SSRG International Journal of Electronics and Communication Engineering
ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12110P118

Volume 12 Issue 10, 232-251, October 2025
© 2025 Seventh Sense Research Group®

Original Article

An Optimized Federated Learning Algorithm for
Decentralized Intrusion Detection Systems Using
Artificial Bee Colony Optimization

Shourya Shukla!, Ajay Singh Raghuvanshit, Saikat Majumder?
'Department of Electronics and Communication Engineering, National Institute of Technology, Raipur, Chhattisgarh, India.
1Corresponding Author : sshukla.phd2019.ece@nitrr.ac.in

Received: 18 August 2025 Revised: 20 September 2025 Accepted: 19 October 2025 Published: 31 October 2025
Abstract - With the advancement in 10T technologies, Wireless Sensor Networks have found many applications in the modern
era. Due to this, the malicious activities in the networks have seen a major surge. Data theft and manipulation have been a
serious concern among researchers. In real-time scenarios, the data communication from nodes to the servers increases the
communication overhead and makes the network vulnerable to attacks. A decentralized detection strategy has become a necessity
to detect these intrusions efficiently. Federated Learning algorithms have been a major choice for decentralized learning
frameworks. The federated models learn the data patterns based on the trained local models. In this paper, a novel model
aggregation strategy has been proposed. The weightage or local share of each client is optimized using the Artificial Bee Colony
Optimization algorithm, called the optimized local share. The optimized local share has been utilized for three neural network
architectures with five-layer deep structures. A Fully Connected Network, a Long Short-Term Memory network, and a hybrid
network were employed to detect intrusions in the network. The NSL-KDD and UNSW-NB15 datasets have been distributed into
5, 10, and 20 clients for local training and aggregated using optimized local shares. Binary and multi-class classification
achieved high accuracies, comparable to State-of-the-Art frameworks and centralized learning models, while ensuring data

privacy and integrity of each client.

Keywords - Federated Learning, Intrusion Detection Systems, Artificial Bee Colony Optimization, Deep learning, Model
Aggregation.

1. Introduction The increase in loT-based Machine-to-Machine

With the advancement in Internet of Things (loT) communication has led to many security concerns. Data
technologies, automated Machine-to-Machine (M2M) Privacy and Data integrity are often compromised in such
communication has become a reality. 10T uses resource- scenarios. An act in which data theft, bandwidth disruption, or
constrained, low-weight wireless communication resource manipulation is deliberately performed is known as
technologies to communicate between small embedded an Intrusion.
systems. 10T devices are small computing devices that
communicate via networking protocols such as Bluetooth,
Wireless Fidelity (WIFI), zigbee, etc., with each other without

The Intrusions are malicious activities that may be active
or passive in nature. Active attacks include spontaneous data

human intervention [1].

Smart healthcare equipment, automated drones,
networked sensors, and smart wearable technologies are a few
examples of prominent loT-based smart technologies. These
devices have the ability to analyze data and communicate with
other IoT devices through ubiquitous interactions such as
alerts, alarms, and other warning systems [2]. 10T devices
working in small clusters form Wireless Sensor Networks
(WSN), where each cluster has sensor devices,
communication devices, and a processing unit. In the WSN,
each sensor has the ability to sense different data.

OSOE)

or resource depletion. Denial of Service attacks, such as ping
of death, in which large ping data is sent to the victim machine,
depleting its bandwidth. Other commonly employed active
attacks include backdoor, fuzzer, exploits, remote to local, etc.

On the other hand, probe attacks are passive attacks that
seek vulnerabilities in the network. These attacks remain
dormant for most of the time, searching for vulnerabilities in
the victim node. Once such a vulnerability is found, a passive
attack sends information about the same to the intruder. The
attacker then initiates an attack on the vulnerability and, in
most cases, executes a successful intrusion.

AT 1 his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

http://creativecommons.org/licenses/by-nc-nd/4.0/

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

Early detection of these Intrusions leads to safeguarding
the network and the network resources. Intrusion Detection
Systems (IDS) have been able to detect any malicious activity
in the 10T or WSN. IDS shows zero trust toward the packet
received by any node in the network. IDS verifies each packet
based on the ETS signature or learns a pattern to detect
unwanted activity [3]. These checks are not only performed
for external communication, intra-network communications,
such as sensed data packets in a WSN, but inter-cluster packet
transfers within a network are also examined. These steps are
performed not only to protect the network from external
threats but also to detect corrupt internal nodes within the
network. Signature-based IDS (SIDS) maintains a record of
known attacks and has to be frequently updated to detect
malicious activities. The signature-based IDS has a major
drawback when it comes to zero-day attacks. Any novel attack
generally remains undetected by the signature-based IDS. To
overcome this vulnerability of the SIDS, anomaly-based IDS
has gained popularity among many researchers in recent years.
The anomaly-based IDS has the ability to learn the pattern of
normal packets. Any severe variation from the normal
behavior of the packet is marked as an anomaly. This feature
of anomaly-based IDS enables it to detect a zero-day attack.

In the anomaly based IDS, as the number of features
extracted increases, the complexity of the pattern exceeds
human cognitive capability in detecting the intrusions.
Artificial Intelligence, like Machine Learning (ML) and Deep
Learning (DL) algorithms, learns to differentiate the normal
and attack patterns successfully. The ML and DL algorithms
require a large amount of data to train the classifiers
efficiently.

However, recently, many countries and organizations
have restricted the use of users’ data to train and test for
classification purposes due to the risk of data theft, data
leakage, and, in some cases, even data duplication. In 2016,
the General Data Protection Regulation (GDPR) was imposed
by the European Union to safeguard the personal data of
citizens all over the world. In this regulation, user consent was
required to access their data [4]. This regulation considered IP
addresses, unique identifiers, and access points as users’
personal data. Similar regulations were passed by the
California Consumer Privacy Act (CCPA) of the USA and the
Personal Data Protection Act (PDPA) in Singapore. The
Information Technology (IT) Act & Rules in India in the year
2023 published a Digital Personal Data Protection Act, which
gave the Indian citizen the right to access, modify, or delete
personal data from a database.

Moreover, these regulations have deprived researchers
from collecting and training their intelligent systems for the
early detection of intrusions. In the case of WSN, the problem
of data islands has become a severe issue. Each node or access
point has its own data, and data sharing among nodes, or
clusters, or even with the base station has been restricted in

233

many networks due to these regulations. One of the effective
solutions to this problem is deploying and routing nodes as a
distributed infrastructure. The decentralization property of the
distributed infrastructure enables a network to maintain data
privacy and integrity. As a result, intercommunication within
a network creates vulnerabilities in the system. The
centralized data processing can lead to major data breaches,
and several other attempts can be made to disrupt the normal
working of the 10T devices [5].

Federated Learning (FL) has emerged as a novel approach
for training an expert system on distributed data. Federated
Learning utilizes the local data for training, and the global
model is trained based on the aggregation of local models.
FedAvg [6] and FedProx [7] have been the most used FL
algorithms. The FedAvg algorithm uses the average of the
trained weights as an aggregation function for the global
weight. Meanwhile, FedProx introduced a proximal term to
the local loss function for optimal weight assignment. The FL
algorithms have advanced over conventional centralized
learning models when dealing with non-Independent and
Identically Distributed (non-11D) data. FL models share the
locally learnt model to form the global model, whereas in a
centralized training model, the data acquired by each node is
shared with the server for training. Hence, with FL, user data
is preserved in real-time scenarios while the global FL model
achieves comparable accuracies to the centralized deep
learning architectures.

In this paper, an Optimized Federated learning model has
been proposed. The proposed model is an extension of the
averaging function used to train the global model through
locally trained models. The weightage of each locally trained
is optimized using a metaheuristic optimization algorithm.
Acrtificial Bee Colony Optimization has been employed to tune
the weightage or local share of the locally trained model on
non-11D data. The network intrusion datasets NSL-KDD and
UNSW-NB15 have been employed to train the local IDS on
different numbers of clients. This paper compares local and
global accuracies based on a fully connected network, long
short-term memory, and a hybrid model employing fully
connected and LSTM layers.

2. Literature Survey

A comprehensive survey of state-of-the-art research has
been presented in the field of federated learning and optimized
FL.

Idrissi et al. [8] proposed an FL-based NIDS. The authors
proposed an anomaly-based detection scheme for various
datasets. USTC-TFC2016, CIC-1DS2017, and CSE-CIC-
IDS2018 datasets were employed. Autoencoders, along with
their variants, were employed along with two variations of
federated learning for the detection of anomalous packets.
FedAvg and FedProx were used to emulate the distributed

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

architecture of the network. However, different autoencoders
were able to detect the anomalies better for different datasets.
Hence, it was concluded that federated learning with different
deep learning architectures can provide suitable results in
various scenarios.

Friha et al. [9] suggested an FL-based IDS model for
agricultural 10T. Locally trained FCN, CNN, and RNN were
utilized for a modified Federated learning algorithm. The
authors demonstrated an Agriculture 4.0-based IDS with data
privacy and integrity. A mini-batch gradient was employed for
the weight update mechanism in the distributed scenario, and
the authors achieved 93.29% accuracy.

Oliviera et al. [10] proposed a distributed IDS while
maintaining the balance between accuracy and robustness. For
rule-based attacks, a membership function-based decision was
employed. In addition to the membership, varying levels of
Gaussian Noise were added to the attack instances. An
inversion attack was performed to train a detection device. A
batch size of 1000 with different noise level was trained for 10
rounds, and 10 rounds each round consisted of 10 epochs,
achieving 96.2% accuracy.

Jin et al. [11] proposed a solution for catastrophic
forgetting for older classes. The authors proposed a class
balance gradient loss function, which was employed to update
the learning rate of the deep learning architecture. UNSW-
NB15 and CICIDS2018 datasets were used to train the CNN-
GRU-based model for 10 client systems. 68.764% accuracy
was achieved for UNSW-NB15, and 99.62% accuracy for the
CICIDS2018 dataset was achieved.

Li et al proposed an IDS with a distributed configuration.
Dynamic weighted aggregation was used for learning. CSE-
CIC-IDS2018 was employed to detect some of the latest
attacks. To discard some of the inaccurate models, a local
model has to perform better than a threshold value, which was
set to 0.75. The CNN architecture was used with a 512 batch
size for 10 rounds. The dynamic weighted algorithm gave high
accuracy with less communication overhead [12].

Thein et al. [13] proposed an IDS model against
poisoning attacks. The authors also focused on the
heterogeneity of the data under study. They proposed a logit
adjustment loss function based on mini-batches to train the
local models. Each local model was trained on a 3-layer CNN
architecture consisting of 256, 128, and 64 nodes,
respectively. A dropout layer was added to preserve the most
relevant 80% of the features extracted by CNN layers. A
temperature scaling function was introduced in the cross-
entropy function to adjust the logit adjustment loss.

Attota et al in [14] proposed a multi-view based federated
learning algorithm for the detection of malicious packets in the
network. The extracted features were selected using the Grey

234

Wolf Optimization (GWO) algorithm. Biflow View, Packet
View, and Uniflow View were used to train the local models.
The authors achieved 94.175% accuracy for the Random
Forest Classifier.

