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Abstract - FPGAs represent a robust platform for accelerating ML algorithms because they enable parallel computation and 

short latency while minimizing power usage. Every aspect follows computerization, and most items achieve smart functionality 

at present. The IoT technology of the present allows network connection through the use of IoT platforms for objects. IoT defines 

an innovative information system of linked devices that perform automated exchanges between equipment independent of human 

input. IoT systems require flexible platforms. The connection capability of IoT devices to external environments depends on 

Field Programmable Gate Array (FPGA) technology, which provides easy user access using low-power systems with minimal 

delays and exceptional precision. The scalability feature of FPGAs allows SoC implementation since designers can place 

various hardware clocks onto one single chip. The FPGA functions as a particular type of programmable mainframe since it 

receives indicators through its input pins before transforming them into outputs at its output pins. This evaluation explores 

recent FPGA implementation methods of ML algorithms with a specific focus on Support Vector Machines (SVMs) and their 

classification precision. The research evaluates various hardware system designs while evaluating their performance tradeoffs 

and identifies noteworthy research areas for improvement. The final part addresses directions for enhancing FPGA-based ML 

implementations. 
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1. Introduction 
The Support Vector Machine (SVM) has emerged as one 

of the most powerful supervised learning algorithms for 

classification problems across diverse domains. Its capability 

to create optimal separating hyperplanes and maximize 

classification margins makes it highly effective for 

applications such as image and face recognition, object 

detection, bioinformatics, and medical diagnostics, including 

cancer classification [1]. The success of SVM models largely 

depends on the quality and quantity of the training data, as the 

model relies on support vectors derived from this dataset to 

predict unseen samples with high precision. Compared to 

other machine learning algorithms, SVM consistently 

demonstrates superior accuracy and robustness in handling 

high-dimensional and complex datasets [2–5].  

 

Despite its strong theoretical foundation and proven 

accuracy, deploying SVMs in embedded or real-time systems 

remains a significant challenge. Conventional software-based 

implementations, though flexible, demand high computational 

resources and memory capacity, making them unsuitable for 

low-power, resource-constrained platforms such as IoT 

devices and edge computing systems. Embedded 

environments must balance stringent performance 

requirements, including low latency, energy efficiency, and 

compact design, while maintaining acceptable classification 

accuracy. Achieving this balance using general-purpose 

processors or GPUs often leads to high power consumption 

and cost, thereby restricting practical deployment [6]. To 

overcome these challenges, Field Programmable Gate Arrays 

(FPGAs) have gained prominence as reconfigurable 

computing platforms capable of accelerating computationally 

intensive tasks. Their parallel processing nature, energy 

efficiency, and design flexibility make FPGAs ideal for 

implementing machine learning algorithms like SVMs in 

embedded contexts. Empirical studies confirm that FPGA-

based implementations can outperform GPU and CPU 

solutions in terms of throughput, latency, and power 

efficiency, particularly in edge or IoT-based applications [7–

12]. 

 

However, despite the increasing number of FPGA-based 

SVM studies, a comprehensive synthesis of existing 

architectures and their comparative analysis remains limited. 

Prior reviews, including our earlier work [13], primarily 

focused on the training and classification phases up to 2015. 

Yet, the rapid evolution of reconfigurable architectures, 
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hardware design tools, and real-time data processing demands 

calls for a broader and more updated assessment. There 

remains a clear research gap in understanding.  

 Which FPGA-based architectural frameworks best meet 

embedded system constraints. 

 How do these implementations trade off between 

accuracy, speed, and hardware cost?  

 Can current FPGA technologies ensure the scalability 

required for modern data-driven applications?  

 

This study addresses these gaps by systematically 

reviewing over forty FPGA-based SVM classification 

architectures proposed between 2010 and 2019. The 

implementations are categorized into six architectural types—

parallel pipeline, systolic array, dynamic partial 

reconfiguration, multiplier-less, tool-assisted, and cascaded 

classification frameworks. The review not only evaluates their 

respective advantages and drawbacks but also highlights 

unresolved challenges, key research directions, and design 

considerations for future embedded SVM systems. In 

particular, this work seeks to answer five core questions 

related to architectural suitability, performance efficiency, 

design tradeoffs, scalability, and real-world integration of 

FPGA-based SVM classifiers. 

 

The remainder of this paper is structured as follows: 

Section 2 introduces the fundamental concepts of SVM. 

Section 3 details FPGA architectures relevant to machine 

learning implementation. Section 4 discusses the deployment 

of multiple ML algorithms across various domains. Section 5 

explores FPGA applications for IoT environments, and 

Section 8 concludes with insights and recommendations for 

future research directions. 

2. Related Work 
Machine learning has gained significant attention in 

various applications, including image processing, biomedical 

engineering, and cybersecurity. However, conventional 

computing platforms face challenges in meeting the real-time 

constraints of these applications. The computational 

requirements of ML models continue to grow as datasets 

become larger and models become more complex. GPUs and 

TPUs have traditionally been used to accelerate ML 

computations, but they often suffer from high power 

consumption and limited adaptability in embedded 

environments. FPGAs offer a promising alternative due to 

their ability to execute computations in parallel, high-energy 

efficiency, and reconfigurability.  

 

Unlike GPUs, which are optimized for general parallel 

processing, FPGAs can be customized at the hardware level to 

optimize performance for specific ML tasks. This 

customization enables efficient hardware utilization, reducing 

latency and improving throughput. Moreover, FPGAs provide 

flexibility in algorithm implementation, allowing real-time 

adaptations without requiring extensive reprogramming. 

