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Abstract - Accurate prediction of Remaining Useful Life (RUL) is critical for ensuring safety, reducing maintenance costs,
and improving reliability in aircraft engines and other high-value industrial machinery. This paper introduces FusionRUL-
Net, a novel hybrid deep learning architecture that combines multi-scale 1D Convolutional Neural Networks (CNNs) with
Transformer-based encoder blocks for robust RUL estimation using the CMAPSS dataset. Unlike traditional models that
rely solely on recurrent layers or tree-based ensembles, FusionRUL-Net leverages localized temporal feature extraction via
CNNs and global dependency modelling via multi-head self-attention in Transformers. A Gated Fusion Module is used to
adaptively blend CNN and Transformer outputs, enabling the model to focus on both short-term fluctuations and long-term
degradation trends. To evaluate the proposed model, a comprehensive comparison was conducted with nine state-of-the-art
baselines, including LSTM, BiLSTM-Attention, CNN-LSTM, XGBoost, and the hybrid XGBoost-BiLSTM. FusionRUL-Net
achieved an impressive accuracy of 97.23%, outperforming the best baseline (XGBoost-BiLSTM), which achieved 94.76%.
It also recorded the lowest RMSE (9.81), MAE (6.77), and the highest R? score (0.96). These results demonstrate the model’s
superior capability to capture multivariate sensor degradation patterns across varying operational conditions. The
architecture is also optimized for deployment with acceptable inference latency (1.63ms/sample), making it viable for real-
time applications. This work advances state-of-the-art prognostics by introducing a scalable, interpretable, and highly
accurate hybrid model with strong potential for future adaptation in real-world predictive maintenance systems across
aviation and other safety-critical domains.

Keywords - Remaining Useful Life, RUL Prediction, CMAPSS, Prognostics, Hybrid Deep Learning, CNN, Transformer,
Attention Mechanism, Temporal Modelling, Sensor Fusion.

they help stop vital failures that could result in major
accidents. RUL prediction systems help optimize resource
management because the engineers are able to reduce non-
essential maintenance activities, and this leads to an
extension of the lifespan of components [5]. The integration

1. Introduction

Maintenance of aircraft is an essential part of aviation
safety and operational performance, which demands highly
sophisticated methods to ensure the dependability of
elements and systems. Remaining Useful Life (RUL)

estimations are one of the most prominent developments in
predictive maintenance that can move conventional
maintenance practices to predictive ones, mitigating
operational disruption and cutting operational expenses at
the expense of improving operational security [1]. Proper
part failure prediction will enable airline companies to
anticipate component change, thus avoiding unforeseen
failures and protecting the well-being of passengers [2]. The
Remaining Useful Life (RUL) prediction needs the failure
information of the past, processed by real-time sensor data
and advanced analytical algorithms. Deep learning and
machine learning algorithms have Recurrent Neural
Networks (RNNs) and Convolutional Neural Networks
(CNNs) that are effective in improving prediction accuracy
by being utilized in a wide variety of fields [3, 4].

Other than efficiency and cost reduction, RUL
predictions in aircraft maintenance have other benefits.
RUL predictions assist in preventing major accidents since
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of RUL forecasts, 10T devices, artificial intelligence
applications, and cloud systems keeps improving predictive
maintenance in the aviation sector. The reliability of the
aircrafts is enhanced by the operational performance due to
the data-driven application of RUL-based aircraft
maintenance plans [6]. One of the main challenges when
making RUL predictions in aircraft maintenance is
obtaining accurate and complete data of high quality.
Surviving aircraft parts have to survive in various conditions
of the environment since sensor values can often pose
technical issues [7].

The complicated character of aircraft component
fracture patterns offers a significant challenge in the
development of efficient predictive models. The
degradation of a component is a result of a variety of factors,
such as temperature, use, and pressure changes, vibration
exposure, and environmental factors during operation (e.g.,
flight cycles and weather conditions) [8]. Several interacting
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conditions make it difficult to come up with general models
that are applicable across all aircraft types or products
produced by various manufacturers. Adaptations to RUL
models when implemented in particular systems or
components increase both the cost and time of
implementing predictive maintenance. The non-linear wear
and tear patterns exhibited by aircraft parts make the current
complicated nature of predicting the failure times of parts
even more difficult [9]. Figure 1 shows the prediction
methods of RUL.

Physics-based

Data-driven Methods Methods

Remaining
Useful Life

(RUL)

Statistical Methods

Hybrid Methods

Fig. 1 Prediction methods of Remaining Useful Life (RUL)

The aviation sector has undergone a revolution in
forecasting component maintenance due to the high
accuracy of data-driven analysis provided by deep learning
to monitor wear trends. Recurrent Neural Networks (RNNs)
and Long Short-Term Memory (LSTM) networks, as well
as Convolutional Neural Networks (CNNSs) and transformer
architectures, are modern deep learning networks that allow
processing large amounts of sensor data to learn wear
patterns and deterioration [10, 11]. These predictive models
are used to produce failure estimates of aircraft parts using
multiple aircraft sensor data streams such as temperature,
vibration, and pressure measurements. Deep learning
supersedes its statistical and physics-based counterparts in
that it does not require the feature engineering effort
required to learn complex non-linear relationships, and can
adapt better to real operating conditions [12-14]. The
downside associated with deep learning models is that they
are characterized by low interpretability since engineers and
regulatory agencies do not understand the logic used to
make failure predictions; thus, they find it difficult to
vindicate predictions made by deep learning models [15].

RUL predictions that are Al-based require massive
infrastructure and workforce training to fit into the existing
maintenance systems within a highly regulated aviation
environment. Full exploitation of deep learning in predictive
maintenance must be able to manage these adversities to
safeguard the reliability and safety of the aircraft, along with
the cost-efficient operation of flight operations. The
performance of LSTMs and CNN-LSTM hybrids is better
as they are effective in capturing sequences in data. These
models are not able to succeed in long-range dependency
modelling and multi-sensor data integration. The network
architecture of our proposed FusionRUL-Net system
includes the combination of local feature detectors in multi-
scale 1D-CNNs and global temporal information processing
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with Transformer encoders. The prediction algorithm
applies Gated Fusion to proactively regulate between local
and global information processing when applied to RUL
forecasting.

1.1. Main Contributions of the Work

Design of a Hybrid CNN-Transformer Architecture: It
proposed a new bilateral structure that integrates multi-
scale 1D Convolutional Neural Networks (CNNs) and
Transformer encoder blocks and effectively
summarizes both short-term degradation signals and
long-term time-dependent relationships in multivariate
time-series sensor data.

