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Abstract - With the advancement in IoT technologies, Wireless Sensor Networks have found many applications in the modern 

era. Due to this, the malicious activities in the networks have seen a major surge. Data theft and manipulation have been a 

serious concern among researchers. In real-time scenarios, the data communication from nodes to the servers increases the 

communication overhead and makes the network vulnerable to attacks. A decentralized detection strategy has become a necessity 

to detect these intrusions efficiently. Federated Learning algorithms have been a major choice for decentralized learning 

frameworks. The federated models learn the data patterns based on the trained local models. In this paper, a novel model 

aggregation strategy has been proposed. The weightage or local share of each client is optimized using the Artificial Bee Colony 

Optimization algorithm, called the optimized local share. The optimized local share has been utilized for three neural network 

architectures with five-layer deep structures. A Fully Connected Network, a Long Short-Term Memory network, and a hybrid 

network were employed to detect intrusions in the network. The NSL-KDD and UNSW-NB15 datasets have been distributed into 

5, 10, and 20 clients for local training and aggregated using optimized local shares. Binary and multi-class classification 

achieved high accuracies, comparable to State-of-the-Art frameworks and centralized learning models, while ensuring data 

privacy and integrity of each client. 

  

Keywords - Federated Learning, Intrusion Detection Systems, Artificial Bee Colony Optimization, Deep learning, Model 

Aggregation.    

1. Introduction  
With the advancement in Internet of Things (IoT) 

technologies, automated Machine-to-Machine (M2M) 

communication has become a reality. IoT uses resource-

constrained, low-weight wireless communication 

technologies to communicate between small embedded 

systems. IoT devices are small computing devices that 

communicate via networking protocols such as Bluetooth, 

Wireless Fidelity (WIFI), zigbee, etc., with each other without 

human intervention [1].  

 

Smart healthcare equipment, automated drones, 

networked sensors, and smart wearable technologies are a few 

examples of prominent IoT-based smart technologies. These 

devices have the ability to analyze data and communicate with 

other IoT devices through ubiquitous interactions such as 

alerts, alarms, and other warning systems [2]. IoT devices 

working in small clusters form Wireless Sensor Networks 

(WSN), where each cluster has sensor devices, 

communication devices, and a processing unit. In the WSN, 

each sensor has the ability to sense different data.  

The increase in IoT-based Machine-to-Machine 

communication has led to many security concerns. Data 

privacy and Data integrity are often compromised in such 

scenarios. An act in which data theft, bandwidth disruption, or 

resource manipulation is deliberately performed is known as 

an Intrusion.  

 

The Intrusions are malicious activities that may be active 

or passive in nature. Active attacks include spontaneous data 

or resource depletion. Denial of Service attacks, such as ping 

of death, in which large ping data is sent to the victim machine, 

depleting its bandwidth. Other commonly employed active 

attacks include backdoor, fuzzer, exploits, remote to local, etc.  

 

On the other hand, probe attacks are passive attacks that 

seek vulnerabilities in the network. These attacks remain 

dormant for most of the time, searching for vulnerabilities in 

the victim node. Once such a vulnerability is found, a passive 

attack sends information about the same to the intruder. The 

attacker then initiates an attack on the vulnerability and, in 

most cases, executes a successful intrusion.  
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Early detection of these Intrusions leads to safeguarding 

the network and the network resources. Intrusion Detection 

Systems (IDS) have been able to detect any malicious activity 

in the IoT or WSN. IDS shows zero trust toward the packet 

received by any node in the network. IDS verifies each packet 

based on the ETS signature or learns a pattern to detect 

unwanted activity [3]. These checks are not only performed 

for external communication, intra-network communications, 

such as sensed data packets in a WSN, but inter-cluster packet 

transfers within a network are also examined. These steps are 

performed not only to protect the network from external 

threats but also to detect corrupt internal nodes within the 

network. Signature-based IDS (SIDS) maintains a record of 

known attacks and has to be frequently updated to detect 

malicious activities. The signature-based IDS has a major 

drawback when it comes to zero-day attacks. Any novel attack 

generally remains undetected by the signature-based IDS. To 

overcome this vulnerability of the SIDS, anomaly-based IDS 

has gained popularity among many researchers in recent years. 

The anomaly-based IDS has the ability to learn the pattern of 

normal packets. Any severe variation from the normal 

behavior of the packet is marked as an anomaly. This feature 

of anomaly-based IDS enables it to detect a zero-day attack.  

 

In the anomaly based IDS, as the number of features 

extracted increases, the complexity of the pattern exceeds 

human cognitive capability in detecting the intrusions. 

Artificial Intelligence, like Machine Learning (ML) and Deep 

Learning (DL) algorithms, learns to differentiate the normal 

and attack patterns successfully. The ML and DL algorithms 

require a large amount of data to train the classifiers 

efficiently.  

 

However, recently, many countries and organizations 

have restricted the use of users’ data to train and test for 

classification purposes due to the risk of data theft, data 

leakage, and, in some cases, even data duplication. In 2016, 

the General Data Protection Regulation (GDPR) was imposed 

by the European Union to safeguard the personal data of 

citizens all over the world. In this regulation, user consent was 

required to access their data [4]. This regulation considered IP 

addresses, unique identifiers, and access points as users’ 

personal data. Similar regulations were passed by the 

California Consumer Privacy Act (CCPA) of the USA and the 

Personal Data Protection Act (PDPA) in Singapore. The 

Information Technology (IT) Act & Rules in India in the year 

2023 published a Digital Personal Data Protection Act, which 

gave the Indian citizen the right to access, modify, or delete 

personal data from a database.  

 

Moreover, these regulations have deprived researchers 

from collecting and training their intelligent systems for the 

early detection of intrusions. In the case of WSN, the problem 

of data islands has become a severe issue. Each node or access 

point has its own data, and data sharing among nodes, or 

clusters, or even with the base station has been restricted in 

many networks due to these regulations. One of the effective 

solutions to this problem is deploying and routing nodes as a 

distributed infrastructure. The decentralization property of the 

distributed infrastructure enables a network to maintain data 

privacy and integrity. As a result, intercommunication within 

a network creates vulnerabilities in the system. The 

centralized data processing can lead to major data breaches, 

and several other attempts can be made to disrupt the normal 

working of the IoT devices [5]. 

 

Federated Learning (FL) has emerged as a novel approach 

for training an expert system on distributed data. Federated 

Learning utilizes the local data for training, and the global 

model is trained based on the aggregation of local models. 

