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Abstract - With more and more existing networks being transformed to Software-Defined Networking (SDN), they need to be
more secure and demand smarter ways of traffic control. This work, SmartSecChain-SDN, is a platform that combines machine
learning based intrusion detection, blockchain-based storage of logs, and application-awareness-based priority in SDN
networks. To detect network intrusions in a real-time, precision and low-false positives setup, the framework utilizes the
application of advanced machine learning algorithms, namely Random Forest, XGBoost, CatBoost, and CNN-BiLSTM.
SmartSecChain-SDN is based on the Hyperledger Fabric, which is a permissioned blockchain technology, to provide secure,
scalable, and privacy-preserving storage and, thus, guarantee that the Intrusion Detection System (IDS) records cannot be
altered and can be analyzed comprehensively. The system also has Quality of Service (QoS) rules and traffic shaping based on
applications, which enables prioritization of critical services, such as VolP, video conferencing, and business applications, as
well as de-prioritization of non-essential traffic, such as downloads and updates. Mininet can simulate real-time SDN scenarios
because it is used to prototype whole architectures. It is also compatible with controllers OpenDaylight and Ryu. It has tested
the framework using the INSDN dataset and proved that it can identify different kinds of cyberattacks and handle bandwidth
allocation efficiently under circumstances of resource constraints. SmartSecChain-SDN comprehensively addresses SDN system
protection, securing and enhancing. The proposed study offers an innovative, extensible way to improve cybersecurity, regulatory
compliance, and the administration of next-generation programmable networks.

Keywords - Blockchain, Intelligent framework, Intrusion Detection System, Secure and efficient Software-Defined Networks.

architecture outweigh these benefits [5]. The control plane,
housed in a logically centralized controller, is the primary

1. Introduction
The proliferation of internet-enabled devices, cloud-

native services, and high-speed communications necessitates
the ongoing development of novel network topologies [1].
Conventional network architectures, which are mostly
hardware-driven and statically configured, are finding it
increasingly challenging to meet the growing needs for
scalability, flexibility, and real-time performance [2]. SDN
has revolutionised this sector by decoupling the data plane
from the control plane, paving the way for new programmable
components, easier policy enforcement, and centralized
management [3]. With SDN, managers programmatically
govern network behavior through a centralized software
controller. It is made possible by the separation of both the
control logic and forwarding processes [4]. The design offers
several substantial benefits, including simplified networks,
increased agility, and optimal resource utilization. The new
and substantial vulnerabilities presented by SDN's centralized

OSOE)

target of any attacker serious about compromising the
network's availability, integrity, or confidentiality [6]. These
vulnerabilities enable attackers to disable critical network
services, intercept or divert traffic, and modify flow rules.
Two primary communication modes exist in Software-
Defined Networking (SDN) systems for data and control
channels, referred to as in-band and out-of-band, respectively
[7]. Unlike in-band configurations, which allocate separate
communication channels, in-band mode permits control and
data traffic to use the same network connections [8]. Although
in-band installation is quicker, the control plane is more
vulnerable to data plane attacks. Hitchhiking on a controller
grants an attacker complete control of the network if they
manage to gain access to a switch [9]. Thus, protecting the
SDN controller and its interfaces for communication is crucial
for maintaining a secure and stable network [10]. It is possible
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to utilize SDN's programmable interfaces, which incorporate
control logic. Unsecure authentication techniques are
exploited by hostile actors through the introduction of
unapproved OpenFlow rules or man-in-the-middle attacks
[11]. The centralized controller cannot necessarily be sure of
the switching devices it operates, a massive liability within the
modern network environment, like 5G. The reliability of the
OpenFlow devices can be tested in real-time using a subjective
logic-based method. This allows the SDN controller to make
contextual and adaptive decisions with respect to network
security policies and the delivery of network services. The
framework thus enables an active evaluation of the trust that
can be executed to combat the inert quality of security models
to foster network resilience to cyber-attacks [12]. As the
number of SDN installations increases, traditional security
measures developed for fixed, hardware-bound networks lose
their efficacy in addressing these dynamic threats [13]. So, to
protect SDN infrastructures, new approaches are required that
integrate intelligent threat detection with tamper-resistant
logging and dynamic traffic prioritization [14].

Progress in Artificial Intelligence (Al), particularly ML
and DL, has aided adaptive network security lately. These
systems use historical traffic data as a teaching tool to spot
complex and surprising attack patterns. Unlike older, rule-
based intrusion detection systems, those powered by machine
learning and deep learning can quickly adapt to emerging
threats [15]. Most people are interested in blockchain
technology because it provides transparent, immutable, and
decentralized data storage. Conducting forensic investigations
and compliance audits is easier with the use of distributed
ledger technology (blockchain), which ensures that critical
network logs and intrusion detection system alerts cannot be
altered [16]. Blockchain and Al have converged, creating an
exciting opportunity to reassess security frameworks for SDN
systems.

While this has some potential, existing research
highlights several significant limitations. Currently, the
majority  of  Intrusion  Detection  System  (IDS)
implementations rely on shallow learning techniques, which
are inadequate for safeguarding SDN systems against more
complex attacks [17]. Problems arise when solutions rely on
out-of-date or insufficiently diverse data, which limits their
practicality. Registering devices, authenticating users, and
connecting with controllers were the primary uses of
blockchain integration with SDN till now. Utilizing
blockchain technology in a limited number of systems makes
it possible to guarantee the legitimacy and veracity of signals
from intrusion detection systems and other network events
[18]. When bandwidth is limited, application-aware traffic
prioritization usually has to take a back seat to other concerns,
including Quality of Service (QoS). Modern networks enable
a plethora of applications, including Voice over IP (VolP),
real-time video conferencing, background updates, and giant
data transfers. Managing these services without intelligent
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traffic classification leads to performance degradation and
user dissatisfaction [19].

To seal the loopholes and make SDN deployments safer,
more dependable, and more efficient, this article introduces
SmartSecChain-SDN, an intelligent security architecture that
incorporates blockchain technology. All three components
work together to form the proposed architecture: (1) ML/DL-
based intelligent intrusion detection; (2) blockchain-protected
auditable log storage; and (3) application-aware traffic
prioritization via quality-of-service enforcement.
Interconnected in an architectural fashion, these components
form a whole that can manage responsibility, performance,
and detection. With the aid of various deep learning and
machine learning models, SmartSecChain-SDN enhances
intrusion detection accuracy while reducing false positive
rates. Among these models are CatBoost, eXtreme Gradient
Boosting (XGBoost), Random Forest (RF), and a CNN-
BiLSTM hybrid implementation. The InSDN dataset, a
massive archive of data assembled solely for the purpose of
evaluating SDN security protocols, was utilized to train a
multi-model ensemble. With a hybrid method that combines
standard ensemble models with deep sequence learners,
SmartSecChain-SDN can detect any attack, whether it is a
large volumetric assault or a stealthy infiltration. Typical
detection systems struggle to spot these types of attacks.

By leveraging Hyperledger Fabric, a permissioned
blockchain platform, SmartSecChain-SDN ensures that
security logs are immutable, intact, and auditable. One
advantage of Hyperledger Fabric over public blockchains is
its modular design, which allows for fast throughput,
transactions that safeguard user anonymity, and other similar
features. By recording intrusion detection system alerts and
security events on the blockchain, the technology produces
reliable forensic investigations and satisfies regulatory
compliance requirements. This leaves the evidence
untouchable by any one party. To further reduce computing
cost and maximize scalability, a permissioned blockchain is
utilized to include only reliable companies in the consensus
procedure. The network's administrators, controllers, or
security agents could fall into this category. Key to
SmartSecChain-SDN is intelligent, application-based traffic
management. This component manages the real-time
classification of traffic based on application type, criticality,
and Service-Level Agreements (SLAS). Priority services, such
as VolP and video conferencing, receive bandwidth allocation
priority during peak demand periods, while software upgrades
are given lower priority. Optimized network performance and
user experience are ensured by this dynamic QoS policy
enforcement in instances where bandwidth is constrained or
conflicting demands for traffic arise. Intelligent flow control
is crucial in commercial, industrial, and Internet of Things
(1oT) settings. After extensive testing with the Mininet
emulator, OpenDaylight, and Ryu SDN controllers, the
viability and utility of SmartSecChain-SDN were ascertained.
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In a virtual environment that matches real-life SDN
conditions, we test the machine learning models, blockchain
infrastructure, and quality of service management modules.
Utilizing the InSDN dataset, it is possible to evaluate the
system's performance in several domains, including intrusion
detection accuracy, false positive rate, blockchain transaction
latency, quality of service compliance, and bandwidth
utilization. Evidence from this study proves that
SmartSecChain-SDN offers unmatched performance and
security compared to more traditional solutions.

