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Abstract - In specific, accurate, and precise prediction of the State-of-Health (SOH) of the Electric Vehicle (EV) battery system
will be crucial to ensure battery safety, longevity, and optimal management of energy. Existing SoH estimation models, which
include Machine Learning (ML) and Deep Learning (DL) schemes, most often struggle in capturing the most complex temporal
and spatial dependencies in the degradation of the battery. In this paper, a novel Graph-Transformer Contrastive Learning (GT-
SoH) framework, which incorporates Graph Neural Networks (GNNs) termed Transformer-based temporal modeling,
Contrastive self-learning, and Starfish Optimization Algorithm (SFOA) for hyperparameter tuning, is proposed and is denoted
as the (GT-SOH-SFOA) framework. A GNN model is responsible for capturing spatial interdependencies among battery cells,
whereas a Transformer encoder models GNN patterns. A contrastive learning function is used for enhancing the generalizability
of learning a robust representation of features from unlabeled battery datasets. In addition, SFOA is employed to tune the
hyperparameters, thus ensuring optimal performance for balancing exploitation and exploration in the process of optimization.
The hybrid loss function, which integrates Mean Absolute Error (MAE) loss and contrastive loss, ensures precise SOH
estimation, thus reducing overfitting. An experimental evaluation is carried out for various metrics like Mean Absolute Error
(MAE), R?, RMSE, and Max Error on four datasets, like Musoshi, NASA, Stanford, and the BMW i3 battery dataset, and outcomes
attained demonstrate that the GT-SOH-SFOA proposed model outperforms existing models compared, thereby offering high
prediction accuracy and robustness. Therefore, it is concluded that the proposed scheme offers a scalable, interpretable, and

optimized solution for real — time battery health monitoring in EVs.

Keywords - State-of-Health (SOH), Electric Vehicle (EV), Battery health prediction, Graph-Transformer Contrastive Learning,
Starfish optimization algorithm, Graph Neural Networks.

1. Introduction

Batteries are usually critical for a varied range of
applications, which include portable electronic devices and
EVs. The optimization and monitoring of battery performance
are essential for the efficiency and safety of those applications
[1]. Battery Management System (BMS) has become a major
point of academic research and industry [2-4]. Predictions of
battery health and SoC are highly needed in real-time
applications, which impact the optimization range of EV,
extension of battery lifespan, and management of energy.
Moreover, the traditional BMS systems have some limitations

OSOE)

because of the complex chemical processes and the aging of
the battery. A dynamic chemical variation and aging of the
battery component could introduce some errors in the process
of charge prediction. In addition, the absence of perfect
sensors makes precise measurement of all variables, which in
turn reveals the measurement methods directly [5-7]. Those
limitations result from the measurement issue caused by
external factors like the noise sensor, which could cause a
misleading outcome. To deal with these limitations,
researchers are exploring several kinds of models for
increasing the health of the battery and the accuracy of the
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prediction of SoC. SoH is regarded as a metric that enumerates
the level of battery degradation in relation to a new battery.
This information is needed for the management of energy
systems in vehicles so as to fine-tune their control and thereby
maintain the performance of vehicles and safety within the
constrained limits. Several models could be employed to
assess and measure the SOH of batteries in EVs. Much
research at present focuses primarily on identifying the
decrease in capacity (SOHr) [8]. Typically, deterioration of
Lithium-lon Batteries (LIBs) will be unavoidable during
storage or cycling. The SOH data of the battery is needed for
EVs® energy management system so as to confirm
exceptionally efficient & secured functional state [9-11]. The
examination and analysis mechanism causes batteries to
deteriorate over time, thus resulting in effects that are vital for
measuring the health of batteries accurately and making
dependable performance forecasting. The primary intention is
thus to make the battery system a highly reliable and effective
one while extending the life span of the battery. Thus, data-
driven modeling solutions become valuable, particularly
Acrtificial Intelligence (Al) and Machine Learning (ML)
models, which could learn from data and thereby generalize
the unobservable factors.

Dataset Collection Feature Selection

ﬁ
Performance Analysis

ﬁ.f"o@‘;

Fig. 1 Typical flow of SOH prediction

Data Pre-processing

~24

Classification

In contrast to the existing schemes, ML schemes
recognize high-dimensional data patterns, independent of
fundamental physical processes. It, in turn, makes the study
unaffected by factors like hard-to-study, thereby making ML
less favorable for the estimation of battery state [12]. A Graph-
transformer contrastive learning model’s ability for modeling
the time-series dependencies effectually than existing models,
which aims at achieving highly accurate predictions of SOH.
A self-attention model designed to adopt the instantaneous
alteration enables the transformer to handle real-time and
sudden alterations in the dynamics of the battery. This feature
could enhance the accuracy of SOC prediction under
charging/discharging conditions. The transformer model’s
ability to capture non-linear patterns and temporal
dependencies in the cycles of battery charge/discharge
conditions. A transformer model thus offers an innovative
solution for the challenges where the traditional models fall
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short, like sensor noise, aging effect, and dynamic chemical
processes. Their superior accuracy in the prediction of SOH
signifies the significant innovation aiming at optimizing the
range of EV, battery life, and charging efficiency. The
utilization of a dependent model in the estimation of SOH,
along with an optimization strategy, potentially sets a new
standard in monitoring the health of the battery.

1.1. Problem Identification / Motivation

This model addresses the existing issue of SOH
prediction with the growth in EV adoption. Though several
ML and DL models exist, there are some issues like low
prediction and poor performance, and there is a need to
enhance feature weighting and the accurate and robust
creation of SOH estimation [13]. Addressing these gaps might
contribute to the development of SOH estimation models, thus
ultimately supporting effective and reliable BMSs for a varied
range of applications, including EV. By incorporating real-
time data, this model offers a substantial contribution to
comparing research limited to smaller or simultaneous
datasets. This work highlights the benefits of several
scenarios.