Gated Fusion Mechanism Implementation: Gated
Fusion Module creates an adaptive feature combining
local CNN features and global Transformer features, in
which the model would decide the best weighting
parameters given its degradation content.
Edge-Preserving Temporal Smoothing: Experimental
Edge Temporal pre-processing filters are used to
conserve important degradation edges and minimize
sensor noise to enhance deep sequential learning.
Correlation-Based Sensor Selection: The model applies
Spearman-based sensor selection protocols that narrow
down the stream of redundant sensors to obtain
improved interpretability ~with reduced input
dimensions that do not lose significant information.
Multi-scale Degradation Encoding to Trend Detection:
MDE is a Multi-scale Degradation Encoding that
employs multiple temporal feature windows to identify
the multiple trends of wear and degradation.
RUL-Centric  Label  Transformation  Strategy:
Developed a piecewise RUL transformation function
that  prioritizes  late-stage  degradation by
logarithmically compressing low RUL values, which
helps to focus the model in critical prediction stages and
also to be robust.

Section 2 of this document conducts a full evaluation of
studies related to RUL predictive research, which shows
how traditional machine learning methods transitioned to
contemporary hybrid deep learning techniques. In Section 3,
the authors present the FusionRUL-Net methodology and
details about data pre-processing techniques, along with a
description of the model design and training process.
Section 4 describes the experimental setup together with
evaluation metrics, while providing an in-depth result
analysis that compares with existing models. Section 5
provides the conclusion along with directions for upcoming
research, which emphasizes the deployment capacity of this
approach.

2. Related Works

The developments of predictive maintenance planning
and Remaining Useful Life (RUL) prognostics happen
because of the increasing availability of sensor monitoring
data. The current literature is limited to RUL calculation or
is performed with degradation assumptions for making
maintenance decisions. Our framework is based on a data-
driven probabilistic RUL prognostics approach that allows
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predictions about maintenance evolution to be made. The
process uses Convolutional Neural Networks (CNNs) along
with Monte Carlo dropout RUL distribution estimation and
continually updates predictions using real-time information
obtained by sensors [16]. Deep Reinforcement Learning
(DRL) is the basis of maintenance planning optimization, as
the approach allows predicting the RUL in real-time and
initiating actions. When our framework is applied in aircraft
systems in turbofan engine maintenance operations, it
provides cost-saving results. The overall extent of
maintenance costs saves 29.3% and the DRL method
operates unscheduled maintenance intervention 95.6% less
often than conventional service, where 12.81 cycles of
wastefulness are tolerated prior to intervention. The
suggested framework combines sensor measurements and
probabilistic RUL prognostic predictions and Al-based
maintenance scheduling tasks to generate a comprehensive
predictive maintenance system.

Appropriate prediction of aircraft engine Remaining
Useful Life (RUL) is a key requirement of aircraft safety
maintenance and financial management [17]. They created
a deep learning paradigm of predicting RUL that boosts the
model functionality and feature detection capabilities. The
normalization step is used to normalize the input features,
and then the CMAPSS dataset calculates the engine RUL.
The key features within the input data are extracted by a
CNN network, and the information is passed to an LSTM
network that contains an attention mechanism to optimize
prediction outputs. Their method validation involves
ablation tests as well as comparison of the various models.
The CNN-LSTM-Attention model has better predictive
performance, as it obtains RMSE values of 15.977, 14.452,
13.907, and 16.637 on the FD001, FD002, FD003, and
FDO04 data, respectively. Experimental findings support
that the CNN-LSTM-Attention model is the most effective
model compared to CNN, single LSTM, and CNN-LSTM
models in all four datasets. The maximum accuracy on
CMAPSS is proven in their approach, which shows that it is
not only accurate but also reliable.

Predictions of Aircraft engine lives based on past data
need precise predictions of Remaining Useful Life (RUL) to
design required maintenance strategies to eliminate critical
failure. The exact calculation of the Remaining Useful Life
cannot be achieved easily due to the lack of that data in the
current condition monitoring. A multi-scale deep transfer
learning system that adopts domain adaptation concepts can
solve this issue and lead to better prediction accuracy. It
consists of a three-part structure, which consists of a feature
extraction module to cooperate with an encoding module
and an RUL prediction module [18]. The pre-training step
involves a multi-scale Convolutional Neural Network
(CNN) that is used to extract data-specific features that cut
across various data scales. They obtained domain transfer
using the maximum mean discrepancy that allows an
effective learning of shared features in both the source and
the target domains. The improved model, which combines a
Transformer-based architecture with multi-scale CNNs, is
useful in the prediction of RUL in low-training data
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scenarios. They perform remarkably well based on
experimental tests on the C-MAPSS dataset by
outperforming the existing leading strategies.

The precision of the prediction of The Remaining
Useful Life (RUL) of aircraft engines must be high since it
enables the prevention of failure and predictive
maintenance. The current versions of the RUL predictive
methods use model-based or data-driven systems, whereby
the separate algorithm elements have limitations in
identifying various failure modes. An ensemble deep
learning model based on health states was used in the
process of assessing aircraft engine degradation [19]. Any
deterioration of the engine lifetime is divided into various
health states once it has been determined that there is a
health baseline. Stacked autoencoder, Convolutional Neural
Network (CNN), and Long Short-Term Memory (LSTM)
are base algorithms used as deep learning models in the text.
The models are fractured in the training process to various
health states, allowing them to learn state-dependent
degradation properties. The final step makes use of the ridge
regression to estimate ensemble weights of various health
conditions that maximize the improved outcomes of
prediction results. This was demonstrated by a study
conducted on the PHM data challenge dataset, which
determined that the offered HSR ensemble approach offered
significantly better performance than single-model systems
and traditional ensemble approaches that do not consider the
state and provide more accurate RUL estimates.

Remaining Useful Life is the longevity of aircraft
engines that have critical implications to aviation safety in
conjunction with flight management decisions by airline
operators. The deep learning model implementation is based
on the training using the real turbofan engine operational
data collected over several years [20]. This operates on
engine data in a realistic form rather than artificial datasets,
as it results in higher prediction accuracy. They designed
two deep neural net topologies that have a deep
Convolutional Neural Network (CNN) with layers and an
LSTM net that uses regression as the output. The same
dataset serves as the training grounds of both models, which
are subject to validation and testing processes, and then the
performance of different training settings is evaluated. The
developed models are evaluated based on the performance
measures and the predictive convergence analysis
techniques. A side-by-side comparison determines the
differences between real conditions engine data and the
virtual engine data as they are both fed into the same neural
network structures.

3. Methodology

The FusionRUL-Net model uses a structured model to
forecast aircraft engine RUL using the CMAPSS dataset
multivariate time-series data. The pre-processing phase
includes several complex processing procedures on the raw
sensor data to produce quality-enhanced data using edge-
preserving smoothing as well as correlated sensor removal
and multi-scale degradation encoding to reduce noise. A
dual-path processing model uses the refined information to



Sakthivel Janarthanan & A. Anthonisan / 1JECE, 12(10), 147-162, 2025

run a 1D Convolutional Neural Network (CNN)
computation that learns multi-dimensional characteristics at
varying timescales, besides Transformer encoder processing
to perform global self-attention-dependent signal analysis
with positional encoding. Gated Fusion Mechanism
combines the two representations of features by
automatically setting the weight of local and global features.
The fused representation estimates the RUL by using a
dense regression head.