Lazzarini et al. [15] proposed a shallow artificial neural
network architecture for clients, and the FedAvg algorithm
was employed for aggregation of the local model to form a
global model. ToN_IoT and CICIDS2017 datasets were used
to create the decentralized scenario. The shallow network
architecture consisted of a 3-layer fully connected network,
with a 0.01 learning rate and 5 rounds of training with 5 to 8
epochs per round. The proposed model achieved 97.59%
accuracy.

Zhao et al. [16] proposed a semi-supervised FL model for
IDS. The authors focus on three issues for federated learning
based IDS: data reproduction, non-1ID data, and
communication overhead. The distillation method and the
CNN architecture were introduced for classifier and
discriminator networks. An eight-layer CNN was employed
for feature extraction for five communication rounds with the
Adam optimizer. The authors were able to achieve 87.40%
accuracy on the semi-supervised 10T data.

Verma et al. [17] proposed an FCN, CNN, and LSTM-
based hybrid neural network for training non-11D data. The
authors employed encryption techniques to secure the model
gradient over the communication channel. With the log loss
function, the hybrid model was able to achieve 99.44%
accuracy over the IloT dataset with 15 client nodes used to
train the hybrid 11-layer model on distributed data.

Authors in [18] proposed an automatic weight-optimized
federated learning algorithm. In this model, the loss function
was optimized by taking heterogeneity into consideration. The
MNIST dataset was used for training. The dynamic model
with a novel loss function provided high accuracy on MNIST
data for a two-layer CNN structure.

Li et al in [19] proposed a weight-optimized federated
learning algorithm for the MNIST dataset. The authors
employed several bio-inspired optimization algorithms to
optimize the weights of the local clients. A genetic algorithm
was applied to randomly generated weights, and new offspring
were used to test the accuracy. If the new accuracy is found to
be better than the older model, the model is replaced. The
model provided 68% testing accuracy.

Park et al. [20] proposed a Particle Swarm Optimization
(PSO) based FL algorithm. PSO was employed to reduce the
model's communication cost. In each iteration, the best-
performing client shares the model parameters instead of the
weight update from each client. The weight update steps were
performed on a hybrid deep learning structure with four CNN
and four DNN layers on the CIFAR and MNIST datasets.

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

A similar approach was employed by the author in [21],
where PSO was employed to reduce the communication
overhead and hasten the decision for lung legion due to
COVID-19 infection. Instead of the weight update by the back
propagation step in the neural networks, PSO was employed
to optimize the speed of change in the weight matrix.

Xu et al in [22] proposed a learning rate optimizer for
federated learning algorithms. Dynamic learning rates were
adapted by local clients to overcome the effects of a fading
channel. The authors tested the model on CIFAR and MNIST
datasets. However, 92.51% accuracy was achieved for CIFAR
with a dynamic learning rate. The algorithm proved to perform
better than the FedAvg algorithm.

Other distributed systems include the use of various
distributed algorithms and distributed datasets. Blockchain
technology and cloud-based 10T services have been one
among the most widely used distributed technologies along
with federated learning. Kumar et al. [23] proposed a
blockchain-based I1DS for a distributed system architecture.
The authors used fog computing to detect a DDoS attack. RF
and XGBoost algorithms were employed in a fog loT
environment to detect malicious packets.

Gad et al in [24] employed the ToN-loT dataset to learn
the model based on loT devices. An XGBoost classifier was
used to compare the accuracies on the full set of features and
reduced sets of features. The feature selection was performed
using chi-square analysis and a correlation matrix. The
reduced set was given to SMOTE to mitigate the class
imbalance problem. The XGBoost classifier was able to
achieve 98.3% accuracy on the dataset.

Samunnisa et al. [25] proposed a distributed cloud
computing algorithm for IDS. The authors employed
clustering and classification algorithms for detection
purposes. Clustering algorithms such as K-means and GMM
were employed for feature transformation, and Machine
learning algorithms were used for classification based on the
transformed features. Different thresholds were defined for
the RF classifier; the 0.5 threshold gave 99.85% accuracy.

Segura et al. [26] focused on the Software Defined
Networks (SDN). The author used the IEEE 805.15.4 protocol
for the nodes. Online change point detectors were installed on
the nodes to identify any malicious activity in the network.
Rule-based or signature-based thresholds were proposed for
the centralized and distributed detection model.

Sokkalingam et al. [27] proposed a hybrid optimization
algorithm with Support Vector Machine (SVM) for the
detection of intrusive packets. 10-fold cross-validation on the
NSL-KDD dataset. Particle Swarm Optimization and Harris
Hawk Optimization were employed for feature selection, and
SVM was used for classification purposes. Eight features

235

were selected for training, and the model was able to achieve
97% accuracy.

Based on the rationale survey, the following gaps were
found in the existing state-of-the-art methods:
In real-world scenarios, the data collected by the sensor is
often sent to the central node. This results in an increased
communication overhead in the network.
In [8-10], authors employed a decentralized framework
for detection purposes. However, the authors did not take
class imbalance into consideration.

Based on the mentioned research gaps, the proposed
research has the following highlights:
For a decentralized approach, a federated learning
framework has been proposed in the proposed model for
a different number of clients.
To incorporate the class imbalance problem, the Artificial
Bee Colony optimization algorithm has been employed to
evaluate the optimized local share for each client.
Three different deep neural network architectures have
been trained for the detection of intrusions on two
standard datasets, NSL-KDD and UNSW-NB15. Both
binary and multi-class global classifiers were trained
based on optimized local share.

The paper is organized as follows: The first section
comprises the Introduction to FL and IDS. Section Il consists
of the literature survey based on optimization algorithms and
federated learning models. The methodology of the
framework is provided in Section Ill. Section 1V contains
details about the experimental results and a discussion.
Section V has the conclusion of the research along with future
work.

3. Methodology

In this paper, an optimized federated learning model has
been proposed. The weighted federated learning algorithm has
been optimized using Artificial Bee Colony Optimization. The
framework has been depicted in Figure 1. Three different
neural network architectures have been trained on the local
data, and a Global model has been trained using model
aggregation. The detailed description of the methodology
employed is as follows:

3.1. Federated Learning

An Intrusion Detection System is deployed in the network
with either a centralized or a distributed infrastructure. In the
centralized deployment of the IDS, the data sensed by each
cluster or client is communicated to the base station. At the
base station, the data is analyzed for any malicious packets. If
the packet contains a virus, the packet gets discarded. In the
case of a distributed deployment strategy, the IDS is equipped
with multiple nodes over the network [28]. For the distributed
learning framework, Federated Learning provides a

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

hierarchical approach between the distributed nodes and the
central station. The decentralized training is performed by the
client, and the base station acts as a server for the deployed
IDS. The training and testing of the framework are divided
between the server and client sides, where the training of the
data is performed by the clients, and on the other hand, the
model aggregation is performed by the server, where the
accuracy of the framework is tested.

- w0

/ Client 3

>
[
S
o] A

— A K4
o q) .{
O = -7 - N
m £ N
= s \ \.\ Global Model
S O NN
= N N
= w
= > S
< N

~
~
~
~
~

The data can be divided horizontally or vertically. In the
horizontal distribution of data, the data instances are randomly
distributed among the clients, whereas in the case of vertical
distribution, the features are divided among the clients. Each
client contributes to the training of a different set of features.
In the proposed algorithm, the network intrusion datasets are
distributed horizontally and equally among each client.

K Client 2

- =
QQ

K Local Deep Learning Model /

Fig. 1 Pictorial representation of the proposed framework

In Federated Learning, many variations have been
invented in recent years. FedAvg is one of the most commonly
used algorithms [6]. In this method, the weights of the neural

network, trained by each client, are averaged, and hence, equal
weightage is provided to each client. In the case of weighted
FedAvg, the unequal data distribution is performed by random

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

allocation of the sensed data to a client. The percentage data
acts as the weights of the client while model aggregation is
performed. These models lack the ability to take data
heterogeneity into consideration. FedProx and FedPSO [20]
are also very readily used Federated Learning algorithms. The
FedProx algorithm tweaks the loss function with a penalty
term responsible for resisting any abrupt change in the client
model from the global model.

Dense

Input shape: (None, 41) Output shape: (None, 64)

Dense

Input shape: (None, 64)

Output shape: (None, 128)

Dense

Input shabe: (None. 128) Outout shape: (None. 256)

Dense

Inout shaoe: (None. 256) Outout shane: (None. 128)

Dense

Inout shaoe: (None. 128) Outout shane: (None. 64)

Input shane: (None. 64) Outout shane: (None. 1)

Fig. 2 Fully connected network layers

In the proposed framework, each client's weightage or
local share is generated by an Artificial Bee Colony algorithm-
based exploration strategy. The proposed framework consists
of the following steps:

3.1.1. Global Model Initialization

In this step, the Neural Networks are generated by the
server. Three different neural networks have been proposed
for comparative training and testing. In this step, the weight
initialization, layer activation, and learning rates are defined
along with other hyperparameters. The three neural networks
used for training and testing are:

For the first Neural Network, a five-layer hidden fully
connected network is initialized with random weights and a
learning rate. Binary classification is performed using binary
cross-entropy, whereas multi-class classification is performed
using sparse categorical cross-entropy.

The FCN is a deep learning architecture in which the
output of each filter of the preceding layer is connected to
every filter of the succeeding layer. This characteristic of the
dense network enables it to establish linear as well as non-
linear relations between input and output. The features
extracted by the Fully Connected Layers are given as:

237

y=¢@*x+p) o)

Where y is the extracted feature for the x input, the
weights and bias are given as ¢, 8, respectively.

LSTM

Input shape: (None, 41, 1) Output shape: (None, 41, 64)

LSTM
Input shape: (None, 41, 64)

Output shape: (None, 41, 64)

LSTM

Inout shane: (None. 41. 64) Output shape: (None, 41, 32)

LSTM

Inout shabe: (None. 41. 32) Outnut shane: (None. 41. 16)
LSTM

Inout shape: (None. 41. 16) Output shape: (None, 4)

Inout shane: (None. 4) Output shape: (None, 1)

Fig. 3 LSTM network layers
This ¢ is the activation function used to introduce non-
linearity in the feature extraction process. In the FCN, the
ReLU activation is employed to eliminate negative features.
The ReLU function is given as:

Dense

Input shape: (None, 41) Output shape: (None, 128)

Dense

Input shape: (None, 128) Output shape: (None, 256)

Reshane

Inout shane: (None. 256) Output shape: (None. 256. 1)

LSTM

Inout shaoe: (None. 256. 1) Outout shape: (None. 256. 64)

LSTM

Input shane: (None. 256. 64) Outout shape: (None. 256. 16)

LSTM

Input shape: (None. 256. 16)

Outout shape: (None. 4)

Inout shane: (None. 4) Output shape: (None. 1)

Fig. 4 Hybrid network layers

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

ReLU(6) = ¢(8) = max(6,0) 2)

A five-layer Fully Connected Network has been
employed in the proposed algorithm for training each client,
as shown in Figure 2. The input layer has 41 filters for the
NSL-KDD dataset, whereas it has 43 filters for the UNSW-
NB15 dataset. The input layer is followed by a 64 filter dense
layer; more features were extracted with 128 and 256 filter
layers. To mitigate overfitting, the important features were
selected and passed to the output layer with 128 and 64 filter
layers providing a bottleneck structure.

