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Abstract - FPGAs represent a robust platform for accelerating ML algorithms because they enable parallel computation and
short latency while minimizing power usage. Every aspect follows computerization, and most items achieve smart functionality
at present. The loT technology of the present allows network connection through the use of 10T platforms for objects. 10T defines
an innovative information system of linked devices that perform automated exchanges between equipment independent of human
input. 10T systems require flexible platforms. The connection capability of 10T devices to external environments depends on
Field Programmable Gate Array (FPGA) technology, which provides easy user access using low-power systems with minimal
delays and exceptional precision. The scalability feature of FPGAs allows SoC implementation since designers can place
various hardware clocks onto one single chip. The FPGA functions as a particular type of programmable mainframe since it
receives indicators through its input pins before transforming them into outputs at its output pins. This evaluation explores
recent FPGA implementation methods of ML algorithms with a specific focus on Support Vector Machines (SVMs) and their
classification precision. The research evaluates various hardware system designs while evaluating their performance tradeoffs
and identifies noteworthy research areas for improvement. The final part addresses directions for enhancing FPGA-based ML
implementations.
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1. Introduction environments must balance stringent  performance

The Support Vector Machine (SVM) has emerged as one  requirements, including low latency, energy efficiency, and
of the most powerful supervised learning algorithms for ~ compact design, while maintaining acceptable classification
classification problems across diverse domains. Its capability ~ accuracy. Achieving this balance using general-purpose
to create optimal separating hyperplanes and maximize  Processors or GPUs often leads to high power consumption
classification margins makes it highly effective for ~ and cost, thereby restricting practical deployment [6]. To
applications such as image and face recognition, object ~ overcome these challenges, Field Programmable Gate Arrays
detection, bioinformatics, and medical diagnostics, including ~ (FPGAs) have gained prominence as reconfigurable
cancer classification [1]. The success of SVM models largely ~ computing platforms capable of accelerating computationally
depends on the quality and quantity of the training data, asthe ~ intensive tasks. Their parallel processing nature, energy
model relies on support vectors derived from this dataset to ~ €fficiency, and design flexibility make FPGAs ideal for
predict unseen samples with high precision. Compared to  implementing machine learning algorithms like SVMs in
other machine |earning a|gorithm5, SVM Consistenﬂy embedded contexts. Empirical studies confirm that FPGA-
demonstrates superior accuracy and robustness in handling ~ based implementations can outperform GPU and CPU
high-dimensional and complex datasets [2-5]. solutions in terms of throughput, latency, and power

efficiency, particularly in edge or loT-based applications [7—

Despite its strong theoretical foundation and proven 12].
accuracy, deploying SVMs in embedded or real-time systems
remains a significant challenge. Conventional software-based However, despite the increasing number of FPGA-based
implementations, though flexible, demand high computational ~ SVM studies, a comprehensive synthesis of existing
resources and memory capacity, making them unsuitable for architectures and their comparative analysis remains limited.
low-power, resource-constrained platforms such as loT  Prior reviews, including our earlier work [13], primarily

devices and edge computing systems. Embedded ~ focused on the training and classification phases up to 2015.
Yet, the rapid evolution of reconfigurable architectures,
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hardware design tools, and real-time data processing demands
calls for a broader and more updated assessment. There
remains a clear research gap in understanding.

Which FPGA-based architectural frameworks best meet
embedded system constraints.

How do these implementations trade off between
accuracy, speed, and hardware cost?

Can current FPGA technologies ensure the scalability
required for modern data-driven applications?

This study addresses these gaps by systematically
reviewing over forty FPGA-based SVM classification
architectures proposed between 2010 and 2019. The
implementations are categorized into six architectural types—
parallel  pipeline, systolic array, dynamic partial
reconfiguration, multiplier-less, tool-assisted, and cascaded
classification frameworks. The review not only evaluates their
respective advantages and drawbacks but also highlights
unresolved challenges, key research directions, and design
considerations for future embedded SVM systems. In
particular, this work seeks to answer five core questions
related to architectural suitability, performance efficiency,
design tradeoffs, scalability, and real-world integration of
FPGA-based SVM classifiers.

The remainder of this paper is structured as follows:
Section 2 introduces the fundamental concepts of SVM.
Section 3 details FPGA architectures relevant to machine
learning implementation. Section 4 discusses the deployment
of multiple ML algorithms across various domains. Section 5
explores FPGA applications for loT environments, and
Section 8 concludes with insights and recommendations for
future research directions.

2. Related Work

Machine learning has gained significant attention in
various applications, including image processing, biomedical
engineering, and cybersecurity. However, conventional
computing platforms face challenges in meeting the real-time
constraints of these applications. The computational
requirements of ML models continue to grow as datasets
become larger and models become more complex. GPUs and
TPUs have traditionally been used to accelerate ML
computations, but they often suffer from high power
consumption and limited adaptability in embedded
environments. FPGAs offer a promising alternative due to
their ability to execute computations in parallel, high-energy
efficiency, and reconfigurability.

Unlike GPUs, which are optimized for general parallel
processing, FPGAs can be customized at the hardware level to
optimize performance for specific ML tasks. This
customization enables efficient hardware utilization, reducing
latency and improving throughput. Moreover, FPGAS provide
flexibility in algorithm implementation, allowing real-time
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adaptations without requiring extensive reprogramming.
Recent advancements in FPGA-based ML acceleration have
demonstrated significant performance improvements in
various domains. For example, FPGA implementations of
deep learning models have enabled real-time inference in
autonomous vehicles, industrial automation, and edge
computing applications.