Recent advancements in FPGA-based ML acceleration have 

demonstrated significant performance improvements in 

various domains. For example, FPGA implementations of 

deep learning models have enabled real-time inference in 

autonomous vehicles, industrial automation, and edge 

computing applications.  

 

Furthermore, FPGA-based Support Vector Machines 

(SVMs) have been successfully employed in hyperspectral 

image classification, medical diagnostics, and financial fraud 

detection. Despite these advantages, FPGA implementations 

of ML models come with their own set of challenges. The 

design complexity, need for specialized hardware expertise, 

and resource constraints of FPGAs require careful 

optimization to achieve maximum efficiency. High-Level 

Synthesis (HLS) tools have helped bridge the gap between 

software and hardware design, making FPGA development 

more accessible to ML researchers. However, there remains a 

tradeoff between accuracy, computational speed, and power 

consumption that must be addressed when implementing ML 

models on FPGAs. 

 

This paper provides an extensive review of FPGA 

implementations of ML algorithms, analyzing their efficiency, 

accuracy, and resource utilization. Systematically explore the 

architectural approaches, recent innovations, and future 

research directions that can enhance FPGA-based ML 

acceleration. By examining the strengths and limitations of 

various FPGA-based techniques, we aim to offer insights that 

can guide future advancements in this field. Rupani Ajay and 

Pandey Diskshant published their research about IoT FPGA 

implementation in the International Journal of Science 

Technology & Engineering (IJSTE) in [14]. Their article 

presents a future perspective of IoT. The authors explain IoT 

functions as a utility that requires advanced sensing elements, 

together with improved actuation capabilities and enhanced 

communication methods, and enhanced data-driven 

knowledge creation from vast amounts of data. 

 

The paper explains the capability of FPGAs to expand 

Internet of Things functionality across changed requests. Sang 

Don Kim 2015, together with Seung Eun Lee, designed an IoT 

platform with an Altera FPGA. A temperature and humidity 

sensing system can be found in the paper because the authors 

use an external sensor with an FPGA connecting through 

USART2 to display outcomes through a VGA monitor. [15]. 

This reference explores FPGA-based web service concepts 

that use a network reconfigurable FPGA for the design and 

architecture of web servers.  A. Ruta et.al [16] explore the Fast 

development of FPGA-based Service-Oriented Architecture 

(SOA) services, enabling rapid deployment of machine vision 

applications. By leveraging reconfigurable hardware, modular 

design, and parallel processing, FPGA-based SOA enhances 

performance, scalability, and flexibility. This approach 

accelerates image processing, improves real-time analysis, 
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and supports adaptive machine vision solutions across various 

industrial applications. Multiple proposed frameworks of IoT 

founded on FPGA are reviewed in [17], where authors present 

a cost-efficient approach to implement IoT components, 

including TCP/IP protocols and switch systems, and data-

gaining features. The authors proposed developing a multi-

sensor management system that incorporates data logging and 

control, as well as an Internet server and server application for 

dedicated IP facilities for validation purposes. Gasim 

Alandjani, together with other authors, presents design 

recommendations for an ECG machine implemented on an 

FPGA by combining capacitance scaling technology when 

operating at different WLAN-specific frequencies. The 

purpose is to build an energy-efficient FPGA device used for 

ECG measurement that provides fundamental heart function 

evaluations.  

 

This research uses an Xilinx Kintex-7 FPGA device for 

designing the ECG system. [18]. Comparative studies indicate 

that FPGA-based ML models outpace software-based 

approaches in speed and energy efficiency, making them ideal 

for embedded and real-time requests. Recent advancements 

include CNN acceleration on FPGAs [4], low-power neural 

networks for edge computing [5], and hybrid CPU-FPGA co-

processing for deep learning [6].  

 

3. FPGA Architecture for ML Implementation 
The article starts with a general presentation of FPGA-

based SVM implementation methods targeting performance 

requirements in real-time biomedical applications. High-

accuracy solutions through advanced computational SVM 

software implementations should be considered the best 

approach for operating embedded real-time systems. The 

flexible reconfigurable computing platform holds the answer 

to developing high. The combination offers inexpensive, 

power-efficient computing methods [19].  
 

The hardware implementation of SVM classifiers 

contains six different structural designs, which serve as 

categories. 

1. Parallel pipelined. 

2. Systolic array. 

3. Multiplier-less. 

4. Dynamic Partial Reconfiguration (DPR).  

5. Cascaded classification.     

6. Development tool-based. 
 

A number of papers have investigated different 

architectures and therefore belong to a distinct class. 

Reconfigurable computing allows for the cost-effective and 

efficient implementation of SVM algorithms, making them 

applicable to embedded systems. 

3.1. Parallel Pipelined Structure 
Various researchers have developed pipelined 

architectures that speed up SVM classification through FPGA 

implementations for parallel processing. A research team 

applied a Virtex-6 FPGA from Xilinx to create their complete 

pipelined system [6]. The configuration of 760 support vectors 

needed 768 DSP48E1 slices and 800 Block RAMs (BRAMs) 

to achieve implementation of an SVM classifier. The system 

running at 370.096 MHz frequency produced 2.89106 

classifications per second. Special design structures within a 

pipelined architecture aim to create a flexible SVM that 

effectively combines data input modifications and 

dimensional adjustments and support vector adaptability with 

kernel choice adaptability [20]. 

 

During runtime, this design enabled the dynamic selection 

among linear polynomial or Radial Basis Function (RBF) 

kernel execution. The system executed exponential 

computations through a combination of embedded 

Multiplication-Accumulation MAC units, combined with 

adder trees made from Look-Up Tables and Xilinx CORDIC 

IP cores [21]. The RBF kernel system reached an operation 

frequency of 50 MHz through the implementation of systems 

that mix single-precision floating-point number calculations 

everywhere with fixed-point mathematics for dot-products. A 

pipeline design for a universal coarse-grained reconfigurable 

architecture was proposed in the study [22] in order to run 

various machine learning tools, including SVM. 