LSTM Network: The Long Short-Term Memory
Network is a feedback-type neural network. The LSTM is a
special case of a Recurrent Network that comprises the input
gate, forget gate, and output gates. The feedback behaviour of
the LSTM enables it to analyse sequential data or signal more
efficiently. In the proposed model, the five-layer hidden-layer
LSTM network assumes that the intrusion features are
sequential in nature. The proposed architecture consists of an
input layer with units equal to the number of features in the
dataset. The input layer is followed by the hidden network.
The hidden layer forms a converging bottleneck structure for
preserving important features. The hidden layer consists of
two 64-unit layers followed by a converging 32, 16, and 4-unit
layers for feature extraction and selection purposes. The
feature extraction of the LSTM layer relies on feedback for
longer retention of the extracted information. The decision to
store or eliminate an extracted feature is made by the forget
gate. The feature extraction is given as:

fot: = O-(ngt- [hr—1, %] + ﬁfgt)
inT = G((inp- [Ar-1,Xc] + ﬁinp)
C‘r = tanh(ZC- [h‘r—l' x‘r] ,\+ ,BC)
C; =fgt;. Co_q +inp;.C;

outy = 0(Qous- [e—1, %] + Bout)
and

h; = out,.tanh(C,) 3)

Where fgt is the output of the forget gate, inp is the
input gate, C, is the candidate cell state forztime, Cis the cell
state, and out, hare the output and hidden states, respectively.
The activation functions are fixed for LSTM networks, with
othe sigmoid and hyperbolic tangent functions for candidate
and hidden states given by:

ela_p—ia

el@ye—la

tanh(a) = 4)

Hybrid Neural Network (HNN): In the hybrid model, the
HNN consists of 2-layer Fully Connected Layers, a reshape
layer, and then followed by three LSTM layers, as shown in
Figure 3. The reshape layer was added to make the features
extracted by dense layers compatible with the sequential
analysers of the LSTM layers. The structure consists of a
dense layer of 128 filters, followed by another dense layer
with 256 filters. The extracted features were made into a
sequential tensor using a reshape layer. The LSTM part of the

238

hybrid neural network consisted of 64, 16, and 4 units for the
selection of relevant features. The dense layers were activated
using ReLU activation, whereas the LSTM layers were
activated by the hyperbolic tangent function.

3.1.2. Local Weight Updates

Each client model updates their model weights through
back-propagation. The output of the neural network after each
epoch calculates the loss present in the prediction of the
malicious packet. Cross-entropy has been employed as the
loss function for the proposed framework. The loss function is
given as:

t,y) = =ly xlog(y) + 1 —y) * log(1 =7)] ©

Where v is the true class, and yis the predicted class by
the local model? Then, the gradient of the loss function is
evaluated, and the new weights are given as:

(newzc_n*s_; (6)

Where 7 is the learning rate.

3.1.3. Global Aggregation

The global model is evaluated once all the client models
are trained with their sensed data. This step is known as model
aggregation. This step represents the most important feature
of Federated Learning. Instead of communicating data, each
client broadcasts their learnt model, and with the help of these
models, a global model is constructed. In the proposed
framework, instead of averaging or weightage being assigned
according to the data share, the weightage allocation or the
local share allocation is performed by exploring an optimal set
of shares using a metaheuristic algorithm. In this paper, the
Artificial Bee Colony algorithm has been employed for
exploration purposes. The proposed global weight is formed
by the sum of client models with their respective local shares.
The global weight is given as:

(7

Where {;,;is the global model, {.is the k" client's
weights, and w,is the optimal local share of the k" client.

ZGbl = ZK WK'()C = Wl(l + W2{2+.. . +WN{N

3.2. Artificial Bee Colony Optimization (ABCO)

In this paper, an FL-based neural network has been
proposed for the detection of malicious packets in a
decentralized network. The trained neural networks trained by
each client are used to form the global model. The FedAvg [6],
as the name suggests, forms the aggregate using the mean or
weighted average of the model weights of each client.
Weighted averaging of the models is performed on the
percentage of data used to train the model, without taking
Class imbalance and local model accuracies into account.
Hence, these algorithms lack the qualitative aspect of the local
models and focus on the quantitative aspect.

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

In this paper, the weightage of the local share of the
clients is considered independent of the quantitative aspect of
the data; the study focused on the optimal weights known as
the local share of the client models. The paper proposes an
ABCO-based optimum local share for each client.

ABCO was proposed by Karaboga in 2007 [29]. In the
optimization algorithm, the optimal solution is inspired by a
swarm of bees around the hive. The honeybees are a highly
social species, so their swarm behaviour around the hive is
studied in the ABCO. Swarm Intelligence is the study of the
collective behaviour of a social colony or other animal
societies to design an algorithm or problem-solving strategies.
Self-organization and division of tasks among the bees
inspired the ABCO algorithm. The solutions in the
optimization problem are considered a food source or
connected to the objective function of profitability.

According to the division of labour in the beehive, the bee
population can be divided into three groups. The first group
represents the Employed Bees (EB), followed by Onlooker
Bees (OB) and Scout Bees (SB), collectively known as
Unemployed Bees (UB). The population of the bees is
initialized as:

w = low_bnd + r * (upp_bnd — low_bnd) (8)

Where Np is the number of bees. N.represents the
number of clients employed to train the local models, forming
a list of arrays. The dimension of the lower bound given by
low_bnd, upper bounds given by upp_bnd , and random
number sequence (r) is (N, x N¢). As the local shares are the

weightage of the local client, they must sum up to 1; hence,
each bee in the population is transformed to make fit the
requirement by using the equation given below. Once the
population of the bees is compensated, the Employed Bee
Phase is executed.

[wil

Nc
X lwil

©)

Weomp =
In the ABCO, the fitness function of the solution and
the objective function are related as given in the equation:

1 .
—,ifF,p; =0
1+F0b]" f obj

1+ |Fopjlif Fopj <0

ftn = (10)

3.2.1. Employed Bee Phase (EBP)

The bee population is then divided into EB and UB. The
EB are the bees that are currently exploiting a food source or
contain information such as distance and direction from the
optimal solution. The EB can perform one of the three tasks:
either dance around the food source and recruit new onlooker
bees with a certain probability, or abandon the food source or
continue to forage for the optimal solution. The OB watches
the EB dance and interacts with them in hopes of becoming
EB, whereas the SB spontaneously start searching around the

239

hive. In the EBP, the number of food sources, the number of
EB, and OB are set to Np/2, that is, half of the population
forages for an optimal solution. In this phase, all the solutions
get a chance to generate a new solution. The new solution in
the employed bee phase is given by:
W;Lew = W)lcst + @ * (Wchst - W;vtn) (11)
Where phi ¢ is the random number between -1 and +1,
Whp is the randomly selected partner bee, w.,,and is the local
share of the ith local client randomly selected to generate new
solutions. As the new solution changes the total share,
equation 3 is applied to the new solutions, which maintains
their value as 1. After the new solutions are generated, they
are used as a local share of the clients to generate global
weights. The new global weights are tested on the data, and
objective functions are evaluated for each solution or local
share matrix. A greedy selection algorithm is applied to the
new set of solutions. The greedy search algorithm is given by:

W < Wnew

{Fobj < Fobj'new (12)

Jif fthgew > ftn

A trial counter is incremented each time the new solution
is inferior to the existing one. If the new replaces the existing
solution, the trial counter is set to 0.

trial + 1,if ftn = ftn,.,

0, otherwise (13)

trial,e, = {

In the next step, the probabilities of modification of each
solution are generated. The probabilities are based on the
fitness function derived from the objective function. Solutions
with higher fitness value have higher chances of participating
in the onlooker bee phase. The probability using the equation:

ftng
max(ftn)

prob; = 0.9 * +0.1 (14)

After calculating the probabilities of the solutions, the
Onlooker Bee Phase is implemented.

3.2.2. Onlooker Bee Phase (OBP)

Inthe OBP, each of the solutions gets a chance to generate
a new solution based on a random number. Onlooker bees in
the hive interact with worker bees, and the information about
the solution is passed to the working bees with a random
probability higher than the evaluated probability.

ifprobi > rnd _ _
Whew = Wyse T @ * (Wygr — Wzlntn) (15)

Where r is the random number between 0 and 1, phi (®)
is the random number between -1 and +1, and Wp is the
randomly selected partner bee. w;,,, is the local share of the
ith local client randomly selected to generate new solutions.

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

The roulette wheel method is employed for onlooker bees to
generate new solutions. In the next step, a similar approach to
the Employed bee phase is used. The new solutions are
modified and then used to train the neural networks on the
network intrusion datasets. The new fitness values are
evaluated, and based on the greedy selection algorithm, the
solution with higher fitness values is accepted. If the existing
solution is found to be better, the trial counter is incremented;
otherwise, it is reset to 0.

3.2.3. Scout Bee Phase (SBP)

In the SBP, the solution that has exceeded the
abandonment criteria of the trial limit is replaced by a new
solution. Only one solution enters this phase at a given round.
The new solution is altogether generated using the
initialization equation. For the new solution, the trial counter
isreset to 0. In the proposed method, the abandonment criteria
are set to 50. A higher value of the abandonment criteria is set
to reduce the chances of the mitigation of a potential global
optimum. The optimal set of local shares is obtained at the end
of all iterations.

3.3. Objective Function

This paper has replicated data acquisition and detection
of malicious activities in a real-world scenario of a
decentralized 10T or WSN. The dataset has been distributed
among various clients, and the models are trained locally.
Each client has been trained to use a fully connected network,
an LSTM network, and a hybrid network for the detection of
intrusions. A novel model aggregation strategy has been
proposed.

The weights learnt by the neural network during training
are used to build the global model. The weightage parameters
of each client, known as local share, are optimized by the
ABCO. The ABCO initiates the local share randomly, and
with each iteration, the local share matrix tries to approach
optimal values based on the global accuracy. The objective of
the optimization is to maximize the accuracy of the global
model aggregated in the server by assigning an optimal local
share to each client. The sum of weightage or the local share
has to be unity, representing the qualitative approach to the FL
model aggregation. The proposed objective function is given

as:
#Packets(Classpreq=Classqct)

objective = max (16)
Wq1,W2,..Wn] Total®Packets
Where wyw,,...w, is the local share of

Client, Client,, ... Client,the ratio of packets with correctly
predicted classes to the total number of packets, which
represents the accuracy of the neural networks.

4. Experimental Results and Discussion
4.1. Experimental Setup

The experiment was performed on a Dell Precision 5820
workstation. The workstation has a 32 GB DDR4 RAM with

240

a2 TB HDD. The Workstation is equipped with an Intel Xeon
W-2133 CPU and a 4 GB Nvidia Quadro P2000 GPU. For the
software, the proposed model was trained and tested using
Python 3.8.20 with Numpy version 1.23.5 and Pandas version
2.2.3. The preprocessing steps were performed using the
sklearn 2.2.0 library. Deep Learning libraries were used
instead of federated learning libraries as they provide more
leverage to modify the FL weight matrices. Tensorflow base
library with version 2.3.0 was employed to train the local
model and aggregate the global model.