Furthermore, FPGA-based Support Vector Machines
(SVMs) have been successfully employed in hyperspectral
image classification, medical diagnostics, and financial fraud
detection. Despite these advantages, FPGA implementations
of ML models come with their own set of challenges. The
design complexity, need for specialized hardware expertise,
and resource constraints of FPGAs require careful
optimization to achieve maximum efficiency. High-Level
Synthesis (HLS) tools have helped bridge the gap between
software and hardware design, making FPGA development
more accessible to ML researchers. However, there remains a
tradeoff between accuracy, computational speed, and power
consumption that must be addressed when implementing ML
models on FPGASs.

This paper provides an extensive review of FPGA
implementations of ML algorithms, analyzing their efficiency,
accuracy, and resource utilization. Systematically explore the
architectural approaches, recent innovations, and future
research directions that can enhance FPGA-based ML
acceleration. By examining the strengths and limitations of
various FPGA-based techniques, we aim to offer insights that
can guide future advancements in this field. Rupani Ajay and
Pandey Diskshant published their research about 10T FPGA
implementation in the International Journal of Science
Technology & Engineering (IJSTE) in [14]. Their article
presents a future perspective of 10T. The authors explain loT
functions as a utility that requires advanced sensing elements,
together with improved actuation capabilities and enhanced
communication methods, and enhanced data-driven
knowledge creation from vast amounts of data.

The paper explains the capability of FPGAs to expand
Internet of Things functionality across changed requests. Sang
Don Kim 2015, together with Seung Eun Lee, designed an loT
platform with an Altera FPGA. A temperature and humidity
sensing system can be found in the paper because the authors
use an external sensor with an FPGA connecting through
USART? to display outcomes through a VGA monitor. [15].
This reference explores FPGA-based web service concepts
that use a network reconfigurable FPGA for the design and
architecture of web servers. A. Ruta et.al [16] explore the Fast
development of FPGA-based Service-Oriented Architecture
(SOA) services, enabling rapid deployment of machine vision
applications. By leveraging reconfigurable hardware, modular
design, and parallel processing, FPGA-based SOA enhances
performance, scalability, and flexibility. This approach
accelerates image processing, improves real-time analysis,
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and supports adaptive machine vision solutions across various
industrial applications. Multiple proposed frameworks of 1oT
founded on FPGA are reviewed in [17], where authors present
a cost-efficient approach to implement 10T components,
including TCP/IP protocols and switch systems, and data-
gaining features. The authors proposed developing a multi-
sensor management system that incorporates data logging and
control, as well as an Internet server and server application for
dedicated IP facilities for wvalidation purposes. Gasim
Alandjani, together with other authors, presents design
recommendations for an ECG machine implemented on an
FPGA by combining capacitance scaling technology when
operating at different WLAN-specific frequencies. The
purpose is to build an energy-efficient FPGA device used for
ECG measurement that provides fundamental heart function
evaluations.

This research uses an Xilinx Kintex-7 FPGA device for
designing the ECG system. [18]. Comparative studies indicate
that FPGA-based ML models outpace software-based
approaches in speed and energy efficiency, making them ideal
for embedded and real-time requests. Recent advancements
include CNN acceleration on FPGAs [4], low-power neural
networks for edge computing [5], and hybrid CPU-FPGA co-
processing for deep learning [6].

3. FPGA Architecture for ML Implementation

The article starts with a general presentation of FPGA-
based SVM implementation methods targeting performance
requirements in real-time biomedical applications. High-
accuracy solutions through advanced computational SVM
software implementations should be considered the best
approach for operating embedded real-time systems. The
flexible reconfigurable computing platform holds the answer
to developing high. The combination offers inexpensive,
power-efficient computing methods [19].

The hardware implementation of SVM classifiers
contains six different structural designs, which serve as
categories.

1. Parallel pipelined.

2. Systolic array.

3. Multiplier-less.

4. Dynamic Partial Reconfiguration (DPR).
5. Cascaded classification.

6. Development tool-based.

A number of papers have investigated different
architectures and therefore belong to a distinct class.
Reconfigurable computing allows for the cost-effective and
efficient implementation of SVM algorithms, making them
applicable to embedded systems.

3.1. Parallel Pipelined Structure
Various  researchers have developed pipelined
architectures that speed up SVM classification through FPGA

198

implementations for parallel processing. A research team
applied a Virtex-6 FPGA from Xilinx to create their complete
pipelined system [6]. The configuration of 760 support vectors
needed 768 DSP48EL1 slices and 800 Block RAMs (BRAMS)
to achieve implementation of an SVM classifier. The system
running at 370.096 MHz frequency produced 2.89106
classifications per second. Special design structures within a
pipelined architecture aim to create a flexible SVM that
effectively combines data input modifications and
dimensional adjustments and support vector adaptability with
kernel choice adaptability [20].

During runtime, this design enabled the dynamic selection
among linear polynomial or Radial Basis Function (RBF)
kernel execution. The system executed exponential
computations through a combination of embedded
Multiplication-Accumulation MAC units, combined with
adder trees made from Look-Up Tables and Xilinx CORDIC
IP cores [21]. The RBF kernel system reached an operation
frequency of 50 MHz through the implementation of systems
that mix single-precision floating-point number calculations
everywhere with fixed-point mathematics for dot-products. A
pipeline design for a universal coarse-grained reconfigurable
architecture was proposed in the study [22] in order to run
various machine learning tools, including SVM.