 
SVM: Depending on an FSM model, SVM acceleration 

is achieved by the use of reconfigurable blocks, partial sum 

multipliers, partial sum adders, and partial sum subtractors. 

This one demonstrated good acceleration and a respectable 

use of hardware resources in comparison to the software 

counterparts. The pipelining and parallelism capabilities of 

FPGAs have been used in another hardware design that was 

put out in [23]. In order to perform desired computations, it 

reads from BRAMs using generation counters and a typical 

single-precision floating-point representation. With a 

maximum clock rate of 200 MHz, the architecture achieved 

97.87% simulation performance. 

 

A two-stage pipeline-based parallel architecture with the 

ability to support resource sharing for executing linear and 

nonlinear SVM groups has been proposed in the article [24]. 

Typical adder and multiplier-based inner product 

computation circuit used a 33.8 fps frame rate and 152 MHz 

frequency in scanning image sizes of 640 * 480. Three-class 

SVM-based identification systems were proposed with 

various structures [25, 26]. Fixed-point operation-based 

variable bit-width architectures were used for achieving 

maximum identification accuracy and hardware area 

provision. Also, two-class classifiers were incorporated to 

achieve an 18% improvement in the processing efficiency of 

inner-product operations. [27] employed a more effective 

two-pipelined-stage architecture that achieved a system 

quantity of more than 100 MHz, more than 21.2 edges per 

additional, with more than 90% accuracy. Reference [28] 

used a pipelined FPGA architecture to implement a low-
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complexity SVM procedure on the basis of posterior 

probability. Sigmoid function and addition, multiplication, 

and division were managed by LUTs in the architecture. 

Experimental evidence utilized was that there was no loss of 

recognition rate, and computational complexity was reduced 

while computing compared to the native shape's floating-

point algorithm, and hence, such an algorithm can be 

reorganized for real-time. Implementations of a human 

epidermal classifier using FPGA and GPU were compared 

[11, 29].  

 

Pipelined architectures were completely implemented in 

the FPGA implementation, and the execution on the GPU 

consumed more power. The implication was that the FPGA 

implementation was faster compared to the GPU 

implementation when the number of pixels in the images 

processed was small. But the GPU handled large pixel totals 

better at the expense of power consumption, thus not 

appropriate to implement in embedded systems. 

3.2. Systolic Array Styles in SVMs 
Systolic array architecture uses parallel operating 

methods combined with pipelining protocols to achieve 

faster computation times. A system that consists of a 

distributed array of processor elements creates efficient 

applications to handle data communication and memory 

operations [13].  

 

The application of systolic array architecture for matrix 

multiplication applications uses FPGAs in parallel. The 

Systolic Chain of Processing Elements (SCOPE) technology 

was introduced by Kyrkou and Theoharides [30] in order to 

provide a generic systolic array for SVM object 

classification in integrated image and video systems. A 

scalable, flexible, and adaptive parallel architecture was 

developed following the initial concept according to [31].  

 

The hardware components used in the tested 

applications managed to operate at respective frame rates of 

40, 46, and 122 fps without compromising detection 

accuracy levels. Figure 1 shows that a Systolic Array is a 

parallel computing architecture primarily used for efficient 

implementation of matrix operations, especially in deep 

learning, signal processing, and scientific computing. It 

consists of a grid of Processing Elements (PEs) that compute 

in a synchronized, rhythmic fashion – much like the beating 

of a heart, hence the term Systolic. The diagram shows a 3×3 

Systolic Array, where: 

 Each block labelled PE is a Processing Element. 

 Inputs A0, A1, A2... (typically matrix A columns) are 

fed vertically. 

 Inputs B0, B1, B2... (typically matrix B rows) are fed 

horizontally. 

 Data flows rightward and downward, performing partial 

computations at each PE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Systolic array architectures 

 

3.3. The Multiplier-Less Approach 

A basic design of hardware implements computationally 

expensive multipliers to achieve greater simplicity. The 

authors in [32] developed a hardware-friendly kernel with 

the purpose of delivering outstanding classification results 

without Gaussian kernels. The research described in [33] 

presents a low hardware complexity design through its 

hardware-friendly kernel for tasks involving regression and 

categorization. The system increases processing speed by 

applying parallel shifting and addition instead of multipliers 

through the CORDIC algorithm, along with processing in 

parallel. Simulation tests on the 30 MHz 4-class classifier 

with a 4 % mistake rate used 75 % of the device logic for 

execution. Each binary classification used approximately 

thirty to forty support vectors while achieving zero percent 

floating-point error.  

 

The multiplier-less kernel presents an alternate 

hardware implementation as described in [34], which 

operates comparably to the earlier hardware-friendly kernel 

described in [32]. It applies direct shifters to perform the 

multiplications and employs the CORDIC algorithm in the 

exponentiation case. Although it is not based on an FPGA-

based implementation discussed within channel equalization 

tests, its new kernel achieves the same classification 

performance as the base radial kernel. Accelerated SVM has 

been discussed based on hardware implementation in [35].  

 

The architecture is constructed from three kernel values 

computation subcircuits and employs an iterative algorithm, 

shifters, and adders. Six times lower computation time than 

other existing CORDIC circuit implementations [36] was 

needed for the developed scheme, and it used very few 

hardware resources. [37] discusses hardware SVM 

implementation on board with the hardware-friendly kernel. 

