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Abstract - With more and more existing networks being transformed to Software-Defined Networking (SDN), they need to be 

more secure and demand smarter ways of traffic control. This work, SmartSecChain-SDN, is a platform that combines machine 

learning based intrusion detection, blockchain-based storage of logs, and application-awareness-based priority in SDN 

networks. To detect network intrusions in a real-time, precision and low-false positives setup, the framework utilizes the 

application of advanced machine learning algorithms, namely Random Forest, XGBoost, CatBoost, and CNN-BiLSTM. 

SmartSecChain-SDN is based on the Hyperledger Fabric, which is a permissioned blockchain technology, to provide secure, 

scalable, and privacy-preserving storage and, thus, guarantee that the Intrusion Detection System (IDS) records cannot be 

altered and can be analyzed comprehensively. The system also has Quality of Service (QoS) rules and traffic shaping based on 

applications, which enables prioritization of critical services, such as VoIP, video conferencing, and business applications, as 

well as de-prioritization of non-essential traffic, such as downloads and updates. Mininet can simulate real-time SDN scenarios 

because it is used to prototype whole architectures. It is also compatible with controllers OpenDaylight and Ryu. It has tested 

the framework using the InSDN dataset and proved that it can identify different kinds of cyberattacks and handle bandwidth 

allocation efficiently under circumstances of resource constraints. SmartSecChain-SDN comprehensively addresses SDN system 

protection, securing and enhancing. The proposed study offers an innovative, extensible way to improve cybersecurity, regulatory 

compliance, and the administration of next-generation programmable networks. 

Keywords - Blockchain, Intelligent framework, Intrusion Detection System, Secure and efficient Software-Defined Networks. 

1. Introduction  
The proliferation of internet-enabled devices, cloud-

native services, and high-speed communications necessitates 

the ongoing development of novel network topologies [1]. 

Conventional network architectures, which are mostly 

hardware-driven and statically configured, are finding it 

increasingly challenging to meet the growing needs for 

scalability, flexibility, and real-time performance [2]. SDN 

has revolutionised this sector by decoupling the data plane 

from the control plane, paving the way for new programmable 

components, easier policy enforcement, and centralized 

management [3]. With SDN, managers programmatically 

govern network behavior through a centralized software 

controller. It is made possible by the separation of both the 

control logic and forwarding processes [4]. The design offers 

several substantial benefits, including simplified networks, 

increased agility, and optimal resource utilization. The new 

and substantial vulnerabilities presented by SDN's centralized 

architecture outweigh these benefits [5]. The control plane, 

housed in a logically centralized controller, is the primary 

target of any attacker serious about compromising the 

network's availability, integrity, or confidentiality [6]. These 

vulnerabilities enable attackers to disable critical network 

services, intercept or divert traffic, and modify flow rules. 

Two primary communication modes exist in Software-

Defined Networking (SDN) systems for data and control 

channels, referred to as in-band and out-of-band, respectively 

[7]. Unlike in-band configurations, which allocate separate 

communication channels, in-band mode permits control and 

data traffic to use the same network connections [8]. Although 

in-band installation is quicker, the control plane is more 

vulnerable to data plane attacks. Hitchhiking on a controller 

grants an attacker complete control of the network if they 

manage to gain access to a switch [9]. Thus, protecting the 

SDN controller and its interfaces for communication is crucial 

for maintaining a secure and stable network [10]. It is possible 
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to utilize SDN's programmable interfaces, which incorporate 

control logic. Unsecure authentication techniques are 

exploited by hostile actors through the introduction of 

unapproved OpenFlow rules or man-in-the-middle attacks 

[11]. The centralized controller cannot necessarily be sure of 

the switching devices it operates, a massive liability within the 

modern network environment, like 5G. The reliability of the 

OpenFlow devices can be tested in real-time using a subjective 

logic-based method. This allows the SDN controller to make 

contextual and adaptive decisions with respect to network 

security policies and the delivery of network services. The 

framework thus enables an active evaluation of the trust that 

can be executed to combat the inert quality of security models 

to foster network resilience to cyber-attacks [12]. As the 

number of SDN installations increases, traditional security 

measures developed for fixed, hardware-bound networks lose 

their efficacy in addressing these dynamic threats [13]. So, to 

protect SDN infrastructures, new approaches are required that 

integrate intelligent threat detection with tamper-resistant 

logging and dynamic traffic prioritization [14].  

Progress in Artificial Intelligence (AI), particularly ML 

and DL, has aided adaptive network security lately. These 

systems use historical traffic data as a teaching tool to spot 

complex and surprising attack patterns. Unlike older, rule-

based intrusion detection systems, those powered by machine 

learning and deep learning can quickly adapt to emerging 

threats [15]. Most people are interested in blockchain 

technology because it provides transparent, immutable, and 

decentralized data storage. Conducting forensic investigations 

and compliance audits is easier with the use of distributed 

ledger technology (blockchain), which ensures that critical 

network logs and intrusion detection system alerts cannot be 

altered [16]. Blockchain and AI have converged, creating an 

exciting opportunity to reassess security frameworks for SDN 

systems.  

While this has some potential, existing research 

highlights several significant limitations. Currently, the 

majority of Intrusion Detection System (IDS) 

implementations rely on shallow learning techniques, which 

are inadequate for safeguarding SDN systems against more 

complex attacks [17]. Problems arise when solutions rely on 

out-of-date or insufficiently diverse data, which limits their 

practicality. Registering devices, authenticating users, and 

connecting with controllers were the primary uses of 

blockchain integration with SDN till now. Utilizing 

blockchain technology in a limited number of systems makes 

it possible to guarantee the legitimacy and veracity of signals 

from intrusion detection systems and other network events 

[18]. When bandwidth is limited, application-aware traffic 

prioritization usually has to take a back seat to other concerns, 

including Quality of Service (QoS). Modern networks enable 

a plethora of applications, including Voice over IP (VoIP), 

real-time video conferencing, background updates, and giant 

data transfers. Managing these services without intelligent 

traffic classification leads to performance degradation and 

user dissatisfaction [19].  

To seal the loopholes and make SDN deployments safer, 

more dependable, and more efficient, this article introduces 

SmartSecChain-SDN, an intelligent security architecture that 

incorporates blockchain technology. All three components 

work together to form the proposed architecture: (1) ML/DL-

based intelligent intrusion detection; (2) blockchain-protected 

auditable log storage; and (3) application-aware traffic 

prioritization via quality-of-service enforcement. 

Interconnected in an architectural fashion, these components 

form a whole that can manage responsibility, performance, 

and detection. With the aid of various deep learning and 

machine learning models, SmartSecChain-SDN enhances 

intrusion detection accuracy while reducing false positive 

rates. Among these models are CatBoost, eXtreme Gradient 

Boosting (XGBoost), Random Forest (RF), and a CNN-

BiLSTM hybrid implementation. The InSDN dataset, a 

massive archive of data assembled solely for the purpose of 

evaluating SDN security protocols, was utilized to train a 

multi-model ensemble. With a hybrid method that combines 

standard ensemble models with deep sequence learners, 

SmartSecChain-SDN can detect any attack, whether it is a 

large volumetric assault or a stealthy infiltration. Typical 

detection systems struggle to spot these types of attacks.  

By leveraging Hyperledger Fabric, a permissioned 

blockchain platform, SmartSecChain-SDN ensures that 

security logs are immutable, intact, and auditable. One 

advantage of Hyperledger Fabric over public blockchains is 

its modular design, which allows for fast throughput, 

transactions that safeguard user anonymity, and other similar 

features. By recording intrusion detection system alerts and 

security events on the blockchain, the technology produces 

reliable forensic investigations and satisfies regulatory 

compliance requirements. This leaves the evidence 

untouchable by any one party. To further reduce computing 

cost and maximize scalability, a permissioned blockchain is 

utilized to include only reliable companies in the consensus 

procedure. The network's administrators, controllers, or 

security agents could fall into this category. Key to 

SmartSecChain-SDN is intelligent, application-based traffic 

management. This component manages the real-time 

classification of traffic based on application type, criticality, 

and Service-Level Agreements (SLAs). Priority services, such 

as VoIP and video conferencing, receive bandwidth allocation 

priority during peak demand periods, while software upgrades 

are given lower priority. Optimized network performance and 

user experience are ensured by this dynamic QoS policy 

enforcement in instances where bandwidth is constrained or 

conflicting demands for traffic arise. Intelligent flow control 

is crucial in commercial, industrial, and Internet of Things 

(IoT) settings. After extensive testing with the Mininet 

emulator, OpenDaylight, and Ryu SDN controllers, the 

viability and utility of SmartSecChain-SDN were ascertained. 
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In a virtual environment that matches real-life SDN 

conditions, we test the machine learning models, blockchain 

infrastructure, and quality of service management modules. 