SVM: Depending on an FSM model, SVM acceleration
is achieved by the use of reconfigurable blocks, partial sum
multipliers, partial sum adders, and partial sum subtractors.
This one demonstrated good acceleration and a respectable
use of hardware resources in comparison to the software
counterparts. The pipelining and parallelism capabilities of
FPGAs have been used in another hardware design that was
put out in [23]. In order to perform desired computations, it
reads from BRAMS using generation counters and a typical
single-precision  floating-point representation. With a
maximum clock rate of 200 MHz, the architecture achieved
97.87% simulation performance.

A two-stage pipeline-based parallel architecture with the
ability to support resource sharing for executing linear and
nonlinear SVM groups has been proposed in the article [24].
Typical adder and multiplier-based inner product
computation circuit used a 33.8 fps frame rate and 152 MHz
frequency in scanning image sizes of 640 * 480. Three-class
SVM-based identification systems were proposed with
various structures [25, 26]. Fixed-point operation-based
variable bit-width architectures were used for achieving
maximum identification accuracy and hardware area
provision. Also, two-class classifiers were incorporated to
achieve an 18% improvement in the processing efficiency of
inner-product operations. [27] employed a more effective
two-pipelined-stage architecture that achieved a system
quantity of more than 100 MHz, more than 21.2 edges per
additional, with more than 90% accuracy. Reference [28]
used a pipelined FPGA architecture to implement a low-
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complexity SVM procedure on the basis of posterior
probability. Sigmoid function and addition, multiplication,
and division were managed by LUTSs in the architecture.
Experimental evidence utilized was that there was no loss of
recognition rate, and computational complexity was reduced
while computing compared to the native shape's floating-
point algorithm, and hence, such an algorithm can be
reorganized for real-time. Implementations of a human
epidermal classifier using FPGA and GPU were compared
[11, 29].

Pipelined architectures were completely implemented in
the FPGA implementation, and the execution on the GPU
consumed more power. The implication was that the FPGA
implementation was faster compared to the GPU
implementation when the number of pixels in the images
processed was small. But the GPU handled large pixel totals
better at the expense of power consumption, thus not
appropriate to implement in embedded systems.

3.2. Systolic Array Styles in SVMs

Systolic array architecture uses parallel operating
methods combined with pipelining protocols to achieve
faster computation times. A system that consists of a
distributed array of processor elements creates efficient
applications to handle data communication and memory
operations [13].

The application of systolic array architecture for matrix
multiplication applications uses FPGAs in parallel. The
Systolic Chain of Processing Elements (SCOPE) technology
was introduced by Kyrkou and Theoharides [30] in order to
provide a generic systolic array for SVM object
classification in integrated image and video systems. A
scalable, flexible, and adaptive parallel architecture was
developed following the initial concept according to [31].

The hardware components used in the tested
applications managed to operate at respective frame rates of
40, 46, and 122 fps without compromising detection
accuracy levels. Figure 1 shows that a Systolic Array is a
parallel computing architecture primarily used for efficient
implementation of matrix operations, especially in deep
learning, signal processing, and scientific computing. It
consists of a grid of Processing Elements (PEs) that compute
in a synchronized, rhythmic fashion — much like the beating
of a heart, hence the term Systolic. The diagram shows a 3x3
Systolic Array, where:

e Each block labelled PE is a Processing Element.

e Inputs AO, Al, A2... (typically matrix A columns) are
fed vertically.

e Inputs BO, B1, B2... (typically matrix B rows) are fed
horizontally.

o Data flows rightward and downward, performing partial
computations at each PE.
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Fig. 1 Systolic array architectures

3.3. The Multiplier-Less Approach

A basic design of hardware implements computationally
expensive multipliers to achieve greater simplicity. The
authors in [32] developed a hardware-friendly kernel with
the purpose of delivering outstanding classification results
without Gaussian kernels. The research described in [33]
presents a low hardware complexity design through its
hardware-friendly kernel for tasks involving regression and
categorization. The system increases processing speed by
applying parallel shifting and addition instead of multipliers
through the CORDIC algorithm, along with processing in
parallel. Simulation tests on the 30 MHz 4-class classifier
with a 4 % mistake rate used 75 % of the device logic for
execution. Each binary classification used approximately
thirty to forty support vectors while achieving zero percent
floating-point error.

The multiplier-less kernel presents an alternate
hardware implementation as described in [34], which
operates comparably to the earlier hardware-friendly kernel
described in [32]. It applies direct shifters to perform the
multiplications and employs the CORDIC algorithm in the
exponentiation case. Although it is not based on an FPGA-
based implementation discussed within channel equalization
tests, its new kernel achieves the same classification
performance as the base radial kernel. Accelerated SVM has
been discussed based on hardware implementation in [35].

The architecture is constructed from three kernel values
computation subcircuits and employs an iterative algorithm,
shifters, and adders. Six times lower computation time than
other existing CORDIC circuit implementations [36] was
needed for the developed scheme, and it used very few
hardware resources. [37] discusses hardware SVM
implementation on board with the hardware-friendly kernel.
The Sum of Absolute Differences (SAD) Calculator is one
of the six modules that make up the system. With just about
167 slices in the target FPGA chips, the system uses very
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little power and is hence appropriate for onboard picture
reduction and analysis. Accordingly, to save processing
time, 1-norm vector calculations are performed using SAD-
based tree building in [38]. The study investigates SVC input
strictures by using fixed-point mathematics and achieves
high regression accuracy with mean square error values
under 0.004.

The paper proposes a parallel pipelined systolic array
design with no multiplier for implementing the kernel [39].
Hardware complexity and energy consumption decrease
with the shift and add operations implemented. Three
different classifiers in the article reduce their electric
consumption below the vector product kernel level. Research
establishes hardware-friendly seeds and multiplier-less
approaches as effective methods to develop SVM
algorithms,  which result in better FPGA-based
implementation performance and reduced resource usage
and system complexity.

