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Abstract - In specific, accurate, and precise prediction of the State-of-Health (SOH) of the Electric Vehicle (EV) battery system 

will be crucial to ensure battery safety, longevity, and optimal management of energy. Existing SoH estimation models, which 

include Machine Learning (ML) and Deep Learning (DL) schemes, most often struggle in capturing the most complex temporal 

and spatial dependencies in the degradation of the battery. In this paper, a novel Graph-Transformer Contrastive Learning (GT-

SoH) framework, which incorporates Graph Neural Networks (GNNs) termed Transformer-based temporal modeling, 

Contrastive self-learning, and Starfish Optimization Algorithm (SFOA) for hyperparameter tuning, is proposed and is denoted 

as the (GT-SOH-SFOA) framework. A GNN model is responsible for capturing spatial interdependencies among battery cells, 

whereas a Transformer encoder models GNN patterns. A contrastive learning function is used for enhancing the generalizability 

of learning a robust representation of features from unlabeled battery datasets. In addition, SFOA is employed to tune the 

hyperparameters, thus ensuring optimal performance for balancing exploitation and exploration in the process of optimization. 

The hybrid loss function, which integrates Mean Absolute Error (MAE) loss and contrastive loss, ensures precise SOH 

estimation, thus reducing overfitting. An experimental evaluation is carried out for various metrics like Mean Absolute Error 

(MAE), R2, RMSE, and Max Error on four datasets, like Musoshi, NASA, Stanford, and the BMW i3 battery dataset, and outcomes 

attained demonstrate that the GT-SOH-SFOA proposed model outperforms existing models compared, thereby offering high 

prediction accuracy and robustness. Therefore, it is concluded that the proposed scheme offers a scalable, interpretable, and 

optimized solution for real – time battery health monitoring in EVs. 

 

Keywords - State-of-Health (SOH), Electric Vehicle (EV), Battery health prediction, Graph-Transformer Contrastive Learning, 

Starfish optimization algorithm, Graph Neural Networks.  
 

1. Introduction 
Batteries are usually critical for a varied range of 

applications, which include portable electronic devices and 

EVs. The optimization and monitoring of battery performance 

are essential for the efficiency and safety of those applications 

[1]. Battery Management System (BMS) has become a major 

point of academic research and industry [2-4]. Predictions of 

battery health and SoC are highly needed in real-time 

applications, which impact the optimization range of EV, 

extension of battery lifespan, and management of energy. 

Moreover, the traditional BMS systems have some limitations 

because of the complex chemical processes and the aging of 

the battery. A dynamic chemical variation and aging of the 

battery component could introduce some errors in the process 

of charge prediction. In addition, the absence of perfect 

sensors makes precise measurement of all variables, which in 

turn reveals the measurement methods directly [5-7]. Those 

limitations result from the measurement issue caused by 

external factors like the noise sensor, which could cause a 

misleading outcome. To deal with these limitations, 

researchers are exploring several kinds of models for 

increasing the health of the battery and the accuracy of the 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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prediction of SoC. SoH is regarded as a metric that enumerates 

the level of battery degradation in relation to a new battery. 

This information is needed for the management of energy 

systems in vehicles so as to fine-tune their control and thereby 

maintain the performance of vehicles and safety within the 

constrained limits. Several models could be employed to 

assess and measure the SOH of batteries in EVs. Much 

research at present focuses primarily on identifying the 

decrease in capacity (SOHr) [8]. Typically, deterioration of 

Lithium-Ion Batteries (LIBs) will be unavoidable during 

storage or cycling. The SOH data of the battery is needed for 

EVs’ energy management system so as to confirm 

exceptionally efficient & secured functional state [9-11]. The 

examination and analysis mechanism causes batteries to 

deteriorate over time, thus resulting in effects that are vital for 

measuring the health of batteries accurately and making 

dependable performance forecasting. The primary intention is 

thus to make the battery system a highly reliable and effective 

one while extending the life span of the battery. Thus, data-

driven modeling solutions become valuable, particularly 

Artificial Intelligence (AI) and Machine Learning (ML) 

models, which could learn from data and thereby generalize 

the unobservable factors. 

 
Fig. 1 Typical flow of SOH prediction 

In contrast to the existing schemes, ML schemes 

recognize high-dimensional data patterns, independent of 

fundamental physical processes. It, in turn, makes the study 

unaffected by factors like hard-to-study, thereby making ML 

less favorable for the estimation of battery state [12]. A Graph-

transformer contrastive learning model’s ability for modeling 

the time-series dependencies effectually than existing models, 

which aims at achieving highly accurate predictions of SOH. 

A self-attention model designed to adopt the instantaneous 

alteration enables the transformer to handle real-time and 

sudden alterations in the dynamics of the battery. This feature 

could enhance the accuracy of SOC prediction under 

charging/discharging conditions. The transformer model’s 

ability to capture non-linear patterns and temporal 

dependencies in the cycles of battery charge/discharge 

conditions. A transformer model thus offers an innovative 

solution for the challenges where the traditional models fall 

short, like sensor noise, aging effect, and dynamic chemical 

processes. Their superior accuracy in the prediction of SOH 

signifies the significant innovation aiming at optimizing the 

range of EV, battery life, and charging efficiency. The 

utilization of a dependent model in the estimation of SOH, 

along with an optimization strategy, potentially sets a new 

standard in monitoring the health of the battery.  

1.1. Problem Identification / Motivation 

This model addresses the existing issue of SOH 

prediction with the growth in EV adoption. Though several 

ML and DL models exist, there are some issues like low 

prediction and poor performance, and there is a need to 

enhance feature weighting and the accurate and robust 

creation of SOH estimation [13]. Addressing these gaps might 

contribute to the development of SOH estimation models, thus 

ultimately supporting effective and reliable BMSs for a varied 

range of applications, including EV. By incorporating real-

time data, this model offers a substantial contribution to 

comparing research limited to smaller or simultaneous 

datasets. This work highlights the benefits of several 

scenarios.  

 

1.2. Contribution 

The major contributions of this work on SOH prediction 

using an optimization-based deep learning model are listed as 

follows:  

 To implement and design a new Graph-Transformer 

Contrastive Learning (GT-SoH) framework which 

integrates Graph Neural Networks (GNNs), Transformer-

based temporal modeling, contrastive self-supervised 

learning, and Starfish Optimization Algorithm (SFOA) 

for improving the accuracy of SOH prediction. 

 To preprocess input data using min-max normalization to 

ensure that all features will be scaled between 0 and 1, 

thus enabling the training model to work effectively.  

 For estimating the capability of the proposed Graph-

Transformer Contrastive Learning based temporal model 

for capturing temporal patterns and dependencies in 

the performance of battery data, thus enhancing the 

prediction accuracy of SOH.  