The objective is to develop a robust, flexible, and
intelligent framework that can protect SDN environments
from a wide range of cyber risks and enhance their operational
efficiency. This research aims to design, develop, and deploy
a multi-model machine learning pipeline capable of detecting
diverse categories of real-time intrusions within Software-
Defined Networking (SDN) environments. The proposed
architecture, SmartSecChain-SDN, integrates advanced Al-
driven intrusion detection with blockchain-based immutable
logging and intelligent Quality of Service (QoS) management
to address existing gaps in SDN security frameworks. In this
system, multiple machine learning and deep learning models
will operate in a parallel or hybrid configuration to classify
threats ranging from Denial of Service (DoS) and Man-in-the-
Middle (MitM) attacks to more sophisticated Advanced
Persistent Threats (APTs). Detection decisions and anomaly
scores will be securely recorded on a Hyperledger Fabric
blockchain, ensuring tamper-proof logging, traceability, and
accountability for security events. To guarantee service
continuity and performance assurance, a novel application-
aware QoS framework will be embedded, capable of real-time
traffic prioritization based on application criticality, service-
level agreements, and dynamic network conditions. This
approach ensures that essential services such as industrial
control systems or real-time 10T applications maintain high
performance even under attack scenarios. The architecture
will be implemented and validated on a virtual SDN testbed
integrating OpenDaylight and Ryu controllers, the Mininet
network emulator, and the INSDN dataset to simulate realistic
attack patterns and traffic flows. By combining Al for threat
detection, blockchain for secure logging, and QoS-driven
traffic orchestration in a unified system, SmartSecChain-SDN
offers a scalable, programmable, and security-aware SDN
control solution that is robust against both conventional and
emerging threats. This research represents one of the first
comprehensive attempts to jointly optimize security, integrity,
and service quality in next-generation programmable
networks, providing a blueprint for future cybersecurity-aware
SDN control architectures in industrial, enterprise, and critical
infrastructure deployments. The main contributions of the
paper include
The hybrid Intrusion Detection System (IDS) engine uses
deep learning frameworks and ensemble machine
learning models to produce low false positive rates and
high detection accuracy in SDN environments.
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e A Hyperledger Fabric blockchain module that securely
and unchangeably records security occurrences, making
forensic investigation and audit compliance easier.

The service administration system dynamically
prioritizes network traffic based on applications and
service criticality. Service level agreements are met while
maintaining efficiency.

Comprehensive experimental verification utilizing the
Mininet simulator, OpenDaylight and Ryu controllers,
and the InSDN dataset proves the system's superiority
over baseline techniques.

2. Literature Survey

Ali etal. [20] introduce the Federated Learning-Enhanced
Blockchain (FL-BCID) architecture for privacy-protecting
intrusion detection in Second loT situations. Federated
Learning (FL) and blockchain technology ensure
decentralized model training, data consistency, trust, and
tamper resistance across all 10T nodes in the architecture. FL
is used to build a lightweight intrusion detection model to
secure sensitive data. This model was trained cooperatively on
edge devices: smart contract-enabled blockchain systems
record model changes and anomaly ratings for accountability.
The system beat baseline centralized systems in ToN-loT and
N-BaloT experiments. Communication overhead was reduced
by 41% and accuracy was 97.3%. This technique offers
privacy, scalability, and resilience, which are crucial for
ensuring safe industrial operations. A promising alternative to
existing 10T security concepts is the FL-BCID system.

Algahtani et al. [21] observed that Advanced Persistent
Threats (APTSs) that are stealthy and adaptable are good at
avoiding detection. Concept drift occurs when the statistical
features of input data change over time, particularly
concerning how attackers behave. It was demonstrated to be a
significant issue for utilizing machine learning to enhance the
accuracy of Intrusion Detection Systems (IDSs). The goal was
to enhance IDS accuracy in identifying threats by developing
an incremental, hybrid, adaptive Network Intrusion Detection
System (NIDS) as part of the research. Tests on several
datasets indicated that the model can detect stealthy attacks in
SDN networks. The model identifies idea drift to maintain
performance in changing situations.

Jamshidi et al. [22] investigated how Software-Defined
Networking (SDN) impacts Machine Learning (ML)- based
Intrusion Detection Systems (IDS) deployed at the edge of
Internet of Things (10T) infrastructures. The study found that
deep learning techniques have smaller resource overheads
than machine learning-based intrusion detection systems in
response to real-time cyber threats. SDN's centralized control
improved resource management, but increased overhead when
risks were present. An Analysis of Variance (ANOVA)
supports the findings, which reveal trade-offs between edge-
based Internet of Things detection accuracy and system
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performance. For SDN-based smart infrastructures, Mustafa
et al. [23] suggested C-RADAR, a centralized anomaly
detection and response platform. Self-attention and LSTM
networks in a deep learning architecture enable the machine to
grasp contextual and temporal patterns in network traffic. The
SDN controller detects and responds to rising risks in real time
with C-RADAR. The model is integrated with the SDN
controller for real-time detection and response to intrusions.
The framework detects several attack types with high accuracy
and low false positives. The centralized structure generates
scalability and latency issues in large-scale or high-throughput
network deployments.

Nufiez-Gomez et al. [24] claim that S-HIDRA is a system
that uses SDN and blockchain technology to control
containerized services in fog computing. Smart contracts on
the blockchain enable the orchestration of tasks in a
decentralized and immutable manner. SDN allows networks
to be reconfigured quickly and easily to accommodate
changing workloads on fog nodes. This solves the problems
with centralized cloud architectures. The architecture employs
a domain-based approach to address fog nodes' geographical
spread and movement, thereby delivering low latency and
high service availability. A proof-of-concept implementation
demonstrated that S-HIDRA is effective, although resource
orchestration is more crucial than traffic-level security
enforcement or direct intrusion detection.

The work of Commey et al. [25] is concerned with
cybersecurity issues regarding Blockchain-based 10T (BloT)
systems. It creates an Al-driven Honeypot deployment model
that is combined with an Intrusion Detection System (IDS)
and smart contracts on 10T nodes. The model provides the
ability to convert regular nodes into decoys upon the detection
of suspect activity, thus ensuring higher network security. A
game-theoretic analysis of the strategic interactions involving
the attackers and the Al-enhanced IDS is conducted through a
game-theoretic model, namely the Bayesian games.
According to the study, emphasis will be on knowledge and
prediction of complex attacks, which might seem normal in
the beginning. One does not have to be a security expert to see
the benefits of the proposed model compared to the
conventional security methods based on topics that
dynamically disintegrate the threats and, based on the smart
contracts, provide automated and fast reactions. Simulations
were used to compare the performance effectiveness of the
honeypot deployment strategies. The results indicated the
capacity of the model to achieve optimum security and
efficiency of the operation as well. By drawing such
conclusions, the authors demonstrate that the proposed
approach can be used to establish the foundation for further
developing more intelligent and dynamic defense mechanisms
in BloT systems.