The Sum of Absolute Differences (SAD) Calculator is one 

of the six modules that make up the system. With just about 

167 slices in the target FPGA chips, the system uses very 
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little power and is hence appropriate for onboard picture 

reduction and analysis. Accordingly, to save processing 

time, 1-norm vector calculations are performed using SAD-

based tree building in [38]. The study investigates SVC input 

strictures by using fixed-point mathematics and achieves 

high regression accuracy with mean square error values 

under 0.004.  

 

The paper proposes a parallel pipelined systolic array 

design with no multiplier for implementing the kernel [39].  

Hardware complexity and energy consumption decrease 

with the shift and add operations implemented. Three 

different classifiers in the article reduce their electric 

consumption below the vector product kernel level. Research 

establishes hardware-friendly seeds and multiplier-less 

approaches as effective methods to develop SVM 

algorithms, which result in better FPGA-based 

implementation performance and reduced resource usage 

and system complexity. 

 

3.4. SVM Buildings Based on DPR Technology 

The modern FPGA technology incorporates DPR as a 

feature to enhance its hardware resource efficiency [40]. 

DPR enables the creation of computing systems with 

randomly interchangeable FPGA components that continue 

to operate other system components without disruption. 

Through the mechanism enabled by DPR, the run-time 

reconfiguration feature lets users share physical resources for 

executing different design modules at runtime [41].  

 

The paper [42] demonstrates an SVM architecture built 

from four blocks through DPR and systolic array design 

implementation that includes Kernel Computation, Memory, 

Decision Making blocks, and Accumulation. A maximum of 

85 times faster processing emerges from the same GPP 

operated on Xilinx ML 403 FPGA boards.  

 

The application of FPGAs proves they work effectively 

with SVM-based bioinformatics analytical systems. The 

research paper [43] demonstrates methods for Xilinx partial 

reconfiguration, which decreases power consumption. The 

systolic array implementation technique simplifies design 

complexity, enhances memory retrieval efficiency, and 

enables better data infrastructure. Package reconfiguration 

leads to a 3–5% power consumption decrease that lowers 

system usage from 2.042 W to 2.021 W.  

 

Hussain et al. [44] constructed two systolic array-based 

models that utilize two different dataset sizes according to 

their prior research [42]. The authors develop two DPR 

designs of SVM classifiers that operate with approximately 

49x and 61x faster speeds than GPP implementations. The 

implementation of DPR allows execution systems to achieve 

substantial reductions in reconfiguration duration as opposed 

to traditional non-DPR deployments.  

 

Hussain et al. introduce in their extended research an 

FPGA implementation of a metaclassifier architecture with 

SVM/KNN, which features adaptability. The 

implementation design allows switching between different 

parameters of SVM and KNN classifiers dynamically. The 

DPR metaclassifier employs fewer hardware resources to 

deliver reconfiguration times eight times faster than standard 

DPR use. Studies show FPGA implementations benefit 

significantly from DPR and systolic array approaches to 

implement SVM because they achieve order-of-magnitude 

speedups, together with reduced power consumption, 

optimized memory usage, and dynamic classifier switching 

capabilities. Figure 2 shows that Dynamic Partial 

Reconfiguration (DPR) architectures are a feature of modern 

FPGAs that allow the modification of a portion of the FPGA 

logic (called a Reconfigurable Region) while the rest of the 

FPGA (Static Region) continues to operate without 

interruption. 

 Static FPGA Region: The part of the FPGA that runs 

continuously and is not affected by reconfiguration. 

 PR (Partial Reconfiguration) Region: The 

reconfigurable part that can be dynamically modified by 

loading different Reconfigurable Modules (RMs). 

 RM1, RM2, RM3: Different Reconfigurable Modules, 

each implementing a different functionality. 

 Arrow (↔) between RMs and PR: 

Indicates that these modules can be loaded dynamically 

into the PR region one at a time during operation. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig.2 DPR architectures 
 

3.5. Structures based on Cascade Classification System 

To accomplish quicker organization, a cascaded 

classification architecture consists of many classification 

layers that operate sequentially Figure 3. A Cascaded 

Classifier is a sequential classification model where multiple 

classifiers are arranged in a series (cascade). Each classifier in 

the sequence is responsible for filtering out negative (non-
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relevant) samples early, allowing only potential positive 

(relevant) samples to pass through to the next stage. This 

design is especially efficient and fast, reducing computational 

overhead by stopping the classification process as soon as a 

sample fails any stage. The diagram illustrates a 3-stage 

cascaded classifier system. 

 

Stage 1: Classifier 1 

 The input sample is passed to Classifier 1. 

 If the sample fails, it is immediately rejected (no further 

processing). 

 If it passes, it moves to the next stage. 

 

Stage 2: Classifier 2 

 Similar logic: a failed sample is rejected early, saving 

computation. 

 Only those who pass go further. 

 

Stage 3: Classifier 3 

 The most refined classifier evaluates the final few 

candidates. 

 Only if the sample passes all classifiers is it declared as 

positive. 

 

Figure  3 reference in order to operate on a Virtex 5 

FPGA, [45] built a hardware model for SVM cascade 

dispensation and reduction hardware. The multiplier-less 

methodology, which transforms shift operations into 

multiplication operations, is used in this method. The cascaded 

hybrid architecture combines sequential execution with 

parallelism through its usage of simple pipelined PEs that 

perform basic operations and follow up with an SVM classifier 

of advanced order. Parallel SVM performs recognition of 640 

× 480 images at a rate of about 70 fps on average and shows 

five times higher speed than the single version parallel SVM. 

The implemented hardware reduction technique cuts down 

traditional logic capitals by 43% while reducing power by 

20% while causing only a 0.7% accuracy decrease in an 84% 

classification success rate.  