FedAvg [6] and FedProx [7] have been the most used FL 

algorithms. The FedAvg algorithm uses the average of the 

trained weights as an aggregation function for the global 

weight. Meanwhile, FedProx introduced a proximal term to 

the local loss function for optimal weight assignment. The FL 

algorithms have advanced over conventional centralized 

learning models when dealing with non-Independent and 

Identically Distributed (non-IID) data. FL models share the 

locally learnt model to form the global model, whereas in a 

centralized training model, the data acquired by each node is 

shared with the server for training. Hence, with FL, user data 

is preserved in real-time scenarios while the global FL model 

achieves comparable accuracies to the centralized deep 

learning architectures.  

 

In this paper, an Optimized Federated learning model has 

been proposed. The proposed model is an extension of the 

averaging function used to train the global model through 

locally trained models. The weightage of each locally trained 

is optimized using a metaheuristic optimization algorithm. 

Artificial Bee Colony Optimization has been employed to tune 

the weightage or local share of the locally trained model on 

non-IID data. The network intrusion datasets NSL-KDD and 

UNSW-NB15 have been employed to train the local IDS on 

different numbers of clients. This paper compares local and 

global accuracies based on a fully connected network, long 

short-term memory, and a hybrid model employing fully 

connected and LSTM layers.  

 

2. Literature Survey 
A comprehensive survey of state-of-the-art research has 

been presented in the field of federated learning and optimized 

FL.  

 

Idrissi et al. [8] proposed an FL-based NIDS. The authors 

proposed an anomaly-based detection scheme for various 

datasets. USTC-TFC2016, CIC-IDS2017, and CSE-CIC-

IDS2018 datasets were employed. Autoencoders, along with 

their variants, were employed along with two variations of 

federated learning for the detection of anomalous packets. 

FedAvg and FedProx were used to emulate the distributed 
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architecture of the network. However, different autoencoders 

were able to detect the anomalies better for different datasets. 

Hence, it was concluded that federated learning with different 

deep learning architectures can provide suitable results in 

various scenarios. 

 

Friha et al. [9] suggested an FL-based IDS model for 

agricultural IoT. Locally trained FCN, CNN, and RNN were 

utilized for a modified Federated learning algorithm. The 

authors demonstrated an Agriculture 4.0-based IDS with data 

privacy and integrity. A mini-batch gradient was employed for 

the weight update mechanism in the distributed scenario, and 

the authors achieved 93.29% accuracy. 

 

Oliviera et al. [10] proposed a distributed IDS while 

maintaining the balance between accuracy and robustness. For 

rule-based attacks, a membership function-based decision was 

employed. In addition to the membership, varying levels of 

Gaussian Noise were added to the attack instances. An 

inversion attack was performed to train a detection device. A 

batch size of 1000 with different noise level was trained for 10 

rounds, and 10 rounds each round consisted of 10 epochs, 

achieving 96.2% accuracy. 

  
Jin et al. [11] proposed a solution for catastrophic 

forgetting for older classes. The authors proposed a class 

balance gradient loss function, which was employed to update 

the learning rate of the deep learning architecture. UNSW-

NB15 and CICIDS2018 datasets were used to train the CNN-

GRU-based model for 10 client systems. 68.764% accuracy 

was achieved for UNSW-NB15, and 99.62% accuracy for the 

CICIDS2018 dataset was achieved.  

 

Li et al proposed an IDS with a distributed configuration. 

Dynamic weighted aggregation was used for learning. CSE-

CIC-IDS2018 was employed to detect some of the latest 

attacks. To discard some of the inaccurate models, a local 

model has to perform better than a threshold value, which was 

set to 0.75. The CNN architecture was used with a 512 batch 

size for 10 rounds. The dynamic weighted algorithm gave high 

accuracy with less communication overhead [12].     

 

Thein et al. [13] proposed an IDS model against 

poisoning attacks. The authors also focused on the 

heterogeneity of the data under study. They proposed a logit 

adjustment loss function based on mini-batches to train the 

local models. Each local model was trained on a 3-layer CNN 

architecture consisting of 256, 128, and 64 nodes, 

respectively. A dropout layer was added to preserve the most 

relevant 80% of the features extracted by CNN layers. A 

temperature scaling function was introduced in the cross-

entropy function to adjust the logit adjustment loss.  

 

Attota et al in [14] proposed a multi-view based federated 

learning algorithm for the detection of malicious packets in the 

network. The extracted features were selected using the Grey 

Wolf Optimization (GWO) algorithm. Biflow View, Packet 

View, and Uniflow View were used to train the local models. 

The authors achieved 94.175% accuracy for the Random 

Forest Classifier.  

 

Lazzarini et al. [15] proposed a shallow artificial neural 

network architecture for clients, and the FedAvg algorithm 

was employed for aggregation of the local model to form a 

global model. ToN_IoT and CICIDS2017 datasets were used 

to create the decentralized scenario. The shallow network 

architecture consisted of a 3-layer fully connected network, 

with a 0.01 learning rate and 5 rounds of training with 5 to 8 

epochs per round. The proposed model achieved 97.59% 

accuracy. 

 

Zhao et al. [16] proposed a semi-supervised FL model for 

IDS. The authors focus on three issues for federated learning 

based IDS: data reproduction, non-IID data, and 

communication overhead. The distillation method and the 

CNN architecture were introduced for classifier and 

discriminator networks. An eight-layer CNN was employed 

for feature extraction for five communication rounds with the 

Adam optimizer. The authors were able to achieve 87.40% 

accuracy on the semi-supervised IoT data.   

 

Verma et al. [17] proposed an FCN, CNN, and LSTM-

based hybrid neural network for training non-IID data. The 

authors employed encryption techniques to secure the model 

gradient over the communication channel. With the log loss 

function, the hybrid model was able to achieve 99.44% 

accuracy over the IIoT dataset with 15 client nodes used to 

train the hybrid 11-layer model on distributed data. 

 

Authors in [18] proposed an automatic weight-optimized 

federated learning algorithm. In this model, the loss function 

was optimized by taking heterogeneity into consideration. The 

MNIST dataset was used for training. The dynamic model 

with a novel loss function provided high accuracy on MNIST 

data for a two-layer CNN structure. 

 

Li et al in [19] proposed a weight-optimized federated 

learning algorithm for the MNIST dataset. The authors 

employed several bio-inspired optimization algorithms to 

optimize the weights of the local clients. A genetic algorithm 

was applied to randomly generated weights, and new offspring 

were used to test the accuracy. If the new accuracy is found to 

be better than the older model, the model is replaced. The 

model provided 68% testing accuracy.  