Utilizing the InSDN dataset, it is possible to evaluate the 

system's performance in several domains, including intrusion 

detection accuracy, false positive rate, blockchain transaction 

latency, quality of service compliance, and bandwidth 

utilization. Evidence from this study proves that 

SmartSecChain-SDN offers unmatched performance and 

security compared to more traditional solutions. 

The objective is to develop a robust, flexible, and 

intelligent framework that can protect SDN environments 

from a wide range of cyber risks and enhance their operational 

efficiency. This research aims to design, develop, and deploy 

a multi-model machine learning pipeline capable of detecting 

diverse categories of real-time intrusions within Software-

Defined Networking (SDN) environments. The proposed 

architecture, SmartSecChain-SDN, integrates advanced AI-

driven intrusion detection with blockchain-based immutable 

logging and intelligent Quality of Service (QoS) management 

to address existing gaps in SDN security frameworks. In this 

system, multiple machine learning and deep learning models 

will operate in a parallel or hybrid configuration to classify 

threats ranging from Denial of Service (DoS) and Man-in-the-

Middle (MitM) attacks to more sophisticated Advanced 

Persistent Threats (APTs). Detection decisions and anomaly 

scores will be securely recorded on a Hyperledger Fabric 

blockchain, ensuring tamper-proof logging, traceability, and 

accountability for security events. To guarantee service 

continuity and performance assurance, a novel application-

aware QoS framework will be embedded, capable of real-time 

traffic prioritization based on application criticality, service-

level agreements, and dynamic network conditions. This 

approach ensures that essential services such as industrial 

control systems or real-time IoT applications maintain high 

performance even under attack scenarios. The architecture 

will be implemented and validated on a virtual SDN testbed 

integrating OpenDaylight and Ryu controllers, the Mininet 

network emulator, and the InSDN dataset to simulate realistic 

attack patterns and traffic flows. By combining AI for threat 

detection, blockchain for secure logging, and QoS-driven 

traffic orchestration in a unified system, SmartSecChain-SDN 

offers a scalable, programmable, and security-aware SDN 

control solution that is robust against both conventional and 

emerging threats. This research represents one of the first 

comprehensive attempts to jointly optimize security, integrity, 

and service quality in next-generation programmable 

networks, providing a blueprint for future cybersecurity-aware 

SDN control architectures in industrial, enterprise, and critical 

infrastructure deployments. The main contributions of the 

paper include 

 The hybrid Intrusion Detection System (IDS) engine uses 

deep learning frameworks and ensemble machine 

learning models to produce low false positive rates and 

high detection accuracy in SDN environments. 

 A Hyperledger Fabric blockchain module that securely 

and unchangeably records security occurrences, making 

forensic investigation and audit compliance easier. 

 The service administration system dynamically 

prioritizes network traffic based on applications and 

service criticality. Service level agreements are met while 

maintaining efficiency. 

 Comprehensive experimental verification utilizing the 

Mininet simulator, OpenDaylight and Ryu controllers, 

and the InSDN dataset proves the system's superiority 

over baseline techniques. 

 

2. Literature Survey 
Ali et al. [20] introduce the Federated Learning-Enhanced 

Blockchain (FL-BCID) architecture for privacy-protecting 

intrusion detection in Second IoT situations. Federated 

Learning (FL) and blockchain technology ensure 

decentralized model training, data consistency, trust, and 

tamper resistance across all IIoT nodes in the architecture. FL 

is used to build a lightweight intrusion detection model to 

secure sensitive data. This model was trained cooperatively on 

edge devices: smart contract-enabled blockchain systems 

record model changes and anomaly ratings for accountability. 

The system beat baseline centralized systems in ToN-IoT and 

N-BaIoT experiments. Communication overhead was reduced 

by 41% and accuracy was 97.3%. This technique offers 

privacy, scalability, and resilience, which are crucial for 

ensuring safe industrial operations. A promising alternative to 

existing IoT security concepts is the FL-BCID system. 

Alqahtani et al. [21] observed that Advanced Persistent 

Threats (APTs) that are stealthy and adaptable are good at 

avoiding detection. Concept drift occurs when the statistical 

features of input data change over time, particularly 

concerning how attackers behave. It was demonstrated to be a 

significant issue for utilizing machine learning to enhance the 

accuracy of Intrusion Detection Systems (IDSs). The goal was 

to enhance IDS accuracy in identifying threats by developing 

an incremental, hybrid, adaptive Network Intrusion Detection 

System (NIDS) as part of the research. Tests on several 

datasets indicated that the model can detect stealthy attacks in 

SDN networks. The model identifies idea drift to maintain 

performance in changing situations. 

Jamshidi et al. [22] investigated how Software-Defined 

Networking (SDN) impacts Machine Learning (ML)- based 

Intrusion Detection Systems (IDS) deployed at the edge of 

Internet of Things (IoT) infrastructures. The study found that 

deep learning techniques have smaller resource overheads 

than machine learning-based intrusion detection systems in 

response to real-time cyber threats. SDN's centralized control 

improved resource management, but increased overhead when 

risks were present. An Analysis of Variance (ANOVA) 

supports the findings, which reveal trade-offs between edge-

based Internet of Things detection accuracy and system 
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performance. For SDN-based smart infrastructures, Mustafa 

et al. [23] suggested C-RADAR, a centralized anomaly 

detection and response platform. Self-attention and LSTM 

networks in a deep learning architecture enable the machine to 

grasp contextual and temporal patterns in network traffic. The 

SDN controller detects and responds to rising risks in real time 

with C-RADAR. The model is integrated with the SDN 

controller for real-time detection and response to intrusions. 

The framework detects several attack types with high accuracy 

and low false positives. The centralized structure generates 

scalability and latency issues in large-scale or high-throughput 

network deployments. 

Núñez-Gómez et al. [24] claim that S-HIDRA is a system 

that uses SDN and blockchain technology to control 

containerized services in fog computing. Smart contracts on 

the blockchain enable the orchestration of tasks in a 

decentralized and immutable manner. SDN allows networks 

to be reconfigured quickly and easily to accommodate 

changing workloads on fog nodes. This solves the problems 

with centralized cloud architectures. The architecture employs 

a domain-based approach to address fog nodes' geographical 

spread and movement, thereby delivering low latency and 

high service availability. A proof-of-concept implementation 

demonstrated that S-HIDRA is effective, although resource 

orchestration is more crucial than traffic-level security 

enforcement or direct intrusion detection. 

The work of Commey et al. [25] is concerned with 

cybersecurity issues regarding Blockchain-based IoT (BIoT) 

systems. It creates an AI-driven Honeypot deployment model 

that is combined with an Intrusion Detection System (IDS) 

and smart contracts on IoT nodes. The model provides the 

ability to convert regular nodes into decoys upon the detection 

of suspect activity, thus ensuring higher network security. A 

game-theoretic analysis of the strategic interactions involving 

the attackers and the AI-enhanced IDS is conducted through a 

game-theoretic model, namely the Bayesian games. 

According to the study, emphasis will be on knowledge and 

prediction of complex attacks, which might seem normal in 

the beginning. One does not have to be a security expert to see 

the benefits of the proposed model compared to the 

conventional security methods based on topics that 

dynamically disintegrate the threats and, based on the smart 

contracts, provide automated and fast reactions. Simulations 

were used to compare the performance effectiveness of the 

honeypot deployment strategies. The results indicated the 

capacity of the model to achieve optimum security and 

efficiency of the operation as well. By drawing such 

conclusions, the authors demonstrate that the proposed 

approach can be used to establish the foundation for further 

developing more intelligent and dynamic defense mechanisms 

in BIoT systems. 

Hyder et al. [26] demonstrated that a Software-Defined 

Networking (SDN) implementation of Moving Target 

Defense (MTD) can be utilized to counter Crossfire-style 

Distributed Denial of Service (DDoS) attacks. The network 

dynamically shifts network paths by updating the open flow 

traffic rules and redirecting flows that could be attacked. 

These changes are orchestrated by an intent-based SDN 

controller to redirect the traffic to decoy nodes and mix things 

up with the attackers. Experiments demonstrate the enhanced 

resilience of networks and alleviated link overload in the 

presence of attacks. The authors, however, indicate that 

overhead comes up with frequent reconfiguration and might 

propagate routing instability. 

Unlike previous studies, Poorazad et al. [27] provided a 

combined method that addresses IIoT and SDN security. Our 

objective is to identify and avoid security issues in SDN-based 

IIoT architectures. This technique improves this. By working 

together, both components improve application and network 

layer security. This system starts with a software-defined 

network application-based convolutional neural network-

based Intrusion Detection System (IDS). A blockchain-based 

system is the second component. The proposed solution 

reduces rule and command injection attacks on IIoT layers 

using Software-Defined Networking (SDN). The proposed 

IDS can successfully classify binary and multiclass data. 