 

A parallel FPGA-based SVM classifier using cascaded 

design and pipelined multipliers and calculator tree for kernel 

calculation was reported in [46]. The information path 

contained precision sections for fixed-point along with single-

floating-point values. The heterogeneous architecture features 

became an opportunity to develop a new cascade classifier 

system that followed design principles suitable for hardware 

applications.  

 

The proposed system used two interconnected classifiers, 

where a basic low-precision unit was combined with an area-

expensive higher-precision component. Continuous data 

processing on heterogeneous deployment yielded seven times 

better performance than CPU-based systems while surpassing 

the performance of FPGA and GPU-based systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Fig. 3 Cascaded classifier architectures 
 

The researchers in [47] expanded the problem by adding 

FPGA reconfigurability features that allowed. Higher 

performance was enabled through the implemented 

improvement. The heterogeneous FPGA classifier used 

customized word sizes for the dataset dynamic ranges, which 

enabled both parallelization optimization and circuitry 

customization. The present work [45] benefits from feature 

extraction capabilities. According to [48, 49] to advance 

detection accuracy in its proposed architectural design. The 

design emphasizes cascaded SVMs' effective hardware 

implementation, which drives clever embedded devices that 

perform real-time task classification.  

 

The response evaluation process utilizes Neural 

Networks-based Classifiers, which decreases the number of 

examples used ahead of the final complex stage, thus 

improving classification speed. High-resolution image 

classification running at real-time reaches an 80% detection 

rate through a Spartan 6 FPGA platform while operating at 5 

times the speed of a parallel SVM classifier operating 

individually. The approach using FPGA hardware reduction 

results in lower custom-logic resource consumption and lower 

maximum power levels that reach 25% and 20% respectively, 

as compared to traditional hardware design.  

 

The classification accuracy exhibits minimal 

deterioration while the reduction reaches 0.7% points. This 

paper details the design of a Zynq SoC hybrid platform for 

melanoma clinical image classification through a cascade 

SVM classifier obtained from an extensible multicore 

architecture [50]. The digital system employs 34% of FPGA 

resources and operates at 2 watts of power since it demands 

minimal energy and system resources. The classifier functions 
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at high efficiency (1.8 μ s) with 97.9% classification accuracy, 

which makes it suitable as an essential part of a cost-effective 

portable medical scanner for diagnosing skin cancer. 

 

3.6. Software Evolving SVMs Utilizing Design Tools 

Most authors have not used the innovative software 

project tools that reduce complicated hardware design 

workloads and reduce development time while departing from 

standard HDL programming. The reviewed papers utilize the 

Generator Xilinx System alongside High-level Synthesis 

(HLS) and Synopsys Signal Processing Workbench (SPW) for 

new software design and development purposes. According to 

[51], Xilinx System Generator by Xilinx enables researchers 

to design similar hardware configurations for Xilinx FPGAs.  

 

The platform enables users to create system models using 

MATLAB/Simulink for high-performance automatic design 

generation. The process of quantization utilizes serial and 

parallel methods for implementing fixed-point numbers. The 

paper describes how Vivado HLS integrates an enhanced 

approximations SVM accelerator that detects arrhythmia from 

ECG signals. The HLS-SVM classifier achieved 96.7% 

accuracy in identifying arrhythmia in ECG signals using 15 x 

acceleration speed.  

 

The designers used HLS [52] to build an Energy-Efficient 

Embedded Binarized SVM (eBSVM) system, which operates 

on binarized weight and input data [53]. The solution used 

3.6x more efficient energy than CPU and GPU executions and 

finished 45x faster with a minor 1.6x drop in accuracy. All the 

SVM configurations investigated for analysis appear in Table 

1 for complete reference.  

 

4. FPGA Implementation of ML Algorithms for 

Various Applications 
Machine learning is a rapidly increasing technique, 

which not only creates machines that are intelligent but also 

machines that can work independently of any command. The 

machine learning techniques are employed in various 

applications such as health care, smart cities, and 

automobiles. 

 

4.1. Health Care 
In medical environments, FPGAs may be used to provide 

real-time processing to clinical decision support systems, 

telemedicine equipment, predictive health monitoring, and 

wearable medical technology. High-speed and accurate 

processing of gigabytes of information is required in these 

applications, and FPGAs provide the brawn and low latency 

required for their accomplishment. Real-time 

Electrocardiogram (ECG) classification is probably the most 

significant use of machine learning-based FPGA technology 

in medical environments. Analysis of ECG signals through 

ECG classification determines the identification of various 

heart disorders, ranging from arrhythmias to heart diseases.

  
Table 1. A Summary of different architectures for SVM 

Reference 
Hardware 

implementation 

SVM 

Type 
Kernel FPGA Platform Application 

[6] 

[20] 

[22] 

[23] 

[24] 

[25,26] 

[28] 

[11, 29] 

Parallel pipelined 

Parallel pipelined  

Parallel pipelined 

Parallel pipelined  

Parallel pipelined  

Parallel pipelined 

Parallel pipelined  

Parallel pipelined  

 

Binary  

Binary  

Binary  

Multiclass  

Binary  

Multiclass 

Multiclass  

Binary 

 

RBF Polynomial 

Sigmoid  

Linear RBF 

Polynomial  

RBF Polynomial  

Linear  

RBF 

Linear  

Linear Sigmoid 

Gaussian 

Virtex-6 

Xilinx ML505 

Xilinx Virtex-7  

Xilinx ML510 

(Virtex-5 FXT)  

------- 

Altera Stratix-IV  

Xilinx Virtex-5 

 Xilinx Virtex-

5/Xilinx  

 

 –  

Pedestrian detection 

UCI datasets   

Facial expression 

classification   

------ 
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Real-time ECG classification works through FPGAs and 

Deep Neural Networks (DNNs), which shows accuracy in 

real-time ECG signal processing [54]. Real-time ECG analysis 

represents one of the medical applications that utilizes FPGA-

based machine learning technologies.  