Hyder et al. [26] demonstrated that a Software-Defined
Networking (SDN) implementation of Moving Target
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Defense (MTD) can be utilized to counter Crossfire-style
Distributed Denial of Service (DDoS) attacks. The network
dynamically shifts network paths by updating the open flow
traffic rules and redirecting flows that could be attacked.
These changes are orchestrated by an intent-based SDN
controller to redirect the traffic to decoy nodes and mix things
up with the attackers. Experiments demonstrate the enhanced
resilience of networks and alleviated link overload in the
presence of attacks. The authors, however, indicate that
overhead comes up with frequent reconfiguration and might
propagate routing instability.

Unlike previous studies, Poorazad et al. [27] provided a
combined method that addresses I1oT and SDN security. Our
objective is to identify and avoid security issues in SDN-based
lloT architectures. This technique improves this. By working
together, both components improve application and network
layer security. This system starts with a software-defined
network application-based convolutional neural network-
based Intrusion Detection System (IDS). A blockchain-based
system is the second component. The proposed solution
reduces rule and command injection attacks on I10T layers
using Software-Defined Networking (SDN). The proposed
IDS can successfully classify binary and multiclass data.

Putra et al. [28] proposed a blockchain-based
Collaborative Intelligence Detection System to improve
Intrusion Detection Systems (IDSs). This paradigm allows
CIDS node users to exchange intrusion warnings and
detection criteria. Most blockchain-based CIDS approaches
assume nodes are innately trustworthy, which is wrong. Most
proposals overlook the need to verify nodes on a routine basis.
This paper presents a decentralized CIDS that emphasizes
node trust. The method utilizes CIDS nodes to communicate
detection criteria and identify new intrusions. The design
enables scalability by storing shared trustworthy detection
criteria in a decentralized system and delivering the trust
calculation to the blockchain. The solution is tested on a lab-
scale testbed to demonstrate its feasibility and performance
against Ethereum platform benchmarks.

Sarhan et al. [29] propose a hierarchical blockchain-based
federated learning system for a secure and private
collaborative 10T intrusion detection system. Machine
learning-based intrusion detection systems should employ
hierarchical federated learning. The learning process and
company data are protected. The smart contract will ensure
accuracy, while the secure blockchain will handle operations
and transactions. We tested the intrusion detection system
using a lot of loT data. A safe, machine-learning-based
intrusion detection system that can uncover many threats
without compromising user data will be the result.

Benoudifa et al. [30] present a dynamic controller
placement framework, based on MuZero reinforcement
learning and smart contracts. The system measures latency,
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the volume of traffic, and the connection of devices to
optimize the locations of controllers. Blockchain provides
evidence of the non-tamperability of placement decisions by
using smart contract logging. The OpenDaylight controller is
used to implement the solution in the Mininet. Results
demonstrate better latency and security rates in comparison to
the rigid approach. Nonetheless, MuZero training and
blockchain consensus have overheads, which restrict their
application in the edge environment.

SDN centralizes control for agility but enlarges the attack
surface (e.g., controller saturation, rule manipulation). Recent
surveys map threats and countermeasures, emphasizing the
need for intelligent, controller-aware IDS that operate at line
rate with low overhead. Deep Learning (DL) has become
dominant for SDN IDS due to superior spatiotemporal feature
extraction versus classical ML, but challenges remain around
class imbalance, concept drift, and deployment efficiency
[31]. Recent SDN-focused studies report strong performance
from CNN/LSTM/transformer hybrids, meta-heuristic tuning,
and multi-head architectures, often evaluated on SDN-specific
corpora. Still, most works optimize accuracy in isolation and
underplay system integration (e.g., logging, policy, QoS) [32].
General legacy datasets (e.g., KDD’99) misrepresent SDN
realities.

INSDN adds controller/data-plane attack coverage and is
widely referenced 2020-2025 for reproducible SDN IDS
evaluation. Curated surveys from 2024 consolidate research
using InSDN and highlight remaining gaps (e.g., multi-
controller scenarios, mixed benign/attack traffic dynamics). A
Kaggle mirror facilitates experimentation [33]. FL reduces
raw data movement and supports edge-level training that is
useful for multi-domain SDN/IoT. Recent work advances FL-
IDS model selection and resource awareness on constrained
devices, while broader surveys chart progress in FL-IDS for
loT and IloT.

However, most studies stop short of tying FL outputs into
operational SDN control loops or immutable audit trails.
Blockchain adds tamper-evident, verifiable logging and
decentralized coordination. 2024-2025 studies and surveys
propose blockchain-enhanced IDS, sometimes coupled with
FL, to improve trust, data integrity, and collaborative
detection, but typically focus on the logging or collaboration
plane, not end-to-end SDN performance/QoS. Emerging work
explores blockchain in SDN security functions (e.g., firewalls)
and shows feasibility, yet overhead/scheduling issues persist
[34].

There have been advancements, but no single framework
integrates intelligent intrusion detection, immutable logging,
adaptive traffic management, and quality of service assurance
in SDN contexts. In contrast, they focus on authentication,
detection, and orchestration. This difference underscores the
need for a blockchain-integrated, Al-driven design, such as

216

SmartSecChain-SDN, that can identify threats, ensure log
integrity, and prioritize valuable application traffic in
programmable and dynamic network topologies. Despite
significant advancements in intrusion detection systems
leveraging federated learning, blockchain, and SDN, existing
approaches largely address isolated aspects such as privacy-
preserving model training, immutable logging, adaptive
orchestration, or specific attack mitigation.

Current solutions often suffer from limitations, including
reliance on centralized control, lack of real-time node trust
verification, absence of integrated QoS management, and
inadequate adaptability to evolving threats like concept drift.
While some frameworks combine two technologies (e.g.,
blockchain with IDS, SDN with deep learning), no unified
architecture holistically integrates intelligent intrusion
detection, tamper-proof logging, adaptive traffic management,
and QoS assurance in programmable SDN-enabled IloT
environments. This gap highlights the need for a blockchain-
integrated, Al-driven framework to ensure threat detection
accuracy, maintain system resilience, and prioritise critical
traffic under dynamic and high-load network conditions.

3. Proposed Methodology
3.1. Dataset Description

The InSDN dataset is associated with testing intrusion
detection solutions. This new dataset includes all the
malicious and good attacks on SDN standard components and
is shown in Table 1. Attacks such as DoS, DDoS, brute force,
web application, exploitation, probing, and botnet attacks are
some of the considerations of SDN. In addition, data traffic is
related to the most widely used application services, such as
HTTPS, HTTP, SSL, DNS, Email, FTP, SSH, etc. The InSDN
dataset is taken as the reference, with which Software Defined
Networking Intrusion Detection Systems (IDS) can be
quantified. It has denial-of-service, distributed denial-of-
service, brute-force, exploitation, probing, botnet and web-
based attacks, and it records over 343,000 malicious and
benign traffic events.