1.2. Contribution

The major contributions of this work on SOH prediction
using an optimization-based deep learning model are listed as
follows:

To implement and design a new Graph-Transformer
Contrastive Learning (GT-SoH) framework which
integrates Graph Neural Networks (GNNs), Transformer-
based temporal modeling, contrastive self-supervised
learning, and Starfish Optimization Algorithm (SFOA)
for improving the accuracy of SOH prediction.

To preprocess input data using min-max normalization to
ensure that all features will be scaled between 0 and 1,
thus enabling the training model to work effectively.

For estimating the capability of the proposed Graph-
Transformer Contrastive Learning based temporal model
for capturing temporal patterns and dependencies in
the performance of battery data, thus enhancing the
prediction accuracy of SOH.

To improve the process of feature selection with the use
of the SFOA optimization model by selecting more
relevant features to be used in the prediction model of
SOH.

To assess the suggested GT-SoH-SFOA scheme with the
use of key performance metrics and to validate the
suggested model efficiency over other existing models by
making a comparison between the outcomes.

1.3. Organization

This research work includes a brief review of several
prediction models in Section Il. Section Il narrates the
proposed methodology, which includes input data collection,

feature extraction, hyper-tuning of parameters, and the
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classification approach employed. An experimental
evaluation is carried out in Section IV. The overall summary
is carried in Section V with future scope of directions.

2. Related Works

A comprehensive review of various traditional models
related to the detection and prediction of SOH in EV batteries
is presented here. A new hybrid scheme was suggested in [14],
which combines a multi-head dilated temporal architecture of
CNN with GRU for anticipating the levels of SOC. This model
thus facilitates the simultaneous pattern learning over varied
scales, thus allowing this technique to adopt new patterns
more quickly. Moreover, the integration of explainable
artificial intelligence models termed Shapley Additive
exPlanations (SHAP) aims at achieving global interpretability
for the prediction of SOC, thus offering precise quantification
in the individual attribute influence. A comprehensive
experiment was evaluated over varied temperature ranges and
thus driving cycles to demonstrate the proposed scheme’s
effectiveness.

The Fractional-Order Method (FOM) assisted the online
SOC and SOP estimation model for LIBs in EV, which was
introduced in the work [15]. In order to identify two resistor
consistent element phase networks that accurately describe the
internal dynamics of a battery over a range of timeframes, the
model parameters of the second-order FOM were first
adjusted globally under a dynamic test stress profile. Partial
Adaptive FOM (PA-FOM) was then developed to improve the
model’s SOC and SOP estimation performance. While an
unscented Kalman filter-assisted iterative model was
developed for predicting SOP, online SOC estimation was
done using an adaptive extended Kalman filter model based
on PA-FOM.

The online SOC and SOP co-estimation of LIBs in EVs
was proposed in [16] using a Model Fusion Approach (MFM).
The battery Open-Circuit Voltage (OCV)-SOC curve was first
constructed using the Particle Swarm Optimization-Genetic
Algorithm (PSO-GA) methodology in conjunction with two
FOM RCCPE. This method depends solely on the dynamic
load profile and does not require any prior information about
the initial SOC. After identifying the parameter models, the
Dual Extended Kalman Filter (DEKF) model based on the 1-
RC scheme was used to estimate the battery’s State Of Charge
(SOC) using the extracted OCV-SOC curve. Additionally, two
elements of battery polarization dynamics—current excitation
and self-recovery—will be examined in the SOP window
prediction.

In [17], a new machine learning model was proposed for
reliable and accurate SOC prediction in EV batteries using the
Differential Search Optimized (DSA) Random Forest
Regression technique (RFR). Furthermore, a crucial problem
that needs to be investigated is the exact choice of RFR
architecture and hyperparameter integration. As a result, DSA
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was used to find the best values for trees and leaves using the
RFR technique. This DSA-optimized RFR strategy does not
require a filter during the data preprocessing step and just
requires sensors to monitor the battery’s voltage and current,
negating the requirement for in-depth knowledge of battery
chemistry. According to an experimental result, the DSA-
optimized RFR model achieves an RMSE value of 0.382% in
the HPPC test using a LINMC battery.

An online endwise state monitoring model was used in
[18], depending on a multi-task transfer learning mechanism.
This strategy was designed to enhance accuracy under
different application scenarios. An experiment was conducted
under varied working profiles, aging conditions, and
temperatures to evaluate the model that covers a wide range of
EV use. Comparing several benchmarks illustrates the
superiority of the proposed scheme with enhanced
computational efficiency and accuracy. Outcome reveals that
MAE & RMSE of SOC and SOE estimation are lower than 2.31
& 3.31% respectively. A DL aided SOC prediction scheme
was employed to ensure the representation of a reliable vector
and sufficient extraction of features. So as to enhance the
representation of battery data, an RNN-aided model was
proposed. After that, aiming at fully extracted feature
information, a multi-channel extended CNN model was
presented to predict LIBs® SOC precisely. Depending on
reliable vector representation and feature extraction, the
suggested model offers enhanced performance of SOC
prediction. The valuation shows that the suggested model was
verified by a simulation test, which shows that the suggested
scheme offers enhanced prediction performance with RNNs.

In [19], the Stochastic Model Predictive Control (SMPC)
was proposed. For the energy management system strategy, a
multiple linear regression of the engine and battery was
initially created. Following that, a Markov chain-based
velocity prediction model was created, considering the driving
styles. Reference SOC will then be optimized through
Dynamic Programming (DP), utilizing upcoming data.
Finally, SMPC-assisted EMS and short-term optimum SOC
will be formed. The results indicate that when radial basis
function neural networks and backpropagation neural
networks are compared, the Markov dependent model
performs better in the prediction process.