3.4. SVM Buildings Based on DPR Technology

The modern FPGA technology incorporates DPR as a
feature to enhance its hardware resource efficiency [40].
DPR enables the creation of computing systems with
randomly interchangeable FPGA components that continue
to operate other system components without disruption.
Through the mechanism enabled by DPR, the run-time
reconfiguration feature lets users share physical resources for
executing different design modules at runtime [41].

The paper [42] demonstrates an SVM architecture built
from four blocks through DPR and systolic array design
implementation that includes Kernel Computation, Memory,
Decision Making blocks, and Accumulation. A maximum of
85 times faster processing emerges from the same GPP
operated on Xilinx ML 403 FPGA boards.

The application of FPGAs proves they work effectively
with SVM-based bioinformatics analytical systems. The
research paper [43] demonstrates methods for Xilinx partial
reconfiguration, which decreases power consumption. The
systolic array implementation technique simplifies design
complexity, enhances memory retrieval efficiency, and
enables better data infrastructure. Package reconfiguration
leads to a 3-5% power consumption decrease that lowers
system usage from 2.042 W to 2.021 W.

Hussain et al. [44] constructed two systolic array-based
models that utilize two different dataset sizes according to
their prior research [42]. The authors develop two DPR
designs of SVM classifiers that operate with approximately
49x and 61x faster speeds than GPP implementations. The
implementation of DPR allows execution systems to achieve
substantial reductions in reconfiguration duration as opposed
to traditional non-DPR deployments.
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Hussain et al. introduce in their extended research an
FPGA implementation of a metaclassifier architecture with
SVM/KNN,  which  features  adaptability. The
implementation design allows switching between different
parameters of SVM and KNN classifiers dynamically. The
DPR metaclassifier employs fewer hardware resources to
deliver reconfiguration times eight times faster than standard
DPR use. Studies show FPGA implementations benefit
significantly from DPR and systolic array approaches to
implement SVM because they achieve order-of-magnitude
speedups, together with reduced power consumption,
optimized memory usage, and dynamic classifier switching
capabilities. Figure 2 shows that Dynamic Partial
Reconfiguration (DPR) architectures are a feature of modern
FPGAs that allow the modification of a portion of the FPGA
logic (called a Reconfigurable Region) while the rest of the
FPGA (Static Region) continues to operate without
interruption.

e Static FPGA Region: The part of the FPGA that runs
continuously and is not affected by reconfiguration.

e PR  (Partial  Reconfiguration)  Region: The
reconfigurable part that can be dynamically modified by
loading different Reconfigurable Modules (RMs).

e RM1, RM2, RM3: Different Reconfigurable Modules,
each implementing a different functionality.

o Arrow () between RMs and PR:
Indicates that these modules can be loaded dynamically
into the PR region one at a time during operation.

Static
FPGA

Fig.2 DPR architectures

3.5. Structures based on Cascade Classification System

To accomplish quicker organization, a cascaded
classification architecture consists of many classification
layers that operate sequentially Figure 3. A Cascaded
Classifier is a sequential classification model where multiple
classifiers are arranged in a series (cascade). Each classifier in
the sequence is responsible for filtering out negative (non-
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relevant) samples early, allowing only potential positive
(relevant) samples to pass through to the next stage. This
design is especially efficient and fast, reducing computational
overhead by stopping the classification process as soon as a
sample fails any stage. The diagram illustrates a 3-stage
cascaded classifier system.

Stage 1: Classifier 1

The input sample is passed to Classifier 1.

If the sample fails, it is immediately rejected (no further
processing).

If it passes, it moves to the next stage.

Stage 2: Classifier 2

Similar logic: a failed sample is rejected early, saving
computation.

Only those who pass go further.

Stage 3: Classifier 3

The most refined classifier evaluates the final few
candidates.

Only if the sample passes all classifiers is it declared as
positive.

Figure 3 reference in order to operate on a Virtex 5
FPGA, [45] built a hardware model for SVM cascade
dispensation and reduction hardware. The multiplier-less
methodology, which transforms shift operations into
multiplication operations, is used in this method. The cascaded
hybrid architecture combines sequential execution with
parallelism through its usage of simple pipelined PEs that
perform basic operations and follow up with an SVM classifier
of advanced order. Parallel SVM performs recognition of 640
x 480 images at a rate of about 70 fps on average and shows
five times higher speed than the single version parallel SVM.
The implemented hardware reduction technique cuts down
traditional logic capitals by 43% while reducing power by
20% while causing only a 0.7% accuracy decrease in an 84%
classification success rate.

A parallel FPGA-based SVM classifier using cascaded
design and pipelined multipliers and calculator tree for kernel
calculation was reported in [46]. The information path
contained precision sections for fixed-point along with single-
floating-point values. The heterogeneous architecture features
became an opportunity to develop a new cascade classifier
system that followed design principles suitable for hardware
applications.

The proposed system used two interconnected classifiers,
where a basic low-precision unit was combined with an area-
expensive higher-precision component. Continuous data
processing on heterogeneous deployment yielded seven times
better performance than CPU-based systems while surpassing
the performance of FPGA and GPU-based systems.
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Selected input

|

Classifier 1 Fail
Classifier 2 Fail
Classifier 3 Fail

!

Final Decision: positive

Fig. 3 Cascaded classifier architectures

The researchers in [47] expanded the problem by adding
FPGA reconfigurability features that allowed. Higher
performance was enabled through the implemented
improvement. The heterogeneous FPGA classifier used
customized word sizes for the dataset dynamic ranges, which
enabled both parallelization optimization and circuitry
customization. The present work [45] benefits from feature
extraction capabilities. According to [48, 49] to advance
detection accuracy in its proposed architectural design. The
design emphasizes cascaded SVMs' effective hardware
implementation, which drives clever embedded devices that
perform real-time task classification.