Putra et al. [28] proposed a blockchain-based 

Collaborative Intelligence Detection System to improve 

Intrusion Detection Systems (IDSs). This paradigm allows 

CIDS node users to exchange intrusion warnings and 

detection criteria. Most blockchain-based CIDS approaches 

assume nodes are innately trustworthy, which is wrong. Most 

proposals overlook the need to verify nodes on a routine basis. 

This paper presents a decentralized CIDS that emphasizes 

node trust. The method utilizes CIDS nodes to communicate 

detection criteria and identify new intrusions. The design 

enables scalability by storing shared trustworthy detection 

criteria in a decentralized system and delivering the trust 

calculation to the blockchain. The solution is tested on a lab-

scale testbed to demonstrate its feasibility and performance 

against Ethereum platform benchmarks. 

Sarhan et al. [29] propose a hierarchical blockchain-based 

federated learning system for a secure and private 

collaborative IoT intrusion detection system. Machine 

learning-based intrusion detection systems should employ 

hierarchical federated learning. The learning process and 

company data are protected. The smart contract will ensure 

accuracy, while the secure blockchain will handle operations 

and transactions. We tested the intrusion detection system 

using a lot of IoT data. A safe, machine-learning-based 

intrusion detection system that can uncover many threats 

without compromising user data will be the result. 

Benoudifa et al. [30] present a dynamic controller 

placement framework, based on MuZero reinforcement 

learning and smart contracts. The system measures latency, 
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the volume of traffic, and the connection of devices to 

optimize the locations of controllers. Blockchain provides 

evidence of the non-tamperability of placement decisions by 

using smart contract logging. The OpenDaylight controller is 

used to implement the solution in the Mininet. Results 

demonstrate better latency and security rates in comparison to 

the rigid approach. Nonetheless, MuZero training and 

blockchain consensus have overheads, which restrict their 

application in the edge environment. 

SDN centralizes control for agility but enlarges the attack 

surface (e.g., controller saturation, rule manipulation). Recent 

surveys map threats and countermeasures, emphasizing the 

need for intelligent, controller-aware IDS that operate at line 

rate with low overhead. Deep Learning (DL) has become 

dominant for SDN IDS due to superior spatiotemporal feature 

extraction versus classical ML, but challenges remain around 

class imbalance, concept drift, and deployment efficiency 

[31]. Recent SDN-focused studies report strong performance 

from CNN/LSTM/transformer hybrids, meta-heuristic tuning, 

and multi-head architectures, often evaluated on SDN-specific 

corpora. Still, most works optimize accuracy in isolation and 

underplay system integration (e.g., logging, policy, QoS) [32]. 

General legacy datasets (e.g., KDD’99) misrepresent SDN 

realities.  

InSDN adds controller/data-plane attack coverage and is 

widely referenced 2020–2025 for reproducible SDN IDS 

evaluation. Curated surveys from 2024 consolidate research 

using InSDN and highlight remaining gaps (e.g., multi-

controller scenarios, mixed benign/attack traffic dynamics). A 

Kaggle mirror facilitates experimentation [33].  FL reduces 

raw data movement and supports edge-level training that is 

useful for multi-domain SDN/IoT. Recent work advances FL-

IDS model selection and resource awareness on constrained 

devices, while broader surveys chart progress in FL-IDS for 

IoT and IIoT.  

However, most studies stop short of tying FL outputs into 

operational SDN control loops or immutable audit trails. 

Blockchain adds tamper-evident, verifiable logging and 

decentralized coordination. 2024–2025 studies and surveys 

propose blockchain-enhanced IDS, sometimes coupled with 

FL, to improve trust, data integrity, and collaborative 

detection, but typically focus on the logging or collaboration 

plane, not end-to-end SDN performance/QoS. Emerging work 

explores blockchain in SDN security functions (e.g., firewalls) 

and shows feasibility, yet overhead/scheduling issues persist 

[34]. 

There have been advancements, but no single framework 

integrates intelligent intrusion detection, immutable logging, 

adaptive traffic management, and quality of service assurance 

in SDN contexts. In contrast, they focus on authentication, 

detection, and orchestration. This difference underscores the 

need for a blockchain-integrated, AI-driven design, such as 

SmartSecChain-SDN, that can identify threats, ensure log 

integrity, and prioritize valuable application traffic in 

programmable and dynamic network topologies. Despite 

significant advancements in intrusion detection systems 

leveraging federated learning, blockchain, and SDN, existing 

approaches largely address isolated aspects such as privacy-

preserving model training, immutable logging, adaptive 

orchestration, or specific attack mitigation.  

Current solutions often suffer from limitations, including 

reliance on centralized control, lack of real-time node trust 

verification, absence of integrated QoS management, and 

inadequate adaptability to evolving threats like concept drift. 

While some frameworks combine two technologies (e.g., 

blockchain with IDS, SDN with deep learning), no unified 

architecture holistically integrates intelligent intrusion 

detection, tamper-proof logging, adaptive traffic management, 

and QoS assurance in programmable SDN-enabled IIoT 

environments. This gap highlights the need for a blockchain-

integrated, AI-driven framework to ensure threat detection 

accuracy, maintain system resilience, and prioritise critical 

traffic under dynamic and high-load network conditions. 

3. Proposed Methodology 
3.1. Dataset Description 

The InSDN dataset is associated with testing intrusion 

detection solutions. This new dataset includes all the 

malicious and good attacks on SDN standard components and 

is shown in Table 1. Attacks such as DoS, DDoS, brute force, 

web application, exploitation, probing, and botnet attacks are 

some of the considerations of SDN. In addition, data traffic is 

related to the most widely used application services, such as 

HTTPS, HTTP, SSL, DNS, Email, FTP, SSH, etc. The InSDN 

dataset is taken as the reference, with which Software Defined 

Networking Intrusion Detection Systems (IDS) can be 

quantified. It has denial-of-service, distributed denial-of-

service, brute-force, exploitation, probing, botnet and web-

based attacks, and it records over 343,000 malicious and 

benign traffic events.  

HTTPS, FTP, DNS, SSH, etc., are patterned after normal 

communication practices. The data that was employed was 

generated in a virtualized lab with four virtual PCs and 

Mininet hosts. Many types of traffic were captured, such as 

the internal and external threats. Metasploitable 2 and DVWA 

were used to attack containerized systems, while Wireshark 

was used to collect PCAP traffic. With CICFlowMeter, 

feature extraction was performed, after which the data was 

ready to be processed through the machine learning analysis. 

More than 80 flow-level statistics were stored in the form of 

CSV by the application. The data are realistic, properly 

labelled, and large enough to test intrusion detection systems 

using SDN-integrated systems (e.g., SmartSecChain-SDN). 

The data is also broken down into Normal, Metsplotable-2 and 

Ocean View System classes. 
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Table 1. In the SDN dataset parameter and structure 

Parameter Description 

Dataset Name InSDN – Intrusion Detection Dataset for Software Defined Networks 

Purpose Evaluation of Machine Learning-based IDS in SDN environments 

Traffic Types Normal and Malicious (DoS, DDoS, Brute Force, Web Attacks, Exploits, Probe, Botnet) 

Normal Services Covered HTTPS, HTTP, SSL, DNS, Email, FTP, SSH 

Total Instances 343,939 records 

Normal Records 68,424 instances 

Attack Records 275,515 instances 

Traffic Capture Format PCAP files captured via Wireshark 

Feature Extraction Tool CICFlowMeter (by Canadian Institute for Cybersecurity) 

No. of Features Extracted Over 80 statistical features (e.g., Duration, Protocol, Byte Count, Flow IAT) 

Flow Directionality Bidirectional flows (first packet determines flow direction) 

Labelling Method Based on Source IP, Destination IP, and attack context 

Virtual Machines Used - Kali Linux (attacker)  

- Ubuntu (ONOS Controller)  

- Ubuntu (Mininet + OVS)  

- Metasploitable 2 (vulnerable services) 

Virtual Hosts (Vhosts) - h1, h2 (malicious)  

- h3 (benign user)  

- h4 (web server) 

Container Deployment DVWA server deployed via Docker on the OVS machine 

Data Groups 1. Normal Group  

2. Metsplotable-2 Group  

3. OVS Group 

Normal Group Size 3.58 GB across 10 directories 

Metsplotable-2 Group Size 669 MB across 5 attack categories (DoS, DDoS, Exploit, Probe, Brute Force) 

OVS Group Size 1.21 GB across 6 attack types (Botnet, Brute Force, DoS, DDoS, Web, Probe) 