HTTPS, FTP, DNS, SSH, etc., are patterned after normal
communication practices. The data that was employed was
generated in a virtualized lab with four virtual PCs and
Mininet hosts. Many types of traffic were captured, such as
the internal and external threats. Metasploitable 2 and DVWA
were used to attack containerized systems, while Wireshark
was used to collect PCAP traffic. With CICFlowMeter,
feature extraction was performed, after which the data was
ready to be processed through the machine learning analysis.
More than 80 flow-level statistics were stored in the form of
CSV by the application. The data are realistic, properly
labelled, and large enough to test intrusion detection systems
using SDN-integrated systems (e.g., SmartSecChain-SDN).
The data is also broken down into Normal, Metsplotable-2 and
Ocean View System classes.
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Table 1. In the SDN dataset parameter and structure

Parameter Description
Dataset Name INSDN — Intrusion Detection Dataset for Software Defined Networks
Purpose Evaluation of Machine Learning-based IDS in SDN environments
Traffic Types Normal and Malicious (DoS, DDoS, Brute Force, Web Attacks, Exploits, Probe, Botnet)

Normal Services Covered

HTTPS, HTTP, SSL, DNS, Email, FTP, SSH

Total Instances 343,939 records

Normal Records 68,424 instances

Attack Records 275,515 instances

Traffic Capture Format

PCAP files captured via Wireshark

Feature Extraction Tool

CICFlowMeter (by Canadian Institute for Cybersecurity)

No. of Features Extracted

Over 80 statistical features (e.g., Duration, Protocol, Byte Count, Flow IAT)

Flow Directionality

Bidirectional flows (first packet determines flow direction)

Labelling Method

Based on Source IP, Destination IP, and attack context

Virtual Machines Used - Kali Linux (attacker)

- Ubuntu (Mininet + OVS)

- Ubuntu (ONQOS Controller)

- Metasploitable 2 (vulnerable services)

Virtual Hosts (Vhosts) - h1, h2 (malicious)
- h3 (benign user)

- h4 (web server)

Container Deployment

DVWA server deployed via Docker on the OVS machine

Data Groups 1. Normal Group
2. Metsplotable-2 Group

3. OVS Group

Normal Group Size

3.58 GB across 10 directories

Metsplotable-2 Group Size

669 MB across 5 attack categories (DoS, DDoS, Exploit, Probe, Brute Force)

OVS Group Size

1.21 GB across 6 attack types (Botnet, Brute Force, DoS, DDoS, Web, Probe)

Capture Points

1. Target machine interface
2. SDN Controller interface

Output Format

CSV files containing intrusion statistical flows

3.2. Overall Structure of SmartSecChain-SDN

Machine learning, blockchain technology, and QoS-
aware traffic control are combined in the SmartSecChain-
SDN technology in order to secure and improve SDNs. The
data plane of the SDN is the core of the architecture and
collects and prepares network flows to undergo real-time
analytics and processing. Others employ a hybrid IDS with a
high level of detection of known and zero-day threats and low
false positives. The approach used to develop a scalable and
reliable intrusion detection system is described in the
proposed framework shown in Figure 1 as decentralized
training of the models, preprocessing of the data, secure data
management, and smart contract tool implementation. To
succeed in intrusion detection by machine learning detection
of threats on the network demands the extraction of network
flow characteristics with reference to volume, statistics and
time. The features of a malicious application flow are
abnormal length or shortness of its duration, unlike a
benign application flow. The flow duration is calculated based
on the Tryon = tiast pac — trirst pac ANd the average packet
size is represented in Equation (1) with the byte rate. R, =

N s . . . .
% Intruders can avoid detection by altering packet sizes or

flow
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utilizing preset sizes. Analysis of average size shows such
tendencies.

1
Skt =y ZiLs Si )

The average packet time difference is one metric of
stealth attack frequency, which is irregular or periodic. Inter-
arrival time (74,4) in Equation (2) helps identify timing
abnormalities.

2

1 wn—
Tavg = N_lZ?I=11 (tivr — t)

Where N, Is the number of packets in the flow and t;1s the
arrival time of the packet. Equation (3) port entropy computes
the destination ports used in the flow with p; Probability of
occurrence of port | (incoming packet). Low-entropy
communication patterns are more likely to be determined,
while high-entropy port scanning or spread attacks are more
likely to be arbitrary.

H(p) = — X1 pilog,(p:) (3)
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Fig. 1 Structure of SmartSecChain-SDN

Flow-level

Intelligent framework is an emerging architecture concept
based on the exploitation of blockchain applications to
overcome both efficiency and security issues of highly
scalable networks, e.g., the Internet of Things (loT). The
design creates a robust and adaptable system using Al,
Blockchain, and SDN. This framework integrates XGBoost,
CatBoost and Random Forest and a CNN-BIiLSTM deep
learning model. Hyperledger Fabric is a permissioned
blockchain that provides immutable storage of threats and
system logs on top of secure and auditable logging and secure
traceability of all IDS alerts and changes. Our smart contracts
on the blockchain offer protection of the information and ease
of operations. The access and decryption of data are only
available to the parties that have been authorized in these
contracts. The highest priority is data security.

An access control is a very important feature of a smart
contract. Not only will it warrant safe access to all affected
parties, but it will also limit the access of data retrieval and
interaction to persons whose cryptographic keys are valid. The
contract also offers an audit of all data transfers, a record of
everything that has gone through, auditing and data
provenance. Truth inspires credible information and instils
confidence in collaborative learning. To share data, there is
also an automated agreement carried out under smart
contracts, making the management of data flow easier and
unauthorized access cannot occur during machine learning
and other multi-stakeholder inspired applications.

In severe instances, the control plane constrains network
functionality with the help of application-sensitive quality of
service norms. The constraints favour services with a low
latency, such as VolP and video conferencing and
disadvantage traffic with less critical sensitivities, such as
software updates and bulk downloads. Flow rules are
implemented dynamically by an SDN controller (such as Ryu
or OpenDaylight), depending on the level of security and the
classification of the traffic.
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Besides, adjustments to traffic and capacity according to
network loads can be provided through the system. Mininet
determines whether the framework would work by simulating
its architecture and running it through security checks,
intrusion detection and service quality and compliance in
order to test how it would perform. SmartSecChain-SDN
provides an intelligent, scalable, and unified solution for
programmable digital infrastructures.

3.3. Intrusion Detection Model Design

Intrusion detection models detect unauthorized access to
a computer system or a network. It is important to acquire the
data, clean it, select characteristics, train the model, and
evaluate it. The intrusion detection process shown in Figure 2
typically employs detection methods based on anomalies,
signatures, or a combination of both. Such methods are
employed to investigate the system activity and network
traffic. Some of the methods are machine learning and deep
learning. SmartSecChain-SDN can enhance threat detection in
SDN environments by connecting CNN-BIiLSTM, a
sequential deep learning model, and common machine
learning classifiers (Random Forest, XGBoost, and CatBoost).
The hybrid method of rapid classification and context-aware
sequence analysis can help in capturing more complex traffic
patterns and, at the same time, minimize the false positives.

More than anything, the appropriate choice of traffic input
improves learning, minimizes dimensionality, and eliminates
superfluous variables. With CICFlowMeter, over 80 flow-
based characteristics statistics were sampled in InSDN.
Intradomain expertise and correlation results resulted in the 32
best qualities: protocol flags, flow entropy, packet Internal
Address Translation (IAT), and byte rate. Since the difference
in the scales may cause bias in the input, all the numerical
features x were normalized through Z-score normalization as
shown in Equation (4).

X—p

X. =
norm P

(4)
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Fig. 2 Intrusion detection workflow

The data was normalized and then divided into training
and testing data, and missing values were replaced with mean
substitution. One-hot encoding of categorical values was used.
With the help of a multi-algorithmic deployment of deep
learning networks and machine learning classifiers, a flexible
and robust intrusion detection system is built. Each model
works excellently with non-linearity, over-fitting, interaction
of features and time varying patterns.

Stratified K-Fold Cross-Validation and optimization have
been used to determine the best hyperparameters for each
model so that it would provide the most accurate results and
the minimum number of false positives. Each Random Forest
decision tree is trained using a different set of data and
attributes, which are selected randomly. A Random Forest is
an ensemble of decision trees. It prevents overfitting and can
handle noise with bootstrapping. Prediction for input T;(x)

Equation (5) is based on the majority vote, where n is the
number of trees.
Vrp = mode({T;(x)}",_,) ()
Next, XGBoost uses regularization and a second-order
Taylor approximation to optimize a loss function (I) and

prevent overfitting, as shown in Equation (6). This approach
is effective despite having limited data and a class imbalance.

L) =T 09 + i) + 0 (f)) (6)
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Where y;ls the actual target value of the i function,

7,571 denotes the predicted value, f;(x;)ls the predicted
value from the new model tree being added at iteration t? The
next one is the CatBoost, which is a gradient boosting
technique that makes category data work better based on the

tree weight. @, and the decision tree function Ty, (x;Using

ordered boosting and target statistics can help stop overfitting.
The output is represented in Equation (7).