 To improve the process of feature selection with the use 

of the SFOA optimization model by selecting more 

relevant features to be used in the prediction model of 

SOH.   

 To assess the suggested GT-SoH-SFOA scheme with the 

use of key performance metrics and to validate the 

suggested model efficiency over other existing models by 

making a comparison between the outcomes.  
 

1.3. Organization 

This research work includes a brief review of several 

prediction models in Section II. Section III narrates the 

proposed methodology, which includes input data collection, 

feature extraction, hyper-tuning of parameters, and the 
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classification approach employed. An experimental 

evaluation is carried out in Section IV. The overall summary 

is carried in Section V with future scope of directions.  
 

2. Related Works 
A comprehensive review of various traditional models 

related to the detection and prediction of SOH in EV batteries 

is presented here. A new hybrid scheme was suggested in [14], 

which combines a multi-head dilated temporal architecture of 

CNN with GRU for anticipating the levels of SOC. This model 

thus facilitates the simultaneous pattern learning over varied 

scales, thus allowing this technique to adopt new patterns 

more quickly.  Moreover, the integration of explainable 

artificial intelligence models termed Shapley Additive 

exPlanations (SHAP) aims at achieving global interpretability 

for the prediction of SOC, thus offering precise quantification 

in the individual attribute influence. A comprehensive 

experiment was evaluated over varied temperature ranges and 

thus driving cycles to demonstrate the proposed scheme’s 

effectiveness. 

 

The Fractional-Order Method (FOM) assisted the online 

SOC and SOP estimation model for LIBs in EV, which was 

introduced in the work [15]. In order to identify two resistor 

consistent element phase networks that accurately describe the 

internal dynamics of a battery over a range of timeframes, the 

model parameters of the second-order FOM were first 

adjusted globally under a dynamic test stress profile. Partial 

Adaptive FOM (PA-FOM) was then developed to improve the 

model’s SOC and SOP estimation performance. While an 

unscented Kalman filter-assisted iterative model was 

developed for predicting SOP, online SOC estimation was 

done using an adaptive extended Kalman filter model based 

on PA-FOM.   

 

The online SOC and SOP co-estimation of LIBs in EVs 

was proposed in [16] using a Model Fusion Approach (MFM). 

The battery Open-Circuit Voltage (OCV)-SOC curve was first 

constructed using the Particle Swarm Optimization-Genetic 

Algorithm (PSO-GA) methodology in conjunction with two 

FOM RCCPE. This method depends solely on the dynamic 

load profile and does not require any prior information about 

the initial SOC. After identifying the parameter models, the 

Dual Extended Kalman Filter (DEKF) model based on the 1-

RC scheme was used to estimate the battery’s State Of Charge 

(SOC) using the extracted OCV-SOC curve. Additionally, two 

elements of battery polarization dynamics—current excitation 

and self-recovery—will be examined in the SOP window 

prediction.   

 

In [17], a new machine learning model was proposed for 

reliable and accurate SOC prediction in EV batteries using the 

Differential Search Optimized (DSA) Random Forest 

Regression technique (RFR). Furthermore, a crucial problem 

that needs to be investigated is the exact choice of RFR 

architecture and hyperparameter integration. As a result, DSA 

was used to find the best values for trees and leaves using the 

RFR technique. This DSA-optimized RFR strategy does not 

require a filter during the data preprocessing step and just 

requires sensors to monitor the battery’s voltage and current, 

negating the requirement for in-depth knowledge of battery 

chemistry. According to an experimental result, the DSA-

optimized RFR model achieves an RMSE value of 0.382% in 

the HPPC test using a LiNMC battery.  

 

An online endwise state monitoring model was used in 

[18], depending on a multi-task transfer learning mechanism. 

This strategy was designed to enhance accuracy under 

different application scenarios. An experiment was conducted 

under varied working profiles, aging conditions, and 

temperatures to evaluate the model that covers a wide range of 

EV use. Comparing several benchmarks illustrates the 

superiority of the proposed scheme with enhanced 

computational efficiency and accuracy. Outcome reveals that 

MAE & RMSE of SOC and SOE estimation are lower than 2.31 

& 3.31% respectively.  A DL aided SOC prediction scheme 

was employed to ensure the representation of a reliable vector 

and sufficient extraction of features. So as to enhance the 

representation of battery data, an RNN-aided model was 

proposed. After that, aiming at fully extracted feature 

information, a multi-channel extended CNN model was 

presented to predict LIBs’ SOC precisely. Depending on 

reliable vector representation and feature extraction, the 

suggested model offers enhanced performance of SOC 

prediction. The valuation shows that the suggested model was 

verified by a simulation test, which shows that the suggested 

scheme offers enhanced prediction performance with RNNs.    

 

In [19], the Stochastic Model Predictive Control (SMPC) 

was proposed. For the energy management system strategy, a 

multiple linear regression of the engine and battery was 

initially created. Following that, a Markov chain-based 

velocity prediction model was created, considering the driving 

styles. Reference SOC will then be optimized through 

Dynamic Programming (DP), utilizing upcoming data. 

Finally, SMPC-assisted EMS and short-term optimum SOC 

will be formed. The results indicate that when radial basis 

function neural networks and backpropagation neural 

networks are compared, the Markov dependent model 

performs better in the prediction process. 

 

An innovative solution was presented and compared a 

transformer model along with LSTM, Bi-directional LSTM, 

scheme, and Support Vector Regression (SVR). This model 

intends to offer new perspectives on the SOC of battery 

predictions using the BMW, NASA, Stanford University 

battery dataset, and real-time battery data attained from the L5 

EV of the Musoshi brand, gathered for this model. The 

primary objective of this research was to employ a transformer 

model for real-time battery data, thus estimating them as an 

important stage in optimization and battery management of 

EV. A transformer model in this work attains an enhanced 
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outcome with an RMSE value closer to 1(~0.99). The work 

presented in enhances the precision forecast and resilience 

regarding the remaining life of the battery. This model uses 

support vector networks and quantile regression to estimate 

the battery’s health. Additionally, it integrates temporal 

convolutional networks and self-coding neural networks for 

processing and battery life data extraction, and lastly, it 

introduces a new prediction scheme. It was evident that the 

proposed scheme attains some benefits in estimating the 

lifespan of LIBs for EV. In addition, the findings of the model 

offer precise, quick, and flexible references to estimate the 

remaining life and condition of batteries.  

 

An improved Multi-strategy improved Dung Dung Beetle 

Optimization model (MIDBO) was suggested in accurately 

predicting the SOC of electric load battery for optimizing the 

SOC prediction model of Extreme Learning Machine (ELM). 