 

Park et al. [20] proposed a Particle Swarm Optimization 

(PSO) based FL algorithm. PSO was employed to reduce the 

model's communication cost. In each iteration, the best-

performing client shares the model parameters instead of the 

weight update from each client. The weight update steps were 

performed on a hybrid deep learning structure with four CNN 

and four DNN layers on the CIFAR and MNIST datasets.  
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A similar approach was employed by the author in [21], 

where PSO was employed to reduce the communication 

overhead and hasten the decision for lung legion due to 

COVID-19 infection. Instead of the weight update by the back 

propagation step in the neural networks, PSO was employed 

to optimize the speed of change in the weight matrix. 

 

Xu et al in [22] proposed a learning rate optimizer for 

federated learning algorithms. Dynamic learning rates were 

adapted by local clients to overcome the effects of a fading 

channel. The authors tested the model on CIFAR and MNIST 

datasets. However, 92.51% accuracy was achieved for CIFAR 

with a dynamic learning rate. The algorithm proved to perform 

better than the FedAvg algorithm. 

 

Other distributed systems include the use of various 

distributed algorithms and distributed datasets. Blockchain 

technology and cloud-based IoT services have been one 

among the most widely used distributed technologies along 

with federated learning.  Kumar et al. [23] proposed a 

blockchain-based IDS for a distributed system architecture. 

The authors used fog computing to detect a DDoS attack. RF 

and XGBoost algorithms were employed in a fog IoT 

environment to detect malicious packets. 

 

Gad et al in [24] employed the ToN-IoT dataset to learn 

the model based on IoT devices. An XGBoost classifier was 

used to compare the accuracies on the full set of features and 

reduced sets of features. The feature selection was performed 

using chi-square analysis and a correlation matrix. The 

reduced set was given to SMOTE to mitigate the class 

imbalance problem. The XGBoost classifier was able to 

achieve 98.3% accuracy on the dataset. 

 

Samunnisa et al. [25] proposed a distributed cloud 

computing algorithm for IDS. The authors employed 

clustering and classification algorithms for detection 

purposes. Clustering algorithms such as K-means and GMM 

were employed for feature transformation, and Machine 

learning algorithms were used for classification based on the 

transformed features. Different thresholds were defined for 

the RF classifier; the 0.5 threshold gave 99.85% accuracy. 

 

Segura et al. [26] focused on the Software Defined 

Networks (SDN). The author used the IEEE 805.15.4 protocol 

for the nodes. Online change point detectors were installed on 

the nodes to identify any malicious activity in the network. 

Rule-based or signature-based thresholds were proposed for 

the centralized and distributed detection model. 

 

Sokkalingam et al. [27] proposed a hybrid optimization 

algorithm with Support Vector Machine (SVM) for the 

detection of intrusive packets. 10-fold cross-validation on the 

NSL-KDD dataset. Particle Swarm Optimization and Harris 

Hawk Optimization were employed for feature selection, and 

SVM was used for classification purposes.  Eight features 

were selected for training, and the model was able to achieve 

97% accuracy.  

 

Based on the rationale survey, the following gaps were 

found in the existing state-of-the-art methods: 

 In real-world scenarios, the data collected by the sensor is 

often sent to the central node. This results in an increased 

communication overhead in the network. 

 In [8–10], authors employed a decentralized framework 

for detection purposes. However, the authors did not take 

class imbalance into consideration. 

 

Based on the mentioned research gaps, the proposed 

research has the following highlights: 

 For a decentralized approach, a federated learning 

framework has been proposed in the proposed model for 

a different number of clients. 

 To incorporate the class imbalance problem, the Artificial 

Bee Colony optimization algorithm has been employed to 

evaluate the optimized local share for each client. 

 Three different deep neural network architectures have 

been trained for the detection of intrusions on two 

standard datasets, NSL-KDD and UNSW-NB15. Both 

binary and multi-class global classifiers were trained 

based on optimized local share.  

 

The paper is organized as follows: The first section 

comprises the Introduction to FL and IDS. Section II consists 

of the literature survey based on optimization algorithms and 

federated learning models. The methodology of the 

framework is provided in Section III. Section IV contains 

details about the experimental results and a discussion. 

Section V has the conclusion of the research along with future 

work.  

 

3. Methodology 
In this paper, an optimized federated learning model has 

been proposed. The weighted federated learning algorithm has 

been optimized using Artificial Bee Colony Optimization. The 

framework has been depicted in Figure 1. Three different 

neural network architectures have been trained on the local 

data, and a Global model has been trained using model 

aggregation. The detailed description of the methodology 

employed is as follows: 

 

3.1. Federated Learning 

An Intrusion Detection System is deployed in the network 

with either a centralized or a distributed infrastructure. In the 

centralized deployment of the IDS, the data sensed by each 

cluster or client is communicated to the base station. At the 

base station, the data is analyzed for any malicious packets. If 

the packet contains a virus, the packet gets discarded. In the 

case of a distributed deployment strategy, the IDS is equipped 

with multiple nodes over the network [28]. For the distributed 

learning framework, Federated Learning provides a 
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hierarchical approach between the distributed nodes and the 

central station. The decentralized training is performed by the 

client, and the base station acts as a server for the deployed 

IDS. The training and testing of the framework are divided 

between the server and client sides, where the training of the 

data is performed by the clients, and on the other hand, the 

model aggregation is performed by the server, where the 

accuracy of the framework is tested.  

 

The data can be divided horizontally or vertically. In the 

horizontal distribution of data, the data instances are randomly 

distributed among the clients, whereas in the case of vertical 

distribution, the features are divided among the clients. Each 

client contributes to the training of a different set of features. 

In the proposed algorithm, the network intrusion datasets are 

distributed horizontally and equally among each client.  