U]

Finally, CNN-BIiLSTM, in which networks keep track of
time-based connections, and CNN keeps track of space-based
connections. Botnets and slow, covert attacks are two
examples of flow patterns that depend on time and the output
of the CNN shown in Equation (8).

Ve = 25:1 a Ty (x;)

* Wi(jl) +

fj(l) =o(y; x'7V bj(l)) (8)

And the LSTM hidden cell update is represented by
Equation (9).

h, = tanh(W; - [hy_y, x,] + by) 9)

Each of the models in the SmartSecChain-SDN ensemble
has been hyperparameter-adjusted and trained extensively to
be as effective as possible against SDN threats. In spite of the
fact that Random Forest and gradient boosting models are
more robust and simpler to understand, CNN-BiLSTM
performs an excellent job of determining sequential patterns
of attack. The CNN-BIiLSTM model swiftly and precisely
detects intrusions, even in highly volatile or adversarial
network environments. In order to achieve even greater
predictive accuracy and model resilience, the additional step

of adopting a probabilistic ensemble voting mechanism (p),
illustrated by Equation (10), is commonly employed. The
combination has the advantage of using the strengths of
several different models and alleviating the poor
generalization problem that can emerge with using only one
classifier. Together, the ensemble brings out the merit of
model diversity in creating a more effective and reliable IDS.

p = arg T&X(Zrl\fl:l Wi+ Pn(c | J_C))) (10)

Where w,, is the weight assigned to the m™ classifier,
P, (c | X) denotes the probability output of the classifier for

class ¢, given an input vector X. The probabilistic voting
algorithm means that classifiers with higher performance
impact the decision to be established, so the intrusion
detection system will gain more robustness and adaptability.
Pseudocode 1 shows the step-by-step procedure of the
proposed intrusion detection mechanism and the way to
combine blockchain-based logging that will provide secure
and immutable event recording.



Azhar Hussain Mozumder et al. / IJECE, 12(10), 212-231, 2025

Pseudocode 1: Intrusion Detection and Blockchain-Integrated Logging

Inputs: Packet stream, Trained models, Flow Timeout (7), Blockchain API

Output: Intrusion Log< List of detected attack records stored immutably

1. Initialize:

Flow Table « {}

Intrusion Log « []

Model Weights < {RF, XGB, CAT, CNN-BiLSTM}

Voting Threshold < 0.5

2. For each incoming packet p; In PacketStream:

flow id < Compute FlowID(p;)

Flow Table [flow_id].append(p;)

Update t;45¢ pac for flow_id

3. Periodically check expired flows:

For each flow id in the Flow Table:

If Current Time — t45¢ pac> T

F « Extract Flow Features (Flow Table[flow id])

Step 1: Compute Derived Statistical Features ---

Tflow = tiast pac ~ tfirst pac

Spke = 3 =1 Si

R — Zivzl Si
byte — T

flow

T wN_
Tavg = 1\,_l21iv=11 (tivr — tD)

H(p) = — Y-, pilog,(p)

xX—f

Step 2: Normalize Features ---Based on x,,,,m = -

Step 3: Perform Predictions with Each Model ---

PredScores < {}

For each model M in Trained Models:

label « M.predict (X,07m)

PredScores[label] += Model Weights[M]

Step 4: Weighted Decision Fusion ---

final label < Arg Max (Pred Scores)

If final label # “Normal” AND PredScores[final label] > VotingThreshold:

Alert — {

“FlowID”: flow id,

“Label”: final label,

“Confidence”: PredScores[final_label],

“Timestamp”’: Now/()

}

Step 5: Blockchain-secured Logging ---

BlockchainAPI.submit_transaction(Alert)

Intrusion Log.append(Alert)

Delete Flow Table[flow_id] // Clean processed flow

4. Return IntrusionLog

END

3.4. Blockchain Logging and Smart Contract Integration
SmartSecChain-SDN features an integrated Hyperledger
Fabric blockchain that securely logs intrusion detection
system alerts. This makes data more reliable, easier to trace,
and harder to deny. With this approach, smart contracts, or
chain codes, safely and permanently store warning data and
conduct forensic audits. Alerts from the ensemble
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identification and threat system provide a timestamp, the
expected type of attack, the Flow ID, and the level of
confidence in the detection. When detection confidence

exceeds a predetermined level 8, a smart contract goes into
effect right away. Before recording, this warning is delivered
to the smart contract. The logging condition is enforced as in
Equation (11):
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if Cscore =0 = (Flow ID, Class, Confidence, Time) (11)

Each alert transaction is digitally signed and hashed using
SHA-256 to ensure integrity before submission, and digital
signature generation is given in Equations (12) and (13):

Hyiere = SHA 256(log,, || timestamp ) (12)
Slg = SKpriv (Halert) (13)
Where SKpriV is the sender’s private signing key.

Hyperledger peer nodes send signed transactions to the
ordering service. The ordering service then organizes blocks
of peer transactions. They are then committed to the
unchangeable electronic ledger. Under the consensus policy,
the transaction will only be allowed if all necessary peers
agree. This ensures only legitimate cautions are saved. Smart
contracts analyze alarm formats and source identities, notify
SDN management in real-time, and make the audit requests
very simple through a RESTful interface. A recorded alarm
can be recovered for forensics, policy review, or compliance
audits. Once captured in the record, an alert becomes a part of
the ledger permanently. Old warnings can be accessed via
querying the blockchain with the appropriate Flow ID. The
outcome of such a query contains vital alert metadata.

Query Alerts,y, 1p = { Class, Confidence, Time, Action}
(14)

Figure 3 presents the process scheme that the
SmartSecChain-SDN architecture incorporates to store alerts
on the blockchain. The chaincode (smart contracts) is
triggered as soon as the algorithm identifies an abnormality
with a confidence score of a previously agreed threshold. A
node in the Hyperledger Fabric network acts as the host and
performer of this contract. Before processing the alarm data,
the smart contract performs a verification step to ensure that it
is genuine and originated from a reputable IDS supplier. If the
findings come back negative or the detection confidence is
low, the record generation will not proceed according to the
contract. To help system administrators investigate or fix the
issue quickly, the contract saves the data and sends them a
real-time alert. After a smart contract accepts a transaction, the
ordering service, which is the entity that receives the funds, is
responsible for ensuring that all the blockchain nodes reach a
consensus. As part of its ordering process, the blockchain is
responsible for creating new blocks and sequentially
organizing transactions in chronological order. Now these
blocks need to be added to the immutable ledger. It is difficult
to alter any transaction that passes through the blockchain, as
the data recorded on it is both immutable and fully auditable.
The query feature in the system can permit a user authorized
to view logged alerts, like the auditors or the network
administrators, to further query the system about any
information about the alerts. As you can see, the secure closed-
loop system for detection, logging, and verification relies on
query answers retrieved straight from the same immutable
ledger.

Smart Contract(Chain
Code)
Recording only if
detection confidence >
Threshold
Generating real-time
lerts to administrators,

Automatically triggered
by IDS alerts

‘[ Peer Node(Hyperledger
1 Fabric)

Y

Ordering Service l‘—

Ledger

Y

into consistent Sequence

storage)

Ledger{Immutable ]

Ensures Consensus among
peers by transaction into blocks

Order all submitted transactions

Y

Query

Fig. 3 Blockchain logging and smart contract integration
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3.5. QOS Enforcement and SDN Controller Integration

The controller manages network resources and traffic
flows, and it is therefore necessary to impose quality of service
in SDN. When demands for different levels of services are
made, the controller monitoring the network determines the
optimal pathways and configures the necessary devices to
follow the rules. The integration efficiently and dynamically
controls network resources to ensure high-priority traffic
receives latency and bandwidth guarantees. Figure 4
illustrates a detailed representation of the SmartSecChain-
SDN framework’s QoS enforcement procedure, integrated
with the SDN controller.