3.1. Dataset Description

The Commercial Modular Aero-Propulsion System
Simulation (CMAPSS) dataset is used by the Prognostics
Centre of Excellence of NASA as a reference standard to
test data-driven approaches to aircraft engine prognostics,
along with predictive maintenance applications. The tool
develops refined Remaining Useful Life (RUL) prediction
models by developing virtual degradation of turbofan
engines through various fault modes in various operating
conditions. The CMAPSS is made up of four sub-datasets
called FD001, FD002, FD003, and FD004 that vary in
complexity as they comprise varying numbers of operating
conditions and fault modes. The simplest sub-dataset is the
FDO001, and the FD004 is the most complex structure. The
data set contains one engine that, at a given moment,
captures data until the system fails. Under CMAPSS, the
user should arrive at the remaining useful life value by cycle
analysis since it contains information on engine IDs and
operational data, and it has a total of 21 sensor reads in its
26 features. Time-varying characteristics of the given
dataset, as well as its natural levels of noise, support the use
of LSTM, along with the BILSTM, CNN-LSTM, and
Transformer and ensemble models in predictive
maintenance.

3.2. Data Pre-Processing
3.2.1. Adaptive Cycle-Based Normalization (ACBN)

The CMAPSS data has time-series data on various
aircraft engines under varying conditions and duration of
operation. The methods of global normalization, such as
min-max normalization and z-score normalization, have the
capacity to conceal characteristic patterns present in single
engines that introduce systematic errors across individual
units. Adaptive Cycle-Based Normalization (ACBN)
provides a better option for data normalization by engine-
unit processing. ACBN provides a system of alignment that
compares sensor measurements and operational parameters
and patterns of degradation behavior that are engine-specific
at minimum and maximum operating limits. This approach
erases the differences between loads and environmental
factors as RUL modeling gets enhanced without affecting
the patterns of degradation. The natural sensor variations in
pressure and temperature due to external effects are scaled
so that they do not give false degradation signals. Machine
learning programs are trained to learn natural degradation
patterns with operational relative change focus, rather than
absolute value measurement with ACBN. Through this
approach, the faults are more accurately detected, and the
predictive reliability is further spread across a range of
engine operating conditions.
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XO(t) — min(X®)
max(X®) — min(X®)

X8 () = (1

Where X@(t) is the sensor value at time t for engine
unit i. The Adaptive Cycle-Based Normalization
standardizes the range sensor values into [0,1] ranges using
dynamic time windows, which results in increased temporal
stability and enhanced model interpretability alongside ideal
fault detection limits for predicting Remaining Useful Life
(RUL) predictions.

3.2.2. Correlated Sensor Drift Elimination (CSDE)

The CMAPSS housing data has 21 sensor readings that
repeatedly measure similar engine physical factors. Not all
specially installed sensors can provide aircraft engines with
useful degradation cues. Conventional pre-processing
pipelines typically retain features based on evaluation of
their statistical properties, like variance and entropy. These
approaches do not determine the true prognostic value that
an individual sensor can provide, in terms of Remaining
Useful Life (RUL). CSDE is a relatively new proposed
feature selection method that involves correlation analysis
to identify sensors that bear no significant relationship with
RUL in order to discard them in the prediction system.

1 M
pe= 3 210 @)
i=1
Where M is the total number of engines, and pf) is the
Spearman correlation for sensor s in unit i.
Ifps < 6, then sensor s is removed 3)

Where 8 is the correlation threshold (e.g.,0.3). Perfect
functioning of the RUL sensor will show the increasing
trends prior to failure. The superior method to non-linear
patterns is Spearman correlation, which prioritizes sensors
by their correlation to RUL. To defend against important
degradation trends in sensor noise, the CSDE mechanism
eliminates untrustworthy sensors whose predictive value is
low. The result improves the model interpretability, reduces
the size of the input data, and prevents deep learning
overfitting issues.

3.2.3. Temporal Smoothing with Edge-Preserving Filters

The CMAPSS data set includes sensor data with
various noise sources due to dynamic engine processes and
defective sensing devices, as well as environmental change.
The effects of both moving average smoothing and
Gaussian filtering are that they reduce random noise and
smooth over significant time-series patterns, such that
significant degradation periods can no longer be observed.
Time-Based Smooth Filter with Edge-Serving Algorithmsis
an efficient algorithm that patches random noise and yet
preserves significant structural patterns. The Savitzky-
Golay filter preserves peaks with the help of a polynomial
fit to reduce the effects of high-frequency noise. The
Bilateral filter smooths values with the help of proximity
and similarity tests to identify instantaneous change events
correlated with faults.
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Fig. 2 System structure
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Where c; are polynomial coefficients, and 2k + 1
is the window size.
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Where f; is the spatial kernel and £, is the range kernel
based on signal similarity.

R(t) = |X(&) — X)),
> €

Edge if R(t)
(6)

Where R(t) is the residual and € is the range
preservation threshold. The filtering involves the use of
rolling windows together with Savitzky-Golay filters to
reject noise without corrupting the degradation patterns.
Local gradients are used in the Bilateral filtering to deal with
the nonlinear signal variations. This signal smoothing
process causes signal clarity and better feature extraction,
BIiLSTM training, and subsequent better Remaining Useful
Life prediction accuracy and reliability, as well as better
model performance. Figure 2 shows the structure of the
system.

3.2.4. Multi-Scale Degradation Encoding (MDE)

The CMAPSS data present a unique Remaining Useful
Life (RUL) forecasting problem since they demonstrate
degradation behaviour at several scales. Applications of
remolar systems are known to have both progressive fault
formation in hundreds of cycles and immediate failure
mechanisms that happen over limited time intervals under
conditions of stress, environmental influence, and
operational stress. Techniques of feature extraction with
fixed time operations of deltas and rolling averages find it
difficult to identify full patterns of degradation. Multi-scale
Degradation Encoding (MDE) is the solution to this
shortcoming. The sensor time-series data provides MDE
with degradation features at a variety of time scales with
both short and long time horizons, which upgrades the input
feature space representation.

w-1
1
@ == > X - ) ™)
j=0

S0~ DX~ ) — K)
G - D2

slope(t) = (8)

Where j is the mean of indices and X is the mean of the
window values.

A, (8) = X (&) — pw (0) )

Deviation of measures against the local trend. MDE, the
system produces engineered features that can be reviewed
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by analysts with the help of the various window sizes on the
sensor signal (5, 10, 20 cycles). Currently, MDE constructs
features based on moving averages and rolling standard
deviations, plus linear regression trend slopes and temporal
gradients (differences) across each window analysis. The
short-lived, sudden irregularities are seen with 5-cycle
averaging, whereas the patterns of trends over several cycles
are apparent with 20-cycle trend analysis. The overlapping
application of variants of the scales in the model allows
them to identify small changes that are indicative of
premature corrosion, as well as identify long-term variables
to verify wear progress.