An innovative solution was presented and compared a
transformer model along with LSTM, Bi-directional LSTM,
scheme, and Support Vector Regression (SVR). This model
intends to offer new perspectives on the SOC of battery
predictions using the BMW, NASA, Stanford University
battery dataset, and real-time battery data attained from the L5
EV of the Musoshi brand, gathered for this model. The
primary objective of this research was to employ a transformer
model for real-time battery data, thus estimating them as an
important stage in optimization and battery management of
EV. A transformer model in this work attains an enhanced
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outcome with an RMSE value closer to 1(~0.99). The work
presented in enhances the precision forecast and resilience
regarding the remaining life of the battery. This model uses
support vector networks and quantile regression to estimate
the battery’s health. Additionally, it integrates temporal
convolutional networks and self-coding neural networks for
processing and battery life data extraction, and lastly, it
introduces a new prediction scheme. It was evident that the
proposed scheme attains some benefits in estimating the
lifespan of LIBs for EV. In addition, the findings of the model
offer precise, quick, and flexible references to estimate the
remaining life and condition of batteries.

An improved Multi-strategy improved Dung Dung Beetle
Optimization model (MIDBO) was suggested in accurately
predicting the SOC of electric load battery for optimizing the
SOC prediction model of Extreme Learning Machine (ELM).
Initially, PCA was employed to screen input features, thus
reducing dimensionality. A dynamic spiral searching model
was used in the breeding phase of the dung beetle approach,
and the Levy flight model was incorporated at the foraging
stage to escape the local optimum. Finally, adaptive t-
distribution alteration and a dynamic selection strategy were
employed to update the dung beetle position, thus improving
convergence speed. This model enables the precise prediction
of the electric loader’s SOC battery. The experimental
outcome shows a lower error rate for the proposed model.

The work suggested in presented a new hybrid neural
network that integrates the GRU and LSTM schemes for SOH
estimation. This model proves effective enhancement in the
accuracy estimation of SOH and SOC with minimal training
data needed. The primary contributions include the hybrid
GRU-LSTM scheme, which enhances SOH/SOC accuracy,
self-optimization capabilities, effective temperature variation
handling without OCV-SOC lookup tables, and their
application to various lithium battery types. An investigational
outcome reveals that the proposed scheme offers RMSE 2%
and MAE 1.7% for SOC, and RMSE 0.65% and MAE 0.85%
for SOH.

2.1. Research Gap

A huge range of models, which includes DL models such
as ConvLSTM, GAN, CNN, and hybrid schemes that combine
various neural network models, was reviewed. From the
survey, it was obvious that there is a need to enhance feature
weighting and to enhance the accurate and robust creation of
SOH estimation. Filling up these gaps could help create SOH
estimation models, which would ultimately provide
dependable and efficient BMSs for a variety of applications,
including EV.

3. Proposed Work

The proposed working methodology based on DL aided
SOH prediction is described in this section. Figure 2 depicts
the entire flow of the proposed framework. Typically, the
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SOH prediction model’s workflow comprises subsequent
stages like acquisition of data, selection of equivalent or
relevant features, and estimation of SOH prediction. Real-time
data collection from the particular dataset is the first step. The
collected data will next go through a preprocessing step that
includes data normalization and cleaning to get rid of any
undesired noise issues. Following preprocessing, the data
moves on to feature selection and classification phases.
Complex, non-linear connections and patterns in time-series
data, which are features of battery performance measures, can
be handled by the DL scheme.

Input Battery Dataset collection

Data Pre-processing Using Min-
Max Normalization

Splitting of Dataset (Training &
Testing)

Hyper parameter tuning Using
SFOA

Classification/Prediction Using
Graph Transformer Contrastive
Learning

SOH prediction performance
metrics

If predicted results are
ok?

Fig. 2 Overall working flow of the proposed model
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In contrast to conventional machine learning techniques,
GNN, in particular, is more adept at identifying temporal
correlations and intricately interacting with features, which
results in a more accurate prediction of SOH. This capability
is essential for creating reliable BMSs that can function well
in a variety of scenarios with various battery types.

3.1. Input Battery Data Collection

The input battery dataset is gathered from Musoshi
Company. Also, standard datasets are often employed in
literature, like NASA [20], Stanford [21], and BMW i3 [22].

3.2. Preprocessing of Input Data

Preprocessing input data is a fundamental step before
using any kind of data analysis or modeling technique. To
guarantee the efficacy and caliber of analysis, this also entails
transforming raw data into a clear and useful format. The data
preprocessing steps used for LIB time series data used for
SOH forecasting are data normalization and data purification.
After cleaning, the raw data that depends on time series will
be transformed into SOH-dependent data. It includes
meticulously  evaluating and correcting errors or
inconsistencies that are present in raw data to enhance quality.
Effective experimental data management is required to
increase accuracy and DL scheme performance.

In order to provide battery data that displays periodic
characteristics degradation, the data will first be cleaned by
removing outliers and missing data, which are evaluated using
intermediate data or moving averages. A dataset that relies on
SOH lacks a comparable scale. One method commonly
employed in the in-depth modeling approach to improve the
convergence of the model and prediction accuracy is data
normalization. A normalization approach is carried out using
the min-max approach, which includes data scaling of the
range 0 to 1. Hence, dataset normalization depending on SOH
with the use of min-max normalization will be expressed using
the subsequent equation:

X—Xmin

@)

Xn =
Xmax~Xmin

In this, x,,;, denotes the minimum real data value, x,
symbolizes processed data, x represents original data, and the
maximum value is signified by x,,,,. Moreover, this model
facilitates simple and quick normalization of data, all the while
staying within the desired range.