Initially, PCA was employed to screen input features, thus 

reducing dimensionality. A dynamic spiral searching model 

was used in the breeding phase of the dung beetle approach, 

and the Levy flight model was incorporated at the foraging 

stage to escape the local optimum. Finally, adaptive t-

distribution alteration and a dynamic selection strategy were 

employed to update the dung beetle position, thus improving 

convergence speed. This model enables the precise prediction 

of the electric loader’s SOC battery. The experimental 

outcome shows a lower error rate for the proposed model.  

 

The work suggested in presented a new hybrid neural 

network that integrates the GRU and LSTM schemes for SOH 

estimation. This model proves effective enhancement in the 

accuracy estimation of SOH and SOC with minimal training 

data needed. The primary contributions include the hybrid 

GRU-LSTM scheme, which enhances SOH/SOC accuracy, 

self-optimization capabilities, effective temperature variation 

handling without OCV-SOC lookup tables, and their 

application to various lithium battery types. An investigational 

outcome reveals that the proposed scheme offers RMSE 2% 

and MAE 1.7% for SOC, and RMSE 0.65% and MAE 0.85% 

for SOH. 

 

2.1. Research Gap 

A huge range of models, which includes DL models such 

as ConvLSTM, GAN, CNN, and hybrid schemes that combine 

various neural network models, was reviewed. From the 

survey, it was obvious that there is a need to enhance feature 

weighting and to enhance the accurate and robust creation of 

SOH estimation. Filling up these gaps could help create SOH 

estimation models, which would ultimately provide 

dependable and efficient BMSs for a variety of applications, 

including EV.  

 

3. Proposed Work 
The proposed working methodology based on DL aided 

SOH prediction is described in this section. Figure 2 depicts 

the entire flow of the proposed framework. Typically, the 

SOH prediction model’s workflow comprises subsequent 

stages like acquisition of data, selection of equivalent or 

relevant features, and estimation of SOH prediction. Real-time 

data collection from the particular dataset is the first step. The 

collected data will next go through a preprocessing step that 

includes data normalization and cleaning to get rid of any 

undesired noise issues. Following preprocessing, the data 

moves on to feature selection and classification phases. 

Complex, non-linear connections and patterns in time-series 

data, which are features of battery performance measures, can 

be handled by the DL scheme.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 2 Overall working flow of the proposed model 
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In contrast to conventional machine learning techniques, 

GNN, in particular, is more adept at identifying temporal 

correlations and intricately interacting with features, which 

results in a more accurate prediction of SOH. This capability 

is essential for creating reliable BMSs that can function well 

in a variety of scenarios with various battery types. 

 

3.1. Input Battery Data Collection 

The input battery dataset is gathered from Musoshi 

Company. Also, standard datasets are often employed in 

literature, like NASA [20], Stanford [21], and BMW i3 [22]. 

 

3.2. Preprocessing of Input Data 

Preprocessing input data is a fundamental step before 

using any kind of data analysis or modeling technique. To 

guarantee the efficacy and caliber of analysis, this also entails 

transforming raw data into a clear and useful format. The data 

preprocessing steps used for LIB time series data used for 

SOH forecasting are data normalization and data purification. 

After cleaning, the raw data that depends on time series will 

be transformed into SOH-dependent data. It includes 

meticulously evaluating and correcting errors or 

inconsistencies that are present in raw data to enhance quality. 

Effective experimental data management is required to 

increase accuracy and DL scheme performance.  

 

In order to provide battery data that displays periodic 

characteristics degradation, the data will first be cleaned by 

removing outliers and missing data, which are evaluated using 

intermediate data or moving averages. A dataset that relies on 

SOH lacks a comparable scale. One method commonly 

employed in the in-depth modeling approach to improve the 

convergence of the model and prediction accuracy is data 

normalization. A normalization approach is carried out using 

the min-max approach, which includes data scaling of the 

range 0 to 1. Hence, dataset normalization depending on SOH 

with the use of min-max normalization will be expressed using 

the subsequent equation: 

𝑥𝑛 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                                              (1) 

In this, 𝑥𝑚𝑖𝑛 denotes the minimum real data value, 𝑥𝑛 

symbolizes processed data, x represents original data, and the 

maximum value is signified by 𝑥𝑚𝑎𝑥. Moreover, this model 

facilitates simple and quick normalization of data, all the while 

staying within the desired range. 

 

3.3. Hyperparameter Tuning by SFOA 

The hyperparameters of the graph transformer contrastive 

learning framework are tuned by means of the SFOA approach 

[23, 24]. The Starfish Optimization Algorithm (SFOA) is a 

stochastic search optimization technique that may be inspired 

by the exploration, prey, and regeneration actions of starfish. 

Like previous metaheuristic approaches, SFOA has two 

stages: the exploration stage mimics the starfish’s exploring 

activities, while the exploitation step is built using models of 

prey and regeneration.  

In the SFOA exploration stage, a hybrid search way based 

on the five arms of a starfish-among which are the eyes-is 

created by mixing five-dimensional and unidimensional 

search designs in order to construct the mathematical models.  

The suggested search pattern is determined by the 

optimization problem’s dimension D. When D>5, it employs 

a five-dimensional search pattern; when D≤5, it employs a 

unidimensional search pattern. This enables it to overcome the 

limitations of the low efficiency of the vector search pattern 

and the sluggish convergence of the unidimensional search 

pattern.  

The hunting and generation tactics produce SFOA during 

the exploitation stage. The primary updating technique during 

SFOA’s exploitation phase is the preying method. It 

encourages the candidates to go toward better sites by using a 

concurrent two-directional search technique based on the 

information of two starfish.  

Specifically, only the last starfish in the population (i=N) 

undergoes the regeneration stage, which is essential for the 

global convergence capability during the solving task. Lastly, 

during the exploration and exploitation stages, SFOA offers 

the same optimization opportunity. The details of the SFOA 

mathematical models are as follows: 

3.3.1. Initialization Stage 

During the SFOA initialization phase, starfish positions 

will be randomly generated across the design variable 

boundaries, which could be represented as a matrix, as 

illustrated: 

𝑋 = [

𝑋11 𝑋12 … 𝑋1𝐷

𝑋21 𝑋22 … 𝑋2𝐷

⋮    ⋮     ⋮   ⋮  
𝑋𝑁1 𝑋𝑁2 … 𝑋𝑁𝐷

]

𝑁×𝐷

                                      (2) 

Here, X denotes a matrix for solving starfish positions 

having size 𝑁 × 𝐷, N denotes the size of the population, and 

D signifies the dimension of design variables. At the phase of 

initialization, every starfish position in the above equation will 

be computed by: 

𝑋𝑖𝑗 = 𝑙𝑗 + 𝑟(𝑢𝑗 − 𝑙𝑗),      i = 1, 2, , … , N,  j = 1, 2, … , D            

(3) 

Here, 𝑋𝑖𝑗 signifies the dimension of the jth location at the 

ith starfish, r signifies a random number between (0,1) and 

𝑢𝑗 and 𝑙𝑗 signifies upper & lower limits of design variables at 

jth dimension, correspondingly. Once the position of the 

initialized matrix is generated, the fitness value of the entire 
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starfish is attained by evaluating the objective function, which 

could be memorized in the form of a vector as follows: 

𝐹 = [

𝐹(𝑋1)

𝐹(𝑋2)
⋮

𝐹(𝑋𝑁)

]

𝑁×1

                                                                   (4) 

In this, F denotes a matrix for storing and thus updating 

attained fitness value, having size N×1. Following 

initialization, SFOA moves into the main function and starts 

the stage of exploration and exploitation.  