4.2. Datasets

NSL-KDD Dataset: The NSL-KDD dataset is the most
popular dataset for network-based Intrusions. The origin of
this data dates back to 1998. The network intrusion simulated
by DARPANET in 1998 was published as the DARPA
dataset, which contained the packets received while multiple
attacks were simulated on the Defense ARPANET systems.
The experimentations were performed by MIT Lincoln Lab.
Network traffic features were extracted from the raw packets
of the DARPA dataset, and a new dataset was formed, which
has more than 500,000 instances. These extracted features
were named the KDD CUP99 or simply the KDD99 dataset.
The KDD99 dataset has data duplication and redundancy
issues. Tavallaee mitigated these issues [30]. The redundant
data were removed from the KDD99 dataset, and a more
manageable NSL-KDD dataset was proposed.

The dataset contains 125,973 packet instances along with
41 network features for each. The dataset contains instances
belonging to 24 attack types and normal packet data for the
benchmark. The 24 types of attacks belong to 4 classes,
namely, DoS, which is a denial of service attack strategy.
During a DoS attack, the network resources of a victim
machine are depleted to the extent that complete failure of the
node takes place. The next is the R2L attack, in which the
unauthorized attacker tries to penetrate the network. The U2R
is the user-to-root attack in which a user tries to gain superuser
access. The last class is the Probe class, in which the passive
attacks are executed to find vulnerabilities in the system. The
dataset contains basic features, content features, time-based
features, and host-based features.

UNSW-NB15 dataset: The dataset was recorded by
sampling the network packets by the University of New South
Wales (UNSW) in 2015 using the IXIA Perfect Storm toolbox.
The dataset contains 9 attack types, and normal class instances
were also provided [31]. The dataset consists of 43 features,
which are categorized as Time features, basic features, flow
features, and content features. The dataset has a collection of
active attacks, such as Fuzzer, DoS, Backdoor, Generic,
Shellcode, and worm; On the other hand, passive attacks such
as Analysis have been simulated using 3 network structures.
The classes are highly imbalanced, leading to problems of
over-fitting and under-fitting during the training of an
anomaly-based IDS.

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

(l Initialize Bee Population | \
Read v
Evaluate Compensated Weights

=
[Wi1, W2, W3, ..., Wn] E:
3
Evaluate Objective S
Function
Convert Alpha- v
2 numeric features into \l Evaluate Fitness Function U
g v ¥
(5]
2 o
2 Normalization
— Is d
% Maxlter -
T \4
(a)
Split the Data
All Employed
\4 Bees
Training Data Testing Data
(80%) (20%)
| Find New Solution with Random Number | an
| ¥
* | Apply Greedy Selection Algorithm | %
. £7 3
| Split Data for N clients | 2
g
N_l
v A v Replace Existing -
| Local Client 1 | | Local Client 2 | | Local Client N | Solution | Increment Trial Counter |
|
=
= \
3 v
—
3 | Evaluate Probabilitv for Onlooker |
£ v
(5]
3

| Find New Solutions with Random Partner |

v

| Anplv Greedv Selection |

Replace Existing Increment Trial Counter
Solution

Set Trial Counter = 0

<

Is Abandon Criteria Reached?

Y

Generate New Bee

aseyd sag M04s

Fig. 5 Flowchart of the proposed algorithm

241

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

4.3. Experimental Steps

Figure 5 shows the flowchart of the proposed method.
The network intrusion data is read and stored as dataframes
using the Pandas library. The data undergoes preprocessing
before classification and detection of malicious activities in
the network. The preprocessing starts with the class label
encoding. For binary classification, the NSL-KDD and
UNSW-NB15 datasets, which have malicious packets, have
been assigned +1 classes, and those instances that are normal
classes are assigned 0 classes. However, in the case of multi-
class classifications, the instance classes were assigned based
on the type of attack executed by the packet. Since there are
24 attack categories in the NSL-KDD dataset, the 4 major
attacks are assigned 4 labels: DoS, probe, R2L, and U2R,
respectively. Moreover, it was observed that the dataset
suffers from a severe class imbalance problem. Hence, these
four attack classes, along with the normal class, create a multi-
class dataset for classification. On the other hand, there are 10
classes in the UNSW-NB15 dataset. The 9 attack classes
include analysis, backdoor, DoS, exploits, fuzzer, generic,
reconnaissance, shellcode, and worm attacks, along with the
normal class. High class imbalance was observed in the

dataset. The next step in the preprocessing stage includes label
encoding the data. The alphanumeric features are assigned
numeric values before being fed to the tensorflow
environment. The NSL-KDD dataset has three alphanumeric
features, namely, protocol_type, service, and flag. The
protocol_type contains information about the communication
protocol used by the nodes in the network. TCP, UDP, and
ICMP protocols were assigned labels using the label encoder.
Service includes network services employed at the
destination. These are http, ftp, telnet, or smtp. The flag
feature contains the flag given to each packet, including 11
flags that were used to define the status of a packet. Similarly,
in the UNSW-NB15 dataset, there are three features with
alphanumeric values. The protocol used by the network is
mentioned in the proto feature, and the service used in the
destination is mentioned in the service feature. The connection
status was also coded using alphanumeric keywords. These
features are then normalized to confine their values between 0
and 1. This step makes sure that the features follow a similar
random distribution of their values. The normalized values of
the features are given by:

Table 1. Parameters and values used in the experiments

S. No. Parameters Values
1 Number of Clients [5, 10, 20]
2 Types of Neural Networks FCN, LSTM, Hybrid Neural Network
3 Batch Size 32
4 Epochs per Round 10
5 Federated Rounds 10
6 Learning Rate 0.01
- FCN: RelLU
7 Layer Activation LSTM: Tanh
8 Optimizer Adam
9 Loss Binary Classifier: Binary Cross-Entropy
Multiclass Classifier: Sparse Categorical Cross-entropy
10 Metric Accuracy
number of filters or units in the neural network was set to the
PN = ﬁ (17) number of features in the dataset. In the UNSW-NB15 dataset,

Where p; is the i*tinstance of the feature, with the
extrema values of the feature, pPpax PuinfeSpectively.
Training and testing were split in an 80% to 20% ratio with a
random shuffle.

The data and classes are divided equally among N clients
in the federated learning phase. The proposed work used three
neural network architectures to train the data locally. A five-
layer Fully Connected Network, a five-layer LSTM network,
and a hybrid network with two Fully Connected Layers
followed by three LSTM layers were concatenated. The Fully
Connected Layers were activated using the ReLU activation
function, and the LSTM layers used the hyperbolic tangent
function as their activation function. For the input layers, the

242

the ID feature was removed as it contains the packet ID and
provides no information about the malicious activities. The
output layers were initialized with a sigmoid activation
function and 1 unit for the detection of the intrusive packet. In
the case of multi-class classification, the output units were
made equal to the number of classes, and a softmax activation
function was used for probabilistic assignment of classes.

Parallel to the federated learning phase, the Artificial Bee
Colony Optimization was initialized with a random population
of bees. The bee determines the local share of each local client.
The initial population is used to find the preliminary global
accuracies of all the local clients. The local weights and their
respective local share are used to form the global model as
given in equation 7. These global models then make up the

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

employed and unemployed bee populations. The employed
bees are then partnered with a random bee and form a new
solution. Half of the total swarm size participates in this phase.
The greedy algorithm is used to replace the solutions with
better ones. This forms the EBP.

In the next step, the OBP is executed. The roulette
interaction takes place based on their probabilities of
interaction. New local shares are explored in this phase, and
global accuracies are evaluated. It is not guaranteed that every
employed bee participates in the exploration of new solutions.
The new solutions are then compared to these existing
solutions using the greedy algorithm. If a solution exceeds the
abandonment criteria, the solution enters the scout phase. In
this phase, new solutions are explored, and the solution with
abandoning criteria is exploited. The global accuracies are
evaluated using the testing dataset, and after the iterations are
over, the best solution is achieved. The parameters used in the
experiments are provided in Table 1. The optimal weights or
optimal local share are used to aggregate the global model, and
the results are presented in the next section.

4.4, Results
4.4.1. Binary Classification on NSL-KDD Dataset

The average results of binary classification on the NSL-
KDD dataset have been illustrated in Table 2. In the
experiment, the dataset has been horizontally divided into 5,
10, and 20 clients, respectively. The non-IID is divided
randomly, and each client was provided with different
numbers of normal and attack data. For the 5 client scenarios,
the first client received 10,678 instances belonging to the
normal class and 9,477 instances of the attack class.

On the other hand, the rest of the clients received 10,776,
10,944, 10,732, and 10,791 normal packets along with 9,379,
9,211, 9,423, and 9,364 packets of intrusion classes,
respectively. The data was applied to a Fully Connected
Network having a 5-layer architecture. The local network
weights were initialized with a random normal initializer. A
0.01 learning rate with the Adam optimizer was employed for
weight optimization. Due to the limited data received by each
client, the initial training suffered from low accuracy.

NSL-KDD Binary Classification for Fully Connected Network NSL-KDD Binary Classification for LSTM Network NSL KDD Binary Classification for Hybrid Network
100 v T T T T T T T 100 T T T T T T T T 100 T 7y - 3 v 5 v & 2
cume Ghe GRS ¢ T fe—5Client
98 981 ' = = = 10-Clicnt
9 ' 20-Client| |
96 ! 9%, ———5Clicnt || . ,'
- - = 10-Clicni
_ 94 | _ 94, ZI)—(lmn: 80+ ,'
Bl S PR ’
e s g 4 g 4
< 90% = 90} = 10t
3 9 9
S s S g £ ‘
8 b4] Lt
2 86| 2 86 2 ?h
'
gl 84| 50y
82} 82} L]
80) . . . 40 . " . .
1 2 8 4 5 6 7 8 9 10 1 2 3 4 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Number of Rounds --> Number of Rounds --> Number of Rounds -->
a ¢

Table 1. Results for NSL-KDD binary classifications

Average Average Average Initial | Average Final Global
Nl\éi\lljvgarlk O';I Lcl:rﬁgﬁgs Normal Attack Accuracy Accuracy Testing
Instances Instances (Round 1) (Round 10) Accuracy
Fully 5 10784.2 9370.8 88.02 97.49 97.81
Connected 10 5394.7 4682.3 90.21 98.08 97.46
Network 20 2696.9 2341.1 90.82 96.77 96.57
5 10755 9400 93.986 98.81 99.14
LSTM 10 5398.2 4678.8 92677 98.36 98.73
Network
20 2698.75 2339.25 90.56 97.89 98.48
) 5 10758.4 9396.6 94.61 98.58 98.54
Hybrid 10 5378.9 4698.1 84.48 97.44 98.56
Network
20 2692.58 2345.41 96.48 98.10 98.38

243

Fig. 6 Results for binary classification of NSL-KDD for (a) Fully connected network, (b) LSTM, and (c) Hybrid networks for 5, 10, and clients per
round.

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

In the first round, the accuracy was 88.66% for the first
client, 87.26% for the second client, 87.62% for the third
client, 87.72% for the fourth client, and 88.86% for the fifth
client. The global testing accuracy is 95.61% for the optimal
local share. The global testing accuracy against the number of
rounds has been depicted in Figure 6(a) for a 5-client scenario.
With optimal local share provided to the training node, the
accuracies are increased from 95.16% to 97.81% for the last
round. This is the final result of training the global model
through the aggregation of the local model with an optimal
local share.