Capture Points 1. Target machine interface  

2. SDN Controller interface 

Output Format CSV files containing intrusion statistical flows 

3.2. Overall Structure of SmartSecChain-SDN  

Machine learning, blockchain technology, and QoS-

aware traffic control are combined in the SmartSecChain-

SDN technology in order to secure and improve SDNs. The 

data plane of the SDN is the core of the architecture and 

collects and prepares network flows to undergo real-time 

analytics and processing. Others employ a hybrid IDS with a 

high level of detection of known and zero-day threats and low 

false positives. The approach used to develop a scalable and 

reliable intrusion detection system is described in the 

proposed framework shown in Figure 1 as decentralized 

training of the models, preprocessing of the data, secure data 

management, and smart contract tool implementation. To 

succeed in intrusion detection by machine learning detection 

of threats on the network demands the extraction of network 

flow characteristics with reference to volume, statistics and 

time. The features of a malicious application flow are 

abnormal length or shortness of its duration, unlike a 

benign application flow. The flow duration is calculated based 

on the 𝑇𝑓𝑙𝑜𝑤 = 𝑡𝑙𝑎𝑠𝑡 𝑝𝑎𝑐 − 𝑡𝑓𝑖𝑟𝑠𝑡 𝑝𝑎𝑐 And the average packet 

size is represented in  Equation (1) with the byte rate.  𝑅byte =

∑  𝑁
𝑖=1  𝑆𝑖

𝑇
flow 

 Intruders can avoid detection by altering packet sizes or 

utilizing preset sizes. Analysis of average size shows such 

tendencies. 

𝑆‾𝑝𝑘𝑡 =
1

𝑁
∑  𝑁

𝑖=1 𝑆𝑖                                                                  (1) 

The average packet time difference is one metric of 

stealth attack frequency, which is irregular or periodic. Inter-

arrival time (𝜏𝑎𝑣𝑔) in Equation (2) helps identify timing 

abnormalities. 

𝜏𝑎𝑣𝑔 =
1

𝑁↓
∑  𝑁−1

𝑖=1 (𝑡𝑖+1 − 𝑡𝑖)      (2) 

Where 𝑁↓Is the number of packets in the flow and 𝑡𝑖Is the 

arrival time of the packet. Equation (3) port entropy computes 

the destination ports used in the flow with 𝑝𝑖  Probability of 

occurrence of port I (incoming packet). Low-entropy 

communication patterns are more likely to be determined, 

while high-entropy port scanning or spread attacks are more 

likely to be arbitrary. 

𝐻(𝑝) = − ∑  𝑛
𝑖=1 𝑝𝑖log2 (𝑝𝑖)    (3) 
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Fig. 1 Structure of SmartSecChain-SDN 

Intelligent framework is an emerging architecture concept 

based on the exploitation of blockchain applications to 

overcome both efficiency and security issues of highly 

scalable networks, e.g., the Internet of Things (IoT). The 

design creates a robust and adaptable system using AI, 

Blockchain, and SDN. This framework integrates XGBoost, 

CatBoost and Random Forest and a CNN-BiLSTM deep 

learning model. Hyperledger Fabric is a permissioned 

blockchain that provides immutable storage of threats and 

system logs on top of secure and auditable logging and secure 

traceability of all IDS alerts and changes. Our smart contracts 

on the blockchain offer protection of the information and ease 

of operations. The access and decryption of data are only 

available to the parties that have been authorized in these 

contracts. The highest priority is data security. 
 

An access control is a very important feature of a smart 

contract. Not only will it warrant safe access to all affected 

parties, but it will also limit the access of data retrieval and 

interaction to persons whose cryptographic keys are valid. The 

contract also offers an audit of all data transfers, a record of 

everything that has gone through, auditing and data 

provenance. Truth inspires credible information and instils 

confidence in collaborative learning. To share data, there is 

also an automated agreement carried out under smart 

contracts, making the management of data flow easier and 

unauthorized access cannot occur during machine learning 

and other multi-stakeholder inspired applications.  
 

In severe instances, the control plane constrains network 

functionality with the help of application-sensitive quality of 

service norms. The constraints favour services with a low 

latency, such as VoIP and video conferencing and 

disadvantage traffic with less critical sensitivities, such as 

software updates and bulk downloads. Flow rules are 

implemented dynamically by an SDN controller (such as Ryu 

or OpenDaylight), depending on the level of security and the 

classification of the traffic. 

Besides, adjustments to traffic and capacity according to 

network loads can be provided through the system. Mininet 

determines whether the framework would work by simulating 

its architecture and running it through security checks, 

intrusion detection and service quality and compliance in 

order to test how it would perform. SmartSecChain-SDN 

provides an intelligent, scalable, and unified solution for 

programmable digital infrastructures. 
 

3.3. Intrusion Detection Model Design 

Intrusion detection models detect unauthorized access to 

a computer system or a network. It is important to acquire the 

data, clean it, select characteristics, train the model, and 

evaluate it. The intrusion detection process shown in Figure 2 

typically employs detection methods based on anomalies, 

signatures, or a combination of both. Such methods are 

employed to investigate the system activity and network 

traffic. Some of the methods are machine learning and deep 

learning. SmartSecChain-SDN can enhance threat detection in 

SDN environments by connecting CNN-BiLSTM, a 

sequential deep learning model, and common machine 

learning classifiers (Random Forest, XGBoost, and CatBoost). 

The hybrid method of rapid classification and context-aware 

sequence analysis can help in capturing more complex traffic 

patterns and, at the same time, minimize the false positives. 
 

More than anything, the appropriate choice of traffic input 

improves learning, minimizes dimensionality, and eliminates 

superfluous variables. With CICFlowMeter, over 80 flow-

based characteristics statistics were sampled in InSDN. 

Intradomain expertise and correlation results resulted in the 32 

best qualities: protocol flags, flow entropy, packet Internal 

Address Translation (IAT), and byte rate. Since the difference 

in the scales may cause bias in the input, all the numerical 

features x were normalized through Z-score normalization as 

shown in Equation (4). 

𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝜇

𝜎
       (4) 
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Fig. 2 Intrusion detection workflow 

The data was normalized and then divided into training 

and testing data, and missing values were replaced with mean 

substitution. One-hot encoding of categorical values was used. 

With the help of a multi-algorithmic deployment of deep 

learning networks and machine learning classifiers, a flexible 

and robust intrusion detection system is built. Each model 

works excellently with non-linearity, over-fitting, interaction 

of features and time varying patterns.  

Stratified K-Fold Cross-Validation and optimization have 

been used to determine the best hyperparameters for each 

model so that it would provide the most accurate results and 

the minimum number of false positives. Each Random Forest 

decision tree is trained using a different set of data and 

attributes, which are selected randomly. A Random Forest is 

an ensemble of decision trees. It prevents overfitting and can 

handle noise with bootstrapping. Prediction for input 𝑇𝑖(𝑥) 

Equation (5) is based on the majority vote, where 𝑛 is the 

number of trees. 

𝑦̂𝑟𝑓 = 𝑚𝑜𝑑𝑒({𝑇𝑖(𝑥)}𝑛
𝑖=1

)    (5) 

Next, XGBoost uses regularization and a second-order 

Taylor approximation to optimize a loss function (𝑙) and 

prevent overfitting, as shown in Equation (6). This approach 

is effective despite having limited data and a class imbalance. 

ℒ(𝑡) = ∑ 𝑙(𝑦𝑖 , 𝑦𝑖̂
𝑡−1 + 𝑓𝑡(𝑥𝑖) + 𝜙(𝑓𝑡))𝑛

𝑖=1   (6) 

Where 𝑦𝑖Is the actual target value of the ith function, 

𝑦𝑖̂
𝑡−1

 denotes the predicted value, 𝑓𝑡(𝑥𝑖)Is the predicted 

value from the new model tree being added at iteration t? The 

next one is the CatBoost, which is a gradient boosting 

technique that makes category data work better based on the 

tree weight. 𝛼𝑘 and the decision tree function 𝑇𝑘(𝑥𝑖Using 

ordered boosting and target statistics can help stop overfitting. 

The output is represented in Equation (7).  

𝑦̂𝑐 = ∑ 𝛼𝑘𝑇𝑘(𝑥𝑖)
𝐾
𝑘=1     (7) 

Finally, CNN-BiLSTM, in which networks keep track of 

time-based connections, and CNN keeps track of space-based 

connections. Botnets and slow, covert attacks are two 

examples of flow patterns that depend on time and the output 

of the CNN shown in Equation (8).  

𝑓𝑗
(𝑙)

= 𝜎(∑  𝑖   𝑥𝑖
(𝑙−1)

∗ 𝑤𝑖𝑗
(𝑙)

+ 𝑏𝑗
(𝑙)

)    (8) 

And the LSTM hidden cell update is represented by 

Equation (9). 