Alerting the appropriate parties should be the initial
action the intrusion detection system takes when it detects
potentially dangerous network activity. This notice includes a
timestamp, a detection confidence score, the type of attack,
and the Flow ID, among other details. Immediately upon
warning generation, it is sent on to the module responsible for
handling warnings. At that location, we verify the information
and collect data for the next phase of decision-making. The
next step is to check the Alert-to-Policy Mapping Table. This
table outlines the relationships between various network
actions (such as dropping, rerouting to a honeypot, or
prioritizing) and different types of attacks (such as DDoS,
botnet, VolIP, or even benign traffic). Threat severity
estimation based on traffic and alert factors is represented by
Equation (15).

B
j.wcev =a- lOg <B - ) + ﬁ : Cscore ty- Rfreq +6- Hentropy
total ’
(15)

B
sIc

Where

Is the bandwidth usage of the suspicious

total

source, C,.is the ML model’s confidence score,

Ry, denotes the reputation frequency of similar alerts from
the source, H,,, is the entropy usage of protocol usage and

a, B,v, dis the tunable weights. Each flow f; s evaluated using
a composite QOS score that considers its application
category(App priority (f;)), current flow latency (I;), threat

severity T,.,and current bandwidth usage(sxu—“d). This score
total

Poos (fi) Itis computed using the formula in Equation (16).

. . 1
DPoos (fi) = v1.App priority (f;) + V2 Vs (1 = Tsew) +
bwysed (16)

4
bWtotal

Once the mapping phase is complete, the Flow
Classification component sorts all flows according to their
severity. Plan for the possible rerouting or blocking of really
harmful flows, such as botnet traffic or DDoS assaults.
Priority processing ensures the rapid transmission of low-
severity (safe) flows, such as VolP, as this is their primary
function.

SDN Controller

VoIP (safe)l Prioritize

IDS Al »| Alert Processing Policy enforcement
Flow ID Attack Category l
Confidence Score,Timestamp

Qos Policy

Alert to policy Mapping Table Application

A lexE Action
DDoS Drop packet
Botnet | Redirect to honeypot

Malicious (high
severity) — drop |§
or redirect »

.
. . .
Suspicious — K4
rate-limit

~

> Rate limiting

> Priority assignment

—3» Redirection or packet dropping

Fig. 4 QOS enforcement and SDN controller integration
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To further reduce the threat of harm while allowing some are given priority to keep performance from dropping. Rate-

services to continue, rate-limiting is applied to flows that limiting is used on suspect flows, and hostile traffic is quickly

appear suspicious. This is done to keep traffic moving. After  denied or sent to a different location. The network can respond

obtaining these classifications, the Quality-of-Service module ~ promptly to new threats because it has a mapping table that
of the SDN controller’s Policy Application is responsible for ~ connects alarms to policies, a method for sorting flows by

applying or modifying the applicable OpenFlow rules on the severity, and the ability to update OpenFlow rules. The
switches using the Policy Enforcement module. In such blockchain’s immutable record of enforcement activity
situations, priority traffic lanes, bandwidth meters, or even a  enhances auditability and compliance even further.
total shutdown of the flow will be implemented. The SmartSecChain-SDN utilizes  intelligent  detection,
intelligent feedback loop allows SmartSecChain-SDN to programmable control, and secure logging to ensure SDN
guarantee performance for authorized services while systems operate smoothly and efficiently.
simultaneously adapting the network’s operation in real-time

based on threat data. It achieves both of these objectives The SmartSecChain-SDN architecture was evaluated in
simultaneously. simulation, rather than in real-time, to ensure its feasibility and

efficacy. It was done using scripting and virtual network

The SmartSecChain-SDN architecture’s QoS simulation tools. Intrusion detection, SDN policy

Enforcement and SDN Controller Integration work togetherto ~ enforcement, and blockchain recording were tested in a

safeguard the network proactively and detect threats in real-  controlled environment without building a production-grade
time. By converting intrusion warnings into flow rules thatthe ~ network. This is possible because test circumstances are
SDN controller can enforce on the fly, the system can manage controlled and reproducible. Replicating the SDN system.
traffic with great detail and autonomy. VolP and business apps

Pseudocode 2: QOS enforcement and SDN controller integration

Input: Alert: IDS alert containing (Flow ID, Attack Type, Confidence Score, Timestamp), Policy Table, QOS thresholds,
Flow metadata

Output: Enforced Open Flow rule on SDN switch

Step 1: Extract metadata from IDS alert

Flow ID « Alert Flow ID

Attack Type <« Alert. Attack Type

Confidence < Alert. Confidence Score

Timestamp «— Alert. Timestamp

Step 2: Look up the corresponding network action

Action <+ Policy Table[Attack Type]

Step 3: Classify flow severity based on confidence score

If Confidence > QoS Thresholds[“High] then

Severity « “Malicious”

Else if Confidence > QoS Thresholds[“Medium”] then

Severity «— “Suspicious”

Else

Severity «— “Safe”

Step 4: Derive quality of service priority score (for multi-objective decisions)

App Priority < GetApp Priority(Flow ID)

Latency < Flow Metadata[Flow ID].latency

BW Usage <« Flow Metadata[FlowID].bandwidth usage

QoS _Score « Al * App Priority + A2 * (1 / Latency) + A3 * (1 — Confidence) + A4 * BW Usage

// Step 5: Translate policy decision to Open Flow rule

Match Fields < Extract FlowTuple(FlowID)

If Severity == “Malicious” then

If Action == “Drop” then

Send Flow Mod(MatchFields, action="drop”, priority=100)

Else if Action == “Redirect” then

Send Flow Mod(MatchFields, action="output:honeypot”, priority=90)

Else if Severity == “Suspicious” then

Send Flow Mod(Match Fields, meter="rate limit 1Mbps”, queue="low”, priority=60)
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Else if Severity == “Safe” then

Send Flow Mod(MatchFields, queue="high”, priority=40)

Step 6: Log action to blockchain for audit

Log Action To Blockchain(Flow ID, Action, Severity, QoS_Score, Timestamp)

End Procedure

With Mininet’s multi-host architecture and Open
vSwitch’s dataplane, it proved possible. The Ryu-built SDN
controller managed traffic redirection, quality-of-service
queues, and flow table entries. Python-based models
generated warnings, including Random Forest, XGBoost,
CatBoost, and CNN-BILSTM. After offline training on the
INSDN dataset, these models were included in the intrusion
detection logic script. Tcpreplay and synthetic flows allowed
the Mininet architecture to simulate DDoS assaults and VolP
traffic. This required replaying the attack and regular traffic.
This network consisted of a lightweight Hyperledger Fabric
network, a single ordering service, and two peer nodes. Smart
contract functions, such as LogAlert() and LogAction(),
record SDN actions and alarms as false transactions. These
services were activated using RESTful APIs. Timestamps
enable us to simulate transaction processing delays and assess
blockchain overhead under varying alert volumes. It was
accomplished using the same endorsement and consensus
techniques. In this non-real-time, non-deployed SDN
scenario, the framework’s response latency, logging
performance, false positive rate, and detection accuracy were
tested. All components were run on a virtual machine with 8
GB RAM and a four-core CPU to simulate resource-
constrained SDN installations at the network’s perimeter.

4. Results and Discussions

The proposed SmartSecChain-SDN architecture was
tested in a virtual SDN environment using simulations and the
INSDN dataset. Design effectiveness, responsiveness, and
operational resilience were assessed. Experiments evaluated
the system’s ability to identify various intrusions, implement
mitigation measures quickly using SDN controllers, and
record intrusions in a non-editable format utilizing blockchain
technology. The eight critical performance criteria examined
were detection Accuracy, false positive rate, flow
reconfiguration time, blockchain transaction latency, and
quality of service retention after an assault. An integrated
architecture for ML-based intrusion detection, blockchain-
secured auditability, and QoS-aware SDN enforcement can be
compared to C-RADAR, S-HIDRA, FL-BCID, and Crossfire-
MTD to assess its benefits. All tests were controlled to ensure
accuracy, repeatability, and consistency in the benchmarking
process.