3.3. Hyperparameter Tuning by SFOA

The hyperparameters of the graph transformer contrastive
learning framework are tuned by means of the SFOA approach
[23, 24]. The Starfish Optimization Algorithm (SFOA) is a
stochastic search optimization technique that may be inspired
by the exploration, prey, and regeneration actions of starfish.
Like previous metaheuristic approaches, SFOA has two
stages: the exploration stage mimics the starfish’s exploring
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activities, while the exploitation step is built using models of
prey and regeneration.

In the SFOA exploration stage, a hybrid search way based
on the five arms of a starfish-among which are the eyes-is
created by mixing five-dimensional and unidimensional
search designs in order to construct the mathematical models.

The suggested search pattern is determined by the
optimization problem’s dimension D. When D>5, it employs
a five-dimensional search pattern; when D<5, it employs a
unidimensional search pattern. This enables it to overcome the
limitations of the low efficiency of the vector search pattern
and the sluggish convergence of the unidimensional search
pattern.

The hunting and generation tactics produce SFOA during
the exploitation stage. The primary updating technique during
SFOA’s exploitation phase is the preying method. It
encourages the candidates to go toward better sites by using a
concurrent two-directional search technique based on the
information of two starfish.

Specifically, only the last starfish in the population (i=N)
undergoes the regeneration stage, which is essential for the
global convergence capability during the solving task. Lastly,
during the exploration and exploitation stages, SFOA offers
the same optimization opportunity. The details of the SFOA
mathematical models are as follows:

3.3.1. Initialization Stage

During the SFOA initialization phase, starfish positions
will be randomly generated across the design variable
boundaries, which could be represented as a matrix, as
illustrated:

X11 X1z Xip
X = X'21 ).(22 ){21) )
Xnv1 Xn2 Xnplysp

Here, X denotes a matrix for solving starfish positions
having size N x D, N denotes the size of the population, and
D signifies the dimension of design variables. At the phase of
initialization, every starfish position in the above equation will
be computed by:

D

Xy =lL+r(wy—1), 5

i=12,.,N,j=12..

Here, X;; signifies the dimension of the jth location at the
ith starfish, r signifies a random number between (0,1) and
u; and ; signifies upper & lower limits of design variables at
jth dimension, correspondingly. Once the position of the
initialized matrix is generated, the fitness value of the entire
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starfish is attained by evaluating the objective function, which
could be memorized in the form of a vector as follows:

F(X1)

F(X;)

F= (4)

F(XN) NX1

In this, F denotes a matrix for storing and thus updating
attained fitness value, having size Nx1. Following
initialization, SFOA moves into the main function and starts
the stage of exploration and exploitation.

3.3.2. Exploration Stage

This method simulates the seeking capabilities of five
arms of starfish with eyes embedded at the arm’s end, as given
in the image below, by establishing an exploration stage to
replicate the exploratory behavior of starfish. New search
patterns that combine a five-dimensional search pattern for
D>5 with a unidirectional search pattern for D<5 at various
optimization challenges are being explored. The five arms (or
eyes) of a starfish will determine the threshold of the
dimension.

The search space problem will be large if the optimization
task is more than 5 (D>5), requiring starfish to go over all five
limbs in order to investigate their surroundings. Additionally,
in order to guide their movement, starfish arms require the
search agents’ best position knowledge. Hence, the
mathematical modeling of this stage is expressed as shown:

r<0.5

r>0.5

{YiTp =X, +a (X,fest,p — X1 )cos®, ©)

T _ yT T T Vet
Yip =Xip— a4 (Xbest.p - Xi.p)smg'

In this, Y, & X[, signifies the attained and present
position of the starfish, correspondingly. xgm_p signifies the
p dimension of the present best position, p denotes
five randomly chosen dimensions between dimensions D,
r € (0,1). a; & 6 will be computed by:

a; =Q2r—Dm (6)
6 = g.n:ax )

Here, T is the present iteration, and T, signifies
maximum iteration. Cosine & sine term indicates that starfish
arms might twist left or right for approaching foods have a
similar probability. At the exploration stage, a, will be
generated randomly to update positions at every candidate &
iteration, and as the number of iterations increases, 0 will
change. At 0€[0,n/2], two parameters may be used to assess
the impact of the distance between the best location and the
current location at a chosen renewing dimension. Equation (5)
will use five-dimensional search patterns to update just five
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dimensions of locations in order to ensure search ability and
enhance search accuracy in the event that D>5 at the
optimization problem by comparing vectorial search patterns.
After the position is changed outside of the design variable
boundary, arms tend to stay in their old positions instead of

shifting to the new ones. The aforementioned is
mathematically expressed by:
T T
X7+ — Yio lop <Yip S Upp ®)
P X', Otherwise

Here, p signifies the dimension updated, I,,,, and w,,,
signifies design variables’ bounds, correspondingly. The
exploration step uses unidimensional search patterns to update
the location when the optimization task dimension is less than
5 (D<5). In this situation, a starfish uses position information
from other starfish to move one arm in search of a food source.
A revised position is assessed by:

Yi.Tp = EtXiTp + Al(Xlzl.p - Xgp) + AZ(XIZZ,p - XZP ©)

In this, Xy, ,, and Xy, ,, will be a p-dimensional position
from two starfish selected randomly, correspondingly, A, and
A, denotes two random numbers among (-1, 1), p denotes a
chosen number arbitrarily in D dimensions. E; denotes starfish
energy and is computed by:

E, = Tmax—T

cosf (10)

Tmax

Here, 6 is computed from Equation (7). Similar to the
current updating rule, starfish tend to remain in their former
position rather than moving to the updated one if their reached
position is outside of the border.