The response evaluation process utilizes Neural
Networks-based Classifiers, which decreases the number of
examples used ahead of the final complex stage, thus
improving classification speed. High-resolution image
classification running at real-time reaches an 80% detection
rate through a Spartan 6 FPGA platform while operating at 5
times the speed of a parallel SVM classifier operating
individually. The approach using FPGA hardware reduction
results in lower custom-logic resource consumption and lower
maximum power levels that reach 25% and 20% respectively,
as compared to traditional hardware design.

The classification  accuracy  exhibits  minimal
deterioration while the reduction reaches 0.7% points. This
paper details the design of a Zynq SoC hybrid platform for
melanoma clinical image classification through a cascade
SVM classifier obtained from an extensible multicore
architecture [50]. The digital system employs 34% of FPGA
resources and operates at 2 watts of power since it demands
minimal energy and system resources. The classifier functions
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at high efficiency (1.8 p s) with 97.9% classification accuracy,
which makes it suitable as an essential part of a cost-effective
portable medical scanner for diagnosing skin cancer.

3.6. Software Evolving SVMs Utilizing Design Tools

Most authors have not used the innovative software
project tools that reduce complicated hardware design
workloads and reduce development time while departing from
standard HDL programming. The reviewed papers utilize the
Generator Xilinx System alongside High-level Synthesis
(HLS) and Synopsys Signal Processing Workbench (SPW) for
new software design and development purposes. According to
[51], Xilinx System Generator by Xilinx enables researchers
to design similar hardware configurations for Xilinx FPGAs.

The platform enables users to create system models using
MATLAB/Simulink for high-performance automatic design
generation. The process of quantization utilizes serial and
parallel methods for implementing fixed-point numbers. The
paper describes how Vivado HLS integrates an enhanced
approximations SVM accelerator that detects arrhythmia from
ECG signals. The HLS-SVM classifier achieved 96.7%
accuracy in identifying arrhythmia in ECG signals using 15 x
acceleration speed.

The designers used HLS [52] to build an Energy-Efficient
Embedded Binarized SVM (eBSVM) system, which operates
on binarized weight and input data [53]. The solution used

3.6x more efficient energy than CPU and GPU executions and
finished 45x faster with a minor 1.6x drop in accuracy. All the
SVM configurations investigated for analysis appear in Table
1 for complete reference.

4. FPGA Implementation of ML Algorithms for

Various Applications

Machine learning is a rapidly increasing technique,
which not only creates machines that are intelligent but also
machines that can work independently of any command. The
machine learning techniques are employed in various
applications such as health care, smart cities, and
automobiles.

4.1. Health Care

In medical environments, FPGAs may be used to provide
real-time processing to clinical decision support systems,
telemedicine equipment, predictive health monitoring, and
wearable medical technology. High-speed and accurate
processing of gigabytes of information is required in these
applications, and FPGAs provide the brawn and low latency
required  for  their  accomplishment. Real-time
Electrocardiogram (ECG) classification is probably the most
significant use of machine learning-based FPGA technology
in medical environments. Analysis of ECG signals through
ECG classification determines the identification of various
heart disorders, ranging from arrhythmias to heart diseases.

Table 1. A Summary of different architectures for SVM

Reference . Hardware_ SVM Kernel FPGA Platform Application
implementation Type
Parallel pipelined Binary RBF Polynomial Virtex-6 -
[6] Parallel pipelined Binary Sigmoid Xilinx ML505 Pedestrian detection
[20] Parallel pipelined Binary Linear RBF Xilinx Virtex-7 UCI datasets
[22] Parallel pipelined Multiclass | Polynomial Xilinx ML510 Facial expression
[23] Parallel pipelined Binary RBF Polynomial (Virtex-5 FXT) classification
[24] Parallel p!pel!ned Mult!class Linear | ---—-- I R _
[25,26] Parallel p!pel!ned Multlclass R_BF A!tgra St_ratlx-IV Colorectal cancer Qe_tectlon
[2’8] Parallel pipelined Binary Linear Xilinx Virtex-5 Language Recognition
[11, 29] Linear Sigmoid Xilinx Virtex- Skin classification
' Gaussian 5/Xilinx
Systolic array
[31] Multiplier-less Binary RBF Polynomial Spartan 6 Xilinx Object detection
[33] Multiplier-less Multiclass | Hardware-friendly | ML505 Cyclone Il Image recognition
Multiplier-less Multiclass | Digital kernel (EP2C20) UCI datasets
[34] - - :
[35] Multiplier-less Binary Hardware-friendly | — -
Multiplier-less/Systolic Binary Hardware-friendly | — - Satellite onboard
[38] . - | ial ili . o
[39] array B_mary/mu L!near polynomial | Xilinx Virtex- F}sher s iris dataset
[42, 44, 53] DPR Iti Linear 5/Spartan-3E biomedical data
T Binary Xilinx Virtex-7 classification
Xilinx ML403
[45] Cascaded classification Binary Linear polynomial | Xilinx ML505 Face detection
[46,47] Cascaded classification Binary Gaussian Altera’s Stratix 111 MNIST dataset
[48] Cascaded classification Binary polynomial Xilinx Spartan-6 Face detection
[49] Cascaded classification Binary sigmoid Linear Xilinx Spartan-6 Face detection/pedestrian
[50] Cascaded Binary polynomial Xilinx Zyng-7 detection
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classification/Development Linear polynomial Melanoma detection
tool Linear
based on development tools | Multiclass | Linear Gaussian Xilinx Virtex-4 Persian handwritten digits
based on development tools | Binary RBF Xilinx Zyng-7000 dataset
Development tool-based Multiclass | Linear Xilinx Virtex-5 Ultrasonic flaw detection
[51] Development tool-based Multiclass | RBF Xilinx Virtex-11 Female facial expression
[54] Development tool-based Binary Linear Xilinx Zyng-7ZC702 | classification
[52] based on development tools | Binary RBF Zed board Zynq Multi-speaker phoneme
[53] based on development tools | Binary RBF Zyng-7 ZC706 recognition
[54,57] Multiclass | Linear Xilinx ML605 Melanoma detection
[56] ECG-based arrhythmia
[54] detection
[55] ECG-based arrhythmia
detection
MNIST and CIFAR-10
datasets