 

Fig. 1 Pictorial representation of the proposed framework 

 

In Federated Learning, many variations have been 

invented in recent years. FedAvg is one of the most commonly 

used algorithms [6]. In this method, the weights of the neural 

network, trained by each client, are averaged, and hence, equal 

weightage is provided to each client. In the case of weighted 

FedAvg, the unequal data distribution is performed by random 
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allocation of the sensed data to a client. The percentage data 

acts as the weights of the client while model aggregation is 

performed. These models lack the ability to take data 

heterogeneity into consideration. FedProx and FedPSO [20] 

are also very readily used Federated Learning algorithms. The 

FedProx algorithm tweaks the loss function with a penalty 

term responsible for resisting any abrupt change in the client 

model from the global model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Fully connected network layers 

 

In the proposed framework, each client's weightage or 

local share is generated by an Artificial Bee Colony algorithm-

based exploration strategy. The proposed framework consists 

of the following steps: 

 

3.1.1. Global Model Initialization 

In this step, the Neural Networks are generated by the 

server. Three different neural networks have been proposed 

for comparative training and testing. In this step, the weight 

initialization, layer activation, and learning rates are defined 

along with other hyperparameters. The three neural networks 

used for training and testing are: 

 

For the first Neural Network, a five-layer hidden fully 

connected network is initialized with random weights and a 

learning rate. Binary classification is performed using binary 

cross-entropy, whereas multi-class classification is performed 

using sparse categorical cross-entropy.  

 

The FCN is a deep learning architecture in which the 

output of each filter of the preceding layer is connected to 

every filter of the succeeding layer. This characteristic of the 

dense network enables it to establish linear as well as non-

linear relations between input and output. The features 

extracted by the Fully Connected Layers are given as: 

𝑦 = 𝜙(𝜁 ∗ 𝑥 + 𝛽)                       (1) 

 

Where y is the extracted feature for the x input, the 

weights and bias are given as 𝜁, 𝛽, respectively.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 LSTM network layers 

This 𝜙 is the activation function used to introduce non-

linearity in the feature extraction process. In the FCN, the 

ReLU activation is employed to eliminate negative features. 

The ReLU function is given as: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 Hybrid network layers 
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𝑅𝑒 𝐿 𝑈(𝜃) = 𝜙(𝜃) = 𝑚𝑎𝑥( 𝜃, 0)                 (2) 

 

A five-layer Fully Connected Network has been 

employed in the proposed algorithm for training each client, 

as shown in Figure 2. The input layer has 41 filters for the 

NSL-KDD dataset, whereas it has 43 filters for the UNSW-

NB15 dataset. The input layer is followed by a 64 filter dense 

layer; more features were extracted with 128 and 256 filter 

layers. To mitigate overfitting, the important features were 

selected and passed to the output layer with 128 and 64 filter 

layers providing a bottleneck structure.  

 

LSTM Network: The Long Short-Term Memory 

Network is a feedback-type neural network. The LSTM is a 

special case of a Recurrent Network that comprises the input 

gate, forget gate, and output gates. The feedback behaviour of 

the LSTM enables it to analyse sequential data or signal more 

efficiently. In the proposed model, the five-layer hidden-layer 

LSTM network assumes that the intrusion features are 

sequential in nature. The proposed architecture consists of an 

input layer with units equal to the number of features in the 

dataset. The input layer is followed by the hidden network. 

The hidden layer forms a converging bottleneck structure for 

preserving important features. The hidden layer consists of 

two 64-unit layers followed by a converging 32, 16, and 4-unit 

layers for feature extraction and selection purposes. The 

feature extraction of the LSTM layer relies on feedback for 

longer retention of the extracted information. The decision to 

store or eliminate an extracted feature is made by the forget 

gate. The feature extraction is given as: 
 

𝑓𝑔𝑡𝜏 = 𝜎(𝜁𝑓𝑔𝑡 . [ℎ𝜏−1, 𝑥𝜏] + 𝛽𝑓𝑔𝑡) 

𝑖𝑛𝑝𝜏 = 𝜎(𝜁𝑖𝑛𝑝 . [ℎ𝜏−1, 𝑥𝜏] + 𝛽𝑖𝑛𝑝) 

𝐶̂𝜏 = 𝑡𝑎𝑛ℎ( 𝜁𝐶 . [ℎ𝜏−1, 𝑥𝜏] + 𝛽𝐶) 
𝐶𝜏 = 𝑓𝑔𝑡𝑡 . 𝐶𝜏−1 + 𝑖𝑛𝑝𝜏 . 𝐶̂𝜏 
𝑜𝑢𝑡𝜏 = 𝜎(𝜁𝑜𝑢𝑡 . [ℎ𝜏−1, 𝑥𝜏] + 𝛽𝑜𝑢𝑡) 
𝑎𝑛𝑑 
ℎ𝜏 = 𝑜𝑢𝑡𝜏. 𝑡𝑎𝑛ℎ( 𝐶𝜏)                                      (3) 

 

Where 𝑓𝑔𝑡 is the output of the forget gate, 𝑖𝑛𝑝 is the 

input gate, 𝐶̂𝜏 is the candidate cell state for𝜏time, 𝐶is the cell 

state, and 𝑜𝑢𝑡, ℎare the output and hidden states, respectively. 

The activation functions are fixed for LSTM networks, with 

𝜎the sigmoid and hyperbolic tangent functions for candidate 

and hidden states given by: 
 

𝑡𝑎𝑛ℎ( 𝛼) =
𝑒𝑖𝛼−𝑒−𝑖𝛼

𝑒𝑖𝛼+𝑒−𝑖𝛼                      (4) 

 

Hybrid Neural Network (HNN): In the hybrid model, the 

HNN consists of  2-layer Fully Connected Layers, a reshape 

layer, and then followed by three LSTM layers, as shown in 

Figure 3. The reshape layer was added to make the features 

extracted by dense layers compatible with the sequential 

analysers of the LSTM layers. The structure consists of a 

dense layer of 128 filters, followed by another dense layer 

with 256 filters. The extracted features were made into a 

sequential tensor using a reshape layer. The LSTM part of the 

hybrid neural network consisted of 64, 16, and 4 units for the 

selection of relevant features. The dense layers were activated 

using ReLU activation, whereas the LSTM layers were 

activated by the hyperbolic tangent function.  

 

3.1.2. Local Weight Updates 

Each client model updates their model weights through 

back-propagation. The output of the neural network after each 

epoch calculates the loss present in the prediction of the 

malicious packet. Cross-entropy has been employed as the 

loss function for the proposed framework. The loss function is 

given as: 

 

ℓ(𝛾, 𝛾) = −[𝛾 ∗ 𝑙𝑜𝑔( 𝛾) + (1 − 𝛾) ∗ 𝑙𝑜𝑔( 1 − 𝛾)]       
(5) 

 

Where 𝛾 is the true class, and 𝛾is the predicted class by 

the local model? Then, the gradient of the loss function is 

evaluated, and the new weights are given as: 

𝜁𝑛𝑒𝑤 = 𝜁 − 𝜂 ∗
𝜕ℓ

𝜕𝜁
        (6) 

Where 𝜂 is the learning rate. 

