional deep learning 

architectures in predictive maintenance tasks of Remaining 

Useful Life (RUL). 

Table 7. Model complexity and inference time comparison 

Model 
Parameters 

(Millions) 

Inference Time 

(ms/sample) 

Linear 

Regression 
0.01 0.12 

Support Vector 

Regression 
0.04 0.3 

Random Forest 0.25 0.58 

Gradient 

Boosting 
0.41 0.71 

XGBoost 0.45 0.63 

LSTM 1.9 1.12 

CNN-LSTM 2.6 1.35 

BiLSTM-

Attention 
3.1 1.58 

XGBoost-

BiLSTM 
2.8 1.42 

FusionRUL-Net 3.4 1.63 

 

 
Fig. 9 Model complexity & inference time comparison 
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Table 7 and Figure 9 are the results of the evaluation, 

indicating that the model complexity is characterized by the 

comparison between the number of parameters in millions 

and the time of inference in milliseconds per sample.  

The inference times of 0.12ms of Linear Regression and 

0.3ms of Support Vector Regression are a consequence of 

the fact that the number of parameters in these models is low 

at 0.01M and 0.04M, respectively. Random Forest (0.25M, 

0.58ms), Gradient Boosting (0.41M, 0.71ms), and XGBoost 

(0.45M, 0.63ms) show higher accuracy rates, increasing the 

level of complexity with relatively acceptable 

computational time. LSTM has a significant number of 

parameters of 1.9M and takes 1.12ms to complete the 

inference, and has been effective in capturing temporal 

dependencies. The CNN-LSTM (2.6M, 1.35ms) deep 

learning model incorporates spatial feature extraction into 

its architecture so as to benefit from better feature learning 

at the expense of higher complexity. The BiLSTM-

Attention (3.1M parameters) model takes two directional 

input streams and works with attention-based mechanics, 

but needs additional time to process inference at 1.58ms.  

The XGBoost-BiLSTM model implementation with 

parameters of 2.8M and an execution time of 1.42ms 

combines the gradient boosted algorithm technologies with 

deep learning techniques to provide an enabling complexity 

and performance trade-off. The proposed FusionRUL-Net 

model has a maximum complexity of 3.4M parameters and 

a throughput of 1.63 milliseconds; therefore, it is capable of 

more advanced feature extraction. It is because the 

predictive power of FusionRUL-Net can be sufficiently 

predictive to be used in predictive maintenance tasks, even 

with longer inference times, which are associated with 

higher model complexity. 

4.1. Discussion 

The results achieved in the experiment define the 

quality and dependability of FusionRUL-Net as an 

algorithm to predict aircraft engine Remaining Useful Life 

(RUL) when using the CMAPSS dataset. The suggested 

FusionRUL-Net achieved higher results in comparison to 

nine conventional and sophisticated machine learning and 

deep learning benchmark models, such as XGBoost, 

Random Forest, LSTM, BiLSTM-Attention, and XGBoost-

BiLSTM, when applied to all evaluation metrics.  

FusionRUL-Net shows excellent performance with the 

highest overall accuracy score (97.23), along with the 

lowest RMSE value of 9.81 and the highest R2 score (0.96), 

confirming the reliability of the model in predicting engine 

lifetime degradation. FusionRUL-Net has a dual-path 

design that enables the network to detect short-term signal 

issues with multi-scale CNN layers and longer-range time 

dependencies with its Transformer encoder. The hybrid 

architecture effectively manages the weaknesses of models 

constructed over recurrent layers, as they suffer from fading 

of gradients during training and in convolutional layers 

because they are unable to capture long-range dependencies. 

The model predicts better and operates in a contextual 

manner through the Gated Fusion Mechanism, an adaptive 

mechanism that helps it select critical features. The 

forecasting results of various window sizes prove the 

reliability of the model in the case of temporal variations. 

The study indicates that FusionRUL-Net maintains high 

predictive stability over shorter periods of time since it 

effectively learns degradation patterns based on short-term 

historical data that can be used in real time.  

The Prognostic Horizon (PH@10) metric showed that 

FusionRUL-Net had superior failure predictions that 

exceeded XGBoost-BiLSTM and BiLSTM-Attention by 

far. This system offers important benefits to safety-related 

systems since predicting faults early allows preventive 

measures to be taken to prevent costly downtime impacts or 

safety risks. FusionRUL-Net shows that it has a decent 

sample inference time (1.63 m), making it adaptable to run 

in real-time on average computing systems. The model 

retains a strong representational strength due to its 

lightweight framework, despite its number of parameters 

being higher than classical models, making it 

implementable on edges. This accuracy with interpretability 

and deployability is generally not found in existing RUL 

prediction models. 

5. Conclusion and Future Work 
This study introduces FusionRUL-Net, a new hybrid 

deep learning architecture that is built to provide highly 

accurate and interpretable Remaining Useful Life (RUL) 

predictions in multi-faceted industrial environments. The 

model, which combines multi-scale 1D-CNNs with 

Transformer encoder blocks, allows it to extract both local 

and global temporal features of a multivariate time-series 

data. A Gated Fusion mechanism allows integration of 

features dynamically, making sure that the model is able to 

learn short-term sensor variation, as well as long-term 

degradation trends. This dual-path design overcomes some 

of the drawbacks of the existing models, which are based 

either on sequential recurrence (LSTM) or on tree-based 

regression (XGBoost). This model has been stringently 

tested on the CMAPSS dataset, and it has been compared 

with nine state-of-the-art models, one of which is the 

popular XGBoost-BiLSTM hybrid, with an accuracy of 

94.76%. FusionRUL-Net, in contrast, had a much better 

accuracy (97.23), RMSE (9.81), and R 2 (0.96) capacities.  

These findings affirm the high ability of this model to 

reproduce complex sensor interactions and degradation 

behaviours. FusionRUL-Net is a promising direction for 

future work. To begin with, real-time applications of the 

architecture can be experimented with using lightweight 

versions of the architecture on embedded or edge computing 

devices. Second, the fusion design can be expanded to 

include external contextual information, e.g., flight profiles 

or environmental conditions. Finally, interpretability 

modules, e.g., SHAP or attention heatmaps, may also be 

incorporated to offer practical recommendations to a 

human-in-the-loop maintenance decision system. All in all, 

FusionRUL-Net provides a solid basis for the next 

generation of intelligent and data-aware prognostics 

systems in high-stakes industrial settings. 
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