3.3.3. Exploitation Stage

Two update strategies will be devised at this stage in order
to seek global solutions, taking into account preying and
regeneration behaviors at the exploitation stage. SFOA
employs a simultaneous two-directional searching technique
for modeling the starfish prey stage, which requires the usage
of information from other starfish and the current population’s
optimal position. Using a parallel two-directional search
approach, five distances are first calculated between the
optimal position and other starfish, and then two distances are
randomly selected as acknowledgement for updating each
starfish’s position. A distance could be computed by:

= (Koo = X5), m=1,..5 (11)

In this, d,,, are attained distances among global and other
starfish, whereas m,, will be the five randomly chosen starfish.
Therefore, updating the rule of every starfish’s prey behavior
will be modeled by:



R. Natarajan et al. / IJECE, 12(10), 163-176, 2025

Y[ = X[ +ridpy + rpdp, 12)

In this, r, and r, will be the random number among (0,1),
and d,,; and d,,, will be randomly chosen at d,,,. The figure
below will show a starfish’s feeding activity. The candidate’s
starfish will be traveling in the direction of the best guiding
solution based on the parallel two-directional search method,
while other candidates will have a comparable ability to
mitigate local optima.

Furthermore, starfish are vulnerable to predation by other
predators because of their slow mobility. In order to avoid
being caught, starfish may cut themselves if they are caught
by a predator. Consequently, the position and regeneration
phase will be updated using:

Y[ = exp(=T X N/Tpax)X] (13)

Here, T will be the current iteration, T,,,, denotes the
maximum iterative number, and N denotes population size.
Once the position attained from Equations (12) and (13) is out
of its boundary design variables, the position will be set by:

v, <Y <w,
Xt =410 vr <, (14)
Up vl >,

The regeneration stage will be required to prevent local
solutions and improve global convergence, even if it contains
a very minor number of function estimations (only calculating
once during the exploitation stage of every epoch).

Algorithm 1: Starfish optimization algorithm for
hyperparameter tuning

Step 1: Initialize population
Define the number of starfish agents (N)
randomly initialize N hyperparameter sets within
defined bounds
Estimate each agent using the validation loss of
the model

Step 2: If the termination condition is not met (max
iteration or convergence)

Step 3: Divide the population into two groups

Central starfish (found the best population)

Leg stars (remaining solutions)

Step 4: Updation of central
refinement of best solution)
Apply local fine-tuning with the use of small
perturbations

Ensure solution stays within bounds

starfish (Exploitation-
[ ]

Step 5: Updation of leg stars (exploration-searching for a
new solution)
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Adjust leg position with the use of mathematical
functions (for instance, Levy flight)

Balance among exploration (diversity) and
exploitation (convergence)

Step 6: Regeneration stage (Handling of weak solution)
Identify poorly performing solutions

Replace them with new candidates’ samples near
stronger solutions

Step 7: Estimate fitness (model performance with new
hyperparameters)

Train the model using a new hyperparameter set
Compute validation loss at the fitness score

Step 8: Return the best identified hyperparameter set

Henceforth, from this SFOA approach, hyperparameters
are tuned accordingly, and the best fitness function is attained.

3.4. GNN-based Feature Extraction and Classification /
Prediction using the Graph Transformer Contrastive
Learning Framework

For the prediction purpose, the graph transformer
contrastive learning framework is employed. A graph
transformer contrastive learning framework integrates a GNN
model with the transformer-based DL approach. The detailed
description of this process is given in this section.

3.4.1. GNN Model for Extracting Features

A fusion process of GNN with the transformer model
marks a pivotal growth in deep learning, with GNN
performing better in the analysis of graph data and
transformers advancing the task of sequencing. EXisting
models that dominate the sequencing process but fall under
distributed computing include RNN, GRUs, and LSTM. The
introduction of attention mechanisms, best shown by Google’s
BERT, transformed natural language processing by placing
emphasis on pertinent data segments during processing.

In order to combine their strengths for improved job
performance, the synergy between GNNSs for local structure
and Transformers meant for global dependencies is now being
studied. The input of GNN is battery features (voltage, current,
and temperature) with the following layers: batch_size,
seq_len 3. In GCNConv (layer 1), the following are input and
output (in=3, out = 64), followed by RelLU activation layer
(in=64, out=128), global mean pooling layer, which averages
across entire nodes, and output layer (batch_size, 128), and is
the final embeddings of GNN. Most of the GNNs conform to
message passing among neighbor nodes, which could be
expressed by a subsequent iteration function:

mytt = fo (hy, (R lueN, ) (23)



R. Natarajan et al. / IJECE, 12(10), 163-176, 2025

hitt = at(g' (ki mi™) (24)

In this, f4, o!, g signifies a parametric function, that is,
a neighborhood aggregation function, activation function,
for instance, sigmoid and ReL U, with a combination function
(mean, and summation) in the I-th layer, which passes on the
graph. 2V, signifies node v neighborhood & Al signifies
hidden embedding for v. This passing message in Equation
(10) might repeat L times (I € {1,2, ..., L}) till convergence.
In this work, information might pass over the entire graph. On
considering GCN, for instance, the function of message
passing in GCN will be expressed as follows:

)

Here, W & B! denotes a learnable parameter at the I-th layer.

My pipt

B = o (W' e o (25)

Also, contrastive learning is employed with the utilization
of a contrastive loss function, which aids in enhancing feature
representations that are learned by the model. This, in turn,
ensures that the same samples (battery cycles having the same
SOH) will be placed closer in the feature space learned,
whereas dissimilar ones (battery cycles having varied SOH
values) will be pushed apart. The optimized parameters are
shown in Table 1.