Real-time ECG classification works through FPGAs and
Deep Neural Networks (DNNs), which shows accuracy in
real-time ECG signal processing [54]. Real-time ECG analysis
represents one of the medical applications that utilizes FPGA-
based machine learning technologies.

ECG analysis includes signal processing to discover
whether epilepsy, along with brain tumors and other
neurological conditions, exists in patients. FPGAs assist in
processing real-time ECG through DNNs that function
effectively in analyzing EEG signals in real-time.

4.2. Agricultural

Water scarcity, excessive rainfall, plastic items, and
artificial fertilizer substances have polluted the agricultural
lands across different regions. Farmers receive support from
researchers who apply machine learning methods to various
agricultural aspects. The primary applications of machine
learning algorithms focus on four main aspects of agriculture,
starting from plant surveillance through soil evaluation to
detecting or predicting in agricultural operations and
monitoring livestock.

4.3. Smart Cities

Real-time decisions in Autonomous driving solutions
make use of DNN implementations on FPGAs to analyze
sensor data in automotive applications. The combination of
object detection, tracking, and lane detection defines FPGAs
as the dependable choice for autonomous driving applications
since they execute complex computations in real time with
quick response times. The ability for FPGAs to implement
custom functionality makes them perfect choices to run
autonomous driving systems at their required performance
levels.

The power usage of FPGAs stands out against
conventional computing systems because of their superior
efficiency rate. Autonomous vehicles need powerful systems,
yet their limited power consumption must enable long battery
life, making this an important issue in autonomous driving
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technology [56, 57]. The integration of FPGASs to conduct ML
functions in autonomous vehicles produces several drawbacks
despite their positive aspects. Prototyping requires developers
to optimize machine learning algorithms for FPGAs,
guarantee system reliability, and test methods to secure the
system [58].

5. FPGA For loT

FPGA stands as a semiconductor device made up of
permanent transistors that amount to thousands or millions
to execute logical computing commands. Several FPGA-
based systems include computers, automobiles, radars,
missiles, and aircraft. Xilinx, together with Altera and Quick
Logic, represents some of the companies that manufacture
FPGA kits [59].

The application of FPGAs in Internet of Things systems
brings several advantages, which combine hardware and
software capabilities through flexibility and reliability, while
providing cost reduction, quick market entry, and stable
maintenance benefits. Microsemi Power Meters presents
most of the FPGA-based 10T system designs in various
types of devices [60].

Smart Mobility
Indi;::;:em e — Smart Grid
T lnter-net of Sn/;:ﬂgome
and Breeding Thin gs A
(IoT) - -
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Public Safety
Industrial and
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FPGAs have both harmonized hardware components
with software elements and deliver three significant
advantages and five supplementary benefits, which are:
Flexibility,

Reliability,

Low cost,

Rapid time-to-market and
Long-term maintenance.

akrwpdpE

The observation demonstrates that an FPGA serves as
the optimal hardware choice for implementing loT
applications. The company, previously known as Altera but
now called Intel FPGA, provides various FPGA-based loT
systems. Altera website [61] delivers machine vision
systems together with car automotive systems, healthcare
system infrastructure, smart grid control, and smart city
infrastructure and building automation. The manufacturers
gained multiple advantages from Altera, which include:

1. Cost reduction by avoiding ASICs' lengthy.

2. A quicker time to market by bypassing the drawn-out
and dangerous development procedure.

3. Combining many ASSP functionalities within FPGAs
reduces costs and adds uniqueness.

4. Design time and field programmability.

5. Reusing a single hardware platform for several systems
with a single original design.

6. Making use of a number of industry protocols and
standards.

An FPGA for loT is also available from Xilinx. All of the

test designs are available on the Xilinx website.

1. The Xilinx Spartan-7 FPGA kit is used to provide single-
axis motor control.

2. Zyng-7000s are used in the design of multi-axis motor
control. Every single one of them is adjustable.

3. Zyng-7000s All Accessible Soc or Xilinx Kinetex-7
FPGA may be used to control motors.

5.1. Advantages of FPGA for loT

An FPGA has a grid of reconfigurable gate arrays that
offer a logic motherboard. Once set up in the logic arrays, the
gates are interconnected so they form a hardware application
of software code. Increasingly more facilities are allowing
entrenched control system developers to design and alter
FPGA-based systems faster and easier.

FPGAs are not computers; FPGAs utilize dedicated
hardware for processing logic and don't need an operating
system. Processing pathways are parallel, which eliminates
the need to employ the same resources for different processes.
FPGAS' reconfigurability gives designers unlimited freedom.
Christian Fritz, product manager for National Instruments
motion control and mechatronics, said: “While in the past
there were special Printed Circuit Board (PCB) designs that
were taken from special hardware resources, FPGA-based
systems can essentially rewire the internal circuits in

attempting to offer configuration after control system
installation to the field”.