 

ECG analysis includes signal processing to discover 

whether epilepsy, along with brain tumors and other 

neurological conditions, exists in patients. FPGAs assist in 

processing real-time ECG through DNNs that function 

effectively in analyzing EEG signals in real-time.  

 

4.2. Agricultural 
Water scarcity, excessive rainfall, plastic items, and 

artificial fertilizer substances have polluted the agricultural 

lands across different regions. Farmers receive support from 

researchers who apply machine learning methods to various 

agricultural aspects. The primary applications of machine 

learning algorithms focus on four main aspects of agriculture, 

starting from plant surveillance through soil evaluation to 

detecting or predicting in agricultural operations and 

monitoring livestock. 

 

4.3. Smart Cities  
Real-time decisions in Autonomous driving solutions 

make use of DNN implementations on FPGAs to analyze 

sensor data in automotive applications. The combination of 

object detection, tracking, and lane detection defines FPGAs 

as the dependable choice for autonomous driving applications 

since they execute complex computations in real time with 

quick response times. The ability for FPGAs to implement 

custom functionality makes them perfect choices to run 

autonomous driving systems at their required performance 

levels.  

 

The power usage of FPGAs stands out against 

conventional computing systems because of their superior 

efficiency rate. Autonomous vehicles need powerful systems, 

yet their limited power consumption must enable long battery 

life, making this an important issue in autonomous driving 

technology [56, 57]. The integration of FPGAs to conduct ML 

functions in autonomous vehicles produces several drawbacks 

despite their positive aspects. Prototyping requires developers 

to optimize machine learning algorithms for FPGAs, 

guarantee system reliability, and test methods to secure the 

system [58]. 

 

5. FPGA For IoT 
FPGA stands as a semiconductor device made up of 

permanent transistors that amount to thousands or millions 

to execute logical computing commands. Several FPGA-

based systems include computers, automobiles, radars, 

missiles, and aircraft. Xilinx, together with Altera and Quick 

Logic, represents some of the companies that manufacture 

FPGA kits [59]. 

 
The application of FPGAs in Internet of Things systems 

brings several advantages, which combine hardware and 

software capabilities through flexibility and reliability, while 

providing cost reduction, quick market entry, and stable 

maintenance benefits. Microsemi Power Meters presents 

most of the FPGA-based IOT system designs in various 

types of devices [60].  
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FPGAs have both harmonized hardware components 

with software elements and deliver three significant 

advantages and five supplementary benefits, which are: 

1. Flexibility, 

2. Reliability, 

3. Low cost, 

4. Rapid time-to-market and 

5. Long-term maintenance. 

 

The observation demonstrates that an FPGA serves as 

the optimal hardware choice for implementing IoT 

applications. The company, previously known as Altera but 

now called Intel FPGA, provides various FPGA-based IoT 

systems. Altera website [61] delivers machine vision 

systems together with car automotive systems, healthcare 

system infrastructure, smart grid control, and smart city 

infrastructure and building automation. The manufacturers 

gained multiple advantages from Altera, which include: 

1. Cost reduction by avoiding ASICs' lengthy. 

2. A quicker time to market by bypassing the drawn-out 

and dangerous development procedure. 

3. Combining many ASSP functionalities within FPGAs 

reduces costs and adds uniqueness. 

4. Design time and field programmability. 

5. Reusing a single hardware platform for several systems 

with a single original design. 

6. Making use of a number of industry protocols and 

standards. 

An FPGA for IoT is also available from Xilinx.  All of the 

test designs are available on the Xilinx website. 

1. The Xilinx Spartan-7 FPGA kit is used to provide single-

axis motor control. 

2. Zynq-7000s are used in the design of multi-axis motor 

control. Every single one of them is adjustable. 

3. Zynq-7000s All Accessible Soc or Xilinx Kinetex-7 

FPGA may be used to control motors. 

5.1. Advantages of FPGA for IoT 
An FPGA has a grid of reconfigurable gate arrays that 

offer a logic motherboard. Once set up in the logic arrays, the 

gates are interconnected so they form a hardware application 

of software code. Increasingly more facilities are allowing 

entrenched control system developers to design and alter 

FPGA-based systems faster and easier.  

 

FPGAs are not computers; FPGAs utilize dedicated 

hardware for processing logic and don't need an operating 

system. Processing pathways are parallel, which eliminates 

the need to employ the same resources for different processes. 

FPGAs' reconfigurability gives designers unlimited freedom. 

Christian Fritz, product manager for National Instruments 

motion control and mechatronics, said: “While in the past 

there were special Printed Circuit Board (PCB) designs that 

were taken from special hardware resources, FPGA-based 

systems can essentially rewire the internal circuits in 

attempting to offer configuration after control system 

installation to the field”.  

 

FPGA-based platforms may be used for IoT prototypes 

for two purposes:  Depending on the intended usage, a 

designer may first choose to employ an FPGA-based stage or 

target an FPGA to create a fully customized SoC request for 

which the FPGA serves as a stand-in. This allows for real-time 

functional and timing verification in SoC prototyping. The 

second issue is that early low-cost platform design 

development cannot be safely done with an FPGA-based 

prototype; instead, design space exploration, component 

selection, modelling, design entry, and verification must all be 

automated. Furthermore, because it is an end-of-life SoC 

prototype, the performance, power, and size that are attained 

may not be ideal. There should be a guarantee that all design 

stages are made automated in such a way that a prototype is 

created quickly and effectively, and it is easy to project the 

prototype to a finished SoC design [14]. 