For 10 client systems, the data is divided into 10 equal
sections, and each client received different ratios of normal
and intrusion instances. The first client instances consist of
5384 and 4693 instances of normal and intrusion classes,
respectively. The second client received 5412 normal and
4665 malicious instances, whereas the third client had 5451
and 4626 instances. Other clients had 5455, 5372, 5372, 5360,
5413, 5445, 5319, and 5371 normal instances and 4622, 4705,
4717, 4664, 4632, 4758, and 4706 intrusion instances,

respectively. The average initial local accuracy of 90.21% was
achieved. Furthermore, the accuracy after every round has
been depicted in Figure 6(a). From Figure 6(a), it can be
concluded that, as the rounds increase, the global model trains
with the optimal local models learns efficiently without
sharing the local data. This feature of the proposed algorithm
enhances global accuracy without compromising the privacy
of the local nodes. The final accuracy of 97.46% was achieved
by the global model for 10 client scenarios on the FCN. The
global accuracy of the 10-client scenario is comparable to the
5-client scenario, which shows that the data insufficiency
issue is resolved in the proposed method.

Figure 6(a) shows the accuracy of 20 clients on a Fully
Connected Network. The average normal and intrusive
instances distributed among 20 clients were found to be
2696.9 and 2341.1, respectively. The initial round accuracies
of all the local nodes averaged at 90.82% whereas with
optimal federated learning, the final round training reached
96.77%. At the end of each round, the global accuracy went
from 90.03% to 96.57%.

NSL-KDD Multiclass Classification for Fully Connected Network
100 T Y T T T Y

98 |
96 |
e
92 |

90 |
88 “
86 |
84 |
82 |
80 |

Accuracy (in %)
Accuracy (in %)

> 3 4 5 6 7 8 9 10 1 2 3 4
Number of Rounds -->
a

NSL-KDD Multiclass Classification for LSTM Network

Number of Rounds -->

b

NSL-KDD Multiclass Classification for Hybrid Network
100 v v v T T T T T

95 -
WY/ g

851
80t
751
70 ¢
65}
60 |
55¢

. . ! 50 . . L
6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

o P % I

s SClicnt | 4
= = = 10-Clicnt!
20-Client| 4§

Accuracy (in %)

Number of Rounds -->

C

Fig. 7 Results for multiclass classification of NSL-KDD for (a) Fully connected network, (b) LSTM, and (c) Hybrid networks for 5, 10, and clients per

round.

Table 3. Results for NSL-KDD multiclass classifications

Avg.
Neural Number Avg. Avg. Avg. Avg. | Avg. Avg. Final | Global
Network of Normal DoS Probe | R2L | U2R | Initial Acc. Acc. Test
Clients Inst. Inst. Inst. Inst. | Inst. | (Round 1) | (Round | Acc.

10)
Fully 5 9391.8 6597 1625 7.4 14.8 95.57 97.63 97.86
Connected 10 4695.9 3298.5 812.5 3.7 7.4 94.54 97.53 97.70
Network 20 2347.95 | 1649.25 | 406.25 | 1.85 3.7 92.74 97.01 97.10
LSTM 5 10770.6 7506 1853.2 7.8 17.4 90.60 98.54 98.97
Network 10 5385 3752.8 926.6 3.9 8.7 67.02 97.98 98.56
20 2692.05 | 1876.35 | 463.3 | 1.95 | 4.35 60.95 97.00 97.79
Hvbrid 5 10792.8 | 7476.8 | 1860.2 | 8.4 16.8 86.02 97.77 97.92
Ne¥work 10 5396 3738.4 930 4.2 8.4 75.60 97.56 97.89
20 2697.7 1869 465 2.1 4.2 76.82 97.23 97.74

244

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

Despite the fact that deep learning algorithms require a
huge amount of training and testing data, an optimal federated
learning model achieves a comparable accuracy with respect
to a centralized learning algorithm with big data. For the
LSTM network, the features of NSL-KDD data are considered
as time series features. The data is divided into several clients.
For a 5-client system, the average number of normal data and
intrusion data was 10755 and 9400. The initial accuracy was
found to be 93.986% and after 10 rounds of optimal federated
learning aggregation of the global model, the training
accuracy was increased to 98.81%. After the last round of
aggregation, the final testing accuracy of 99.14% was
achieved with the optimal local share of 0.183 for the first
client, 0.209 for the second client, 0.356, 0.135, and 0.115 for
the rest of the clients, respectively. Table 2 illustrates the class
distribution and training and testing accuracies. The testing
with respect to the rounds of training is depicted in Figure
6(b). For the 10 client scenario, the average normal and
malicious instances were distributed as 5398.2 and 4678.8.
Despite the limited data, the LSTM network’s accuracy
showed an increasing accuracy from 92.677% to 98.36% for
the 10 rounds. The testing accuracy from 20% of the whole

data came to 98.73% which is close to 5 client scenarios with
half the data available for each node. In the case of the 20-
client environment, the data available for each node is 4% of
the total available data. Despite training on such limited data,
the global model achieved 98.48% accuracy. The local models
have an average initial accuracy of 90.56% and a final training
accuracy of 97.89% in the last round. The LSTM showed
better accuracy compared to the Fully Connected Network and
the Hybrid Network for the binary classification of the KDD
dataset.

The hybrid network consisted of 3 Fully Connected layers
followed by 2 LSTM layers. The model was used to classify
the malicious packets in the network. For 5 clients, each client
had the average normal data with 10758.4 and malicious data
with 9396.6 instances. The initial accuracy for all local clients
averaged at 94.61% in the first round of training and improved
to 98.58% in the last round. The testing accuracy also went
up from 96.50% to 98.54%. Meanwhile, the federated
accuracy for 10 clients was found to be 98.52%, which started
with 46.23% only.

UNSW NBIS5 Binary Classification for Fully Connected Network UNSW NBI5 Binary Classification for LSTM Network UNSW NBI5 Binary Classification for Hybrid Network
100 100 — 100 ——————————————
95 . 5. !lcm
) 5 95| B e 4
90| z v 2
90+ e |
5 -
G S —~ 90} , = oy
X 8oy, 20-Client| | 32 e x 85t
£ ¢ £ = = = 10-Clicnt £
> 15 > 85¢ 20-Client| 1 5. 80}
) 9 9 -
g 70 g £ gs! '?
S S 80LY S ’
2 65 < . = g
70 1%
60} 75 ¢
55} 65+
50 : . 70 . . 60 . . .
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Number of Rounds --> Number of Rounds --> Number of Rounds -->
a b ¢

Fig. 8 Results for binary classification of UNSW NB15 for (a) Fully connected network, (b) LSTM, and (c) Hybrid networks for 5, 10, and clients per
round.

Table 4. Results for UNSW NB15 binary classifications

Neural Number Average Average Average Initial | Average Final Global
Network of Clients Normal Attack Accuracy Accuracy Testing
Instances Instances (Round 1) (Round 10) Accuracy
Fully 5 5911.4 7261.6 84.66 93.984 95.61
Connected 10 2955.4 3630.6 82.061 92.16 94.00
Network 20 1477.7 1815.3 79.0835 90.277 92.03
LSTM 5 5928.4 7244.6 70.672 92.894 94.26
Network 10 2959.7 3626.3 74.931 92.475 94.30
20 1478.8 1814.2 72.0805 90.527 93.63
. 5 5919.6 7253.4 77.334 93.926 94.95
NH¥b”dk 10 2961.7 3624.3 69.809 90.596 92.67
etwor 20 1479.75 1813.25 69.445 90.7035 92.04

245

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

The drastic change in accuracy is the result of the
optimized federated approach employed for model
aggregation. These accuracies were achieved on an average of
5378.9 normal and 4681.1 attack instances. Local models gave
an average accuracy of 84.8% for the first round and 97.44%
training accuracy in the last round. In the 20 client real-world
problems, the average data distribution was 2692.58 for the
normal class and 2345.41 for the attack class. The training
accuracies in the first round averaged at 96.48% and improved
to 98.10% by the last round. The accuracy has been shown in
Table 2. Similarly, the testing accuracies were improved from
96.48% to 98.38%. Figure 6(c) depicts the increment in
accuracy per round.

4.4.2. Multi-Class Classification for the NSL-KDD Dataset
In the multi-class problem, the task is not only to detect
any intrusive packet, but also to classify the type of intrusion
performed. The NSL-KDD dataset consists of 24 attack
classes combined into 4 attack categories. The normal class is
labelled as 0, whereas the attack classes were marked 1 to 4.
The label encoder marked these classes in alphabetical order.
DoS class was assigned as class 1, probe was given 2, R2L
was provided with label 3, and U2R was given 4 as a label.

For the Fully Connected Network, the 5 client systems
had an average of 9391.8 normal instances, 6597 DoS
instances, 1625 probe instances, whereas only 7.4 and 14.8
average instances were obtained for R2L and U2R classes,
respectively, depicting high class imbalance in the dataset.
The initial average accuracy of the five local models was
found to be 95.57% whereas the final accuracy was obtained
at 97.36%. Table 3 shows the accuracies of the trained local
models, the distribution of the classes, and the final testing
accuracy. The testing accuracy for the first round was obtained
to be 95.48% and it improved to 97.86% in the last round. The
improvement in accuracy shows that the weight distribution
performed by the ABCO algorithm has proven to be efficient
in practical use. In the 10-client system, the class instances

were halved for each client compared to the 5-client scenario.
The normal class had an average of 4695.9 instances, DoS
class had 3298.5 instances, probe class had 812.5, whereas
R2L and U2R had 3.7 and 7.4 instances respectively. In the
first round, the average training accuracy was 94.54%,
whereas the testing accuracy of the aggregated model was
96.03%. After the optimized federated learning was executed
for 10 rounds, the training accuracy averaged at 97.53% and
the final testing accuracy was obtained as 97.70%. In the case
of 20 clients, the average normal instances were 2347.95, DoS
were 1649.25, probes were 406.25, and R2L and U2R were
obtained at 1.85 and 3.7 only. The initial accuracy for training
was found to be 92.74% whereas the initial testing accuracy
was evaluated as 96.45%. After 10 rounds of optimal
federated learning with ABCO determining the local share, the
training accuracy was evaluated as 97.01% and the final
testing accuracy was 97.10%.

For the LSTM network, the 5 client scenarios have
10770.6 average normal instances, 7506 DoS instances,
1853.2 probe instances, along with 7.8 and 17.4 instances of
R2L and UZ2R, respectively. The initial average training
accuracy was 90.60%, and after the global aggregation of the
model with optimal local share, the testing accuracy in the first
round was 97.26%. High testing accuracy determines that the
model aggregation compensated for the losses in the local
client model. At the end of the last round, the local models
were able to achieve an average accuracy of 98.54% with a
global testing accuracy of 98.97%. This accuracy shows that
the optimal federated learning algorithm outperformed many
state-of-the-art algorithms with even massive models. In the
case of the 10 client systems, the results were not affected due
to the lack of data individual local sites possessed. The normal
class had an average of 5385 instances for all clients, DoS
averaged at 3752.8 instances per client, probe averaged at
926.6 instances per client, R2L at 3.9, and U2R at 8.7 per
client.