 

3.1.3. Global Aggregation 

The global model is evaluated once all the client models 

are trained with their sensed data. This step is known as model 

aggregation. This step represents the most important feature 

of Federated Learning. Instead of communicating data, each 

client broadcasts their learnt model, and with the help of these 

models, a global model is constructed. In the proposed 

framework, instead of averaging or weightage being assigned 

according to the data share, the weightage allocation or the 

local share allocation is performed by exploring an optimal set 

of shares using a metaheuristic algorithm. In this paper, the 

Artificial Bee Colony algorithm has been employed for 

exploration purposes. The proposed global weight is formed 

by the sum of client models with their respective local shares. 

The global weight is given as: 

 

𝜁𝐺𝑏𝑙 = ∑ 𝑤𝜅 . 𝜁𝜅𝜅 = 𝑤1𝜁1 + 𝑤2𝜁2+. . . +𝑤𝑁𝜁𝑁     (7) 

 
Where 𝜁𝐺𝑏𝑙is the global model, 𝜁𝜅is the kth client's 

weights, and 𝑤𝜅is the optimal local share of the kth client.  

 

3.2. Artificial Bee Colony Optimization (ABCO) 

In this paper, an FL-based neural network has been 

proposed for the detection of malicious packets in a 

decentralized network. The trained neural networks trained by 

each client are used to form the global model. The FedAvg [6], 

as the name suggests, forms the aggregate using the mean or 

weighted average of the model weights of each client. 

Weighted averaging of the models is performed on the 

percentage of data used to train the model, without taking 

Class imbalance and local model accuracies into account. 

Hence, these algorithms lack the qualitative aspect of the local 

models and focus on the quantitative aspect.  
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In this paper, the weightage of the local share of the 

clients is considered independent of the quantitative aspect of 

the data; the study focused on the optimal weights known as 

the local share of the client models. The paper proposes an 

ABCO-based optimum local share for each client.  

 

ABCO was proposed by Karaboga in 2007 [29]. In the 

optimization algorithm, the optimal solution is inspired by a 

swarm of bees around the hive. The honeybees are a highly 

social species, so their swarm behaviour around the hive is 

studied in the ABCO. Swarm Intelligence is the study of the 

collective behaviour of a social colony or other animal 

societies to design an algorithm or problem-solving strategies. 

Self-organization and division of tasks among the bees 

inspired the ABCO algorithm. The solutions in the 

optimization problem are considered a food source or 

connected to the objective function of profitability.   

 

According to the division of labour in the beehive, the bee 

population can be divided into three groups. The first group 

represents the Employed Bees (EB), followed by Onlooker 

Bees (OB) and Scout Bees (SB), collectively known as 

Unemployed Bees (UB). The population of the bees is 

initialized as: 

𝑤 = 𝑙𝑜𝑤_𝑏𝑛𝑑 + 𝑟 ∗ (𝑢𝑝𝑝_𝑏𝑛𝑑 − 𝑙𝑜𝑤_𝑏𝑛𝑑)          (8) 

Where  𝑁𝑃 is the number of bees. 𝑁𝐶represents the 

number of clients employed to train the local models, forming 

a list of arrays. The dimension of the lower bound given by 

𝑙𝑜𝑤_𝑏𝑛𝑑, upper bounds given by 𝑢𝑝𝑝_𝑏𝑛𝑑 , and random 

number sequence (𝑟) is ( PN 𝑁𝐶). As the local shares are the 

weightage of the local client, they must sum up to 1; hence, 

each bee in the population is transformed to make fit the 

requirement by using the equation given below. Once the 

population of the bees is compensated, the Employed Bee 

Phase is executed. 

𝑤𝑐𝑜𝑚𝑝 =
|𝑤𝑖|

∑ |𝑤𝑖|
𝑁𝑐
𝑖=1

                       (9) 

In the ABCO, the fitness function of the solution and 

the objective function are related as given in the equation: 

 

𝑓𝑡𝑛 = {

1

1+𝐹𝑜𝑏𝑗
, 𝑖𝑓𝐹𝑜𝑏𝑗 ≥ 0

1 + |𝐹𝑜𝑏𝑗|, 𝑖𝑓𝐹𝑜𝑏𝑗 < 0
                 (10) 

 

3.2.1. Employed Bee Phase (EBP) 

The bee population is then divided into EB and UB. The 

EB are the bees that are currently exploiting a food source or 

contain information such as distance and direction from the 

optimal solution. The EB can perform one of the three tasks: 

either dance around the food source and recruit new onlooker 

bees with a certain probability, or abandon the food source or 

continue to forage for the optimal solution. The OB watches 

the EB dance and interacts with them in hopes of becoming 

EB, whereas the SB spontaneously start searching around the 

hive. In the EBP, the number of food sources, the number of 

EB, and OB are set to Np/2, that is, half of the population 

forages for an optimal solution. In this phase, all the solutions 

get a chance to generate a new solution. The new solution in 

the employed bee phase is given by: 

 

𝑤𝑛𝑒𝑤
𝑖 = 𝑤𝑥𝑠𝑡

𝑖 + 𝜑 ∗ (𝑤𝑥𝑠𝑡
𝑖 − 𝑤𝑝𝑡𝑛

𝑖 )         (11) 

 

Where phi 𝜑 is the random number between -1 and +1, 

Wp is the randomly selected partner bee, 𝑤𝑛𝑒𝑤
𝑖 and is the local 

share of the ith local client randomly selected to generate new 

solutions. As the new solution changes the total share, 

equation 3 is applied to the new solutions, which maintains 

their value as 1. After the new solutions are generated, they 

are used as a local share of the clients to generate global 

weights. The new global weights are tested on the data, and 

objective functions are evaluated for each solution or local 

share matrix. A greedy selection algorithm is applied to the 

new set of solutions. The greedy search algorithm is given by: 

 

{
𝑤 ← 𝑤𝑛𝑒𝑤

𝐹𝑜𝑏𝑗 ← 𝐹𝑜𝑏𝑗 ,𝑛𝑒𝑤
, 𝑖𝑓𝑓𝑡𝑛𝑛𝑒𝑤 > 𝑓𝑡𝑛           (12) 

 

A trial counter is incremented each time the new solution 

is inferior to the existing one. If the new replaces the existing 

solution, the trial counter is set to 0. 