3.2.5. RUL-Centric Label Transformation (RCLT)

Transforming the target labels is a core but widely
overlooked aspect of any Remaining Useful Life (RUL)
prediction challenge. The CMAPSS dataset takes the
engine’s maximum cycle as a reference to measure RUL
when it calculates and removes the present cycle number in
the calculation. The data points are on a straight line because
the variable of interest decreases from 130 to the full failure
of the target variable at 0. The implicit modeling of labels
poses some modeling challenges to the system. There is a
huge difference between the correct values of the model at
early cycle cases, where the model takes in, and at late cycle
cases, where the model fails to perform. Linear RUL
labeling does not accurately reflect the real-world criticality
of predictions because errors identified during late
degradation are much more expensive than those identified
during early degradation. RCLT strategy is used to manage
these challenges mentioned above.

RULmod(t)
B {RUL(t), RUL(t) > T (10)
N T +log(RUL(t) + 1), RUL(t) ST

RUL(t)
RULmod(t)' RULmod (t) >T
{exp(RULmod (t)—-T)—1, otherwise (11)
RCLT has some benefits during implementation. RCLT
method reduces the dispersion in labels and maximizes the
loss, concentrating on late-stage deterioration of equipment,

thereby generating more accurate low-RUL forecasts to
implement successful predictive maintenance practices.

3.3. Sensor Fusion Mechanism

Different sensors monitor important parameters of an
aircraft engine, such as the temperature, pressure, intensity
of vibration, and rotating speed. The sensors produce
information that fluctuates across the various measures and
time-specific patterns and significance. The study design
constructs a sensor fusion algorithm that converts the multi-
dimensional sensor measurements, which are diverse, into a
single data format that enhances Remaining Useful Life
(RUL) predictions. The sensor data streams are fed into the
process initially by getting cycle-based synchronization and
then transforming into common sampling time intervals.
The fusion strategy uses early fusion and late fusion
techniques. The early fusion methodology links sensor
properties to deep learning models to interact with each
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other in one supervised learning process, but the late fusion
method uses independent sensor processing followed by the
combination of their outputs at abstract levels. The fusion
method preserves the sensor properties, removes noise more
efficiently, and enhances the model. Concatenation of
sensor values at each time step t for an engine unit:
x(@®) =[x, x2, ., x™) (12)

Where xt(i) is the reading from the i*" sensor at time ¢,
and n is the number of selected sensors. Assume each sensor
stream passes through its own feature extractor, f®. The
outputs are aggregated:

Z, = concat(fO(x), FO(xP), .., F™ ™) (13)

The pipeline takes advantage of the rank correlation of
features as proposed by Spearman in the process of feature
selection to identify the sensors that influence the remaining
useful life estimation. Quality improvement is achieved by
dropping or weighting down sensors that show weak or non-
monotonic patterns. Fusion strategy enhances the feature
space that enables deep learning models to identify the
critical patterns of degradation.

3.4. Temporal Feature Extraction
Proper identification of changing trends and
occurrences depends on the ability to obtain the time
features of sensory data processed in the engine operation
cycle. Proper modeling of progressive engine failures that
change over time is required to properly estimate Remaining
Useful Life (RUL). An appropriate network to handle this
task is a BiLSTM network since it takes data in sequential
directions to enable full contextual comprehension. This
data enhancement technique at all time periods makes the
identification of small-scale patterns of degradation more
accurate. Temporal Attention Mechanism is also
incorporated to enhance the attention to key time points that
entail sensor drifts and vibration spikes. The algorithm
involves weighted time step learning to assist the model in
determining important time periods, aiding in the
predictions of remaining useful life. Attention score
computation:
e, = v" tanh(W, h; + by) (14)
Where W), is the weight matrix, by, is the bias term, and
v is the attention vector. The combined use of BiLSTM and
Temporal Attention, which provides better engine health
evolution representation, optimizes the model performance.
The model employs BIiLSTM to retain long-term
dependencies as well as attention that allows paying more
accurate attention to significant time-related events and
simplifies the understanding of the system. The result of
such a mixed extraction structure is an increase in the
prediction accuracy of the model in terms of failures, as well
as which parts of the usage data are the most significant
contributors in RUL predictions. The time-dependent
transformation transforms simple multivariate time-series
information into an in-depth, meaningful representation to
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construct predictive systems with high precision.
Normalized attention weight (SoftMax):

e
¢ Zf=1exp(ek)

3.5. FusionRUL-Net: A Novel Hybrid Model Architecture
for RUL Prediction

The proposed FusionRUL-Net is a new hybrid model
structure that is specific to the Remaining Useful Life
(RUL) prediction of complex machinery equipment like
aircraft engines based on multivariate time-series inputs.
Past models, such as BiLSTM, CNN-LSTM, and XGBoost-
based models, provided limited success but could not
combine local degradation patterns with long-term overall
temporal patterns at the same time. To address these
concerns, the modular design of FusionRUL-Net solves
these challenges by integrating 1D Convolutional Neural
Networks with Transformer Encoders to form one unified
pipeline. It has three key ideas that are focused on by the
system framework: local-global feature cooperation,
attention-based intelligibility, and resistance to time-
dependent data dependencies at different levels of time.

(15)

The input tensor acts as the heart of the model since it
has a time-based sliding window that receives the pre-
processed sensor data, provided by the CMAPSS database.
The model shows readings that are a result of certain sensors
within specific time intervals of between 30 and 50 cycles.
The data structure of inputs follows a scheme of [B, T, F][B,
T, F][B, T, F], where the first dimension is the batch size,
the second one is the time steps, and the third one is the
fused sensor channel. The structured data format that
preserves its connection with the natural sequence of events
in the first application stage of the architecture lets a multi-
scale 1D Convolutional Neural Network (1D-CNN) block
extract local temporal features of the input. The block
consists of a few convolutional layers that use various sizes
of kernels (3, 5, 7) at the same time. In the process, sensor
dynamics will be extracted with various resolutions in time.
Small kernel filters abrupt anomalies as well as very tiny
disruptions, in contrast to longer kernels that detect
slowness in patterns of performance deterioration. The CNN
operation traverses time, preserving signal variables without
any loss.RelL U activation functions and batch normalization
are added to the implementation, creating network non-
linearity and stabilizing training. The results of all the
convolutional paths are merged into an output map, which
gathers various local features. Each convolutional path is a
temporal receptive field generator that summarizes transient
sensor behavioural patterns before critical failure events.
Each convolutional path is applied as a 1D kernel to the
time-series data to capture degradation patterns at a given
scale.

k-1

F®(t) = ReLU (Z W% - X (t + i)

i=0

+p® (16)
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Where F®(t) is the feature output at time ¢ for kernel

size k. Wl.(k) is the weight of the convolution filter. X (t + i)
is the input sensor value at time t +i and ReLU() is the
Activation function. CNNs are aware of short-term
variations but not the identification of long-term
relationships. The Transformer Encoders also have a self-
attention capability to form connections among all time
point references and also calculate weight values
automatically. Positional encoding provides a time structure
for CNNs’ output. This combination in sequence modeling
allows parallel computing capabilities to identify general
degradation patterns, without which RUL prediction cannot
be adequately predicted. To maintain order in the
sequence before feeding to the Transformer:

PE(t, 2i) = sin( 17)

t
100002i/d)

PE(L,2i +1) = cos( (18)

t
100002Ud)

Where t is the time index, i is the feature dimension,
and d is the total dimension of the model. Dual-Path Fusion
Layer: An encoder of local (CNN) features, along with
global (Transformer) features, is processed with extracted
features. Direct combination of these features does not offer
the best results because of its neglect of the real relevance
of local and global information. The Gated Fusion
Mechanism of FusionRUL-Net automatically adjusts itself
to merge various items from the information sources.