3.3.2. Exploration Stage 

This method simulates the seeking capabilities of five 

arms of starfish with eyes embedded at the arm’s end, as given 

in the image below, by establishing an exploration stage to 

replicate the exploratory behavior of starfish. New search 

patterns that combine a five-dimensional search pattern for 

D>5 with a unidirectional search pattern for D≤5 at various 

optimization challenges are being explored. The five arms (or 

eyes) of a starfish will determine the threshold of the 

dimension.  

 

The search space problem will be large if the optimization 

task is more than 5 (D>5), requiring starfish to go over all five 

limbs in order to investigate their surroundings. Additionally, 

in order to guide their movement, starfish arms require the 

search agents’ best position knowledge. Hence, the 

mathematical modeling of this stage is expressed as shown: 

{
𝑌𝑖,𝑝

𝑇 = 𝑋𝑖,𝑝
𝑇 + 𝑎1(𝑋𝑏𝑒𝑠𝑡,𝑝

𝑇 − 𝑋𝑖,𝑝
𝑇 )𝑐𝑜𝑠𝜃,         𝑟 ≤ 0.5

𝑌𝑖,𝑝
𝑇 = 𝑋𝑖,𝑝

𝑇 − 𝑎1(𝑋𝑏𝑒𝑠𝑡,𝑝
𝑇 − 𝑋𝑖,𝑝

𝑇 )𝑠𝑖𝑛𝜃,         𝑟 > 0.5
              (5) 

In this, 𝑌𝑖,𝑝
𝑇  & 𝑋𝑖,𝑝

𝑇  signifies the attained and present 

position of the starfish, correspondingly. 𝑋𝑏𝑒𝑠𝑡,𝑝
𝑇  signifies the 

p dimension of the present best position, p denotes 

five randomly chosen dimensions between dimensions D, 

𝑟 ∈ (0,1). 𝑎1 & 𝜃 will be computed by:  

𝑎1 = (2𝑟 − 1)𝜋                            (6) 

𝜃 =
𝜋

2
.

𝑇

𝑇𝑚𝑎𝑥
                           (7) 

 

Here, T is the present iteration, and 𝑇𝑚𝑎𝑥 signifies 

maximum iteration. Cosine & sine term indicates that starfish 

arms might twist left or right for approaching foods have a 

similar probability. At the exploration stage, 𝑎1 will be 

generated randomly to update positions at every candidate & 

iteration, and as the number of iterations increases, θ will 

change. At θ∈[0,π/2], two parameters may be used to assess 

the impact of the distance between the best location and the 

current location at a chosen renewing dimension. Equation (5) 

will use five-dimensional search patterns to update just five 

dimensions of locations in order to ensure search ability and 

enhance search accuracy in the event that D>5 at the 

optimization problem by comparing vectorial search patterns. 

After the position is changed outside of the design variable 

boundary, arms tend to stay in their old positions instead of 

shifting to the new ones. The aforementioned is 

mathematically expressed by: 

𝑋𝑖,𝑝
𝑇+1 = {

𝑌𝑖,𝑝
𝑇 𝑙𝑏,𝑝 ≤ 𝑌𝑖,𝑝

𝑇 ≤ 𝑢𝑏,𝑝

𝑋𝑖,𝑝
𝑇 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                          (8) 

Here, p signifies the dimension updated, 𝑙𝑏,𝑝 and 𝑢𝑏,𝑝 

signifies design variables’ bounds, correspondingly. The 

exploration step uses unidimensional search patterns to update 

the location when the optimization task dimension is less than 

5 (D≤5). In this situation, a starfish uses position information 

from other starfish to move one arm in search of a food source. 

A revised position is assessed by: 

𝑌𝑖,𝑝
𝑇 = 𝐸𝑡𝑋𝑖,𝑝

𝑇 + 𝐴1(𝑋𝑘1,𝑝
𝑇 − 𝑋𝑖,𝑝

𝑇 ) + 𝐴2(𝑋𝑘2,𝑝
𝑇 − 𝑋𝑖,𝑝

𝑇 )        (9) 

In this, 𝑋𝑘1,𝑝
𝑇  and 𝑋𝑘2,𝑝

𝑇  will be a p-dimensional position 

from two starfish selected randomly, correspondingly, 𝐴1 and 

𝐴2 denotes two random numbers among (-1, 1), p denotes a 

chosen number arbitrarily in D dimensions. 𝐸𝑡 denotes starfish 

energy and is computed by: 

𝐸𝑡 =
𝑇𝑚𝑎𝑥−𝑇

𝑇𝑚𝑎𝑥
𝑐𝑜𝑠𝜃                                                      (10) 

Here, 𝜃 is computed from Equation (7). Similar to the 

current updating rule, starfish tend to remain in their former 

position rather than moving to the updated one if their reached 

position is outside of the border.   

3.3.3. Exploitation Stage 

Two update strategies will be devised at this stage in order 

to seek global solutions, taking into account preying and 

regeneration behaviors at the exploitation stage. SFOA 

employs a simultaneous two-directional searching technique 

for modeling the starfish prey stage, which requires the usage 

of information from other starfish and the current population’s 

optimal position. Using a parallel two-directional search 

approach, five distances are first calculated between the 

optimal position and other starfish, and then two distances are 

randomly selected as acknowledgement for updating each 

starfish’s position. A distance could be computed by: 

𝑑𝑚 = (𝑋𝑏𝑒𝑠𝑡
𝑇 − 𝑋𝑚𝑝

𝑇 ),      m=1,…5                            (11) 

In this, 𝑑𝑚 are attained distances among global and other 

starfish, whereas 𝑚𝑝 will be the five randomly chosen starfish. 

Therefore, updating the rule of every starfish’s prey behavior 

will be modeled by: 
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𝑌𝑖
𝑇 = 𝑋𝑖

𝑇 + 𝑟1𝑑𝑚1 + 𝑟2𝑑𝑚2                                    (12)  

In this, 𝑟1 and 𝑟2 will be the random number among (0,1), 

and 𝑑𝑚1 𝑎𝑛𝑑 𝑑𝑚2 will be randomly chosen at 𝑑𝑚. The figure 

below will show a starfish’s feeding activity. The candidate’s 

starfish will be traveling in the direction of the best guiding 

solution based on the parallel two-directional search method, 

while other candidates will have a comparable ability to 

mitigate local optima.   