ℎ𝑡 = tanh (𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)   (9) 

Each of the models in the SmartSecChain-SDN ensemble 

has been hyperparameter-adjusted and trained extensively to 

be as effective as possible against SDN threats. In spite of the 

fact that Random Forest and gradient boosting models are 

more robust and simpler to understand, CNN-BiLSTM 

performs an excellent job of determining sequential patterns 

of attack. The CNN-BiLSTM model swiftly and precisely 

detects intrusions, even in highly volatile or adversarial 

network environments. In order to achieve even greater 

predictive accuracy and model resilience, the additional step 

of adopting a probabilistic ensemble voting mechanism (𝜌̂), 

illustrated by Equation (10), is commonly employed. The 

combination has the advantage of using the strengths of 

several different models and alleviating the poor 

generalization problem that can emerge with using only one 

classifier. Together, the ensemble brings out the merit of 

model diversity in creating a more effective and reliable IDS. 

𝜌̂ = arg max
𝑐∈𝐶

 (∑  𝑀
𝑚=1  𝑤𝑚 ⋅ 𝑃𝑚(𝑐 ∣ 𝑥⃗))           (10) 

 

Where 𝑤𝑚 is the weight assigned to the mth classifier, 

𝑃𝑚(𝑐 ∣ 𝑥⃗) denotes the probability output of the classifier for 

class 𝑐, given an input vector 𝑥⃗. The probabilistic voting 

algorithm means that classifiers with higher performance 

impact the decision to be established, so the intrusion 

detection system will gain more robustness and adaptability. 

Pseudocode 1 shows the step-by-step procedure of the 

proposed intrusion detection mechanism and the way to 

combine blockchain-based logging that will provide secure 

and immutable event recording. 
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Pseudocode 1: Intrusion Detection and Blockchain-Integrated Logging 
Inputs: Packet stream, Trained models, Flow Timeout (𝜏), Blockchain API 

Output: Intrusion Log List of detected attack records stored immutably 

1. Initialize: 

   Flow Table ← {} 

   Intrusion Log ← [] 

   Model Weights ← {RF, XGB, CAT, CNN-BiLSTM} 

   Voting Threshold ← 0.5 

2. For each incoming packet 𝑝𝑖In PacketStream: 

   flow_id ← Compute FlowID(𝑝𝑖) 

   Flow Table [flow_id].append(𝑝𝑖) 

   Update 𝑡𝑙𝑎𝑠𝑡 𝑝𝑎𝑐 for flow_id 

3. Periodically check expired flows: 

   For each flow_id in the Flow Table: 

       If Current Time – 𝑡𝑙𝑎𝑠𝑡 𝑝𝑎𝑐≥ 𝜏: 

           F ← Extract Flow Features (Flow Table[flow_id]) 

 Step 1: Compute Derived Statistical Features --- 

𝑇𝑓𝑙𝑜𝑤 = 𝑡𝑙𝑎𝑠𝑡 𝑝𝑎𝑐 − 𝑡𝑓𝑖𝑟𝑠𝑡 𝑝𝑎𝑐  

𝑆‾𝑝𝑘𝑡 =
1

𝑁
∑  𝑁

𝑖=1 𝑆𝑖   

𝑅byte =
∑  𝑁

𝑖=1  𝑆𝑖

𝑇
flow 

  

𝜏𝑎𝑣𝑔 =
1

𝑁↓
∑  𝑁−1

𝑖=1 (𝑡𝑖+1 − 𝑡𝑖)     

𝐻(𝑝) = − ∑  𝑛
𝑖=1 𝑝𝑖log2 (𝑝𝑖)  

Step 2: Normalize Features ---Based on 𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝜇

𝜎
 

Step 3: Perform Predictions with Each Model --- 

           PredScores ← {} 

           For each model M in Trained Models: 

               label ← M.predict (𝑥𝑛𝑜𝑟𝑚) 

               PredScores[label] += Model Weights[M] 

Step 4: Weighted Decision Fusion --- 

           final_label ← Arg Max (Pred Scores) 

           If final_label ≠ “Normal” AND PredScores[final_label] > VotingThreshold: 

               Alert ← { 

                   “FlowID”: flow_id, 

                   “Label”: final_label, 

                   “Confidence”: PredScores[final_label], 

                   “Timestamp”: Now() 

               } 

Step 5: Blockchain-secured Logging --- 

               BlockchainAPI.submit_transaction(Alert) 

               Intrusion Log.append(Alert) 

           Delete Flow Table[flow_id]  // Clean processed flow 

4. Return IntrusionLog 

END 

3.4. Blockchain Logging and Smart Contract Integration  
SmartSecChain-SDN features an integrated Hyperledger 

Fabric blockchain that securely logs intrusion detection 

system alerts. This makes data more reliable, easier to trace, 

and harder to deny. With this approach, smart contracts, or 

chain codes, safely and permanently store warning data and 

conduct forensic audits. Alerts from the ensemble 

identification and threat system provide a timestamp, the 

expected type of attack, the Flow ID, and the level of 

confidence in the detection. When detection confidence 

exceeds a predetermined level 𝜃, a smart contract goes into 

effect right away. Before recording, this warning is delivered 

to the smart contract. The logging condition is enforced as in 

Equation (11):  
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𝑖𝑓 𝐶𝑠𝑐𝑜𝑟𝑒 ≥ 𝜃 ⇒ (𝐹𝑙𝑜𝑤 𝐼𝐷, 𝐶𝑙𝑎𝑠𝑠, 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒, 𝑇𝑖𝑚𝑒)  (11) 

Each alert transaction is digitally signed and hashed using 

SHA-256 to ensure integrity before submission, and digital 

signature generation is given in Equations (12) and (13):   

𝐻𝑎𝑙𝑒𝑟𝑡 =  SHA 256(𝑙𝑜𝑔data  ‖ timestamp )   (12) 

Sig = 𝑠𝐾priv (𝐻𝑎𝑙𝑒𝑟𝑡)                  (13) 

Where 𝑠𝐾priv is the sender’s private signing key. 

Hyperledger peer nodes send signed transactions to the 

ordering service. The ordering service then organizes blocks 

of peer transactions. They are then committed to the 

unchangeable electronic ledger. Under the consensus policy, 

the transaction will only be allowed if all necessary peers 

agree. This ensures only legitimate cautions are saved. Smart 

contracts analyze alarm formats and source identities, notify 

SDN management in real-time, and make the audit requests 

very simple through a RESTful interface. A recorded alarm 

can be recovered for forensics, policy review, or compliance 

audits. Once captured in the record, an alert becomes a part of 

the ledger permanently. Old warnings can be accessed via 

querying the blockchain with the appropriate Flow ID. The 

outcome of such a query contains vital alert metadata. 

𝑄𝑢𝑒𝑟𝑦 𝐴𝑙𝑒𝑟𝑡𝑓𝑙𝑜𝑤 𝐼𝐷 = { 𝐶𝑙𝑎𝑠𝑠, 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒, 𝑇𝑖𝑚𝑒, 𝐴𝑐𝑡𝑖𝑜𝑛} 

          (14) 

Figure 3 presents the process scheme that the 

SmartSecChain-SDN architecture incorporates to store alerts 

on the blockchain. The chaincode (smart contracts) is 

triggered as soon as the algorithm identifies an abnormality 

with a confidence score of a previously agreed threshold. A 

node in the Hyperledger Fabric network acts as the host and 

performer of this contract. Before processing the alarm data, 

the smart contract performs a verification step to ensure that it 

is genuine and originated from a reputable IDS supplier. If the 

findings come back negative or the detection confidence is 

low, the record generation will not proceed according to the 

contract. To help system administrators investigate or fix the 

issue quickly, the contract saves the data and sends them a 

real-time alert. After a smart contract accepts a transaction, the 

ordering service, which is the entity that receives the funds, is 

responsible for ensuring that all the blockchain nodes reach a 

consensus. As part of its ordering process, the blockchain is 

responsible for creating new blocks and sequentially 

organizing transactions in chronological order. Now these 

blocks need to be added to the immutable ledger. It is difficult 

to alter any transaction that passes through the blockchain, as 

the data recorded on it is both immutable and fully auditable. 

The query feature in the system can permit a user authorized 

to view logged alerts, like the auditors or the network 

administrators, to further query the system about any 

information about the alerts. As you can see, the secure closed-

loop system for detection, logging, and verification relies on 

query answers retrieved straight from the same immutable 

ledger. 

 

 
Fig. 3 Blockchain logging and smart contract integration 
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3.5. QOS Enforcement and SDN Controller Integration 

The controller manages network resources and traffic 

flows, and it is therefore necessary to impose quality of service 

in SDN. When demands for different levels of services are 

made, the controller monitoring the network determines the 

optimal pathways and configures the necessary devices to 

follow the rules. The integration efficiently and dynamically 

controls network resources to ensure high-priority traffic 

receives latency and bandwidth guarantees. Figure 4 

illustrates a detailed representation of the SmartSecChain-

SDN framework’s QoS enforcement procedure, integrated 

with the SDN controller. 