100 100

s 5.Client
- = = |0-Clicnt| |
20-Clicnt

951
2 90+

90}
80/

85/

80/ 70}

75}

707

65}

60+

Accuracy (in %)
Accuracy (in %)

60

Number of Rounds -->

a

UNSW NBI5 Multiclass Classification for Fully Connected Network UNSW NBI5 Multiclass Classification for LSTM Network

Number of Rounds -->
b

UNSW NBI5 Multiclass Classification for Hybrid Network
100

o 5-Clicnt |
= = = 10-Client
20-Clicnt|

[==="5-Client
= = = |0-Clicnt;
20-Client| J

90+

801

70+

60 +

Accuracy (in %)

7 9

6

8 10
Number of Rounds -->

c

Fig. 9 Results for multiclass classification of UNSW NB15 for (a) Fully connected Network, (b) LSTM, and (c) Hybrid networks for 5, 10, and clients
per round.

246

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

Table 5. Results for UNSW NB15 multiclass classifications

Av Avg. Av
No | Avg. | Avg. | Avg. | Avg. | Avg. | Avg. Avg. Avg. | Avg. 9| Initia Fingi Globa
NN .of | C1 Cc2 C3 C4 C5 C6 C7 C8 C9 cio | Acc I Test
Cli | Inst. | Inst. | Inst. Inst. Inst. Inst. Inst. Inst. Inst Inst Acc. " | Acc.
5 | 19 | 936 | 653 | M7/* | 9646 | 3042 | 5909 | 5504 | 616 | 7.6 | 7273 | 07 | 79.01
FCN | 10 | 533 | 469 | %% | 895.4 | 4863 | 10 | 2055 | 2819 | 303 | 37 | 6836 'O | 79.26
26.6 | 23.4 | 164. 243.1 140.9 | 15.1 76.3
20 5 5 A 447.7 5 752.2 | 14775 5 5 1.85 | 65.72 6 77.69
5 129' 99.6 6568' 1715' 967.4 | 3024 | 5928.2 | 542.6 | 61.2 | 6.8 | 44.90 8%'4 82.31
LSTM | 10 | 539 | 46.2 | 328 | 884.6 | 487.1 15§3' 2960.7 | 277.6 | 309 | 3.2 | 46.48 7?3'3 75.51
20 2%'9 23.1 | 164 | 4423 24;"5 756.9 | 1480.3 | 138.8 1%4 16 | 4423 | 741 | 75.05
5 1%9' 92 6547' 1771 | 9774 30628' 5911.2 | 558.2 | 60.4 7 | 43.93 8%'4 82.78
HB&b“ 10 | 53.7 | 47.2 3227' 885.1 | 481.5 15110' 2967.1 | 280.6 | 30 3.5 | 4435 8%1'4 82.35
26.8 163. | 4425 | 240.7 | 755.0 | 1483.5 77.5
20 5 23.6 6 5 5 5 5 140.3 | 15 | 1.75 | 42.38 7 78.89
Table 6. Comparison of the proposed framework with existing accuracy of 88.17%. As the local models were suffering from
researches . data insufficiency, the global aggregate showed slower
S. NO. Author Technique | Accuracy convergence to the final value. In the last round of federated
1. VinayKumar [32] | Deep Learning 75.20 training, the average training accuracy was 97% with a global
2 Almeseidin [33] 748 93.20 testing accuracy of 97.79%. The testing accuracies per round
3 Ingre [34] DT 90.30 for different numbers of clients have been depicted in Figure
4. Jin [35] Rule Based 98 7(b).
5. Friha [9 FL+CNN 93.29 . . .
: 9] For the Hybrid model, the 5 client scenario had an average
6. Jin [11] FL+CNN-GRU | 68.78 .
FL+LSTM instance of normal class as 10792.8, DoS class as 7476.8,
7. Our Method . 99.14 probe class as 1860.2, R2L class as 8.4, and U2R class as 16.8.
(KDD Binary) he fi - 0 th local
FLILSTM T_e |rst-ro_und accuracies .averaged at 76.82%, wit oca
8. Our Method (KDD Multi) 98.97 clients having no interactions among them. In the first
FL+ FCN interaction, as optimal models were shared, the testing
9. Our Method NB15 Bj 95.61 accuracy was 87.84%. As the interaction took place, the
(”?) accuracy went up to 97.23% for training and 97.92% for
10. Our Method FL+ Hyb”‘?‘ 82.78 testing. The 10-client model showed similar results due to an
(NB15 Multi) optimized model aggregation strategy. The classes had an

The round 1 average training accuracy was 87.02% and
the aggregated global accuracy was 96.67%. In the final
round, the global aggregate was able to achieve an accuracy
of 98.56%, with an average training accuracy of 97.98%. In
the 20-client scenario, the data were further distributed among
20 clients, with 2692.05, 1876.35, 463.3, 1.95, and 4.35
average instances for normal, DoS, probe, R2L, and U2R
classes, respectively. In the initial round, an average of
80.95% training accuracy was observed, with a testing

247

average of 5396, 3738.4, 930, 4.2, and 8.4 per client. The
starting average training accuracy was 75.60% with an
aggregated testing accuracy of 86.9%. With the training and
model aggregation with optimal local share of each client, the
final training accuracies were averaged at 97.56% and the
global accuracy was found to be 97.89%. The 20-client
scenario has an even lower number for each client. The normal
class instances per client were evaluated as 2697.7, whereas
DoS was 1869, probe instances were 465, and only 2.1 and 4.2
instances per client were R2L and U2R, respectively. The

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

initial accuracy of the local clients was averaged at 76.82%
and the final accuracies after 10 rounds of optimized federated
learning were improved to 97.23%. However, the testing
accuracies, which were evaluated after each round of
aggregation, were found to be improving from 87.37% to
97.74%. This is depicted in Figure 7(c), concluding that the
data requirement can be minimized by sharing the model
instead of the data.

4.4.3. UNSW-NB15 Binary Classification

Similar to the NSL-KDD dataset, for the UNSW-NB15
dataset, three neural networks with a fully connected network,
a long short-term memory network, and a hybrid network with
three fully connected layers and 2 LSTM layers were
employed to train the local models. An aggregate using local
share was formed, and the global model was tested with 20%
of the data as testing data. Artificial Bee Colony optimization
was used to calibrate the local share. The number of clients
varied from 5 to 20.

For the Fully Connected Network, the 5 client scenario
was trained with an average of 5911.4 normal instances per
client, whereas an average of 7244.6 instances of attack per
client were distributed randomly. The initial average training
accuracy of 84.66% for 5 clients was evaluated. The global
model was aggregated with an optimal local share, giving an
accuracy of 90.59% in the first round. The accuracy improved
to 93.98% for training in the last round, and the testing
accuracy improved to 95.61% after 10 rounds of aggregation.
Table 4 illustrates the distribution of data over clients and
accuracy in the training phase. The testing accuracy after
every round has been depicted in Figure 8. For 10 client
systems, initial accuracy averaged at 82.06% with 2955.4
normal and 3630.6 attack instances per client. After all rounds
of training, model aggregation, and global weight
communication were performed, the average training
accuracy was found to be 92.16%. The testing accuracies were
initially evaluated as 87.69% and improved to 94% with the
proposed framework. In the 20-client scenario, the average
and attack instances per client were 1477.7 and 1815.3 for the
binary classifications. In the first round, the average training
accuracy was observed to be 79.08% and the aggregated
testing accuracy was evaluated as 85.84%. As the proposed
framework was executed, the average training accuracy
improved to 90.27%, and the global model achieved an
accuracy of 92.03%.

For the LSTM network, the five client models have a class
distribution of 5928.4 to 7244.6 instances for normal to attack
per client. The initial average accuracy was 70.67% which
improved to 92.89% at the end of the last round of training,
whereas the testing accuracy of the global model, without
being explicitly trained on any data, came out to be 86.38%
for the first round and was improved to 94.26%. Figure 8
shows the changes in accuracy with respect to the number of
rounds in the training phase. In the 10 client system, the

248

normal and attack instances per client averaged at 2959.7 and
3626.3 for normal and attack classes, respectively. The initial
average accuracy in the first round, independent of other
models, was found to be 69.80%. After the first aggregation,
the global accuracy was evaluated as 90.95%. At the end of
the last round, the average accuracy of the client was evaluated
at approximately 90.6%, whereas the testing accuracy was
evaluated at 94.30% for the global model. In the 20-client
scenario, the average client accuracy was obtained as 69.44%
with an average of 1479.75 normal and 1813.25 attack
instances, respectively. The testing accuracy obtained for 20
client systems was 85.21% and improved to 92.63% by the
tenth round. At the same time, the average training was
90.70% in the last round. LSTM with less data has proven to
be more accurate compared to the Fully Connected Network,
as the feedback networks create more attributes than the feed-
forward network.

For the hybrid network, the 5 client scenario has an
average of 5919.6 normal instances per client, whereas 7253.4
attack instances per client. The non-11D data was divided
randomly among the clients, and federated learning with
optimal local share obtained 77.33% accuracy in the initial
phase, whereas a combined global system gave an accuracy of
77.82%. The model is run for 10 rounds, and the final average
accuracy was obtained at 93.93% for training and 94.95% for
testing. In the 10 client system, the average normal and attack
instances were found to be 2961.7 and 3624.3 per client,
respectively. The initial average training accuracy was
evaluated as 69.8% and the first aggregate accuracy was
obtained as 68.29%. After the maximum of 10 rounds of
federated learning were completed, the average training
accuracy improved to 90.6% and thus the tenth aggregate
accuracy came out to be 92.78%.

For the 20-client scenario, the normal and attack classes
are distributed at an average of 1479.75 and 1813.25 instances
per client. The pre-federated learning accuracies averaged at
69.45% and after the first round of model aggregation, the
accuracy was obtained as 69.08%. As the rounds of training
were executed, the average training accuracy improved to
90.7%. The final testing accuracy was found to be 92.04%,
comparable to the centralized accuracies achieved by state-of-
the-art algorithms. The Figure depicts the comparison of the
5-client, 10-client, and 20-client systems for the hybrid neural
network.

4.4.4. UNSW-NB15 Multi-Class Classification

The UNSW-NB15 dataset is a network intrusion dataset
with 10 classes. The table illustrates the class distribution,
average accuracies for training, and the final testing accuracy
of the proposed model. The classes are labeled and encoded
by the sklearn library; hence, the classes are assigned a
numeric value in alphabetical order. The Analysis class was
assigned zero and has been denoted as the C1 class. Similarly,
Backdoor, DoS, Exploit, Fuzzer, and Generic classes were

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

designated as C2, C3, C4, C5, and C6, respectively.
Meanwhile, the normal class has been denoted as C7.
Reconnaissance, Shellcode, and Worm attacks were given C8,
C9, and C10 classes in the table.