Furthermore, starfish are vulnerable to predation by other 

predators because of their slow mobility. In order to avoid 

being caught, starfish may cut themselves if they are caught 

by a predator. Consequently, the position and regeneration 

phase will be updated using: 

𝑌𝑖
𝑇 = 𝑒𝑥𝑝(−𝑇 × 𝑁/𝑇𝑚𝑎𝑥)𝑋𝑖

𝑇                                  (13) 

Here, T will be the current iteration, 𝑇𝑚𝑎𝑥  denotes the 

maximum iterative number, and N denotes population size. 

Once the position attained from Equations (12) and (13) is out 

of its boundary design variables, the position will be set by: 

𝑋𝑖
𝑇+1 = {

𝑌𝑖
𝑇 𝑙𝑏 ≤ 𝑌𝑖

𝑇 ≤ 𝑢𝑏

𝑙𝑏 𝑌𝑖
𝑇 < 𝑙𝑏

𝑢𝑏 𝑌𝑖
𝑇 > 𝑙𝑏

                                  (14) 

The regeneration stage will be required to prevent local 

solutions and improve global convergence, even if it contains 

a very minor number of function estimations (only calculating 

once during the exploitation stage of every epoch).   

Algorithm 1: Starfish optimization algorithm for 

hyperparameter tuning 

Step 1: Initialize population 

 Define the number of starfish agents (N) 

 randomly initialize N hyperparameter sets within 

defined bounds 

 Estimate each agent using the validation loss of 

the model 

Step 2: If the termination condition is not met (max 

iteration or convergence) 

Step 3: Divide the population into two groups 

 Central starfish (found the best population) 

 Leg stars (remaining solutions) 

Step 4: Updation of central starfish (Exploitation-

refinement of best solution) 

 Apply local fine-tuning with the use of small 

perturbations 

 Ensure solution stays within bounds 

Step 5: Updation of leg stars (exploration-searching for a 

new solution) 

 Adjust leg position with the use of mathematical 

functions (for instance, Levy flight) 

 Balance among exploration (diversity) and 

exploitation (convergence) 

Step 6: Regeneration stage (Handling of weak solution) 

 Identify poorly performing solutions 

 Replace them with new candidates’ samples near 

stronger solutions 

Step 7: Estimate fitness (model performance with new 

hyperparameters) 

 Train the model using a new hyperparameter set 

 Compute validation loss at the fitness score 

Step 8: Return the best identified hyperparameter set 

Henceforth, from this SFOA approach, hyperparameters 

are tuned accordingly, and the best fitness function is attained.  

3.4. GNN-based Feature Extraction and Classification / 

Prediction using the Graph Transformer Contrastive 

Learning Framework 

For the prediction purpose, the graph transformer 

contrastive learning framework is employed. A graph 

transformer contrastive learning framework integrates a GNN 

model with the transformer-based DL approach. The detailed 

description of this process is given in this section. 

3.4.1. GNN Model for Extracting Features 

A fusion process of GNN with the transformer model 

marks a pivotal growth in deep learning, with GNN 

performing better in the analysis of graph data and 

transformers advancing the task of sequencing. Existing 

models that dominate the sequencing process but fall under 

distributed computing include RNN, GRUs, and LSTM. The 

introduction of attention mechanisms, best shown by Google’s 

BERT, transformed natural language processing by placing 

emphasis on pertinent data segments during processing.  

 

In order to combine their strengths for improved job 

performance, the synergy between GNNs for local structure 

and Transformers meant for global dependencies is now being 

studied. The input of GNN is battery features (voltage, current, 

and temperature) with the following layers: batch_size, 

seq_len 3. In GCNConv (layer 1), the following are input and 

output (in=3, out = 64), followed by ReLU activation layer 

(in=64, out=128), global mean pooling layer, which averages 

across entire nodes, and output layer (batch_size, 128), and is 

the final embeddings of GNN. Most of the GNNs conform to 

message passing among neighbor nodes, which could be 

expressed by a subsequent iteration function: 

𝑚𝑣
𝑙+1 = 𝑓𝜃

𝑙(ℎ𝑣
𝑙 , {ℎ𝑢

𝑙 |𝑢𝜖𝒩𝑣})                                                   (23) 
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ℎ𝑣
𝑙+1 = 𝜎𝑙(𝑔𝑙(ℎ𝑣

𝑙 , 𝑚𝑣
𝑙+1))                                                      (24) 

In this, 𝑓𝜃
𝑙, 𝜎𝑙, 𝑔𝑙 signifies a parametric function, that is, 

a neighborhood aggregation function, activation function, 

for instance, sigmoid and ReLU, with a combination function 

(mean, and summation) in the l-th layer, which passes on the 

graph. 𝒩𝑣 signifies node v neighborhood & ℎ𝑣
𝑙  signifies 

hidden embedding for v. This passing message in Equation 

(10) might repeat L times (𝑙 ∈ {1,2, … , 𝐿}) till convergence. 

In this work, information might pass over the entire graph. On 

considering GCN, for instance, the function of message 

passing in GCN will be expressed as follows:  

ℎ𝑣
𝑙+1 = 𝜎 (𝑊𝑙 ∑

ℎ𝑢
𝑙

|𝒩𝑣|𝑢𝜖𝒩𝑣
+ 𝐵𝑙ℎ𝑣

𝑙 )                                  (25) 

Here, 𝑊𝑙 & 𝐵𝑙  denotes a learnable parameter at the l-th layer.  

Also, contrastive learning is employed with the utilization 

of a contrastive loss function, which aids in enhancing feature 

representations that are learned by the model. This, in turn, 

ensures that the same samples (battery cycles having the same 

SOH) will be placed closer in the feature space learned, 

whereas dissimilar ones (battery cycles having varied SOH 

values) will be pushed apart. The optimized parameters are 

shown in Table 1.  
 

Table 1. Values of optimized parameter  

Hyperparameter 
Lower 

Bound 

Upper 

Bound 

Best 

Value 

GCN Layers 2 5 3 

Hidden Units per 

GCN Layer 
32 256 128 

Learning Rate for 

GNN 
0.0001 0.01 0.001 

Transformer 

Attention Heads 
2 8 4 

Transformer Dropout 

Rate 
0.1 0.5 0.2 

Contrastive Loss 

Margin 
0.2 1.5 0.8 

FC Layer Neurons 64 256 128 

The GNN encoded features signify varied battery cycles, 

and the model is trying to group battery cycles that are similar 

together and thus separates dissimilar ones with the use of 

contrastive loss. It is specifically employed for modelling 

battery degradation, where cycles with the same health states 

must be clustered in the learned representation space. The 

contrastive learning computes the pairwise distance among 

GNN embeddings and thus applies contrastive loss 

(margin=0.5) function followed by a normalization layer and 

output shape (batch_size, 128). The contrastive loss function 

is defined as shown: 

ℒ = (1 − 𝑙𝑎𝑏𝑒𝑙). 𝑑2 + 𝑙𝑎𝑏𝑒𝑙. (max(0, 𝑚𝑎𝑟𝑔𝑖𝑛 − 𝑑))2   (26) 

At which d is the pairwise distance among two feature 

representations. Label 1 represents similar cycles (lower 

difference in SOH), and label 0 denotes dissimilar cycles 

(higher variation in SOH). Margin denotes hyperparameters 

that control the distance threshold. 