Attention(Q,K,V)

QK"
= softmax %4 (19)
Vi
Where Q,K,V are the Query, Key, and Value

matrices, d,, is the dimensionality of key vectors, and the
output is a weighted sum over all time steps based on
relevance. The fusion gate dynamically weights CNN
and Transformer outputs:

Z = O‘(M(g ! [FCTLTL; Ftrans]) Q Fcnn
+(1
~o(W,

) [Fcnn; Ft‘rans])) G)Ftrans (20)
Where [F...; Ferans] 1S the concatenated feature
vectors, o is the sigmoid activation, © is the element-wise
multiplication, and W, is the learnable gating weights. The
fuse output Z is mapped to a scalar RUL estimate:
JRUL =W, -Z + b, (21)

Where W, is the output layer weights, b, is the bias
term, and PRUL denotes the predicted RUL. The
concatenated aspects are then passed to the fully connected
regression head, which has two or three thick layers that use
dropout with ReLU activations. In the final step, the single-
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node linear neuron calculates the predicted engine unit.
FusionRUL-Net relies on special loss functions to determine
failure points, which are the basis of the RUL forecasting
ability. Because of Layer normalization and Early Stopping
in combination with data augmentation, stability and
robustness are improved when using Dropout.

Readers enjoy temporal attention heatmaps and
controlled management, which enhances reading. It is
possible to use edge deployment due to its lightweight
CNN-Transformer architecture, which proves to be more
efficient in terms of its ability to predictively maintain
CMAPSS than LSTM and XGBoost. To penalize more for
late-stage prediction errors (closer to failure):

L= w®) -9 (22)

Where y, denotes the true RUL at time t,y, is the
predicted RUL, w(t) denotes the dynamic weight, which is
higher as RUL gets smaller, and € is a small constant for
stability. The FusionRUL-Net training was performed to
optimize the model against stable convergence, along with
a high potential of generalizing the results and exhibiting
high sensitivity to various degradation patterns that were
observed in the CMAPSS dataset.

This training methodology brings together three
elements that specifically deal with the time-series
prognostic modelling and comprise adaptive learning rate
scheduling with regularization and time-conscious cross-
validation.

3.6. Model Training and Optimization
3.6.1. Adaptive Learning Rate
ReduceLROnNPlateau

Finding the appropriate value of learning rate that
ensures stability and rapid convergence of the hybrid
structures, especially FusionRUL-Net, is the biggest
challenge in the training of deep neural networks.
ReduceLRONPIlateau scheduler is used to adjust the learning
rate during the training process. This method monitors the
validation loss metric that indicates the stagnation of the
learning rate once the improvement ceases to prevent the
model from reaching optimal minima. In our
implementation, we used the following parameters:
Initial learning rate (Ir): 0.001
Factor: 0.5 (the learning rate is halved on a plateau)
Patience: 5 epochs (waits for 5 epochs with no
improvement before reducing the rate)
Minimum learning rate (min_Ir): 1e-6
Cooldown: 2 epochs (waits before resuming normal
operation after reducing the rate)
Monitor: Validation Mean Squared Error (MSE)

Scheduling  Using

The method allows the optimizer to begin training with
a high starting momentum and then make a gradual
increment in its learning steps in the convergence phase. The
technique prevents oscillation and overfitting that can easily
occur on the approach to training completion.
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3.6.2. Regularization Techniques:
Regularization

Two forms of regularization, Dropout and L2
regularization, are used to mitigate the overfitting bias of
deep learning models when using multivariate time series
data.
[ ]

Dropout and L2

Dropout: The significant application of this layer is
done in fully connected layers, as well as Transformer
feed-forward units. A dropout probability value of 0.3
was selected by means of experimental tests. Random
deactivation of neurons in 30 percent of selected layers
on training updates makes the network more resilient.
L2 Regularization (Weight Decay): The optimizer uses
the weight decay on all the model trainable parameters.
The additional loss penalty functional is based on the
square magnitude of the model weight values. A small
value 1 = 1le —4 has been chosen, which allows
reducing the complexity of the model without a
significant compromise with the learning capacity. The
regularized loss function becomes:

Liotar = e +4 ) Iwill* (23)

l
Where w; are the model parameters. These
regularization techniques work interactively to prevent
overfitting as applied to training data, such that the model
performs well on unseen engine units with different
degradation data points.

3.6.3. Cross-Validation with Time-Series Aware Splitting
RUL prediction offers temporal sequences on its data
structure, which the traditional random cross-validation
algorithms lead to data leakage, as it discloses future cases
to the training data. To avoid this issue, a time-series aware
cross-validation method that integrates GroupKFold and
Sliding Window Validation is presented, where:
Each fold of engine units involves the use of different
complete engine sets.
The sliding window approach uses the samples of
lifecycle phases between the first phases and the final
phases within individual units.
The evaluation uses a 5-fold cross-validation approach
as part of the robustness and maintenance of statistical
consistency between the training and evaluation.

To avoid the over-representation of precautions, early-
cycle samples are included in the model training process
since this misrepresentation might lead the model to predict
RUL values that are too high. The decay-conscious
windowing option uses the method of sample balancing to
create a consistent training representation of all RUL stages,
starting early in the training cycles and continuing late in the
training cycles.

Algorithm: FusionRUL-Net for Remaining Useful Life
(RUL) Prediction using CMAPSS Dataset

Input: Time-series engine dataset D = {E;, E,, ..., E,,}
Each E; = {Xt(i),t =12, T} where X\ € RF
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Hyperparameters: Window size w, Threshold 6,
Dropout d, Learning rate r, Smoothing window k,
Regularization 4, Loss weight epsilon €

Output: Predicted Remaining Useful Life JRUL
Data Pre-processing
Adaptive Cycle-Based Normalization (ACBN)
For each engine unit E;
Normalize each sensor channel s by:
Dy xD@®)-minx?)