For the Fully Connected Network, the 5 client systems
had only 109.2 average analysis instances, 93.6 backdoor
instances, 61.6 shellcode instances, and 7.6 worm instances.
The classes with a larger share of packets were DoS with 653
instances, exploits with 1772.4 instances, fuzzer with 964.3,
and 3042 instances of the generic class per client were
distributed. The initial average accuracy was obtained at
71.73% and the global model accuracy of 70.54% was
achieved by the optimal framework. The final accuracies are
obtained at 78.71%, which is the average training accuracy,
and the global accuracy of 79.91% was obtained after 10
rounds of model aggregation. For the 10 client scenario, the
analysis class had a share of 53.3 average instances per client,
the backdoor class had 46.9 average instances, and 328.8 for
DoS, 895.4 instances were present for training the 10 client
system. 486.3, 1504.4, 281.9, 30.3, and 3.7 for other attack
classes, whereas 2955 instances per client were distributed for
the normal class. The training accuracy before the model
aggregation was averaged at 68.36% and after the first global
aggregate, the testing accuracy was found to be 72.93%. At
the end of the tenth round, the average training accuracy
reached 78.1% whereas the final global testing accuracy was
improved to 79.26%. For the 20 client scenario, the normal
class instances per client were averaged at 1477.5, and the
attack classes were averaged at 26.65, 23.45, 164.4, 447.7,
243,15, 752.2, 140.95, 15.15, and 1.85 for analysis, backdoor,
Dos, exploits, fuzzer, generic, reconnaissance, shellcode, and
worm attacks, respectively. The initial training accuracy was
found to be 65.72% and a testing accuracy of 70.99% was
achieved after the first aggregation. The accuracy improved to
76.36% for average training accuracy and to 77.68% for
testing accuracy. Table 5 shows the accuracy and the
distribution of instances. Figure 9 depicts the testing
accuracies per round for the Fully Connected Network with
the UNSW-NB15 dataset divided into different numbers of
clients.

For the LSTM neural network, the 5 client simulations
had a distribution of 5928.2 average normal instances,
whereas the attack class had 658.6 for DoS, 1775.4 for
exploits, 967.4 for fuzzer, and 3024 for generic classes. The
classes with high imbalance suffered with even fewer
instances, such as analysis, which had 109.2 instances,
backdoor, which had 99.6, 61.2 for shellcode, and only 6.8 for
the worm class. The initial average accuracy was found to be
44.90% and was improved to 80.43% in the last round. The
testing accuracy of the global aggregate model was obtained
at 44.69% in the first round and improved to 82.33% by the
last round. For the 10 client systems, the normal class
instances were 2960.7 per client, and the attacks per client are
illustrated in Table 5. In the first round of training, the average

249

of the training accuracies was 46.48% and at the end of all
training rounds, the average accuracy increased to 74.36%.
The aggregate model gave an accuracy of 44.89% and was
improved to 75.51% after the tenth round. For the 20-client
simulation, the initial accuracy for training was 44.23% and
the testing accuracy was 44.23% as well. The federated
learning algorithm with the optimal local share provided by
the ABCO, the average training accuracy reached 74.1% and
the testing accuracy reached 75.05% as depicted in Figure 9.

For the Hybrid Neural Network, the normal class
instances were found to be 5911.2, 2967.1, and 1483.55 for 5,
10, and 20 clients, respectively. The generic class had 3028.6,
1510.1, and 755.05 for different client systems. The shellcode
and worm class has the least number of data in the UNSW-
NB15 dataset, with only 60.4, 30, and 15 instances per client
for shellcode and 7, 3.5, and 1.75 for worm class. For the five
client systems, the initial average accuracy was evaluated as
43.93% whereas the testing accuracy was found to be 45.21%.
These accuracies were improved to 80.43% for training and
82.78% for testing the global model. In the case of 10 clients,
the average training accuracy was observed to be comparable
with the 5-client system, with 44.35% as training and 44.89%
as testing accuracy initially, and was improved to 81.44% and
82.35% for training and testing, respectively. In the 20-client
scenario, the training accuracy improved from 42.38% to
77.57% and the testing accuracy increased from 42.38% to
78.89%. For the multi-class classification of the UNSW-NB15
dataset, the hybrid neural network outperformed the Fully
Connected and LSTM networks.

Table 6 compares state-of-the-art models published in
different research studies. The proposed model has
outperformed many algorithms with centralized and
distributed training algorithms.

5. Conclusion

In this paper, a real-time scenario of the Wireless Sensor
Network with a distributed architecture has been simulated.
The simulated architecture was employed to train an Intrusion
Detection System for decentralized data that was divided
among various clients. The client-server relation has been
optimized by exploring different local shares for each client in
the network. Three different neural network architectures have
been trained on NSL-KDD and UNSW-NB15 datasets for
binary and multi-class classification. The training data was
horizontally distributed among 5, 10, and 20 clients. Each
client trained a Fully Connected Network, an LSTM network,
and a hybrid Neural Network with 2 Fully Connected layers
followed by 3 LSTM layers. The local shares were optimized
using the Artificial Bee Colony Optimization algorithm with
10 population size. The Fully Connected Layer architecture
consisted of 41 feature nodes followed by a 64-node hidden
layer. The feature exploration was enhanced by 128 and 256-
layer nodes. The important features were propagated through
128 and 64 nodes in the hidden layers. The client models

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

trained with limited data showed high aggregated accuracies. with 128 and 256 nodes, a Fully Connected Layer followed by
The LSTM architecture consisted of 64 units followed by 3-layer LSTM networks with 64, 16, and 4 units. The
another 64-unit layer. After these layers, the layers converged proposed optimized algorithm outperformed many centralized
to the output with 32, 16, and 4 unit layers. trained and tested algorithms. The model sharing instead of
data sharing does not adversely affect the system accuracy. In
The LSTM model showed high accuracy and was able to the future, many other metaheuristic optimization algorithms
achieve aggregate accuracy comparable to the state-of-the-art can be utilized to explore the optimum values of local share.
methodologies. On the other hand, the hybrid model Class imbalance issues can be addressed by adding synthetic
outperformed the other models in multi-class classification data with generative algorithms such as SMOTE and GANS.

References

[1] Leonrdo Babun et al., “A Survey on IoT Platforms: Communication, Security, and Privacy Perspectives,” Computer Networks, vol. 192,
2021. [CrossRef] [Google Scholar] [Publisher Link]

[2] Aejaz Nazir Lone, Suhel Mustajab, and Mahfooz Alam, “A Comprehensive Study on Cybersecurity Challenges and Opportunities in the
IoT World,” Security and Privacy, vol. 6, no. 6, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[3] Danish Javeed et al., “A Federated Learning-Based Zero Trust Intrusion Detection System for Internet of Things,” Ad Hoc Networks, vol.
162, pp. 1-13, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[4] Evgenia Novikova, Elena Doynikova, and Sergey Golubev, “Federated Learning for Intrusion Detection in the Critical Infrastructures:
Vertically Partitioned Data Use Case,” Algorithms, vol. 15, no. 4, pp. 1-14, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[5] Chen Zhang et al., “A Survey on Federated Learning,” Knowledge-Based Systems, vol. 216, 2021. [CrossRef] [Google Scholar] [Publisher
Link]

[6] Brendan McMahan et al., “Communication-Efficient Learning of Deep Networks from Decentralized Data,” Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics, PMLR, vol. 54, pp. 1273-1282, 2017. [Google Scholar] [Publisher Link]

[7] Tian Li et al., “Federated Optimization in Heterogeneous Networks,” Proceedings of Machine Learning and Systems 2, 2018. [Google
Scholar] [Publisher Link]

[8] Meryem Janati Idrissi et al., “Fed-ANIDS: Federated Learning for Anomaly-Based Network Intrusion Detection Systems,” Expert Systems
with Applications, vol. 234, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[9] Othmane Friha et al., “FELIDS: Federated Learning-Based Intrusion Detection System for Agricultural Internet of Things,” Journal of
Parallel and Distributed Computing, vol. 165, pp. 17-31, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[10] Jonathas A. de Oliveira et al., “F-NIDS — A Network Intrusion Detection System based on Federated Learning,” Computers Networks,
vol. 236, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[11] Zhigang Jin et al., “FL-11DS: A Novel Federated Learning-Based Incremental Intrusion Detection System,” Future Generation Computer
Systems, vol. 151, pp. 57-70, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[12] Jianbin Li et al., “An Efficient Federated Learning System for Network Intrusion Detection,” IEEE Systems Journal, vol. 17, no. 2, pp.
2455-2464, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[13] Thin Tharaphe Thein, Yoshiaki Shiraishi, and Masakatu Morii, “Personalized Federated Learning-Based Intrusion Detection System:
Poisoning Attack and Defense,” Future Generation Computer Systems, vol. 153, pp. 182-192, 2024. [CrossRef] [Google Scholar]
[Publisher Link]

[14] Dinesh Chowdary Attota et al., “An Ensemble Multi-View Federated Learning Intrusion Detection for IoT,” IEEE Access, vol. 9, pp.
117734-117745, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[15] Riccardo Lazzarini, Huaglory Tianfield, and Vassilis Charissis, “Federated Learning for IoT Intrusion Detection,” Al, vol. 4, no. 3, pp.
509-530, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[16] Ruijie Zhao et al., “Semisupervised Federated-Learning-Based Intrusion Detection Method for Internet of Things,” IEEE Internet of
Things Journal, vol. 10, no. 10, pp. 8645-8657, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[17] Priyanka Verma, John G. Breslin, and Donna O’Shea, “FLDID: Federated Learning Enabled Deep Intrusion Detection in Smart
Manufacturing Industries,” Sensors, vol. 22, no. 22, pp. 1-18, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[18] Xi Yu et al., “Federated Learning Optimization Algorithm for Automatic Weight Optimal,” Computational Intelligence and Neuroscience,
vol. 2022, no. 1, pp. 1-19, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[19] Xinyan Li, Huimin Zhao, and Wu Deng, “IOFL: Intelligent-Optimization-Based Federated Learning for Non-IID Data,” IEEE Internet
Things Journal, vol. 11, no. 9, pp. 16693-16699, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[20] Sunghwan Park, Yeryoung Suh, and Jaewoo Lee, “FedPSO: Federated Learning using Particle Swarm Optimization to Reduce
Communication Costs,” Sensors, vol. 21, no. 2, pp. 1-13, 2021. [CrossRef] [Google Scholar] [Publisher Link]