3.4.2. Transformer Model 

Deep Neural Networks (DNNs) have emerged as a key 

framework for prediction tasks in recent years, and the 

transformer model has developed significantly at the same 

time. This transformer model works well in a variety of 

situations where it can produce predictions for related 

activities all at once. In the field of machine learning, research 

on using transformers for prediction tasks becomes crucial.  

 

Transformers, which were first used for jobs involving 

natural language processing, exhibit remarkable skills in 

recognizing intricate sequential patterns and managing long-

term dependencies. Extending the usage of transformers 

beyond the traditional sequence-based application to include 

huge domains such as time series forecasting, classification of 

data or images, and financial predictions broadens their 

ability. This model delves into transformer use on predictive 

modeling, thus highlighting its strength for deciphering the 

relationship of complex data. 

The transformer model used has encoder and decoder 

layers. The encoder layer acts as an input layer for 

transforming the input data. A positional encoding with cosine 

and sinusoidal functions will be added to encode the 

sequential information. Following this, four layers of encoder 

come into play, each consisting of multi-head self-attention 

and feedforward sub-layers. The encoder thus generates size 

vectors dmodel. A model size signifies the vector space 

dimensionality at which the transformer model functions. The 

hyperparameter tuning identifies the hidden representation 

size and embeddings in the model. A decoder initiates with the 

input layer, thus utilizing data from the encoder. The input 

data is then transformed to a vector of size dmodel.  

Every layer of the decoder includes Multi-Head Self-

Attention (MHSA) with feedforward sub-layers. Moreover, 

the decoder employs self-attention to the encoder output. An 

output layer thus aligns the process of prediction with the time 

series that are targeted. A prediction process relies on previous 

data points and thus uses a self-attention mechanism with the 

positional offsets. The transformer encoder has the following 

layers: input layer (batch_size, seq_len, 128), positional 

encoding layer, self-attention heads (multi-head=8, 

d_model=128) as the attention mechanism, feedforward 

network (hidden=256, and ReLU as 128), dropout layer 

(rate=0.1), normalization layer, and output layer (batch_size, 

seq_len, 128). The fully connected layer is the final prediction 

layer, and it comprises a linear layer (in=128, out=64), a final 
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linear layer for prediction (in=64, out=1), and an output layer 

(batch_size, 1). 

Every encoder layer comprises self-attention and 

normalization and adds feedforward sublayers, with positional 

encoding applied to the input. A decoder layer thus 

incorporates an additional encoder-decoder model to facilitate 

the output and input sequence interaction. This model thus 

enables effective processing and contextual understanding of 

the sequential data. A transformer encoder model comprises 

identical stack layers. Every layer comprises two sub-layers: 

the first one is the MHSA mechanism, and the next one is the 

simple feedforward neural network. The residual connection 

is then used over each sub-layer, which is followed by the 

normalization layer. To enable the residual connection, all the 

sub-layers of the model, including embedding layers, are used, 

thus generating outputs with a fixed dimension of dmodel. 

Likewise, the decoder consists of an identical stack layer. 

Every layer of the decoder consists of identical stack layers, 

and every layer of the decoder comprises sub-layers similar to 

the encoder. The third layer will then be introduced, which 

performs MHSA on the encoder’s output. The residual links 

will be applied over each sub-layer, followed by a 

normalization layer similar to the encoder. This transformer 

model thus eliminates convolution and recurrence, relying 

instead on positional encoding to capture sequential data 

information. This positional encoding shares a similar 

dimensionality (dmodel) as embeddings, thus allowing them 

to sum up. A positional encoding will be computed with the 

use of the following sine and cosine functions, as represented 

in the equation expressed below:  

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑆𝑖𝑛 (
𝑝𝑜𝑠

10.0002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙)                                (15) 

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = 𝐶𝑜𝑠 (
𝑝𝑜𝑠

10.0002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙)                                (16) 

Here, pos signifies position, i signifies dimension, and 

dmodel denotes model dimension. Every dimension of 

positional encoding will be signified as a sinusoidal function, 

at which the wavelength thus follows a geometric progression 

that ranges from 2𝜋 to 10,000. 2𝜋.  

 

A Feed Forward Neural Network (FFN) in transformer 

comprises two linear transformations, with Rectified Linear 

Unit (ReLU) activation function employed among them. A 

simple but effective architecture model thus contributes to the 

model’s expressive power. The function of FFN will be 

represented in the equation provided below: 

𝐹𝐹𝑁(𝐻0) = 𝑅𝑒𝐿𝑈 (𝐻0𝑊1 + 𝑏1)𝑊2 + 𝑏2                             (17) 
 

In this, 𝐻0 signifies preceding layer output, whereas 𝑊1 ∈

ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑓  , 𝑊2 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑓 , 𝑏1 ∈ ℝ𝑑𝑓, and 𝑏2 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙 , 
a bias vector, which signifies trainable parameters. An input 

and output dimensionality are 𝑑𝑚𝑜𝑑𝑒𝑙 , at which inner layer has 

dimensionality 𝑑𝑓.  

The output of each preceding layer will be linked by 

residual connections to their subsequent input layers. These 

connections will be followed by a normalization layer, which 

is critical for stabilizing the process of training, thus enhancing 

convergence. The function of normalization is given in the 

equation below: 

𝐻0 = 𝐿𝑎𝑦𝑒𝑟 𝑁𝑜𝑟𝑚 (𝑆𝑒𝑙𝑓 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋) + 𝑋)          (18) 

𝐻 = 𝐿𝑎𝑦𝑒𝑟 𝑁𝑜𝑟𝑚 (𝐹𝐹𝑁 (𝐻0) + 𝐻0)                                (19) 

In this, self-attention is referred to as a module of self-

attention, LayerNorm denotes a normalization function layer, 

and X denotes the layer’s input. A core innovation of the 

architecture transformer lies in its self-attention mechanism, 

which is embedded in multi-head self-attention layers. The 

mechanism thus enables the scheme to estimate the relative 

significance of varied input tokens at the time of prediction. 