Correlated Sensor Drift Elimination (CSDE)
For each sensor s:
Compute Spearman correlation p; with RUL
Ifp, < 6
Remove sensor s

Temporal Smoothing with Edge Preservation
X@) = j?:_k ;. X(t+j)
/I Apply Savitzky-Golay smoothing
R®) =|X()—X(t)|, Edgeif R(t) >¢
// Edge detection residual
R(@) = B X O£ = D) X (© = X()
/I Bilateral filtering

Multi-scale Degradation Encoding (MDE)
For window size w, extract:
(8 = 30 X(E =)
/I Moving average
25 =D& (E=)-X)
W G-D?

slope(t) =

/I Rolling slope

A, (@) = X(6) — p(0)
/IMulti-scale Delta

RUL-Centric Label Transformation (RCLT)
RUL(t),
RULpoq(t) = { ©

T + log(RUL(t) + 1),
/I Transform RUL values

RUL(t) >T
otherwise

RUL(t) =
eXp(RUL0q(t) —T) — 1, otherwise

Inverse transformation post-prediction

Sensor Fusion
x(@) =[x, 22, ..,
/I Early Fusion
Z, = concat(f O (x), FA(xP), ..., F P (x™M)
/I Late Fusion

x)]

Feature Extraction
FO(t) = ReLU(XEG W™ - X(t + i) + b®)
/I Convolution with multiple kernel sizes

Add Positional encoding and Apply Transformer self-
attention
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Dual-Path Feature Fusion
7 = O'(Wg . [Fcnn; Ftrans]) @ Fcnn + (1 — U(% .
(Fons mes])) ®OF;rqns 1/ Fuse CNN and Transformer

RUL Regression
JRUL =W, -Z + b,
/I Pass fused representation

Model Training
Optimizer: Adam (8, = 0.9,8, = 0.999,¢
Learning Rate Scheduler: ReduceLROnNPlateau
Dropout Rate: 0.3 in dense and attention layers
Early Stopping: patience = 10 epochs

le — 8)

Inference
For a test engine E;;
$RUL(t) = FusionRUL — Net(X}_,,+1)
I/ Generate prediction
Optionally apply inverse RCLT to retrieve raw RUL
values
End Algorithm

3.7. Novelty of this Work

The novelty of this work is that FusionRUL-Net- a
hybrid deep learning framework was designed and
developed that presents a completely new way to predict
Remaining Useful Life (RUL) by combining multi-scale
convolutional features with attention-based global temporal
modelling. In contrast to other traditional RUL models that
use only either a Statistical regressor or a Recurrent
architecture, FusionRUL-Net combines the advantages of
both 1D Convolutional Neural Networks (CNNs) and
Transformer encoder blocks in a single architecture. This
allows the model to capture both local sensor variations and
long-range relationships, which is necessary when
considering the non-linear and multi-phase nature of
mechanical degradation. One of the fundamental novelties
of this architecture is the Gated Fusion Mechanism, which
is adaptively trained to integrate CNN-based local features
and Transformer-based global features. This is the opposite
of fixed or manual fusion strategies occurring in the existing
literature. Further, the model is facilitated by a distinct pre-
processing pipeline composed of Correlation-Based Sensor
Drift Elimination, Multi-scale Degradation Encoding, and a
RUL-Centric Label Transformation that are aimed at
enhancing signal intelligibility, time representation, and
relevance of labels, respectively.

4. Results and Discussions

The FusionRUL-Net model was implemented with the
help of Jupyter Notebook and Python frameworks that
included deep learning libraries in their integration, namely
TensorFlow and Keras. The system was run on Windows,
and it was powered by an Intel Core i7 14700HX processor
with a 33MB Cache, 5.50 GHz, with no addition of a
graphics card, and had 8GB RAM. Membership in resource-
constrained edge platforms. Resource-constrained edge
platforms, FusionRUL-Net, were highly efficient in terms
of their operations prior to the computerization of the tasks
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on which they could be deployed in a realistic predictive
maintenance system. Due to its special design construct,
FusionRUL-Net executes two functionalities to identify the
lifespan anticipation of aircraft-engine components by the
local formation of degradation, along with global time
analysis. The sensor data processing eliminates drifts and
employs edge-smoothing alongside multi-scale degradation
encoding to come up with meaningful patterns with noise
abated. Multi-scale 1D CNNSs are used in the first path to
detect short-term anomalies and local patterns at the same
time, whereas Transformer encoders are used in the second
path to build the relationships between the global temporal
entities given the multi-head self-attention. The Gated
Fusion Mechanism brings together the regional and holistic
information through the application of adaptive weight
assigning and feature integration operations. The
computation of the RUL value is a final computation done
in fully connected layers in the network. The modular
FusionRUL-Net architecture, based on attention, generates
strong predictive performance with high accuracy levels and
interpretability, which predisposes it to be an effective

solution in aviation and other critical safety-related
scenarios.
Table 1. Accuracy comparison with State-of-the-Art models
Model Accuracy (%)
Linear Regression (LR) 72.84
Support Vector Regression
PP SVR) 9 78.12
Random Forest (RF) 81.55
Gradient Boosting (GBM) 83.44
XGBoost 85.77
LSTM 89.1
CNN-LSTM 91.63
BiLSTM-Attention 93.38
XGBoost-BiLSTM 94.76
FusionRUL-Net (Proposed) 97.23

During the accuracy analysis, there was a steady
improvement in the predictive performance as more
elaborate architectures were used, with Table 1 and Figure
3 showing the results. The accuracy of Linear Regression
(72.84%) and Support Vector Regression (78.12%) is poor
since they do not identify complex relationships in the data.
The combination of many weak learners used in Random
Forest (81.55) and Gradient Boosting (83.44) proves better
accuracy. By using XGBoost, the prediction system
achieved 85.77% accuracy. Deep learning models are more
effective than the usual methods and ensembling methods,
which are overtaken by LSTM at 89.1% and CNN-LSTM
reaches 91.63% because they can manage sequential
patterns of data. The BiLSTM-Attention model achieves a
93.38% accuracy level through the use of attention
mechanisms in order to recognize significant time steps.
XGBoost + BiLSTM achieved 94.76 percent performance
due to the combination of feature selection and time learning
in the system. Being the best in terms of accuracy,
FusionRUL-Net provides the best result of 97.23%, which
proves that it takes first place. The large improvement in
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performance means that FusionRUL-Net can effectively
combine various methods to maximize the feature detection
and prediction accuracy. Hybrid systems that incorporate
both machine learning and deep learning tasks exhibit a
higher accuracy scale in predictive modelling systems based

on the results obtained. The gradual transition to hybrid
models illustrates the reason why advanced architectures are
important to achieve the present-day optimal performance
in task domain complexities.
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Fig. 3 Accuracy comparison of models
XGBoost- FusionRUL-Net
BlLSTM-BILSTM’ 11.38 (Proposed)’ 9.81

Attention, 13.89

CNN-LSTM,
16.11

LSTM, 18.58

XGBoost, 22.03

Gradient Boosting
(GBM), 24.66

Linear Regression
(LR), 38.42

Support Vector
Regression
(SVR), 31.75

Random Forest
(RF), 27.89

Fig. 4 RMSE comparison of models

Table 2. Root Mean Squared Error (RMSE) Comparison

Model RMSE

Linear Regression (LR) 38.42
Support Vector Regression

(SVR) 31.75
Random Forest (RF) 27.89
Gradient Boosting (GBM) 24.66
XGBoost 22.03
LSTM 18.58
CNN-LSTM 16.11
BiLSTM-Attention 13.89
XGBoost-BiLSTM 11.38
FusionRUL-Net (Proposed) 9.81
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Table 2 and Figure 4 present the Root Mean Squared
Error (RMSE) values that determine how the various
models are doing in minimizing their prediction errors.
Linear Regression (38.42) and Support Vector Regression
(31.75) yield high values of RMSE, and this indicates their
inability to provide the complex predictive relationships.