FPGA-based platforms may be used for 10T prototypes
for two purposes: Depending on the intended usage, a
designer may first choose to employ an FPGA-based stage or
target an FPGA to create a fully customized SoC request for
which the FPGA serves as a stand-in. This allows for real-time
functional and timing verification in SoC prototyping. The
second issue is that early low-cost platform design
development cannot be safely done with an FPGA-based
prototype; instead, design space exploration, component
selection, modelling, design entry, and verification must all be
automated. Furthermore, because it is an end-of-life SoC
prototype, the performance, power, and size that are attained
may not be ideal. There should be a guarantee that all design
stages are made automated in such a way that a prototype is
created quickly and effectively, and it is easy to project the
prototype to a finished SoC design [14].

5.2. Ransomware Detection

Ransomware is typically injected into a victim's system
when they open a malicious file or click on a compromised
link, often delivered through phishing emails or infected web
pages. Once executed, the ransomware begins encrypting
accessible files on the system, rendering them unusable and
initiating the incident.

When it operates, the ransomware initiates an encryption
process for system data. The ransomware intrusion method
determines whether it has encryption keys and host
information when connecting with the Control and Command
(C & C) server. The system screen displays a ransom note
which shows both security restrictions about the system locks
and details about how to make payment. Data loss becomes a
risk if the victim ignores the payment deadline set by attackers.
After payment of ransom, the victim receives a decryption key
to restore data, but the attacker might not deliver the data as
promised [60].

5.3. Malware Detection

With the aid of malware software, attackers execute
multiple unlawful operations, including data theft, denial-of-
service assaults, and root access procurement. The number of
dangerous malware threats grows exponentially today.
Reported by McAfee threats report [61] from March 2016
shows that the previous quarter of 2015 saw 42 million
malware samples total, with new threats occurring at a pace of
316 per minute. Modern computational devices within mobile
technology and 1oT distributions create an immediate need to
enhance malware detection methods. The removal of harmful
programs through Anti-virus (AV) software faces multiple
substantial disadvantages.

The main limitation of traditional AV software emerges
from its static signature-based detection method, which
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identifies malware. Such a detection mechanism searches for
suspicious byte patterns in the program. Hackers program
malware to fake the signature of innocent software, thus
tricking AV software into providing protection. AV software
remains vulnerable to identical security exploits like other
programs, thus putting the protection at potential risk. Security
researchers have directed their focus toward hardware-based
security solutions in recent times. Demme et al. [62]
demonstrated how supervised ML classification of Hardware
Performance Counters (HPC) traces from both malware and
benign programs achieved highly accurate running application
identification.

Hardware detectors enable fast online identification and
efficient resource utilization, as well as remaining inaccessible
to malicious infections, which qualifies them as threat
mitigation tools against recent cyber risks. A set of design
issues prevents the use of hardware-based detectors for HPC
monitoring because they require online HPC observation
capability with low misdiagnosis rates and minimal power
usage during processor implementation, along with prompt
HPC reading and classifier processing.

6. Computing Process

The computing process serves as our starting point since
it directs both the usage of optimization methods, evaluation
methods, and the selection of target devices.

6.1. Reasons for Dominance of Inference
6.1.1. Low Latency Requirements

The response time and speed of inference constitute a
critical requirement in specified application domains,
including real-time image recognition. The ability of FPGAs
to be customized and process multiple operations
simultaneously helps satisfy low-latency application needs.
The implementation of ML in real-time systems requires the
resolution of major latency and performance impediments.
Safety in autonomous driving and video surveillance directly
depends on latency, which should be below one millisecond
according to [63-68]. The growth of the Internet of Things
(10T) right alongside edge computing [69-74] imposes the
need to analyze massive sensor data through resource-limited
devices effectively. The real-time performance needs of
applications must increase because they must analyze
enormous data streams [68, 75, 76]. Academic fields have
proposed different hardware acceleration models because
FPGAs have distinct customizability and parallel computing
abilities.

6.1.2. Efficiency Considerations

The design of systems with low power consumption
stands as a paramount consideration for edge computing and
other applications that especially need it in 10T and mobile
devices. Battery-operated 10T devices need to achieve
maximum energy efficiency [68, 71-76]. FPGAs deliver
energy-efficient solutions that benefit mobile Al applications
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[77, 78] as well as those mentioned in [79-82]. The fixed
inference tasks performed by FPGAs achieve superior energy
efficiency through multiple operational mechanisms. A
custom-made hardware system reduces power waste through
design optimizations that target specific computational
operations [79-82]. The inference operates with deterministic
data flow, which enables efficient data transmission
procedures [83-86] as a complement to this stability.

6.2. Challenges and Potential of Training Acceleration
Research
6.2.1. Data Processing Complexity

The data processing needs encounter multiple obstacles
when deploying FPGA accelerators intended for training
purposes in Al applications. The three main obstacles that
face FPGA accelerators in Al training include the
computational intensity, data handling complexities, and
training across multiple machines. Large-scale dataset
processing puts leading-edge stress on FPGAs to maintain
their computational applications and memory storage
capacity. The major limitation of FPGAs' memory
capabilities ensues from the restricted on-board memory
capacity that reduces data processing throughput [87-90]. The
off-chip memory communication bottlenecks intensify data
transmission's performance difficulty, leading to processing
inefficiency during Al training operations.