 

𝑡𝑟𝑖𝑎𝑙𝑛𝑒𝑤 = {
𝑡𝑟𝑖𝑎𝑙 + 1, 𝑖𝑓𝑓𝑡𝑛 ≥ 𝑓𝑡𝑛𝑛𝑒𝑤

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
          (13) 

 

In the next step, the probabilities of modification of each 

solution are generated. The probabilities are based on the 

fitness function derived from the objective function. Solutions 

with higher fitness value have higher chances of participating 

in the onlooker bee phase. The probability using the equation:  

 

𝑝𝑟𝑜𝑏𝑖 = 0.9 ∗
𝑓𝑡𝑛𝑖

𝑚𝑎𝑥(𝑓𝑡𝑛)
+ 0.1                 (14) 

 

After calculating the probabilities of the solutions, the 

Onlooker Bee Phase is implemented. 

3.2.2. Onlooker Bee Phase (OBP)  

In the OBP, each of the solutions gets a chance to generate 

a new solution based on a random number. Onlooker bees in 

the hive interact with worker bees, and the information about 

the solution is passed to the working bees with a random 

probability higher than the evaluated probability.   

 

𝑖𝑓𝑝𝑟𝑜𝑏𝑖 > 𝑟𝑛𝑑 
𝑤𝑛𝑒𝑤

𝑖 = 𝑤𝑥𝑠𝑡
𝑖 + 𝜑 ∗ (𝑤𝑥𝑠𝑡

𝑖 − 𝑤𝑝𝑡𝑛
𝑖 ) (15) 

 

 Where r is the random number between 0 and 1, phi (Φ) 

is the random number between -1 and +1, and Wp is the 

randomly selected partner bee. 𝑤𝑛𝑒𝑤
𝑖  is the local share of the 

ith local client randomly selected to generate new solutions. 
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The roulette wheel method is employed for onlooker bees to 

generate new solutions. In the next step, a similar approach to 

the Employed bee phase is used. The new solutions are 

modified and then used to train the neural networks on the 

network intrusion datasets. The new fitness values are 

evaluated, and based on the greedy selection algorithm, the 

solution with higher fitness values is accepted. If the existing 

solution is found to be better, the trial counter is incremented; 

otherwise, it is reset to 0.  
 

3.2.3. Scout Bee Phase (SBP) 

In the SBP, the solution that has exceeded the 

abandonment criteria of the trial limit is replaced by a new 

solution. Only one solution enters this phase at a given round. 

The new solution is altogether generated using the 

initialization equation. For the new solution, the trial counter 

is reset to 0. In the proposed method, the abandonment criteria 

are set to 50. A higher value of the abandonment criteria is set 

to reduce the chances of the mitigation of a potential global 

optimum. The optimal set of local shares is obtained at the end 

of all iterations.  

3.3. Objective Function 

This paper has replicated data acquisition and detection 

of malicious activities in a real-world scenario of a 

decentralized IoT or WSN. The dataset has been distributed 

among various clients, and the models are trained locally. 

Each client has been trained to use a fully connected network, 

an LSTM network, and a hybrid network for the detection of 

intrusions. A novel model aggregation strategy has been 

proposed.  

 

The weights learnt by the neural network during training 

are used to build the global model. The weightage parameters 

of each client, known as local share, are optimized by the 

ABCO. The ABCO initiates the local share randomly, and 

with each iteration, the local share matrix tries to approach 

optimal values based on the global accuracy. The objective of 

the optimization is to maximize the accuracy of the global 

model aggregated in the server by assigning an optimal local 

share to each client. The sum of weightage or the local share 

has to be unity, representing the qualitative approach to the FL 

model aggregation. The proposed objective function is given 

as: 

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑚𝑎𝑥
[𝑤1,𝑤2,...𝑤𝑛]

#𝑃𝑎𝑐𝑘𝑒𝑡𝑠(𝐶𝑙𝑎𝑠𝑠𝑝𝑟𝑒𝑑=𝐶𝑙𝑎𝑠𝑠𝑎𝑐𝑡)

𝑇𝑜𝑡𝑎𝑙⥂𝑃𝑎𝑐𝑘𝑒𝑡𝑠
 (16) 

 

Where 𝑤1,𝑤2, . . . 𝑤𝑛 is the local share of 

𝐶𝑙𝑖𝑒𝑛𝑡1,𝐶𝑙𝑖𝑒𝑛𝑡2, . . . 𝐶𝑙𝑖𝑒𝑛𝑡𝑛the ratio of packets with correctly 

predicted classes to the total number of packets, which 

represents the accuracy of the neural networks. 

 

4. Experimental Results and Discussion  
4.1. Experimental Setup 

The experiment was performed on a Dell Precision 5820 

workstation. The workstation has a 32 GB DDR4 RAM with 

a 2 TB HDD. The Workstation is equipped with an Intel Xeon 

W-2133 CPU and a 4 GB Nvidia Quadro P2000 GPU. For the 

software, the proposed model was trained and tested using 

Python 3.8.20 with Numpy version 1.23.5 and Pandas version 

2.2.3. The preprocessing steps were performed using the 

sklearn 2.2.0 library. Deep Learning libraries were used 

instead of federated learning libraries as they provide more 

leverage to modify the FL weight matrices. Tensorflow base 

library with version 2.3.0 was employed to train the local 

model and aggregate the global model. 

 

4.2. Datasets 

NSL-KDD Dataset: The NSL-KDD dataset is the most 

popular dataset for network-based Intrusions. The origin of 

this data dates back to 1998. The network intrusion simulated 

by DARPANET in 1998 was published as the DARPA 

dataset, which contained the packets received while multiple 

attacks were simulated on the Defense ARPANET systems. 

The experimentations were performed by MIT Lincoln Lab. 

Network traffic features were extracted from the raw packets 

of the DARPA dataset, and a new dataset was formed, which 

has more than 500,000 instances. These extracted features 

were named the KDD CUP99 or simply the KDD99 dataset. 

The KDD99 dataset has data duplication and redundancy 

issues. Tavallaee mitigated these issues [30]. The redundant 

data were removed from the KDD99 dataset, and a more 

manageable NSL-KDD dataset was proposed.  

 

The dataset contains 125,973 packet instances along with 

41 network features for each. The dataset contains instances 

belonging to 24 attack types and normal packet data for the 

benchmark. The 24 types of attacks belong to 4 classes, 

namely, DoS, which is a denial of service attack strategy. 

During a DoS attack, the network resources of a victim 

machine are depleted to the extent that complete failure of the 

node takes place. The next is the R2L attack, in which the 

unauthorized attacker tries to penetrate the network. The U2R 

is the user-to-root attack in which a user tries to gain superuser 

access. The last class is the Probe class, in which the passive 

attacks are executed to find vulnerabilities in the system. The 

dataset contains basic features, content features, time-based 

features, and host-based features.  