Root Mean Squared Error is significantly reduced by
the use of numerous decision trees in Ensemble-based
models like Random Forest (27.89), Gradient Boosting
(24.66), and XGBoost (22.03). The deep learning model
works much better with LSTM (18.58) and CNN-LSTM
(16.11), resulting in increased temporal feature extraction
abilities. The addition of BILSTM-Attention (13.89)
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reduces the RMSE since this model is a combination of a
bidirectional sequence learning model and attention models
to emphasize significant time points by combining XGBoost
with BiLSTM to the final model, achieving an RMSE of
11.38 due to its ability to utilize helpful features and identify
patterns of temporal sequences.

The FusionRUL-Net proposed has a better performance
due to a low RMSE of 9.81, which is the smallest in all the
models tried. Several models present an overall reduction in
RMSE, with evidence indicating that hybrid approaches that
utilize machine learning and deep learning strategies offer
an excellent result. The sophisticated architectural designs
are very crucial in providing high predictive accuracy in
complex forecasting problems.

Table 3. Mean Absolute Error (MAE) comparison

Model MAE
Linear Regression (LR) 29.65
Support Vector
Regression (SVR) 24.53
Random Forest (RF) 20.81
Gradient Boosting (GBM) 18.44
XGBoost 16.02
LSTM 13.39
CNN-LSTM 11.25
BiLSTM-Attention 9.41
XGBoost-BiLSTM 7.95
FusionRUL-Net
(Proposed) 6.77
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Fig. 5 MAE comparison of models

Table 3 displays the performance data on different
forecasting models, along with Figure 5, which depicts the
results of Mean Absolute Error. The low performance of
Linear Regression (29.65) and Support Vector Regression
(24.53) models is a result of inadequate capacity when
dealing with complex data patterns.

Several forecast models are more accurate with
combinations of decision trees, as XGBoost (16.02)
improves over Gradient Boosting (18.44), which, in its turn,
is better than Random Forest (20.81). Deep learning models
reduce MAE values to 13.39 with LSTM models down to
11.25 with CNN-LSTM maodels, and finally to as little as
9.41 with BiLSTM-Attention models.

XGBoost-BiLSTM hybrid has a result of 7.95.
FusionRUL-Net achieves its optimal level of predictive
performance by getting an MAE of 6.77. The use of hybrid
deep learning systems can offer significant gains to the
precision of the remaining useful life predictions.
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Table 4. R? score (coefficient of determination) comparison

Model R2 Score
Linear Regression (LR) 0.53
Support Vector Regression (SVR) 0.61
Random Forest (RF) 0.68
Gradient Boosting (GBM) 0.72
XGBoost 0.76
LSTM 0.82
CNN-LSTM 0.87
BiLSTM-Attention 0.9
XGBoost-BiLSTM 0.94
FusionRUL-Net (Proposed) 0.96

Assessing the Model data variance explanation depends
on the R? Score (Coefficient of Determination) as indicated
in Table 4 and Figure 6. Linear Regression (0.53) and
Support Vector Regression (0.61) have a low capability of
identifying complex relationships between variables. The
precision of ensemble models is higher in Random Forest
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with 0.68, XGBoost with 0.76, and Gradient Boosting with
0.72 since they combine several decision trees to discover
superior features. Before BILSTM-Attention applies
bidirectional processing and attention to achieve 0.90,
LSTM attains 0.82, and CNN-LSTM achieves 0.87. The

XGBoost-BiLSTM hybrid has the best score of 0.94.
FusionRUL-Net performs best in the area of prediction
performance since it takes first place with a dominant R 2
value of 0.96.
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Fig. 6 R? Score comparison of models

Table 5. Prognostic Horizon (PH@10) comparison

Prognostic Horizon (PH@10) metrics have been
introduced in Table 5 and Figure 7 in order to identify the

earliest models that can detect failures with 10% accuracy.

Model PH@10 (Cycles) The detection capacity indicates a higher potential for early

Linear Regression (LR) 15 warning with an increase in PH at 10. Linear Regression and
Support Vector Regression 18 SVR produce PH at 10 cycles and 18 cycles, thereby
(SVR) proving poor prognostics. Predictive maintenance systems

Random Forest (RF) 21 have better performance with Ensemble models, Random
Gradient Boosting (GBM) 23 Forest (21), Gradient Boosting (23), and XGBoost (26).
XGBoost 26 There is an enhancement in the early prediction capability

LSTM 31 of LSTM (31) and CNN-LSTM (34), and BiLSTM-
CNN-LSTM 34 Attention (37) deep learning models due to their sequence-
BiLSTM-Attention 37 based and spatial analysis capabilities. XGBoost-BiLSTM
XGBoost-BiLSTM 40 takes 40 cycles. FusionRUL-Net has the most promising
FusionRUL-Net (Proposed) 45 performance with 45 cycles before determining the

remaining useful life periods in predictive maintenance
systems.

Linear Regression (LR)

Support Vector Regression (SVR)
Random Forest (RF)

Gradient Boosting (GBM)
XGBoost

LSTM

CNN-LSTM

BiLSTM-Attention
XGBoost-BiLSTM
FusionRUL-Net (Proposed)

Models

10 20 30 40
PH@10 (Cycles)

50

Fig. 7 Prognostic horizon comparison
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Table 6. Performance under different window sizes (sliding window length)