Table 1. Values of optimized parameter

Hvperparameter Lower Upper Best
yperp Bound Bound Value
GCN Layers 2 5 3
Hidden Units per
GCN Layer 32 256 128
Learning Rate for
GNN 0.0001 0.01 0.001
Transformer
Attention Heads 2 8 4
Transformer Dropout 01 05 02
Rate
Contrastlv_e Loss 0.2 15 08
Margin
FC Layer Neurons 64 256 128

The GNN encoded features signify varied battery cycles,
and the model is trying to group battery cycles that are similar
together and thus separates dissimilar ones with the use of
contrastive loss. It is specifically employed for modelling
battery degradation, where cycles with the same health states
must be clustered in the learned representation space. The
contrastive learning computes the pairwise distance among
GNN embeddings and thus applies contrastive loss
(margin=0.5) function followed by a normalization layer and
output shape (batch_size, 128). The contrastive loss function
is defined as shown:
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L = (1 — label).d? + label. (max(0, margin — d))* (26)

At which d is the pairwise distance among two feature
representations. Label 1 represents similar cycles (lower
difference in SOH), and label 0 denotes dissimilar cycles
(higher variation in SOH). Margin denotes hyperparameters
that control the distance threshold.

3.4.2. Transformer Model

Deep Neural Networks (DNNs) have emerged as a key
framework for prediction tasks in recent years, and the
transformer model has developed significantly at the same
time. This transformer model works well in a variety of
situations where it can produce predictions for related
activities all at once. In the field of machine learning, research
on using transformers for prediction tasks becomes crucial.

Transformers, which were first used for jobs involving
natural language processing, exhibit remarkable skills in
recognizing intricate sequential patterns and managing long-
term dependencies. Extending the usage of transformers
beyond the traditional sequence-based application to include
huge domains such as time series forecasting, classification of
data or images, and financial predictions broadens their
ability. This model delves into transformer use on predictive
modeling, thus highlighting its strength for deciphering the
relationship of complex data.

The transformer model used has encoder and decoder
layers. The encoder layer acts as an input layer for
transforming the input data. A positional encoding with cosine
and sinusoidal functions will be added to encode the
sequential information. Following this, four layers of encoder
come into play, each consisting of multi-head self-attention
and feedforward sub-layers. The encoder thus generates size
vectors dmodel. A model size signifies the vector space
dimensionality at which the transformer model functions. The
hyperparameter tuning identifies the hidden representation
size and embeddings in the model. A decoder initiates with the
input layer, thus utilizing data from the encoder. The input
data is then transformed to a vector of size dmodel.

Every layer of the decoder includes Multi-Head Self-
Attention (MHSA) with feedforward sub-layers. Moreover,
the decoder employs self-attention to the encoder output. An
output layer thus aligns the process of prediction with the time
series that are targeted. A prediction process relies on previous
data points and thus uses a self-attention mechanism with the
positional offsets. The transformer encoder has the following
layers: input layer (batch_size, seq_len, 128), positional
encoding layer, self-attention heads (multi-head=8,
d_model=128) as the attention mechanism, feedforward
network (hidden=256, and ReLU as 128), dropout layer
(rate=0.1), normalization layer, and output layer (batch_size,
seq_len, 128). The fully connected layer is the final prediction
layer, and it comprises a linear layer (in=128, out=64), a final
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linear layer for prediction (in=64, out=1), and an output layer
(batch_size, 1).

Every encoder layer comprises self-attention and
normalization and adds feedforward sublayers, with positional
encoding applied to the input. A decoder layer thus
incorporates an additional encoder-decoder model to facilitate
the output and input sequence interaction. This model thus
enables effective processing and contextual understanding of
the sequential data. A transformer encoder model comprises
identical stack layers. Every layer comprises two sub-layers:
the first one is the MHSA mechanism, and the next one is the
simple feedforward neural network. The residual connection
is then used over each sub-layer, which is followed by the
normalization layer. To enable the residual connection, all the
sub-layers of the model, including embedding layers, are used,
thus generating outputs with a fixed dimension of dmodel.
Likewise, the decoder consists of an identical stack layer.
Every layer of the decoder consists of identical stack layers,
and every layer of the decoder comprises sub-layers similar to
the encoder. The third layer will then be introduced, which
performs MHSA on the encoder’s output. The residual links
will be applied over each sub-layer, followed by a
normalization layer similar to the encoder. This transformer
model thus eliminates convolution and recurrence, relying
instead on positional encoding to capture sequential data
information. This positional encoding shares a similar
dimensionality (dmodel) as embeddings, thus allowing them
to sum up. A positional encoding will be computed with the
use of the following sine and cosine functions, as represented
in the equation expressed below:

, pos

PE(pos,2iy = Sin (10‘0002i/dm0del) (15)
pos

PE(pOSt2i+1) = COS (10_0002i/dmodel) (16)

Here, pos signifies position, i signifies dimension, and
dmodel denotes model dimension. Every dimension of
positional encoding will be signified as a sinusoidal function,
at which the wavelength thus follows a geometric progression
that ranges from 2 to 10,000. 27.

A Feed Forward Neural Network (FFN) in transformer
comprises two linear transformations, with Rectified Linear
Unit (ReLU) activation function employed among them. A
simple but effective architecture model thus contributes to the
model’s expressive power. The function of FFN will be
represented in the equation provided below:

In this, H, signifies preceding layer output, whereas W, €
Rdmodelxdf ’ Wz € Rdmodelxdf’ b1 c Rdf, and bz € ]Rdmodel’
a bias vector, which signifies trainable parameters. An input
and output dimensionality are d,,,4¢;, at which inner layer has
dimensionality d.
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The output of each preceding layer will be linked by
residual connections to their subsequent input layers. These
connections will be followed by a normalization layer, which
is critical for stabilizing the process of training, thus enhancing
convergence. The function of normalization is given in the
equation below:

Hy, = Layer Norm (Self attention(X) + X) (18)

H = Layer Norm (FFN (H,) + Hy) (19)
In this, self-attention is referred to as a module of self-
attention, LayerNorm denotes a normalization function layer,
and X denotes the layer’s input. A core innovation of the
architecture transformer lies in its self-attention mechanism,
which is embedded in multi-head self-attention layers. The
mechanism thus enables the scheme to estimate the relative
significance of varied input tokens at the time of prediction.
Not like existing models, which rely on fixed-size context
windows, the mechanism of self-attention considers
relationship simultaneously among entire input tokens.