Alerting the appropriate parties should be the initial 

action the intrusion detection system takes when it detects 

potentially dangerous network activity. This notice includes a 

timestamp, a detection confidence score, the type of attack, 

and the Flow ID, among other details. Immediately upon 

warning generation, it is sent on to the module responsible for 

handling warnings. At that location, we verify the information 

and collect data for the next phase of decision-making. The 

next step is to check the Alert-to-Policy Mapping Table. This 

table outlines the relationships between various network 

actions (such as dropping, rerouting to a honeypot, or 

prioritizing) and different types of attacks (such as DDoS, 

botnet, VoIP, or even benign traffic). Threat severity 

estimation based on traffic and alert factors is represented by 

Equation (15). 

𝒯sev = 𝛼 ⋅ 𝑙𝑜𝑔 (
𝐵

src 

𝐵
total 

) + 𝛽 ⋅ 𝒞score + 𝛾 ⋅ 𝑅freq + 𝛿 ⋅ 𝐻entropy 

                                      (15) 

Where 
𝐵

src 

𝐵
total 

 Is the bandwidth usage of the suspicious 

source, 𝒞score is the ML model’s confidence score, 

𝑅freq denotes the reputation frequency of similar alerts from 

the source, 𝐻entropy is the entropy usage of protocol usage and 

𝛼, 𝛽, 𝛾, 𝛿is the tunable weights. Each flow 𝑓𝑖Is evaluated using 

a composite QOS score that considers its application 

category(𝐴𝑝𝑝 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝑓𝑖)), current flow latency (𝑙𝑖), threat 

severity 𝑇𝑠𝑒𝑣and current bandwidth usage(
𝑏𝑤𝑢𝑠𝑒𝑑

𝑏𝑤𝑡𝑜𝑡𝑎𝑙
). This score 

𝑝𝑄𝑜𝑠(𝑓𝑖) It is computed using the formula in Equation (16). 

𝑝𝑄𝑜𝑠(𝑓𝑖) = 𝛾1. 𝐴𝑝𝑝 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝑓𝑖) + 𝛾2.
1

𝑙𝑖
+ 𝛾3. (1 − 𝑇𝑠𝑒𝑣) +

𝛾4.
𝑏𝑤𝑢𝑠𝑒𝑑

𝑏𝑤𝑡𝑜𝑡𝑎𝑙
                 (16) 

Once the mapping phase is complete, the Flow 

Classification component sorts all flows according to their 

severity. Plan for the possible rerouting or blocking of really 

harmful flows, such as botnet traffic or DDoS assaults. 

Priority processing ensures the rapid transmission of low-

severity (safe) flows, such as VoIP, as this is their primary 

function. 

 
Fig. 4 QOS enforcement and SDN controller integration 
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To further reduce the threat of harm while allowing some 

services to continue, rate-limiting is applied to flows that 

appear suspicious. This is done to keep traffic moving. After 

obtaining these classifications, the Quality-of-Service module 

of the SDN controller’s Policy Application is responsible for 

applying or modifying the applicable OpenFlow rules on the 

switches using the Policy Enforcement module. In such 

situations, priority traffic lanes, bandwidth meters, or even a 

total shutdown of the flow will be implemented. The 

intelligent feedback loop allows SmartSecChain-SDN to 

guarantee performance for authorized services while 

simultaneously adapting the network’s operation in real-time 

based on threat data. It achieves both of these objectives 

simultaneously. 

The SmartSecChain-SDN architecture’s QoS 

Enforcement and SDN Controller Integration work together to 

safeguard the network proactively and detect threats in real-

time. By converting intrusion warnings into flow rules that the 

SDN controller can enforce on the fly, the system can manage 

traffic with great detail and autonomy. VoIP and business apps 

are given priority to keep performance from dropping. Rate-

limiting is used on suspect flows, and hostile traffic is quickly 

denied or sent to a different location. The network can respond 

promptly to new threats because it has a mapping table that 

connects alarms to policies, a method for sorting flows by 

severity, and the ability to update OpenFlow rules. The 

blockchain’s immutable record of enforcement activity 

enhances auditability and compliance even further. 

SmartSecChain-SDN utilizes intelligent detection, 

programmable control, and secure logging to ensure SDN 

systems operate smoothly and efficiently.  

The SmartSecChain-SDN architecture was evaluated in 

simulation, rather than in real-time, to ensure its feasibility and 

efficacy.   It was done using scripting and virtual network 

simulation tools. Intrusion detection, SDN policy 

enforcement, and blockchain recording were tested in a 

controlled environment without building a production-grade 

network.  This is possible because test circumstances are 

controlled and reproducible. Replicating the SDN system.

Pseudocode 2: QOS enforcement and SDN controller integration 

Input: Alert: IDS alert containing (Flow ID, Attack Type, Confidence Score, Timestamp), Policy Table, QOS thresholds, 

Flow metadata 

Output: Enforced Open Flow rule on SDN switch 

Step 1: Extract metadata from IDS alert 

  Flow ID ← Alert Flow ID 

  Attack Type ← Alert. Attack Type 

  Confidence ← Alert. Confidence  Score 

  Timestamp ← Alert. Timestamp 

Step 2: Look up the corresponding network action 

  Action ← Policy Table[Attack Type] 

Step 3: Classify flow severity based on confidence score 

  If Confidence ≥ QoS Thresholds[“High”] then 

      Severity ← “Malicious” 

  Else if Confidence ≥ QoS Thresholds[“Medium”] then 

      Severity ← “Suspicious” 

  Else 

      Severity ← “Safe” 

Step 4: Derive quality of service priority score (for multi-objective decisions) 

  App Priority ← GetApp Priority(Flow ID) 

  Latency ← Flow Metadata[Flow  ID].latency 

  BW_Usage ← Flow Metadata[FlowID].bandwidth_usage 

  QoS_Score ← λ1 * App Priority + λ2 * (1 / Latency) + λ3 * (1 – Confidence) + λ4 * BW_Usage 

  // Step 5: Translate policy decision to Open Flow rule 

  Match Fields ← Extract FlowTuple(FlowID) 

  If Severity == “Malicious” then 

      If Action == “Drop” then 

          Send Flow Mod(MatchFields, action=”drop”, priority=100) 

      Else if Action == “Redirect” then 

          Send Flow Mod(MatchFields, action=”output:honeypot”, priority=90) 

  Else if Severity == “Suspicious” then 

      Send Flow Mod(Match Fields, meter=”rate_limit_1Mbps”, queue=”low”, priority=60) 
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  Else if Severity == “Safe” then 

      Send Flow Mod(MatchFields, queue=”high”, priority=40) 

Step 6: Log action to blockchain for audit 

  Log Action To Blockchain(Flow ID, Action, Severity, QoS_Score, Timestamp) 

End Procedure 

With Mininet’s multi-host architecture and Open 

vSwitch’s dataplane, it proved possible. The Ryu-built SDN 

controller managed traffic redirection, quality-of-service 

queues, and flow table entries. Python-based models 

generated warnings, including Random Forest, XGBoost, 

CatBoost, and CNN-BiLSTM. After offline training on the 

InSDN dataset, these models were included in the intrusion 

detection logic script. Tcpreplay and synthetic flows allowed 

the Mininet architecture to simulate DDoS assaults and VoIP 

traffic. This required replaying the attack and regular traffic. 

This network consisted of a lightweight Hyperledger Fabric 

network, a single ordering service, and two peer nodes. Smart 

contract functions, such as LogAlert() and LogAction(), 

record SDN actions and alarms as false transactions. These 

services were activated using RESTful APIs. Timestamps 

enable us to simulate transaction processing delays and assess 

blockchain overhead under varying alert volumes. It was 

accomplished using the same endorsement and consensus 

techniques. In this non-real-time, non-deployed SDN 

scenario, the framework’s response latency, logging 

performance, false positive rate, and detection accuracy were 

tested. All components were run on a virtual machine with 8 

GB RAM and a four-core CPU to simulate resource-

constrained SDN installations at the network’s perimeter. 

 

4. Results and Discussions 
The proposed SmartSecChain-SDN architecture was 

tested in a virtual SDN environment using simulations and the 

InSDN dataset. Design effectiveness, responsiveness, and 

operational resilience were assessed. Experiments evaluated 

the system’s ability to identify various intrusions, implement 

mitigation measures quickly using SDN controllers, and 

record intrusions in a non-editable format utilizing blockchain 

technology. The eight critical performance criteria examined 

were detection Accuracy, false positive rate, flow 

reconfiguration time, blockchain transaction latency, and 

quality of service retention after an assault. An integrated 

architecture for ML-based intrusion detection, blockchain-

secured auditability, and QoS-aware SDN enforcement can be 

compared to C-RADAR, S-HIDRA, FL-BCID, and Crossfire-

MTD to assess its benefits. All tests were controlled to ensure 

accuracy, repeatability, and consistency in the benchmarking 

process. 