250

https://doi.org/10.1016/j.comnet.2021.108040
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+on+IoT+platforms%3A+Communication%2C+security%2C+and+privacy+perspectives&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1389128621001444
https://doi.org/10.1002/spy2.318
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+comprehensive+study+on+cybersecurity+challenges+and+opportunities+in+the+IoT+world&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/spy2.318
https://doi.org/10.1016/j.adhoc.2024.103540
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+federated+learning-based+zero+trust+intrusion+detection+system+for+Internet+of+Things&btnG=
https://www.sciencedirect.com/science/article/pii/S1570870524001513
https://doi.org/10.3390/a15040104
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Federated+Learning+for+Intrusion+Detection+in+the+Critical+Infrastructures%3A+Vertically+Partitioned+Data+Use+Case&btnG=
https://www.mdpi.com/1999-4893/15/4/104
https://doi.org/10.1016/j.knosys.2021.106775
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=C.+Zhang%2C+A+survey+on+federated+learning&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950705121000381
https://www.sciencedirect.com/science/article/abs/pii/S0950705121000381
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Communication-Efficient+Learning+of+Deep+Networks+from+Decentralized+Data.+In+Proceedings+of+the+20th+International+Conference+on+Artificial+Intelligence+and+Statistics&btnG=#d=gs_cit&t=1761887799011&u=%2Fscholar%3Fq%3Dinfo%3Aqw8WjTtZ6lwJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Den
https://proceedings.mlr.press/v54/mcmahan17a?ref=https://githubhelp.com
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Federated+Optimization+in+Heterogeneous+Networks&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Federated+Optimization+in+Heterogeneous+Networks&btnG=
https://proceedings.mlsys.org/paper_files/paper/2020/hash/1f5fe83998a09396ebe6477d9475ba0c-Abstract.html
https://doi.org/10.1016/j.eswa.2023.121000
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fed-ANIDS%3A+Federated+learning+for+anomaly-based+network+intrusion+detection+systems&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0957417423015026
https://doi.org/10.1016/j.jpdc.2022.03.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FELIDS%3A+Federated+learning-based+intrusion+detection+system+for+agricultural+Internet+of+Things&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0743731522000570
https://doi.org/10.1016/j.comnet.2023.110010
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=F-NIDS+%E2%80%94+A+Network+Intrusion+Detection+System+based+on+federated+learning&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1389128623004553
https://doi.org/10.1016/j.future.2023.09.019
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FL-IIDS%3A+A+novel+federated+learning-based+incremental+intrusion+detection+system&btnG=
https://www.sciencedirect.com/science/article/pii/S0167739X23003503
https://doi.org/10.1109/JSYST.2023.3236995
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Efficient+Federated+Learning+System+for+Network+Intrusion+Detection&btnG=
https://ieeexplore.ieee.org/abstract/document/10032055
https://doi.org/10.1016/j.future.2023.10.005
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Personalized+federated+learning-based+intrusion+detection+system%3A+Poisoning+attack+and+defense&btnG=
https://www.sciencedirect.com/science/article/pii/S0167739X23003783
https://doi.org/10.1109/ACCESS.2021.3107337
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Ensemble+Multi-View+Federated+Learning+Intrusion+Detection+for+IoT&btnG=
https://ieeexplore.ieee.org/abstract/document/9521524
https://doi.org/10.3390/ai4030028
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Federated+Learning+for+IoT+Intrusion+Detection&btnG=
https://www.mdpi.com/2673-2688/4/3/28
https://doi.org/10.1109/JIOT.2022.3175918
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Semisupervised+Federated-Learning-Based+Intrusion+Detection+Method+for+Internet+of+Things&btnG=
https://ieeexplore.ieee.org/abstract/document/9777753
https://doi.org/10.3390/s22228974
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FLDID%3A+Federated+Learning+Enabled+Deep+Intrusion+Detection+in+Smart+Manufacturing+Industries&btnG=
https://www.mdpi.com/1424-8220/22/22/8974
https://doi.org/10.1155/2022/8342638
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Federated+Learning+Optimization+Algorithm+for+Automatic+Weight+Optimal&btnG=
https://onlinelibrary.wiley.com/doi/full/10.1155/2022/8342638
https://doi.org/10.1109/JIOT.2024.3354942
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=IOFL%3A+Intelligent-Optimization-Based+Federated+Learning+for+Non-IID+Data&btnG=
https://ieeexplore.ieee.org/abstract/document/10400794
https://doi.org/10.3390/s21020600
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FedPSO%3A+Federated+learning+using+particle+swarm+optimization+to+reduce+communication+costs&btnG=
https://www.mdpi.com/1424-8220/21/2/600

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

[21] Dasaradharami Reddy Kandati, and Thippa Reddy Gadekallu, “Federated Learning Approach for Early Detection of Chest Lesion Caused
by COVID-19 Infection Using Particle Swarm Optimization,” Electronics, vol. 12, no. 3, pp. 1-19, 2023. [CrossRef] [Google Scholar]
[Publisher Link]

[22] Chunmai Xu et al., “Learning Rate Optimization for Federated Learning Exploiting Over-the-Air Computation,” IEEE Journal on Selected
Areas in Communications, vol. 39, no. 12, pp. 3742-3756, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[23] Randhir Kumar et al., “A Distributed Intrusion Detection System to Detect DDoS Attacks In Blockchain-Enabled IoT Network,” Journal
of Parallel and Distributed Computing, vol. 164, pp. 55-68, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[24] Abdallah R. Gad et al., “A Distributed Intrusion Detection System using Machine Learning for IoT based on ToN-IoT Dataset,”
International Journal of Advanced Computer Science and Applications, vol. 13, no. 6, pp. 548-563, 2022. [CrossRef] [Google Scholar]
[Publisher Link]

[25] K. Samunnisa, G. Sunil Vijaya Kumar, and K. Madhavi, “Intrusion Detection System in Distributed Cloud Computing: Hybrid Clustering
and Classification Methods,” Measurement: Sensors, vol. 25, pp. 1-12, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[26] Gustavo A. Nunez Segura, Arsenia Chorti, and Cintia Borges Margi, “Centralized and Distributed Intrusion Detection for Resource-
Constrained Wireless SDN Networks,” IEEE Internet of Things Journal, vol. 9, no. 10, pp. 7746-7758, 2022. [CrossRef] [Google Scholar]
[Publisher Link]

[27] Sumathi Sokkalingam, and Rajesh Ramakrishnan, “An Intelligent Intrusion Detection System for Distributed Denial of Service Attacks:
A Support Vector Machine with Hybrid Optimization Algorithm Based Approach,” Concurrency and Computation: Practice and
Experience, vol. 34, no. 27, pp. 1-18, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[28] Shaashwat Agrawal et al., “Federated Learning for Intrusion Detection System: Concepts, Challenges and Future Directions,” Computer
Communications, vol. 195, pp. 346-361, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[29] Dervis Karaboga, and Bahriye Basturk, “A Powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony
(ABC) Algorithm,” Journal of Global Optimization, vol. 39, pp. 459-471, 2007. [CrossRef] [Google Scholar] [Publisher Link]

[30] Mahbod Tavallaee et al., “A Detailed Analysis of the KDD CUP 99 Data Set,” 2009 IEEE Symposium on Computational Intelligence for
Security and Defense Applications, Ottawa, ON, Canada, pp. 1-6, 2009. [CrossRef] [Google Scholar] [Publisher Link]

[31] Nour Moustafa, and Jill Slay, “UNSW-NB15: A Comprehensive Data Set for Network Intrusion Detection Systems (UNSW-NB15
Network Data Set),” 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, ACT, Australia, pp. 1-6,
2015. [CrossRef] [Google Scholar] [Publisher Link]

[32] R. Vinayakumar et al., “Deep Learning Approach for Intelligent Intrusion Detection System,” IEEE Access, vol. 7, pp. 41525-41550,
2019. [CrossRef] [Google Scholar] [Publisher Link]

[33] Mohammad Almseidin et al., “Evaluation of Machine Learning Algorithms for Intrusion Detection System,” 2017 IEEE 15" International
Symposium on Intelligent Systems and Informatics (SISY), Subotica, Serbia, pp. 277-282, 2017. [CrossRef] [Google Scholar] [Publisher
Link]

[34] Bhupendra Ingre, Anamika Yadav, and Atul Kumar Soni, “Decision Tree based Intrusion Detection System for NSL-KDD Dataset,”
Information and Communication Technology for Intelligent Systems, pp. 207-218, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[35] Dongzi Jin et al., “SwiftIDS: Real-Time Intrusion Detection System based on LightGBM and Parallel Intrusion Detection Mechanism,”
Computers & Security, vol. 97, 2020. [CrossRef] [Google Scholar] [Publisher Link]

251

https://doi.org/10.3390/electronics12030710
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Federated+Learning+Approach+for+Early+Detection+of+Chest+Lesion+Caused+by+COVID-19+Infection+Using+Particle+Swarm+Optimization&btnG=
https://www.mdpi.com/2079-9292/12/3/710
https://doi.org/10.1109/JSAC.2021.3118402
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Learning+Rate+Optimization+for+Federated+Learning+Exploiting+Over-the-Air+Computation&btnG=
https://ieeexplore.ieee.org/abstract/document/9562487
https://doi.org/10.1016/j.jpdc.2022.01.030
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+distributed+intrusion+detection+system+to+detect+DDoS+attacks+in+blockchain-enabled+IoT+network&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0743731522000351
https://dx.doi.org/10.14569/IJACSA.2022.0130667
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Distributed+Intrusion+Detection+System+using+Machine+Learning+for+IoT+based+on+ToN-IoT+Dataset&btnG=
https://thesai.org/Publications/ViewPaper?Volume=13&Issue=6&Code=IJACSA&SerialNo=67
https://doi.org/10.1016/j.measen.2022.100612
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Intrusion+detection+system+in+distributed+cloud+computing%3A+Hybrid+clustering+and+classification+methods&btnG=
https://www.sciencedirect.com/science/article/pii/S266591742200246X
https://doi.org/10.1109/JIOT.2021.3114270
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Centralized+and+Distributed+Intrusion+Detection+for+Resource-Constrained+Wireless+SDN+Networks&btnG=
https://ieeexplore.ieee.org/abstract/document/9542974
https://doi.org/10.1002/cpe.7334
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+intelligent+intrusion+detection+system+for+distributed+denial+of+service+attacks%3A+A+support+vector+machine+with+hybrid+optimization+algorithm+based+approach&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.7334
https://doi.org/10.1016/j.comcom.2022.09.012
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Federated+Learning+for+intrusion+detection+system%3A+Concepts%2C+challenges+and+future+directions&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0140366422003516
https://doi.org/10.1007/s10898-007-9149-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+powerful+and+efficient+algorithm+for+numerical+function+optimization%3A+Artificial+bee+colony+%28ABC%29+algorithm&btnG=
https://link.springer.com/article/10.1007/S10898-007-9149-X
https://doi.org/10.1109/CISDA.2009.5356528
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Detailed+Analysis+of+the+KDD+CUP+99+Data+Set&btnG=
https://ieeexplore.ieee.org/abstract/document/5356528
https://doi.org/10.1109/MilCIS.2015.7348942
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=UNSW-NB15%3A+A+comprehensive+data+set+for+network+intrusion+detection+systems+%28UNSW-NB15+network+data+set%29&btnG=
https://ieeexplore.ieee.org/abstract/document/7348942
https://doi.org/10.1109/ACCESS.2019.2895334
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=R.+Vinayakumar%2C+Deep+Learning+Approach+for+Intelligent+Intrusion+Detection+System&btnG=
https://ieeexplore.ieee.org/abstract/document/8681044
https://doi.org/10.1109/SISY.2017.8080566
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evaluation+of+machine+learning+algorithms+for+intrusion+detection+system&btnG=
https://ieeexplore.ieee.org/abstract/document/8080566
https://ieeexplore.ieee.org/abstract/document/8080566
https://doi.org/10.1007/978-3-319-63645-0_23
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Decision+tree+based+intrusion+detection+system+for+NSL-KDD+dataset&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-63645-0_23
https://doi.org/10.1016/j.cose.2020.101984
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SwiftIDS%3A+Real-time+intrusion+detection+system+based+on+LightGBM+and+parallel+intrusion+detection+mechanism&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167404820302571