4.1. Detection Accuracy (%)

As a measure of a model’s detection accuracy, the
proportion of correct predictions is essential. Detection
Accuracy (%) calculates the percentage of malicious and
benign network traffic that the ensemble intrusion detection
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system correctly identifies and labels in the SmartSecChain-
SDN architecture. Get the sum of all evaluated flows and
divide it by the total number of accurate
Predictions, both positive and negative. It is represented by
Equation (17).

TP+TN
TP+TN+FP+FN

Accuracy = x 100 an

The ensemble detection layer aggregates the predictions
of multiple classifiers based on their confidence levels.
Random Forest, CNN-BiLSTM, XGBoost, and CatBoost are
all classifiers. Complex multi-stage assaults, such as botnets
or covert probes, are detected by the system using statistical
and sequential traffic data. The method is quite accurate,
outperforming single-model techniques. SmartSecChain-SDN
routinely achieves detection accuracies of over 97.43% in the
INSDN dataset, as shown in Figure 5. SmartSecChain-SDN’s
performance demonstrates this. The merits of several models
are illustrated here. The SDN controller is so accurate that it
only turns on when warnings are issued, keeping traffic
moving and lessening the likelihood of incorrect mitigation.

4.2. False Positive Rate (FPR)

The False Positive Rate (FPR) in Equation (18) checks
how accurate a model is by examining the number of false
positives it produces compared to the overall number of
positives it produces. This statistic quantifies the frequency
with which a test falsely detects a chemical not present. The
dependability of an intrusion detection system is gauged using
this statistic when both benign and malicious communications
are of equal importance.

FPR = (18)
FP+TN

Security ~ wvulnerabilities  are  detected  using

SmartSecChain-SDN, which combines CNN-BIiLSTM,

CatBoost, Random Forest, and XGBoost. Confidence weights
are used for voting in every model. A low FPR is the same as
a strong detection sensitivity when it comes to limiting the
impact of false alarms on service quality. An intrusion
detection system alerts the SDN controller, which then adjusts
the flow rules accordingly. Maintaining QoS and generating
trustworthy alerts for blockchain-based logging are possible
with low FPR. As a result, security measures are only
implemented to address risks that pose a threat to harm. With
increased decision bounds, Figure 6 cumulative model
reduced the FPR from 8.18% at Epoch 10 to 1.82% at Epoch
100. The drop shows that the integrated model has reduced
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benign flow misclassification. False positives impair high- hazardous traffic and keeping a low FPR can improve
priority VoIP services or critical infrastructure control systems blockchain-logged security responses and decrease service-
due to flow fluctuations, making accuracy crucial in SDN level agreement risks.

contexts. Restricting SDN mitigation operations to proven
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Table 2. Alert response latency
Method Average latency (ms) Minimum (ms) Maximum (ms)
SmartSecChain-SDN 42.3 28.6 59.7
C-RADAR 87.4 64.2 121.8
FL-BCID 106.5 90.3 139.1
Crossfire-MTD 68.0 50.0 89.0
S-HIDRA 142.8 125.6 169.3
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4.3. Alert Response Latency

Alert response latency is the time between alert
transmission and action completion. Basic statistics measure
how quickly a system or person responds to an urgent alert.
The time between IDS identification of potentially dangerous
network traffic and SDN controller activation of preventive
actions is monitored and calculated based on Equation (19).

Alert response Latency = Tcontroller action — TIDS_alert
(19)

Attacks are more successful because of enforcement
delays due to harmful traffic flows over the network. The IDS
engine, policy decision unit, and OpenFlow controller
transmit data over an asynchronous channel because of the
architecture’s lightweight and modular design. Optimized
classifiers, such as Random Forest, XGBoost, CatBoost, and
CNN-BIiLSTM hybrids, generate low-latency alerts by
performing concurrent inference within the ensemble
detection model.

Table 2 compares five different intrusion detection and
mitigation systems based on the warning response latency. In
terms of real-time performance, the provided SmartSecChain-
SDN is top-notch, with latency values ranging from 28.6 to
59.7 ms and an average delay of 42.3.

The average delay of C-RADAR is 87.4 ms, but that of
FL-BCID is 106.5 ms, a significant increase. The primary
reason for this is that overhead is associated with both
blockchain syncing and federated learning. Utilizing
OpenFlow-based flow rule injection and DNS/IP redirection,
Crossfire-MTD achieves a redirection latency of 68.0
milliseconds. Because it does not enforce flows in real-time,
S-HIDRA has the slowest response time.

Typically, it takes around 142.8 milliseconds. By utilizing
SDN, SmartSecChain-SDN is able to reduce time-sensitive
vulnerabilities effectively. This device outperforms C-
RADAR and FL-BCID by 51.6% and 60.3%, respectively, in
terms of reaction time.

4.4. Flow Reconfiguration Time

The time required to update the configuration of a system
or network, such as an SDN, is known as reconfiguration time.
Software settings, routing paths, and network architecture
could all undergo this reorganisation. ~ The amount of time
that passes between an SDN controller sending a command to
modify a flow and the dataplane switch implementing that
instruction is referred to as the flow modification time. The
controller-switch interface is quite responsive and versatile,
especially when things are getting heated.

Table 3 illustrates the effectiveness of five distinct
network  security frameworks in  managing flow
reconfiguration. With an average reconfiguration delay of
248 ms and a low standard deviation of 3.2 ms, the
SmartSecChain-SDN architecture consistently demonstrates
excellent performance. It reconfigures at a pace of 40.3 flows
per second, which is faster than all other baseline techniques.
When comparing C-RADAR (42.7 ms) and FL-BCID (56.3
ms), the more sophisticated control systems had longer
latencies and increased temporal variability.

Although Crossfire-MTD is not optimized with respect to
flow reconfiguration throughput, the lightweight injection of
rules results in reduced flow installation overhead over the
adaptive systems. S-HIDRA is not suitable for granular, time-
sensitive mitigation due to its significant standard deviation
and 65.8 millisecond rule update time. SmartSecChain-SDN
performs well under changing network conditions due to its
event-driven flow handler, rapid OpenFlow push mechanism,
and precompiled rule sets.

4.5. Blockchain Transaction Time

Transaction time on a blockchain is the time it takes to
validate and add a transaction to a block. These timings vary
greatly based on network congestion, transaction costs, and
blockchain. The proposed SmartSecChain-SDN architecture
utilized blockchain transaction time to evaluate the efficacy
and scalability of Hyperledger Fabric-based intrusion
recording. The evaluation included block size and concurrent
submissions.

Table 3. Flow reconfiguration time analysis

Method Avg. Reconfig Time (ms) | Std. Dev (ms) | Min (ms) | Max (ms) | Flow Reconfig/sec
SmartSecChain-SDN 24.8 3.2 18.3 33.6 40.3
C-RADAR 42.7 6.7 29.6 58.4 22.9
FL-BCID 56.3 7.9 39.8 72.1 17.8
Crossfire-MTD 34.2 4.1 23.5 46.3 25.6
S-HIDRA 65.8 9.3 51.7 82.5 13.2
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SmartSecChain-SDN  consistently had the lowest
transaction latency, outperforming FL-BCID, C-RADAR, and
Crossfire-MTD by 15-25% Figure 7(a). Timings varied from
134.2 milliseconds (10 transactions per block) to 228.4
milliseconds (300 transactions). Fabric achieves this speed via
an enhanced block commit method and parallelism.
Competing models, such as S-HIDRA, showed over 70%
degradation. In contrast, SmartSecChain-SDN grows well
under parallel transaction demands Figure 7(b). When there
are 30 concurrent submissions, SmartSecChain-SDN
processes a single submission in 194.5 milliseconds, a 46.8%
improvement. The findings demonstrate that SmartSecChain-
SDN's blockchain layer enables low-latency and high-
throughput logging for an audit- and real-time compliant
SDN-based intrusion response system.