 

5.2. Ransomware Detection 
Ransomware is typically injected into a victim's system 

when they open a malicious file or click on a compromised 

link, often delivered through phishing emails or infected web 

pages. Once executed, the ransomware begins encrypting 

accessible files on the system, rendering them unusable and 

initiating the incident.  

 

When it operates, the ransomware initiates an encryption 

process for system data. The ransomware intrusion method 

determines whether it has encryption keys and host 

information when connecting with the Control and Command 

(C & C) server. The system screen displays a ransom note 

which shows both security restrictions about the system locks 

and details about how to make payment. Data loss becomes a 

risk if the victim ignores the payment deadline set by attackers. 

After payment of ransom, the victim receives a decryption key 

to restore data, but the attacker might not deliver the data as 

promised [60]. 

 

5.3. Malware Detection 
With the aid of malware software, attackers execute 

multiple unlawful operations, including data theft, denial-of-

service assaults, and root access procurement. The number of 

dangerous malware threats grows exponentially today. 

Reported by McAfee threats report [61] from March 2016 

shows that the previous quarter of 2015 saw 42 million 

malware samples total, with new threats occurring at a pace of 

316 per minute. Modern computational devices within mobile 

technology and IoT distributions create an immediate need to 

enhance malware detection methods. The removal of harmful 

programs through Anti-virus (AV) software faces multiple 

substantial disadvantages.  

 

The main limitation of traditional AV software emerges 

from its static signature-based detection method, which 
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identifies malware. Such a detection mechanism searches for 

suspicious byte patterns in the program. Hackers program 

malware to fake the signature of innocent software, thus 

tricking AV software into providing protection. AV software 

remains vulnerable to identical security exploits like other 

programs, thus putting the protection at potential risk. Security 

researchers have directed their focus toward hardware-based 

security solutions in recent times. Demme et al. [62] 

demonstrated how supervised ML classification of Hardware 

Performance Counters (HPC) traces from both malware and 

benign programs achieved highly accurate running application 

identification. 

 

Hardware detectors enable fast online identification and 

efficient resource utilization, as well as remaining inaccessible 

to malicious infections, which qualifies them as threat 

mitigation tools against recent cyber risks. A set of design 

issues prevents the use of hardware-based detectors for HPC 

monitoring because they require online HPC observation 

capability with low misdiagnosis rates and minimal power 

usage during processor implementation, along with prompt 

HPC reading and classifier processing. 

6. Computing Process 
The computing process serves as our starting point since 

it directs both the usage of optimization methods, evaluation 

methods, and the selection of target devices. 

6.1. Reasons for Dominance of Inference 
6.1.1. Low Latency Requirements 

The response time and speed of inference constitute a 

critical requirement in specified application domains, 

including real-time image recognition. The ability of FPGAs 

to be customized and process multiple operations 

simultaneously helps satisfy low-latency application needs. 

The implementation of ML in real-time systems requires the 

resolution of major latency and performance impediments. 

Safety in autonomous driving and video surveillance directly 

depends on latency, which should be below one millisecond 

according to [63-68]. The growth of the Internet of Things 

(IoT) right alongside edge computing [69-74] imposes the 

need to analyze massive sensor data through resource-limited 

devices effectively. The real-time performance needs of 

applications must increase because they must analyze 

enormous data streams [68, 75, 76]. Academic fields have 

proposed different hardware acceleration models because 

FPGAs have distinct customizability and parallel computing 

abilities. 

6.1.2. Efficiency Considerations 

The design of systems with low power consumption 

stands as a paramount consideration for edge computing and 

other applications that especially need it in IoT and mobile 

devices. Battery-operated IoT devices need to achieve 

maximum energy efficiency [68, 71-76]. FPGAs deliver 

energy-efficient solutions that benefit mobile AI applications 

[77, 78] as well as those mentioned in [79-82]. The fixed 

inference tasks performed by FPGAs achieve superior energy 

efficiency through multiple operational mechanisms. A 

custom-made hardware system reduces power waste through 

design optimizations that target specific computational 

operations [79-82]. The inference operates with deterministic 

data flow, which enables efficient data transmission 

procedures [83-86] as a complement to this stability. 

6.2. Challenges and Potential of Training Acceleration 

Research 
6.2.1. Data Processing Complexity 

The data processing needs encounter multiple obstacles 

when deploying FPGA accelerators intended for training 

purposes in AI applications. The three main obstacles that 

face FPGA accelerators in AI training include the 

computational intensity, data handling complexities, and 

training across multiple machines. Large-scale dataset 

processing puts leading-edge stress on FPGAs to maintain 

their computational applications and memory storage 

capacity. The major limitation of FPGAs' memory 

capabilities ensues from the restricted on-board memory 

capacity that reduces data processing throughput [87-90]. The 

off-chip memory communication bottlenecks intensify data 

transmission's performance difficulty, leading to processing 

inefficiency during AI training operations.  

 

6.2.2. The Hardware Systems 

Hardware systems' design experiences problems when 

executing complex algorithms, including backpropagation. 

The backpropagation algorithm displays complexity during 

the operating process because it contains intricate steps. The 

gradient calculation process requires attached complexity 

because it includes mathematical procedures with complex 

steps at various propagation levels [91]. Complexity increases 

as a result of multi-level computational structures, with a 

special emphasis on executing them for large models. 

Stochastic Gradient Descent (SGD), together with its variants, 

introduces operational difficulties when dealing with random 

elements and automatic learning rate adjustments [91]. 