W'Sr;g:W LSTM BiLSTM Transformer )I(B?LBSQI(')IT;- FusionRUL-Net
20 87.19 89.03 92.11 93.74 95.26
30 88.95 91.22 94.13 94.35 96.41
40 89.6 92.18 94.85 94.76 96.87
50 89.91 92.96 95.02 94.76 97.23
attention mechanism that involves learning
02.11 | 9374 I.% interdependencies between long sequences. The XGBoost-
BiLSTM hybrid system achieves the highest accuracy of
- 94.76 percent for analysis of window sizes 40 and 50 in the
g 04.13 0435 combination of feature selection and sequential learning.
» The proposed FusionRUL-Net achieves the highest
§ -92 accuracy across the window size range, beginning with the
§ < 8060 0215 O TNCATE highest accuracy of 95.26 at 20, reaching 97.23 at 50
- because of the high-quality deep learning and feature
extraction. The study findings demonstrate that increasing
<) the window size enhances prediction accuracy, and
= 9296 e I~88 FusionRUL-Net is better than the traditional deep learning
e = Y < = architectures in predictive maintenance tasks of Remaining
7 7 E 7 < Useful Life (RUL).
= =2 2 = 5
A 8 C; ‘f—s- Table 7. Model complexity and inference time comparison
= 3 ‘g Parameters Inference Time
S - Model (Millions) (ms/sample)
Models < -
Fig. 8 Performance under different window sizes Llnea_r 0.01 0.12
Regression
Table 6 and Figure 8 illustrate the predictive accuracy Support Vector 0.04 0.3
performance of the alternative models using different Regression ' '
sliding window sizes in order to indicate the effect of the Random Forest 0.25 0.58
input sequence length on model effectiveness. More Gradient 0.41 0.71
complex patterns are then identified by the system through Boosting ' '
bigger sliding window settings, which results in better XGBoost 0.45 0.63
model performance. The dependency capabilities of LSTM LSTM 1.9 1.12
in the long-term result in the high accuracy measures CNN-LSTM 2.6 1.35
starting at 87.19 and 89.91, respectively, with the window BiLSTM- 31 158
size of 20 and 50, respectively. BiLSTM performs better Attention ) )
than LSTM because it has an accuracy of 92.96 percent at a XGBoost-
50-word window size. Transformer achieves its highest BiLSTM 28 142
accuracy of 95.02% because this neural network has a self- FusionRUL-Net 3.4 1.63

= Model Complexity (M)

u Inference Time (ms/sample)

Value

Models

Fig. 9 Model complexity & inference time comparison
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Table 7 and Figure 9 are the results of the evaluation,
indicating that the model complexity is characterized by the
comparison between the number of parameters in millions
and the time of inference in milliseconds per sample.

The inference times of 0.12ms of Linear Regression and
0.3ms of Support Vector Regression are a consequence of
the fact that the number of parameters in these models is low
at 0.01M and 0.04M, respectively. Random Forest (0.25M,
0.58ms), Gradient Boosting (0.41M, 0.71ms), and XGBoost
(0.45M, 0.63ms) show higher accuracy rates, increasing the
level of complexity with relatively acceptable
computational time. LSTM has a significant number of
parameters of 1.9M and takes 1.12ms to complete the
inference, and has been effective in capturing temporal
dependencies. The CNN-LSTM (2.6M, 1.35ms) deep
learning model incorporates spatial feature extraction into
its architecture so as to benefit from better feature learning
at the expense of higher complexity. The BIiLSTM-
Attention (3.1M parameters) model takes two directional
input streams and works with attention-based mechanics,
but needs additional time to process inference at 1.58ms.

The XGBoost-BiLSTM model implementation with
parameters of 2.8M and an execution time of 1.42ms
combines the gradient boosted algorithm technologies with
deep learning techniques to provide an enabling complexity
and performance trade-off. The proposed FusionRUL-Net
model has a maximum complexity of 3.4M parameters and
a throughput of 1.63 milliseconds; therefore, it is capable of
more advanced feature extraction. It is because the
predictive power of FusionRUL-Net can be sufficiently
predictive to be used in predictive maintenance tasks, even
with longer inference times, which are associated with
higher model complexity.

4.1. Discussion

The results achieved in the experiment define the
quality and dependability of FusionRUL-Net as an
algorithm to predict aircraft engine Remaining Useful Life
(RUL) when using the CMAPSS dataset. The suggested
FusionRUL-Net achieved higher results in comparison to
nine conventional and sophisticated machine learning and
deep learning benchmark models, such as XGBoost,
Random Forest, LSTM, BiLSTM-Attention, and XGBoost-
BiLSTM, when applied to all evaluation metrics.

FusionRUL-Net shows excellent performance with the
highest overall accuracy score (97.23), along with the
lowest RMSE value of 9.81 and the highest R2 score (0.96),
confirming the reliability of the model in predicting engine
lifetime degradation. FusionRUL-Net has a dual-path
design that enables the network to detect short-term signal
issues with multi-scale CNN layers and longer-range time
dependencies with its Transformer encoder. The hybrid
architecture effectively manages the weaknesses of models
constructed over recurrent layers, as they suffer from fading
of gradients during training and in convolutional layers
because they are unable to capture long-range dependencies.
The model predicts better and operates in a contextual
manner through the Gated Fusion Mechanism, an adaptive
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mechanism that helps it select critical features. The
forecasting results of various window sizes prove the
reliability of the model in the case of temporal variations.
The study indicates that FusionRUL-Net maintains high
predictive stability over shorter periods of time since it
effectively learns degradation patterns based on short-term
historical data that can be used in real time.

The Prognostic Horizon (PH@10) metric showed that
FusionRUL-Net had superior failure predictions that
exceeded XGBoost-BiLSTM and BiLSTM-Attention by
far. This system offers important benefits to safety-related
systems since predicting faults early allows preventive
measures to be taken to prevent costly downtime impacts or
safety risks. FusionRUL-Net shows that it has a decent
sample inference time (1.63 m), making it adaptable to run
in real-time on average computing systems. The model
retains a strong representational strength due to its
lightweight framework, despite its number of parameters
being higher than classical models, making it
implementable on edges. This accuracy with interpretability
and deployability is generally not found in existing RUL
prediction models.

5. Conclusion and Future Work

This study introduces FusionRUL-Net, a new hybrid
deep learning architecture that is built to provide highly
accurate and interpretable Remaining Useful Life (RUL)
predictions in multi-faceted industrial environments. The
model, which combines multi-scale 1D-CNNs with
Transformer encoder blocks, allows it to extract both local
and global temporal features of a multivariate time-series
data. A Gated Fusion mechanism allows integration of
features dynamically, making sure that the model is able to
learn short-term sensor variation, as well as long-term
degradation trends. This dual-path design overcomes some
of the drawbacks of the existing models, which are based
either on sequential recurrence (LSTM) or on tree-based
regression (XGBoost). This model has been stringently
tested on the CMAPSS dataset, and it has been compared
with nine state-of-the-art models, one of which is the
popular XGBoost-BiLSTM hybrid, with an accuracy of
94.76%. FusionRUL-Net, in contrast, had a much better
accuracy (97.23), RMSE (9.81), and R 2 (0.96) capacities.

These findings affirm the high ability of this model to
reproduce complex sensor interactions and degradation
behaviours. FusionRUL-Net is a promising direction for
future work. To begin with, real-time applications of the
architecture can be experimented with using lightweight
versions of the architecture on embedded or edge computing
devices. Second, the fusion design can be expanded to
include external contextual information, e.g., flight profiles
or environmental conditions. Finally, interpretability
modules, e.g., SHAP or attention heatmaps, may also be
incorporated to offer practical recommendations to a
human-in-the-loop maintenance decision system. All in all,
FusionRUL-Net provides a solid basis for the next
generation of intelligent and data-aware prognostics
systems in high-stakes industrial settings.
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