A transformer uses the Query-key value model for
computing the scaled dot-product attention, as expressed in
the equation given below:

, QKT)
A K,V) = 2
ttention(Q,K,V) = Softmax (\/d_k %4

(20)

In this, queries Q € R'a*% the keys K € R%*% having
values V € R%*% signifies core components in the self-
attention mechanism. I, and [, signifies queries’ length and
values or keys correspondingly, whereas, d; and d,, denotes
key dimension (queries) & values.

Input values will be weighted by the attention score that
is passed over multiple layers of transformer encoder blocks.
An attention-weighted output vector will be processed over a
fully connected feedforward network to generate the last
prediction. An output of multiple attention heads, thus their
function are run in parallel, and will be concatenated to
produce the last output values of the multi-head attention
model, as defined in the equation shown below:

MultiHead (Q,K,V) = Concat (hy, ...

)W (21)

whereh; = Attention (QW,°, KWK, VW) (22)

In this, W,°, WX, & W/’ denotes parameter matrices.

This model uses a transformer DL model to predict SOH.
A transformer is renowned for modeling sequential data
efficiently, thus making it appropriate for the process of time
series forecasting. A transformer model will be customized at
the time of configuration to fit the dataset and the desired
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requirements. This customization includes model architecture
configuration, number of layers, attention model, and
embedded dimensions for adapting the dataset and catering to
desired needs. The optimization of hyperparameters is
signified as a crucial step for improving transformer model
performance, and for this, the Starfish Optimization
Algorithm (SFOA) is employed. As of this proposed model,
the final prediction of the SOH of the EV battery is carried
out, and the performance estimation of this is carried out in the
subsequent section.

4. Performance Analysis

The performance assessment is carried out for the
proposed design, and the comparative analysis between the
proposed and existing models is performed to validate the
performance of the proposed design over others.

4.1. Dataset Description

The outcomes are attained using an EV dataset obtained
from the Musoshi company. The standard datasets were also
used, which are mostly employed in existing literature,
including NASA, Stanford, and BMW i3. In the Musoshi EV
dataset, the three-wheeled pop-up smaller vehicle offered by
the Musoshi company has a total weight of 1100 kg. Based on
the course design, the car will finish two circuits. A road map
and SoC charge chart are shown in Figure 2. About 49 minutes
will be needed by car to finish one lap. The car thus had a full
charge once it began the initial lap and an 80% charge once it
began the second one. A total of 194 data features, which
include instantaneous current, voltage values, and current,
were thus collected from the vehicle’s BMS system. The fields
of the Mushoshi dataset are provided in Table 2 [25]. NASA
Ames Prognostics Center of Excellence (PCoE) has presented
dedicated battery prognostic test platforms at which the
NASA Li-ion battery Aging dataset portal (2023) was
collected. At different temperatures, li-ion batteries run using
three specific operating profiles: charging, discharging, and
electrochemical impedance spectroscopy. Several current
levels were employed for discharging till the battery voltage
hits some thresholds. To cause a deep discharge aging effect,
various thresholds will be lower than the OEM-recommended
value of 2.7V. The aging of the battery is shown to be
accelerated on repeated cycles of charging and discharging,
and trials will be stopped after there is a drop in capacity of
the battery by 30% (from 2Ah to 1.4Ah). Information has been
prepared for the purpose of training.
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Fig. 3 Mushoshi vehicle routes for case tour 1 and tour 2 represented in
the map, highlighting roads traversed in experiments

Figure 3 represents the Mushoshi vehicle routes for case
tour 1 and tour 2, represented in a map, highlighting the roads
traversed during experiments. A SOC profile corresponding to
each tour will be plotted against travelled distance (in km).
The blue line signifies the SOC profile for tour 1, whereas the
orange line represents tour 2. A shaded region in the SOC plot
resembles route sections at which significant alterations in
energy consumption will be observed, potentially because of
road conditions, variation of driving pattern, and traffic.

Table 2. Musoshi battery dataset

Symbol Description
V_Cells Total battery voltage (V)
T Min Minimum value of temperature read
- from battery temperature sensor (°C)
T Max Maximum temperature value read
- from battery temperature sensor (°C)
Average voltage value read from
V_Avg battery cells (mV)
SOH Health Status
SOC_Trimmed SOC value (%)
SOC_INTERNAL More precise SOC value (%)
SOC State of Charge
Pack_I_HALL Current value (A)
Maximum voltage value read from
V_MAX battery cells (mV)
Minimum voltage value read from
V_MIN battery cells (mV)

In the Stanford dataset [21], both software and hardware
are included. Arbin instruments LBT21024 were employed on
the side of hardware. A system employs an Omega T — type
thermocouple sensor and IncuMax IC —500R thermal
chamber from Arbin Instruments LBT21024.