4.6. QOS Retention Rate (%)

The QoS retention rate (%) in networking and
telecommunications is the proportion of network traffic that
fulfils QoS standards. It demonstrates how effectively a
network can handle various types of traffic by maintaining
latency, packet loss, and capacity at a specified level.
Retention rate is calculated based on Equation (20).

QOSRR — QO0Sattack x 100

QO0Spaseline (20)

The network's strong QoS Retention Rate suggests that it
can effectively control traffic and prioritize essential apps.
Low rates are indicated by worsening performance and
declining traffic. The SDN controller's application-aware
mitigation policies for traffic quality enable VolP, video
streaming, and DNS to function effectively in the
SmartSecChain-SDN  architecture.  SmartSecChain-SDN
achieved the highest retention rates across all application types
(94.3% for video and 97.8% for VolP), primarily due to its
inclusion of priority-based QoS flow rules and low- latency
controller input Figure 8(a).
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Also, both S-HIDRA and Crossfire-MTD VolP networks
demonstrated retention rates of 78.2 % and 82.3 %,
respectively, in the study that did not involve reactive flow
enforcement or fine-grained traffic classification. Figure 8(b)
examines more closely how different levels of attack (0—500
Mbps) affect the quality of service. SmartSecChain-SDN's
QoS at 500 Mbps is higher than S-HIDRA's (36.1%) and FL-
BCID's (49.1%). The proposed model is strong because it
features a fast detection-response loop, blockchain-backed
flow validation, and the ability to slow down non-critical
services selectively. The results demonstrate that
SmartSecChain-SDN is well-suited for corporate and critical
infrastructure networks that utilize real-time SDN. This is
because its adaptive quality of service control prioritizes
service continuity and identifies and removes threats.

4.7. Detection Throughput

A system's detection throughput is its capacity to analyze
data and identify patterns, outliers, and occurrences. It is a key
performance indicator in network security, fraud detection,
and industrial quality control, where issues must be identified
quickly and accurately. When throughput is higher, faults are
identified and resolved more quickly, resulting in less harm or
loss.

Two different methods are used to evaluate the Detection
Throughput and assess the efficiency and scalability of the
models. It can be seen in Figure 9(a) that SmartSecChain-SDN
was the one with the greatest throughput, and Crossfire-MTD
only managed ~2,250 flows/sec, presumably because it is a
static model and could not make dynamic inferences.

SmartSecChain-SDN works well even when the flow
volume increases Figure 9(b). It can handle up to 500
concurrent flows at a rate of 3764 flows per second. Some
frameworks deteriorate when they must handle the same load.
C-RADAR goes down to 2287 flows/sec,
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While S-HIDRA goes down to 1239. SmartSecChain-  SmartSecChain-SDN did the best across 10 epochs, going
SDN continues to grow and improve with training, even in ~ from 3,580 flows/sec to 4,620 flows/sec. This system's
high-traffic network environments. This ensures that intrusion optimised ensemble learning and concurrent inference were
detection is both fast and accurate. Figure 9(b) shows that  the main reasons for this result.
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4.8. Drift Resilience (%)

Drift-resistant machine learning models work effectively
even when the input or training environment changes. A
model's performance remains robust despite substantial data
changes due to its strong drift resistance. Due to idea drift,
attackers and network traffic act differently over time. Drift
Resilience refers to the effectiveness of an intrusion detection
system in distinguishing between threats over time, thereby
keeping the system on guard against ongoing attacks.
SmartSecChain-SDN is robust due to its model upgrades,
ensemble learning, and behavior-aware flow analysis. These

features enable the network to adapt to different attack
patterns without requiring training. Table 4 shows that
SmartSecChain-SDN has 95.6% drift resistance, indicating
that it will remain accurate regardless of the traffic patterns.
On the other hand, crossfire-MTD and S-HIDRA's scores of
76.5% and 69.5% are lower than C-RADAR's 85.9% and FL-
BCID's 88.4% since they do not use adaptive methods. These
results show that there are no adaptable methods. Even when
the SDN environment changes, the detection performance of
SmartSecChain-SDN remains the same.
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Fig. 9(b) Detection throughput Vs Epochs

Based on all relevant metrics, SmartSecChain-SDN
outperforms current models, as shown in Table 5. With a
97.43% detection rate and a 1.82% false positive rate, it can
accurately distinguish between dangerous and benign flows.
This technology enables a response to alarms in real-time,
with a delay of 42 milliseconds, which is more than 60% faster
than C-RADAR and FL-BCID.

Table 4. Drift resilience

SmartSecChain-SDN is the quickest baseline for
changing OpenFlow rules on the fly, taking only 24.8
milliseconds. With 230 millisecond transaction latency at a
block size of 300 and reasonable scalability with concurrent
uploads, its blockchain logging on Hyperledger Fabric
operates well under stress. S-HIDRA retains 78% of its users,
while the model with over 94% for video traffic can continue
to provide service even during an attack. The model has a high
detection throughput of 4,620 flows per second and a drift

Model Drift Resilience (%) resilience of 95.6%, which means it can adapt to new attack
SmartSecChain-SDN 95.6 patterns and continue to function effectively over time.
C-RADAR 85.9 SmartSecChain-SDN's  SDN-integrated QoS adaptation,
FL-BCID 88.4 decentralised logging, and hybrid ensemble architecture make
Crossfire-MTD 76.5 it the best choice for modern, scalable, and programmable
S-HIDRA 69.5 network protection.
Table 5. Performance comparison of the proposed model
Metric SmartSecChain-SDN | C-RADAR | FL-BCID | Crossfire-MTD | S-HIDRA
Detection Accuracy (%) 97.43 94.25 93.18 89.5 84.16
False Positive Rate (%) 1.82 4.96 5.73 6.9 8.44
Alert Response Latency (ms) 42.3 87.4 106.5 68.0 142.8
Flow Reconfig Time (ms) 24.8 42.7 56.3 34.2 65.8
Blockchain Txn Time (ms) 134.2 212.4 172.7 248.5 145.1
QoS Retention Rate (%) 94.3 (Video) 88.6 86.1 82.3 (VolIP) 78.2
Detection Throughput (flows/sec) 4620 2630 2558 2250 1575
Drift Resilience (%) 95.6 85.9 88.4 76.5 69.5
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5. Conclusion

SmartSecChain-SDN is an intelligent architecture
designed to detect and prevent SDN intrusions. The study
examines blockchain smart contracts, their functionality, and
how they can change the world. The model employs
sophisticated ML and deep learning classifiers, including
Random Forest, XGBoost, CatBoost, and CNN-BIiLSTM, to
identify risks swiftly. The framework works with Hyperledger
Fabric to provide rule compliance, service prioritisation while
changing network settings, and immutable logging. The
INSDN  dataset outperformed C-RADAR, FL-BCID,
Crossfire-MTD, and S-HIDRA in terms of concept drift
resistance (95.6%), detection throughput (4,620 flows/sec),
alert reaction time (42.3 ms), and detection accuracy
(97.43%). We got these results by comparing them to other
models. Despite its potential, the framework has limitations.
Multiple classifiers can enhance detection in SDN systems
with ample resources or data. This method enhances model
complexity and inference processing resource usage.
Hyperledger Fabric needs to be modified for high consensus
thresholds or transaction volumes, such as multi-endorsement
policies. Upgrading federated models assumes a reliable SDN
controller is impervious to poisoning and insider threats.
Assaults easily target the controller. Lightweight federated
model updates across faraway edge nodes enhance the system.
Better privacy and less centralised learning would ensue.
Explainable Artificial Intelligence (XAIl) in the detection
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