6.2.2. The Hardware Systems

Hardware systems' design experiences problems when
executing complex algorithms, including backpropagation.
The backpropagation algorithm displays complexity during
the operating process because it contains intricate steps. The
gradient calculation process requires attached complexity
because it includes mathematical procedures with complex
steps at various propagation levels [91]. Complexity increases
as a result of multi-level computational structures, with a
special emphasis on executing them for large models.
Stochastic Gradient Descent (SGD), together with its variants,
introduces operational difficulties when dealing with random
elements and automatic learning rate adjustments [91].

6.2.3. The Fundamental Role of Matrix Operations

Research papers use matrix multiplication in small
numbers, yet this essential ML operation substantially affects
performance despite its minimal distribution (6%). Matrix
operations demonstrate automatic performance improvement
potential for the majority of models because they undergo
optimization. Deep learning, along with neural network
operations, runs primarily on matrix multiplication as its
fundamental computational base. The performance speed of
sophisticated neural networks faces a key limitation from
matrix multiplication because these models require complex
computational operations. The FPGA platform reaches
optimized matrix multiplication performance gains at 32-bit
floating point precision through its parallel processing ability.
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The current architectures address various classification
and detection tasks, with the exception of detecting objects
other than the ones specified. The implementation of SVM
operates on distinct data sets through specified approaches or
functions within the system without explicit application-
based attempts. The fundamental objective of implementing
SVM on an FPGA revolves around executing complex
mathematical operations of kernel-based computations.

Among the research works, researchers have applied
multiple kernel types, leading to a total of 23 linear kernel-
based studies and 12 multinomial kernel implementations,
alongside 4 sigmoid kernel implementations. Out of the
literature that is currently accessible, 15 studies use the
Gaussian RBF kernel that is derived from the complex
exponential function. Five published papers use the suggested
hardware-friendly kernel as an RBF substitute for the
rudimentary FPGA/hardware implementation. The authors
proposed an alternative kernel to operate as an opposing
hardware-friendly kernel, but developers have not applied it
to FPGA hardware or implemented it using this kernel design
[20].

The implementations of hardware occur on previous
FPGA versions with conventional design approaches, even
though using contemporary growth tools. Each researcher
adopts Xilinx series-7 technology for their work [51-53]. One
of the studies is notable in that it uses the mixture character of
the newest Zyng-7 SoC platform and exploits the newest
Ultra-Fast HLS design practice ology [51, 52] with a follow-
up new study on design space exploration using SVM
implementation in [42].

In addition to the typical FPGA parallel architecture, the
authors also employed several hardware methods to speed up
their SVM applications, which are categorized into six
categories in this paper. 30 papers employ parallel pipelined
standard architecture (category A) through general-purpose.
11 designs employ multiplier-less structure (category D),
highly interesting towards a multiplier-free design with
decreased hardware complexity. 6 designs make use of
parallel pipelined systolic array architecture (category B) with
high interest for minimizing the complexity of multiplication.
There are 6 implementations based on the common FPGA-
based DPR feature (category C) to enable improved design
and hardware outcomes [42, 44, 53] (3 papers) who visualize
heterogeneous architecture and hybrid architecture realized
by various approaches of categories A, C, and D.

Scientists from a different research group [45, 46]
contributed a cascade SVM design to literature which
executes integrated hardware strategies from categories A, C
and E. A number of studies examined how bit-width precision
with fixed-point number formatting affects classification
accuracy rates during hardware implementation [29, 31, 39,
45,51, 53].
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The goal of these implementations is to minimize
hardware space requirements without reducing accuracy
performance. Afifi et al. [51, 52] examined the relationship
between implementation speed and hardware resources
consumption and area for several hardware architectures
(HLS optimization directives). They later conducted research
to explore design alternatives through similar analysis in [56,
57]. The implementation of multiple acceleration techniques
together with hardware simplification strategies led to
reduced accuracy levels in specific classification evaluations.

7. Conclusion and Future Directions

The paper provides a distinct survey investigation that
demonstrates different hardware structures employed for
implementing SVM classifiers on FPGAs. The survey study
includes detailed analytical comparisons as well as
identification of leading research groups, and it observes
research limitations and challenges alongside gaps. This
research establishes its primary goal as developing a superior
solution to handle the tradeoff between efficient classification
results and fulfilling embedded system demands for superior
performance with reduced area usage, along with minimum
power consumption and cost. The identified research
directions provide guidelines to hardware designers who need
to solve the issues highlighted throughout this review study:
A hardware structure needs optimization to break the
tradeoff between cost-efficient, low-cost, and high-
performance real-time embedded classification.
Several existing methods can function together
efficiently in order to achieve optimized results. The
online classification accuracy rate of hardware systems
requires enhancement through new hardware-based
solutions. The hardware-suitable kernel requires
improvements to maintain its classification accuracy
level.
Experts should discover practical approaches that
decrease the need for memory and hardware resources
during the processing of large applications.
Very few implementations report power consumption
results, making it challenging to achieve a low-power
embedded system.
The DPR feature encompasses extensive potential to
deliver better speed alongside power efficiency, area
efficiency, and adaptability when it is tapped
effectively.
The scientific community requires additional research
effort to implement multiclass classifiers and nonlinear
kernel-based classifiers.
Engineers need to conduct research into evolvable
hardware techniques to develop adaptive classification
systems.
A thorough investigation of memory management and
flow control systems will lead to optimal data
transmission capabilities within the classification
system.
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e Researchers need to investigate multicore systems to New generation FPGA devices/SoCs and contemporary
function either as an ensemble of multiclass classifiers development tools, including HLS, should be leveraged in
or cascaded classification classifiers by implementing hardware implementations to achieve highly efficient designs
voting/controller mechanisms. with optimized results.
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