4.1. Detection Accuracy (%) 

As a measure of a model’s detection accuracy, the 

proportion of correct predictions is essential. Detection 

Accuracy (%) calculates the percentage of malicious and 

benign network traffic that the ensemble intrusion detection 

system correctly identifies and labels in the SmartSecChain-

SDN architecture. Get the sum of all evaluated flows and 

divide it by the total number of accurate  

Predictions, both positive and negative. It is represented by 

Equation (17). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100     (17) 

The ensemble detection layer aggregates the predictions 

of multiple classifiers based on their confidence levels. 

Random Forest, CNN-BiLSTM, XGBoost, and CatBoost are 

all classifiers. Complex multi-stage assaults, such as botnets 

or covert probes, are detected by the system using statistical 

and sequential traffic data. The method is quite accurate, 

outperforming single-model techniques. SmartSecChain-SDN 

routinely achieves detection accuracies of over 97.43% in the 

InSDN dataset, as shown in Figure 5. SmartSecChain-SDN’s 

performance demonstrates this. The merits of several models 

are illustrated here. The SDN controller is so accurate that it 

only turns on when warnings are issued, keeping traffic 

moving and lessening the likelihood of incorrect mitigation. 

4.2. False Positive Rate (FPR) 

The False Positive Rate (FPR) in Equation (18) checks 

how accurate a model is by examining the number of false 

positives it produces compared to the overall number of 

positives it produces. This statistic quantifies the frequency 

with which a test falsely detects a chemical not present. The 

dependability of an intrusion detection system is gauged using 

this statistic when both benign and malicious communications 

are of equal importance.  

 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
      (18) 

 

Security vulnerabilities are detected using 

SmartSecChain-SDN, which combines CNN-BiLSTM, 

CatBoost, Random Forest, and XGBoost. Confidence weights 

are used for voting in every model. A low FPR is the same as 

a strong detection sensitivity when it comes to limiting the 

impact of false alarms on service quality. An intrusion 

detection system alerts the SDN controller, which then adjusts 

the flow rules accordingly. Maintaining QoS and generating 

trustworthy alerts for blockchain-based logging are possible 

with low FPR. As a result, security measures are only 

implemented to address risks that pose a threat to harm. With 

increased decision bounds, Figure 6 cumulative model 

reduced the FPR from 8.18% at Epoch 10 to 1.82% at Epoch 

100. The drop shows that the integrated model has reduced 
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benign flow misclassification. False positives impair high-

priority VoIP services or critical infrastructure control systems 

due to flow fluctuations, making accuracy crucial in SDN 

contexts. Restricting SDN mitigation operations to proven 

hazardous traffic and keeping a low FPR can improve 

blockchain-logged security responses and decrease service-

level agreement risks. 

 

 
Fig. 5 Detection accuracy 

 
Fig. 6 False Positive Rate (FPR) 

 
Table 2. Alert response latency 

Method Average latency (ms) Minimum (ms) Maximum (ms) 

SmartSecChain-SDN 42.3 28.6 59.7 

C-RADAR 87.4 64.2 121.8 

FL-BCID 106.5 90.3 139.1 

Crossfire-MTD 68.0 50.0 89.0 

S-HIDRA 142.8 125.6 169.3 
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4.3. Alert Response Latency 

Alert response latency is the time between alert 

transmission and action completion. Basic statistics measure 

how quickly a system or person responds to an urgent alert. 

The time between IDS identification of potentially dangerous 

network traffic and SDN controller activation of preventive 

actions is monitored and calculated based on Equation (19).  

 

𝐴𝑙𝑒𝑟𝑡 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑎𝑐𝑡𝑖𝑜𝑛 − 𝑇𝐼𝐷𝑆_𝑎𝑙𝑒𝑟𝑡                           

       (19) 

 

Attacks are more successful because of enforcement 

delays due to harmful traffic flows over the network. The IDS 

engine, policy decision unit, and OpenFlow controller 

transmit data over an asynchronous channel because of the 

architecture’s lightweight and modular design. Optimized 

classifiers, such as Random Forest, XGBoost, CatBoost, and 

CNN-BiLSTM hybrids, generate low-latency alerts by 

performing concurrent inference within the ensemble 

detection model.  

Table 2 compares five different intrusion detection and 

mitigation systems based on the warning response latency. In 

terms of real-time performance, the provided SmartSecChain-

SDN is top-notch, with latency values ranging from 28.6 to 

59.7 ms and an average delay of 42.3.  

The average delay of C-RADAR is 87.4 ms, but that of 

FL-BCID is 106.5 ms, a significant increase. The primary 

reason for this is that overhead is associated with both 

blockchain syncing and federated learning. Utilizing 

OpenFlow-based flow rule injection and DNS/IP redirection, 

Crossfire-MTD achieves a redirection latency of 68.0 

milliseconds. Because it does not enforce flows in real-time, 

S-HIDRA has the slowest response time.  

Typically, it takes around 142.8 milliseconds. By utilizing 

SDN, SmartSecChain-SDN is able to reduce time-sensitive 

vulnerabilities effectively. This device outperforms C-

RADAR and FL-BCID by 51.6% and 60.3%, respectively, in 

terms of reaction time.  

4.4. Flow Reconfiguration Time 

The time required to update the configuration of a system 

or network, such as an SDN, is known as reconfiguration time. 

Software settings, routing paths, and network architecture 

could all undergo this reorganisation.     The amount of time 

that passes between an SDN controller sending a command to 

modify a flow and the dataplane switch implementing that 

instruction is referred to as the flow modification time. The 

controller-switch interface is quite responsive and versatile, 

especially when things are getting heated.  

Table 3 illustrates the effectiveness of five distinct 

network security frameworks in managing flow 

reconfiguration. With an average reconfiguration delay of 

24.8 ms and a low standard deviation of 3.2 ms, the 

SmartSecChain-SDN architecture consistently demonstrates 

excellent performance. It reconfigures at a pace of 40.3 flows 

per second, which is faster than all other baseline techniques. 

When comparing C-RADAR (42.7 ms) and FL-BCID (56.3 

ms), the more sophisticated control systems had longer 

latencies and increased temporal variability.  

Although Crossfire-MTD is not optimized with respect to 

flow reconfiguration throughput, the lightweight injection of 

rules results in reduced flow installation overhead over the 

adaptive systems. S-HIDRA is not suitable for granular, time-

sensitive mitigation due to its significant standard deviation 

and 65.8 millisecond rule update time. SmartSecChain-SDN 

performs well under changing network conditions due to its 

event-driven flow handler, rapid OpenFlow push mechanism, 

and precompiled rule sets. 

4.5. Blockchain Transaction Time 

Transaction time on a blockchain is the time it takes to 

validate and add a transaction to a block. These timings vary 

greatly based on network congestion, transaction costs, and 

blockchain. The proposed SmartSecChain-SDN architecture 

utilized blockchain transaction time to evaluate the efficacy 

and scalability of Hyperledger Fabric-based intrusion 

recording. The evaluation included block size and concurrent 

submissions.  

Table 3. Flow reconfiguration time analysis 

Method Avg. Reconfig Time (ms) Std. Dev (ms) Min (ms) Max (ms) Flow Reconfig/sec 

SmartSecChain-SDN 24.8 3.2 18.3 33.6 40.3 

C-RADAR 42.7 6.7 29.6 58.4 22.9 

FL-BCID 56.3 7.9 39.8 72.1 17.8 

Crossfire-MTD 34.2 4.1 23.5 46.3 25.6 

S-HIDRA 65.8 9.3 51.7 82.5 13.2 
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Fig. 7(a) Blockchain transaction vs Block size 

SmartSecChain-SDN consistently had the lowest 

transaction latency, outperforming FL-BCID, C-RADAR, and 

Crossfire-MTD by 15-25% Figure 7(a). Timings varied from 

134.2 milliseconds (10 transactions per block) to 228.4 

milliseconds (300 transactions). Fabric achieves this speed via 

an enhanced block commit method and parallelism. 

Competing models, such as S-HIDRA, showed over 70% 

degradation. In contrast, SmartSecChain-SDN grows well 

under parallel transaction demands Figure 7(b). When there 

are 30 concurrent submissions, SmartSecChain-SDN 

processes a single submission in 194.5 milliseconds, a 46.8% 

improvement. The findings demonstrate that SmartSecChain-

SDN's blockchain layer enables low-latency and high-

throughput logging for an audit- and real-time compliant 

SDN-based intrusion response system.  