 

UNSW-NB15 dataset: The dataset was recorded by 

sampling the network packets by the University of New South 

Wales (UNSW) in 2015 using the IXIA Perfect Storm toolbox. 

The dataset contains 9 attack types, and normal class instances 

were also provided [31].  The dataset consists of 43 features, 

which are categorized as Time features, basic features, flow 

features, and content features. The dataset has a collection of 

active attacks, such as Fuzzer, DoS, Backdoor, Generic, 

Shellcode, and worm; On the other hand, passive attacks such 

as Analysis have been simulated using 3 network structures. 

The classes are highly imbalanced, leading to problems of 

over-fitting and under-fitting during the training of an 

anomaly-based IDS. 
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Fig. 5 Flowchart of the proposed algorithm 
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4.3. Experimental Steps 
Figure 5 shows the flowchart of the proposed method. 

The network intrusion data is read and stored as dataframes 

using the Pandas library. The data undergoes preprocessing 

before classification and detection of malicious activities in 

the network. The preprocessing starts with the class label 

encoding. For binary classification, the NSL-KDD and 

UNSW-NB15 datasets, which have malicious packets, have 

been assigned +1 classes, and those instances that are normal 

classes are assigned 0 classes. However, in the case of multi-

class classifications, the instance classes were assigned based 

on the type of attack executed by the packet. Since there are 

24 attack categories in the NSL-KDD dataset, the 4 major 

attacks are assigned 4 labels: DoS, probe, R2L, and U2R, 

respectively. Moreover, it was observed that the dataset 

suffers from a severe class imbalance problem. Hence, these 

four attack classes, along with the normal class, create a multi-

class dataset for classification. On the other hand, there are 10 

classes in the UNSW-NB15 dataset. The 9 attack classes 

include analysis, backdoor, DoS, exploits, fuzzer, generic, 

reconnaissance, shellcode, and worm attacks, along with the 

normal class. High class imbalance was observed in the 

dataset. The next step in the preprocessing stage includes label 

encoding the data. The alphanumeric features are assigned 

numeric values before being fed to the tensorflow 

environment. The NSL-KDD dataset has three alphanumeric 

features, namely, protocol_type, service, and flag. The 

protocol_type contains information about the communication 

protocol used by the nodes in the network. TCP, UDP, and 

ICMP protocols were assigned labels using the label encoder. 

Service includes network services employed at the 

destination. These are http, ftp, telnet, or smtp. The flag 

feature contains the flag given to each packet, including 11 

flags that were used to define the status of a packet. Similarly, 

in the UNSW-NB15 dataset, there are three features with 

alphanumeric values. The protocol used by the network is 

mentioned in the proto feature, and the service used in the 

destination is mentioned in the service feature. The connection 

status was also coded using alphanumeric keywords. These 

features are then normalized to confine their values between 0 

and 1. This step makes sure that the features follow a similar 

random distribution of their values. The normalized values of 

the features are given by: 

  
Table 1. Parameters and values used in the experiments 

S. No. Parameters Values 

1 Number of Clients [5, 10, 20] 

2 Types of Neural Networks FCN, LSTM, Hybrid Neural Network 

3 Batch Size 32 

4 Epochs per Round 10 

5 Federated Rounds 10 

6 Learning Rate 0.01 

7 Layer Activation 
FCN: ReLU 

LSTM: Tanh 

8 Optimizer Adam 

9 Loss 
Binary Classifier: Binary Cross-Entropy 

Multiclass Classifier: Sparse Categorical Cross-entropy 

10 Metric Accuracy 

 

𝜌𝑁 =
𝜌𝑖−𝜌𝑀𝑖𝑛

𝜌𝑀𝑎𝑥−𝜌𝑀𝑖𝑛
                   (17) 

 

Where 𝜌𝑖 is the 𝑖𝑡ℎinstance of the feature, with the 

extrema values of the feature, 𝜌𝑀𝑎𝑥 , 𝜌𝑀𝑖𝑛respectively. 

Training and testing were split in an 80% to 20% ratio with a 

random shuffle.  

 

The data and classes are divided equally among N clients 

in the federated learning phase. The proposed work used three 

neural network architectures to train the data locally. A five-

layer Fully Connected Network, a five-layer LSTM network, 

and a hybrid network with two Fully Connected Layers 

followed by three LSTM layers were concatenated. The Fully 

Connected Layers were activated using the ReLU activation 

function, and the LSTM layers used the hyperbolic tangent 

function as their activation function. For the input layers, the 

number of filters or units in the neural network was set to the 

number of features in the dataset. In the UNSW-NB15 dataset, 

the ID feature was removed as it contains the packet ID and 

provides no information about the malicious activities. The 

output layers were initialized with a sigmoid activation 

function and 1 unit for the detection of the intrusive packet. In 

the case of multi-class classification, the output units were 

made equal to the number of classes, and a softmax activation 

function was used for probabilistic assignment of classes. 

 

Parallel to the federated learning phase, the Artificial Bee 

Colony Optimization was initialized with a random population 

of bees. The bee determines the local share of each local client. 

The initial population is used to find the preliminary global 

accuracies of all the local clients. The local weights and their 

respective local share are used to form the global model as 

given in equation 7. These global models then make up the 
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employed and unemployed bee populations. The employed 

bees are then partnered with a random bee and form a new 

solution. Half of the total swarm size participates in this phase. 

The greedy algorithm is used to replace the solutions with 

better ones. This forms the EBP.  

 

In the next step, the OBP is executed. The roulette 

interaction takes place based on their probabilities of 

interaction. New local shares are explored in this phase, and 

global accuracies are evaluated. It is not guaranteed that every 

employed bee participates in the exploration of new solutions. 

The new solutions are then compared to these existing 

solutions using the greedy algorithm. If a solution exceeds the 

abandonment criteria, the solution enters the scout phase. In 

this phase, new solutions are explored, and the solution with 

abandoning criteria is exploited. The global accuracies are 

evaluated using the testing dataset, and after the iterations are 

over, the best solution is achieved. The parameters used in the 

experiments are provided in Table 1. The optimal weights or 

optimal local share are used to aggregate the global model, and 

the results are presented in the next section. 