Not like existing models, which rely on fixed-size context 

windows, the mechanism of self-attention considers 

relationship simultaneously among entire input tokens.  

A transformer uses the Query-key value model for 

computing the scaled dot-product attention, as expressed in 

the equation given below: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉                       (20) 

In this, queries 𝑄 ∈ ℝ𝑙𝑞×𝑑𝑘, the keys 𝐾 ∈ ℝ𝑙𝑘×𝑑𝑘 having 

values 𝑉 ∈ ℝ𝑙𝑘×𝑑𝑣  signifies core components in the self-

attention mechanism. 𝑙𝑞 𝑎𝑛𝑑 𝑙𝑘 signifies queries’ length and 

values or keys correspondingly, whereas, 𝑑𝑘 and 𝑑𝑣 denotes 

key dimension (queries) & values. 

Input values will be weighted by the attention score that 

is passed over multiple layers of transformer encoder blocks. 

An attention-weighted output vector will be processed over a 

fully connected feedforward network to generate the last 

prediction. An output of multiple attention heads, thus their 

function are run in parallel, and will be concatenated to 

produce the last output values of the multi-head attention 

model, as defined in the equation shown below: 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ1, … , ℎ𝑛)𝑊0     (21) 

𝑤ℎ𝑒𝑟𝑒ℎ𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉)            (22) 

In this, 𝑊𝑖
𝑄

, 𝑊𝑖
𝐾 , & 𝑊𝑖

𝑉denotes parameter matrices.  

This model uses a transformer DL model to predict SOH. 

A transformer is renowned for modeling sequential data 

efficiently, thus making it appropriate for the process of time 

series forecasting. A transformer model will be customized at 

the time of configuration to fit the dataset and the desired 
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requirements. This customization includes model architecture 

configuration, number of layers, attention model, and 

embedded dimensions for adapting the dataset and catering to 

desired needs. The optimization of hyperparameters is 

signified as a crucial step for improving transformer model 

performance, and for this, the Starfish Optimization 

Algorithm (SFOA) is employed. As of this proposed model, 

the final prediction of the SOH of the EV battery is carried 

out, and the performance estimation of this is carried out in the 

subsequent section.  

 

4. Performance Analysis 
The performance assessment is carried out for the 

proposed design, and the comparative analysis between the 

proposed and existing models is performed to validate the 

performance of the proposed design over others.  

 

4.1. Dataset Description 

The outcomes are attained using an EV dataset obtained 

from the Musoshi company. The standard datasets were also 

used, which are mostly employed in existing literature, 

including NASA, Stanford, and BMW i3. In the Musoshi EV 

dataset, the three-wheeled pop-up smaller vehicle offered by 

the Musoshi company has a total weight of 1100 kg. Based on 

the course design, the car will finish two circuits. A road map 

and SoC charge chart are shown in Figure 2. About 49 minutes 

will be needed by car to finish one lap. The car thus had a full 

charge once it began the initial lap and an 80% charge once it 

began the second one. A total of 194 data features, which 

include instantaneous current, voltage values, and current, 

were thus collected from the vehicle’s BMS system. The fields 

of the Mushoshi dataset are provided in Table 2 [25]. NASA 

Ames Prognostics Center of Excellence (PCoE) has presented 

dedicated battery prognostic test platforms at which the 

NASA Li-ion battery Aging dataset portal (2023) was 

collected. At different temperatures, li-ion batteries run using 

three specific operating profiles: charging, discharging, and 

electrochemical impedance spectroscopy. Several current 

levels were employed for discharging till the battery voltage 

hits some thresholds. To cause a deep discharge aging effect, 

various thresholds will be lower than the OEM-recommended 

value of 2.7V. The aging of the battery is shown to be 

accelerated on repeated cycles of charging and discharging, 

and trials will be stopped after there is a drop in capacity of 

the battery by 30% (from 2Ah to 1.4Ah). Information has been 

prepared for the purpose of training.  

 

 
Fig. 3 Mushoshi vehicle routes for case tour 1 and tour 2 represented in 

the map, highlighting roads traversed in experiments 

Figure 3 represents the Mushoshi vehicle routes for case 

tour 1 and tour 2, represented in a map, highlighting the roads 

traversed during experiments. A SOC profile corresponding to 

each tour will be plotted against travelled distance (in km). 

The blue line signifies the SOC profile for tour 1, whereas the 

orange line represents tour 2. A shaded region in the SOC plot 

resembles route sections at which significant alterations in 

energy consumption will be observed, potentially because of 

road conditions, variation of driving pattern, and traffic. 

Table 2. Musoshi battery dataset 

Symbol Description 

V_Cells Total battery voltage (V) 

T_Min 
Minimum value of temperature read 

from battery temperature sensor (0C) 

T_Max 
Maximum temperature value read 

from battery temperature sensor (0C) 

V_Avg 
Average voltage value read from 

battery cells (mV) 

SOH Health Status 

SOC_Trimmed SOC value (%) 

SOC_INTERNAL More precise SOC value (%) 

SOC State of Charge 

Pack_I_HALL Current value (A) 

V_MAX 
Maximum voltage value read from 

battery cells (mV) 

V_MIN 
Minimum voltage value read from 

battery cells (mV) 

 

In the Stanford dataset [21], both software and hardware 

are included. Arbin instruments LBT21024 were employed on 

the side of hardware. A system employs an Omega T − type 

thermocouple sensor and IncuMax IC − 500R thermal 

chamber from Arbin Instruments LBT21024.  

 

Furthermore, Data Watcher & MITS Pro are employed on 

the software side. The comprehensive vehicle model, which 

includes the engine system and heating circuit, will be 

validated by the BMW i3 battery dataset that comprises 72 

authentic driving tips that are recorded with the BMW i3 

(60Ah) [22].   



R. Natarajan et al. / IJECE, 12(10), 163-176, 2025 

173 

 
Fig. 4 Outcomes of the proposed GT-SOH-SFOA model to predict SOC 

on the Musoshi battery dataset  

A proposed GT-SOH-SFOA model is trained to predict 

SoC using battery data. This scheme includes the 

determination of the relationship among the data points, thus 

adjusting the weights. The training thus happens to minimize 

the MSE loss function and measure how close the predictions 

are to the actual SoC values. Once training is completed, the 

performance of the model will be evaluated using test data. 

Metrics like R2 value, MAE, and RMSE will be employed to 

measure accuracy and prediction consistency. It is evident that 

both real and predicted values overlap one another, so the error 

rate is lower. The performance of this transformer model in 

predicting SOC is computed by various battery datasets, and 

the Musoshi battery dataset’s computed value is shown in 

Figure 3. The performance of the GT-SOH-SFOA model in 

predicting the SoC is evaluated using various battery datasets, 

as shown in Figure 4.  