4.6. QOS Retention Rate (%) 

The QoS retention rate (%) in networking and 

telecommunications is the proportion of network traffic that 

fulfils QoS standards. It demonstrates how effectively a 

network can handle various types of traffic by maintaining 

latency, packet loss, and capacity at a specified level. 

Retention rate is calculated based on Equation (20). 

 

𝑄𝑂𝑆𝑅𝑅 =
𝑄𝑂𝑆𝑎𝑡𝑡𝑎𝑐𝑘

𝑄𝑂𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
× 100   (20) 

 

The network's strong QoS Retention Rate suggests that it 

can effectively control traffic and prioritize essential apps. 

Low rates are indicated by worsening performance and 

declining traffic. The SDN controller's application-aware 

mitigation policies for traffic quality enable VoIP, video 

streaming, and DNS to function effectively in the 

SmartSecChain-SDN architecture. SmartSecChain-SDN 

achieved the highest retention rates across all application types 

(94.3% for video and 97.8% for VoIP), primarily due to its 

inclusion of priority-based QoS flow rules and low- latency 

controller input Figure 8(a). 

 
Fig. 7(b) Blockchain transaction vs Concurrent submissions 

Also, both S-HIDRA and Crossfire-MTD VoIP networks 

demonstrated retention rates of 78.2 % and 82.3 %, 

respectively, in the study that did not involve reactive flow 

enforcement or fine-grained traffic classification. Figure 8(b) 

examines more closely how different levels of attack (0–500 

Mbps) affect the quality of service. SmartSecChain-SDN's 

QoS at 500 Mbps is higher than S-HIDRA's (36.1%) and FL-

BCID's (49.1%). The proposed model is strong because it 

features a fast detection-response loop, blockchain-backed 

flow validation, and the ability to slow down non-critical 

services selectively. The results demonstrate that 

SmartSecChain-SDN is well-suited for corporate and critical 

infrastructure networks that utilize real-time SDN. This is 

because its adaptive quality of service control prioritizes 

service continuity and identifies and removes threats. 

4.7. Detection Throughput 

A system's detection throughput is its capacity to analyze 

data and identify patterns, outliers, and occurrences. It is a key 

performance indicator in network security, fraud detection, 

and industrial quality control, where issues must be identified 

quickly and accurately. When throughput is higher, faults are 

identified and resolved more quickly, resulting in less harm or 

loss.  

Two different methods are used to evaluate the Detection 

Throughput and assess the efficiency and scalability of the 

models. It can be seen in Figure 9(a) that SmartSecChain-SDN 

was the one with the greatest throughput, and Crossfire-MTD 

only managed ~2,250 flows/sec, presumably because it is a 

static model and could not make dynamic inferences.  

SmartSecChain-SDN works well even when the flow 

volume increases Figure 9(b). It can handle up to 500 

concurrent flows at a rate of 3764 flows per second. Some 

frameworks deteriorate when they must handle the same load. 

C-RADAR goes down to 2287 flows/sec,  
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Fig. 8(a) QOS Retention rate vs Application type 

 
Fig. 8(b) QOS Retention Rate Vs Attack Intensity 

While S-HIDRA goes down to 1239. SmartSecChain-

SDN continues to grow and improve with training, even in 

high-traffic network environments. This ensures that intrusion 

detection is both fast and accurate. Figure 9(b) shows that 

SmartSecChain-SDN did the best across 10 epochs, going 

from 3,580 flows/sec to 4,620 flows/sec. This system's 

optimised ensemble learning and concurrent inference were 

the main reasons for this result.  

 
Fig. 9(a) Detection throughput Vs Concurrent flows 
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4.8. Drift Resilience (%) 

Drift-resistant machine learning models work effectively 

even when the input or training environment changes. A 

model's performance remains robust despite substantial data 

changes due to its strong drift resistance.   Due to idea drift, 

attackers and network traffic act differently over time. Drift 

Resilience refers to the effectiveness of an intrusion detection 

system in distinguishing between threats over time, thereby 

keeping the system on guard against ongoing attacks. 

SmartSecChain-SDN is robust due to its model upgrades, 

ensemble learning, and behavior-aware flow analysis. These 

features enable the network to adapt to different attack 

patterns without requiring training. Table 4 shows that 

SmartSecChain-SDN has 95.6% drift resistance, indicating 

that it will remain accurate regardless of the traffic patterns. 

On the other hand, crossfire-MTD and S-HIDRA's scores of 

76.5% and 69.5% are lower than C-RADAR's 85.9% and FL-

BCID's 88.4% since they do not use adaptive methods. These 

results show that there are no adaptable methods. Even when 

the SDN environment changes, the detection performance of 

SmartSecChain-SDN remains the same.  

 

 
Fig. 9(b) Detection throughput Vs Epochs 

 

Based on all relevant metrics, SmartSecChain-SDN 

outperforms current models, as shown in Table 5. With a 

97.43% detection rate and a 1.82% false positive rate, it can 

accurately distinguish between dangerous and benign flows. 

This technology enables a response to alarms in real-time, 

with a delay of 42 milliseconds, which is more than 60% faster 

than C-RADAR and FL-BCID.  
 

Table 4. Drift resilience 

Model Drift Resilience (%) 

SmartSecChain-SDN 95.6 

C-RADAR 85.9 

FL-BCID 88.4 

Crossfire-MTD 76.5 

S-HIDRA 69.5 

SmartSecChain-SDN is the quickest baseline for 

changing OpenFlow rules on the fly, taking only 24.8 

milliseconds. With 230 millisecond transaction latency at a 

block size of 300 and reasonable scalability with concurrent 

uploads, its blockchain logging on Hyperledger Fabric 

operates well under stress. S-HIDRA retains 78% of its users, 

while the model with over 94% for video traffic can continue 

to provide service even during an attack. The model has a high 

detection throughput of 4,620 flows per second and a drift 

resilience of 95.6%, which means it can adapt to new attack 

patterns and continue to function effectively over time. 

SmartSecChain-SDN's SDN-integrated QoS adaptation, 

decentralised logging, and hybrid ensemble architecture make 

it the best choice for modern, scalable, and programmable 

network protection. 
 

Table 5. Performance comparison of the proposed model 

Metric SmartSecChain-SDN C-RADAR FL-BCID Crossfire-MTD S-HIDRA 

Detection Accuracy (%) 97.43 94.25 93.18 89.5 84.16 

False Positive Rate (%) 1.82 4.96 5.73 6.9 8.44 

Alert Response Latency (ms) 42.3 87.4 106.5 68.0 142.8 

Flow Reconfig Time (ms) 24.8 42.7 56.3 34.2 65.8 

Blockchain Txn Time (ms) 134.2 212.4 172.7 248.5 145.1 

QoS Retention Rate (%) 94.3 (Video) 88.6 86.1 82.3 (VoIP) 78.2 

Detection Throughput (flows/sec) 4620 2630 2558 2250 1575 

Drift Resilience (%) 95.6 85.9 88.4 76.5 69.5 
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5. Conclusion  

SmartSecChain-SDN is an intelligent architecture 

designed to detect and prevent SDN intrusions. The study 

examines blockchain smart contracts, their functionality, and 

how they can change the world. The model employs 

sophisticated ML and deep learning classifiers, including 

Random Forest, XGBoost, CatBoost, and CNN-BiLSTM, to 

identify risks swiftly. The framework works with Hyperledger 

Fabric to provide rule compliance, service prioritisation while 

changing network settings, and immutable logging. The 

InSDN dataset outperformed C-RADAR, FL-BCID, 

Crossfire-MTD, and S-HIDRA in terms of concept drift 

resistance (95.6%), detection throughput (4,620 flows/sec), 

alert reaction time (42.3 ms), and detection accuracy 

(97.43%). We got these results by comparing them to other 

models. Despite its potential, the framework has limitations. 

Multiple classifiers can enhance detection in SDN systems 

with ample resources or data. This method enhances model 

complexity and inference processing resource usage. 

Hyperledger Fabric needs to be modified for high consensus 

thresholds or transaction volumes, such as multi-endorsement 

policies. Upgrading federated models assumes a reliable SDN 

controller is impervious to poisoning and insider threats. 

Assaults easily target the controller. Lightweight federated 

model updates across faraway edge nodes enhance the system. 

Better privacy and less centralised learning would ensue. 

Explainable Artificial Intelligence (XAI) in the detection 

engine makes the process more understandable and 

trustworthy for operators. Layer-2 scaling or a hybrid DLT 

architecture minimizes latency and speeds up blockchain 

transactions. Software-defined networking controllers 

sensitive to APTs and increasing attack surfaces benefit from 

intent-based security rules and Zero-Trust Network 

Architecture (ZTNA). 
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