 

6.2.3. The Fundamental Role of Matrix Operations 

Research papers use matrix multiplication in small 

numbers, yet this essential ML operation substantially affects 

performance despite its minimal distribution (6%). Matrix 

operations demonstrate automatic performance improvement 

potential for the majority of models because they undergo 

optimization. Deep learning, along with neural network 

operations, runs primarily on matrix multiplication as its 

fundamental computational base. The performance speed of 

sophisticated neural networks faces a key limitation from 

matrix multiplication because these models require complex 

computational operations. The FPGA platform reaches 

optimized matrix multiplication performance gains at 32-bit 

floating point precision through its parallel processing ability.  
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The current architectures address various classification 

and detection tasks, with the exception of detecting objects 

other than the ones specified. The implementation of SVM 

operates on distinct data sets through specified approaches or 

functions within the system without explicit application-

based attempts. The fundamental objective of implementing 

SVM on an FPGA revolves around executing complex 

mathematical operations of kernel-based computations.  

 

Among the research works, researchers have applied 

multiple kernel types, leading to a total of 23 linear kernel-

based studies and 12 multinomial kernel implementations, 

alongside 4 sigmoid kernel implementations. Out of the 

literature that is currently accessible, 15 studies use the 

Gaussian RBF kernel that is derived from the complex 

exponential function. Five published papers use the suggested 

hardware-friendly kernel as an RBF substitute for the 

rudimentary FPGA/hardware implementation. The authors 

proposed an alternative kernel to operate as an opposing 

hardware-friendly kernel, but developers have not applied it 

to FPGA hardware or implemented it using this kernel design 

[20].  

 

The implementations of hardware occur on previous 

FPGA versions with conventional design approaches, even 

though using contemporary growth tools. Each researcher 

adopts Xilinx series-7 technology for their work [51-53]. One 

of the studies is notable in that it uses the mixture character of 

the newest Zynq-7 SoC platform and exploits the newest 

Ultra-Fast HLS design practice ology [51, 52] with a follow-

up new study on design space exploration using SVM 

implementation in [42].  

 

In addition to the typical FPGA parallel architecture, the 

authors also employed several hardware methods to speed up 

their SVM applications, which are categorized into six 

categories in this paper. 30 papers employ parallel pipelined 

standard architecture (category A) through general-purpose. 

11 designs employ multiplier-less structure (category D), 

highly interesting towards a multiplier-free design with 

decreased hardware complexity. 6 designs make use of 

parallel pipelined systolic array architecture (category B) with 

high interest for minimizing the complexity of multiplication. 

There are 6 implementations based on the common FPGA-

based DPR feature (category C) to enable improved design 

and hardware outcomes [42, 44, 53] (3 papers) who visualize 

heterogeneous architecture and hybrid architecture realized 

by various approaches of categories A, C, and D.  

 

Scientists from a different research group [45, 46] 

contributed a cascade SVM design to literature which 

executes integrated hardware strategies from categories A, C 

and E. A number of studies examined how bit-width precision 

with fixed-point number formatting affects classification 

accuracy rates during hardware implementation [29, 31, 39, 

45, 51, 53].  

The goal of these implementations is to minimize 

hardware space requirements without reducing accuracy 

performance. Afifi et al. [51, 52] examined the relationship 

between implementation speed and hardware resources 

consumption and area for several hardware architectures 

(HLS optimization directives). They later conducted research 

to explore design alternatives through similar analysis in [56, 

57]. The implementation of multiple acceleration techniques 

together with hardware simplification strategies led to 

reduced accuracy levels in specific classification evaluations. 

 

7.  Conclusion and Future Directions 
The paper provides a distinct survey investigation that 

demonstrates different hardware structures employed for 

implementing SVM classifiers on FPGAs. The survey study 

includes detailed analytical comparisons as well as 

identification of leading research groups, and it observes 

research limitations and challenges alongside gaps. This 

research establishes its primary goal as developing a superior 

solution to handle the tradeoff between efficient classification 

results and fulfilling embedded system demands for superior 

performance with reduced area usage, along with minimum 

power consumption and cost. The identified research 

directions provide guidelines to hardware designers who need 

to solve the issues highlighted throughout this review study:  

 A hardware structure needs optimization to break the 

tradeoff between cost-efficient, low-cost, and high-

performance real-time embedded classification. 

 Several existing methods can function together 

efficiently in order to achieve optimized results. The 

online classification accuracy rate of hardware systems 

requires enhancement through new hardware-based 

solutions. The hardware-suitable kernel requires 

improvements to maintain its classification accuracy 

level. 

 Experts should discover practical approaches that 

decrease the need for memory and hardware resources 

during the processing of large applications. 

 Very few implementations report power consumption 

results, making it challenging to achieve a low-power 

embedded system.   

 The DPR feature encompasses extensive potential to 

deliver better speed alongside power efficiency, area 

efficiency, and adaptability when it is tapped 

effectively. 

 The scientific community requires additional research 

effort to implement multiclass classifiers and nonlinear 

kernel-based classifiers.  

 Engineers need to conduct research into evolvable 

hardware techniques to develop adaptive classification 

systems. 

 A thorough investigation of memory management and 

flow control systems will lead to optimal data 

transmission capabilities within the classification 

system. 
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 Researchers need to investigate multicore systems to 

function either as an ensemble of multiclass classifiers 

or cascaded classification classifiers by implementing 

voting/controller mechanisms. 

 

New generation FPGA devices/SoCs and contemporary 

development tools, including HLS, should be leveraged in 

hardware implementations to achieve highly efficient designs 

with optimized results. 
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