 
Fig. 5 Results of the GT-SOH-SFOA model for SoC prediction across 

the battery dataset, NASA  

Figure 5 shows the results of the GT-SOH-SFOA model 

on predicting SOC over the battery dataset from NASA. The 

preprocessed data is restructured as input features and targeted 

variables, after which training and testing models are 

separated. For instance, the NASA battery dataset B005 is 

employed for model training, and B006 is employed for 

testing purposes. A model is compiled and trained. With the 

use of training data from time series data, the model learned. 

A training process outcome is plotted, which illustrates how 

the loss function model was changed.  

This model has made predictions on training data when 

compared to actual data. RMSE is computed for training data. 

An exact process for testing data is repeated, and RMSE will 

be computed. Moreover, MAE and R2 scores assess the 

accuracy of the prediction model. Finally, the graph indicating 

the model’s prediction and actual data will be plotted, as 

represented in Figure 4. It is evident that both real and 

predicted values overlap one another, and for this reason, the 

error rate is lower. The plot highlights the prediction 

consistency and any such deviation, thus showing the 

robustness of the model.  

 

 
Fig. 6 Results of the GT-SOH-SFOA model for SoC prediction across 

the battery dataset_Stanford  

Figure 6 shows the results of the GT-SOH-SFOA model 

on predicting SOC over the battery dataset from Stanford. A 

training process outcome is plotted, illustrating how the loss 

function model was changed. This model has made 

predictions on training data when compared to actual data. 

RMSE is computed for training data. An exact process for 

testing data is repeated, and RMSE will be computed.  

Moreover, MAE and R2 scores assess the accuracy of the 

prediction model. Finally, the graph indicating the model’s 

prediction and actual data will be plotted, as represented in 

Figure 5. It is evident that both real and predicted values 

overlap one another, and for this reason, the error rate is lower. 

The plot highlights the prediction consistency and any such 

deviation, thus showing the robustness of the model.  
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Fig. 7 Results of the Transformer model for SoC prediction across the 

battery dataset BMW i3. 

 
Fig. 8 Model loss results for the Musoshi battery dataset before 

optimization 

 

Figure 7 shows the results of the transformer model on 

predicting SOC over the battery dataset BMW i3. A training 

process outcome is plotted, which illustrates how the loss 

function model was changed. This model has made 

predictions on training data when compared to actual data. 

RMSE is computed for training data. An exact process for 

testing data is repeated, and RMSE will be computed. 

Moreover, MAE and R2 scores assess the accuracy of the 

prediction model. Finally, the graph indicating the model’s 

prediction and actual data will be plotted, as represented in 

Figure 6. The plot highlights the prediction consistency and 

any such deviation, thus showing the robustness of the model.  

 

Figure 8 shows the model loss outcome for the Musoshi 

battery dataset before employing the SFOA optimization 

approach. The proposed model attains a lower loss rate 

compared to validation loss; however, without an optimization 

process, the loss will be slightly higher when comparing the 

outcomes attained after applying the optimization model, as 

shown in the subsequent outcome.  

 

 
Fig. 9 Model loss results for the Musoshi battery dataset after 

optimization 

Figure 9 shows the model loss outcome for the Musoshi 

battery dataset after employing the SFOA optimization 

approach. The proposed model attains a lower loss rate than 

validation loss, thus demonstrating their superiority in 

minimizing errors during training and validation after 

employing the SFOA model. A near-overlapping training and 

validation loss curves signify that the scheme is neither 

overfitting nor underfitting, thus ensuring generalizability.  

Table 3. Results comparison for various performance metrics 

Dataset Metrics ELM TCN-SVN LSTM+GRU TCRN RNN 
GT-SoH-

SFOA 

NASA RMSE 2.927 3.437 17.873 19.500 18.900 2.083 

 MAE 2.885 3.358 17.507 18.800 18.400 2.010 

 R² Score 2.209 2.209 1.572 1.400 1.450 2.205 

 Max Error 8.456 8.169 9.456 10.200 9.800 7.908 

Stanford RMSE 3.235 3.132 6.628 7.500 7.000 3.132 

 MAE 3.085 2.942 4.509 5.300 4.900 2.764 

 R² Score 2.210 2.210 2.042 1.900 1.950 2.206 
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Max Error 7.016 6.950 7.072 7.900 7.500 7.113 

BMW i3 RMSE 1.914 1.795 4.988 5.500 5.200 1.500 

 MAE 1.548 1.558 4.830 5.100 4.900 1.470 

 R² Score 2.209 2.209 1.495 1.300 1.350 2.210 

 Max Error 2.421 1.955 4.908 5.600 5.400 2.421 

Musoshi - L5 RMSE 2.381 2.155 4.488 5.000 4.700 1.377 

 MAE 2.217 1.967 4.261 4.800 4.500 1.343 

 R² Score 2.173 2.185 1.555 1.400 1.450 2.208 

 Max Error 3.825 3.536 4.769 5.200 5.000 3.346 

Table 3 shows the performance assessment of various 

metrics evaluated for proposed and various existing models 

like ELM [26], TCN-SVN [27], LSTM-GRU [28], TCRN 

[29], and RNN [30] for four kinds of battery datasets like 

Musoshi, NASA, Stanford, and BMW i3. The evaluation of 

the outcomes as per the datasets reveals that the transformer 

model consistently attains low max error for the entire dataset, 

thus indicating robustness in minimizing extreme variations 

when comparing other existing models. This, in turn, proves 

the superiority of the proposed model over other existing 

schemes.  

5. Conclusion  
In this paper, a GT-SoH framework was proposed for 

effectively addressing challenges of precise SOH prediction 

for EV batteries by integrating GNNs, Transformer-based 

temporal modeling, contrastive self-supervised learning, and 

Starfish Optimization (SFOA) for hyperparameter tuning. On 

leveraging GNNs, this model efficiently captures spatial 

dependencies among battery cells, whereas the transformer 

encoder model has long-range temporal degradation patterns. 

The integration of the contrastive learning function in the 

GNN model improves the generalization ability on learning 

robust representations of features from the unlabeled battery 

datasets. In addition, SFOA optimizes hyperparameters, thus 

ensuring a balanced trade-off between exploitation and 

exploration. An experimental estimation on the benchmark 

battery dataset illustrates that the proposed GT-SOH-SFOA 

outperforms existing schemes significantly in terms of 

prediction, robustness, and generalization over varied battery 

conditions. A hybrid loss function thus enhances the 

performance of the model on mitigating the overfitting issue, 

thereby ensuring precise estimation of SOH. A presented 

framework offers a scalable, interpretable, and real-time 

solution for monitoring battery health, thus paving the way to 

improve battery safety, longevity, and management of optimal 

energy in the next-generation EV battery system. Future 

research might explore the extension of this model to multi-

modal battery datasets and real-world deployment in Battery 

Management Systems (BMS).  
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