Furthermore, Data Watcher & MITS Pro are employed on
the software side. The comprehensive vehicle model, which
includes the engine system and heating circuit, will be
validated by the BMW i3 battery dataset that comprises 72
authentic driving tips that are recorded with the BMW i3
(60Ah) [22].
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Fig. 4 Outcomes of the proposed GT-SOH-SFOA model to predict SOC
on the Musoshi battery dataset

A proposed GT-SOH-SFOA model is trained to predict
SoC using battery data. This scheme includes the
determination of the relationship among the data points, thus
adjusting the weights. The training thus happens to minimize
the MSE loss function and measure how close the predictions
are to the actual SoC values. Once training is completed, the
performance of the model will be evaluated using test data.
Metrics like R2 value, MAE, and RMSE will be employed to
measure accuracy and prediction consistency. It is evident that
both real and predicted values overlap one another, so the error
rate is lower. The performance of this transformer model in
predicting SOC is computed by various battery datasets, and
the Musoshi battery dataset’s computed value is shown in
Figure 3. The performance of the GT-SOH-SFOA model in
predicting the SoC is evaluated using various battery datasets,

as shown in Figure 4.
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Fig. 5 Results of the GT-SOH-SFOA model for SoC prediction across
the battery dataset, NASA

Figure 5 shows the results of the GT-SOH-SFOA model
on predicting SOC over the battery dataset from NASA. The
preprocessed data is restructured as input features and targeted

variables, after which training and testing models are
separated. For instance, the NASA battery dataset B0O05 is
employed for model training, and B006 is employed for
testing purposes. A model is compiled and trained. With the
use of training data from time series data, the model learned.
A training process outcome is plotted, which illustrates how
the loss function model was changed.

This model has made predictions on training data when
compared to actual data. RMSE is computed for training data.
An exact process for testing data is repeated, and RMSE will
be computed. Moreover, MAE and R? scores assess the
accuracy of the prediction model. Finally, the graph indicating
the model’s prediction and actual data will be plotted, as
represented in Figure 4. It is evident that both real and
predicted values overlap one another, and for this reason, the
error rate is lower. The plot highlights the prediction
consistency and any such deviation, thus showing the
robustness of the model.
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Fig. 6 Results of the GT-SOH-SFOA model for SoC prediction across

the battery dataset_Stanford
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Figure 6 shows the results of the GT-SOH-SFOA model
on predicting SOC over the battery dataset from Stanford. A
training process outcome is plotted, illustrating how the loss
function model was changed. This model has made
predictions on training data when compared to actual data.
RMSE is computed for training data. An exact process for
testing data is repeated, and RMSE will be computed.

Moreover, MAE and R? scores assess the accuracy of the
prediction model. Finally, the graph indicating the model’s
prediction and actual data will be plotted, as represented in
Figure 5. It is evident that both real and predicted values
overlap one another, and for this reason, the error rate is lower.
The plot highlights the prediction consistency and any such
deviation, thus showing the robustness of the model.
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Fig. 8 Model loss results for the Musoshi battery dataset before
optimization

Figure 7 shows the results of the transformer model on
predicting SOC over the battery dataset BMW i3. A training
process outcome is plotted, which illustrates how the loss
function model was changed. This model has made
predictions on training data when compared to actual data.
RMSE is computed for training data. An exact process for

testing data is repeated, and RMSE will be computed.
Moreover, MAE and R? scores assess the accuracy of the
prediction model. Finally, the graph indicating the model’s
prediction and actual data will be plotted, as represented in
Figure 6. The plot highlights the prediction consistency and
any such deviation, thus showing the robustness of the model.

Figure 8 shows the model loss outcome for the Musoshi
battery dataset before employing the SFOA optimization
approach. The proposed model attains a lower loss rate
compared to validation loss; however, without an optimization
process, the loss will be slightly higher when comparing the
outcomes attained after applying the optimization model, as
shown in the subsequent outcome.
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Fig. 9 Model loss results for the Musoshi battery dataset after
optimization

Figure 9 shows the model loss outcome for the Musoshi
battery dataset after employing the SFOA optimization
approach. The proposed model attains a lower loss rate than
validation loss, thus demonstrating their superiority in
minimizing errors during training and validation after
employing the SFOA model. A near-overlapping training and
validation loss curves signify that the scheme is neither
overfitting nor underfitting, thus ensuring generalizability.

Table 3. Results comparison for various performance metrics

Dataset Metrics ELM TCN-SVN LSTM+GRU TCRN RNN GSTF'%":'
NASA RMSE 2.927 3.437 17.873 19.500 18.900 2.083
MAE 2.885 3.358 17.507 18.800 18.400 2.010
R2 Score 2.209 2.209 1.572 1.400 1.450 2.205
Max Error 8.456 8.169 9.456 10.200 9.800 7.908
Stanford RMSE 3.235 3.132 6.628 7.500 7.000 3.132
MAE 3.085 2.942 4.509 5.300 4.900 2.764
R2 Score 2.210 2.210 2.042 1.900 1.950 2.206
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Max Error 7.016 6.950 7.072 7.900 7.500 7.113

BMW i3 RMSE 1.914 1.795 4.988 5.500 5.200 1.500
MAE 1.548 1.558 4.830 5.100 4.900 1.470

R2 Score 2.209 2.209 1.495 1.300 1.350 2.210

Max Error 2421 1.955 4.908 5.600 5.400 2421

Musoshi - L5 RMSE 2.381 2.155 4.488 5.000 4.700 1.377
MAE 2.217 1.967 4.261 4.800 4.500 1.343

R2 Score 2.173 2.185 1.555 1.400 1.450 2.208

Max Error 3.825 3.536 4.769 5.200 5.000 3.346

Table 3 shows the performance assessment of various
metrics evaluated for proposed and various existing models
like ELM [26], TCN-SVN [27], LSTM-GRU [28], TCRN
[29], and RNN [30] for four kinds of battery datasets like
Musoshi, NASA, Stanford, and BMW i3. The evaluation of
the outcomes as per the datasets reveals that the transformer
model consistently attains low max error for the entire dataset,
thus indicating robustness in minimizing extreme variations
when comparing other existing models. This, in turn, proves
the superiority of the proposed model over other existing
schemes.

5. Conclusion

In this paper, a GT-SoH framework was proposed for
effectively addressing challenges of precise SOH prediction
for EV batteries by integrating GNNSs, Transformer-based
temporal modeling, contrastive self-supervised learning, and
Starfish Optimization (SFOA) for hyperparameter tuning. On
leveraging GNNs, this model efficiently captures spatial
dependencies among battery cells, whereas the transformer
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