4.4. Results 

4.4.1. Binary Classification on NSL-KDD Dataset 

The average results of binary classification on the NSL-

KDD dataset have been illustrated in Table 2. In the 

experiment, the dataset has been horizontally divided into 5, 

10, and 20 clients, respectively. The non-IID is divided 

randomly, and each client was provided with different 

numbers of normal and attack data. For the 5 client scenarios, 

the first client received 10,678 instances belonging to the 

normal class and 9,477 instances of the attack class.  

 

On the other hand, the rest of the clients received 10,776, 

10,944, 10,732, and 10,791 normal packets along with 9,379, 

9,211, 9,423, and 9,364 packets of intrusion classes, 

respectively. The data was applied to a Fully Connected 

Network having a 5-layer architecture. The local network 

weights were initialized with a random normal initializer. A 

0.01 learning rate with the Adam optimizer was employed for 

weight optimization.  Due to the limited data received by each 

client, the initial training suffered from low accuracy. 

 

 
Fig. 6 Results for binary classification of NSL-KDD for (a) Fully connected network, (b) LSTM, and (c) Hybrid networks for 5, 10, and clients per 

round. 

 

Table 1. Results for NSL-KDD binary classifications 

Neural 

Network 

Number 

of Clients 

Average 

Normal 

Instances 

Average 

Attack 

Instances 

Average Initial 

Accuracy 

(Round 1) 

Average Final 

Accuracy 

(Round 10) 

Global 

Testing 

Accuracy 

Fully 

Connected 

Network 

5 10784.2 9370.8 88.02 97.49 97.81 

10 5394.7 4682.3 90.21 98.08 97.46 

20 2696.9 2341.1 90.82 96.77 96.57 

 

LSTM 

Network 

5 10755 9400 93.986 98.81 99.14 

10 5398.2 4678.8 92.677 98.36 98.73 

20 2698.75 2339.25 90.56 97.89 98.48 

 

Hybrid 

Network 

5 10758.4 9396.6 94.61 98.58 98.54 

10 5378.9 4698.1 84.48 97.44 98.56 

20 2692.58 2345.41 96.48 98.10 98.38 
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In the first round, the accuracy was 88.66% for the first 

client, 87.26% for the second client, 87.62% for the third 

client, 87.72% for the fourth client, and 88.86% for the fifth 

client. The global testing accuracy is 95.61% for the optimal 

local share. The global testing accuracy against the number of 

rounds has been depicted in Figure 6(a) for a 5-client scenario. 

With optimal local share provided to the training node, the 

accuracies are increased from 95.16% to 97.81% for the last 

round. This is the final result of training the global model 

through the aggregation of the local model with an optimal 

local share.  

 

For 10 client systems, the data is divided into 10 equal 

sections, and each client received different ratios of normal 

and intrusion instances. The first client instances consist of 

5384 and 4693 instances of normal and intrusion classes, 

respectively. The second client received 5412 normal and 

4665 malicious instances, whereas the third client had 5451 

and 4626 instances. Other clients had 5455, 5372, 5372, 5360, 

5413, 5445, 5319, and 5371 normal instances and 4622, 4705, 

4717, 4664, 4632, 4758, and 4706 intrusion instances, 

respectively. The average initial local accuracy of 90.21% was 

achieved. Furthermore, the accuracy after every round has 

been depicted in Figure 6(a). From Figure 6(a), it can be 

concluded that, as the rounds increase, the global model trains 

with the optimal local models learns efficiently without 

sharing the local data. This feature of the proposed algorithm 

enhances global accuracy without compromising the privacy 

of the local nodes. The final accuracy of 97.46% was achieved 

by the global model for 10 client scenarios on the FCN. The 

global accuracy of the 10-client scenario is comparable to the 

5-client scenario, which shows that the data insufficiency 

issue is resolved in the proposed method.    

 

Figure 6(a) shows the accuracy of 20 clients on a Fully 

Connected Network. The average normal and intrusive 

instances distributed among 20 clients were found to be 

2696.9 and 2341.1, respectively. The initial round accuracies 

of all the local nodes averaged at 90.82% whereas with 

optimal federated learning, the final round training reached 

96.77%. At the end of each round, the global accuracy went 

from 90.03% to 96.57%. 

 

 
Fig. 7 Results for multiclass classification of NSL-KDD for (a) Fully connected network, (b) LSTM, and (c) Hybrid networks for 5, 10, and clients per 

round. 

 
Table 3. Results for NSL-KDD multiclass classifications 

Neural 

Network 

Number 

of 

Clients 

Avg. 

Normal 

Inst. 

Avg. 

DoS 

Inst. 

Avg. 

Probe 

Inst. 

Avg. 

R2L 

Inst. 

Avg. 

U2R 

Inst. 

Avg. 

Initial Acc. 

(Round 1) 

Avg. 

Final 

Acc. 

(Round 

10) 

Global 

Test 

Acc. 

Fully 

Connected 

Network 

5 9391.8 6597 1625 7.4 14.8 95.57 97.63 97.86 

10 4695.9 3298.5 812.5 3.7 7.4 94.54 97.53 97.70 

20 2347.95 1649.25 406.25 1.85 3.7 92.74 97.01 97.10 

 

LSTM 

Network 

5 10770.6 7506 1853.2 7.8 17.4 90.60 98.54 98.97 

10 5385 3752.8 926.6 3.9 8.7 67.02 97.98 98.56 

20 2692.05 1876.35 463.3 1.95 4.35 60.95 97.00 97.79 

 

Hybrid 

Network 

5 10792.8 7476.8 1860.2 8.4 16.8 86.02 97.77 97.92 

10 5396 3738.4 930 4.2 8.4 75.60 97.56 97.89 

20 2697.7 1869 465 2.1 4.2 76.82 97.23 97.74 
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Despite the fact that deep learning algorithms require a 

huge amount of training and testing data, an optimal federated 

learning model achieves a comparable accuracy with respect 

to a centralized learning algorithm with big data. For the 

LSTM network, the features of NSL-KDD data are considered 

as time series features. The data is divided into several clients. 

For a 5-client system, the average number of normal data and 

intrusion data was 10755 and 9400. The initial accuracy was 

found to be 93.986% and after 10 rounds of optimal federated 

learning aggregation of the global model, the training 

accuracy was increased to 98.81%. After the last round of 

aggregation, the final testing accuracy of 99.14% was 

achieved with the optimal local share of 0.183 for the first 

client, 0.209 for the second client, 0.356, 0.135, and 0.115 for 

the rest of the clients, respectively. Table 2 illustrates the class 

distribution and training and testing accuracies. The testing 

with respect to the rounds of training is depicted in Figure 

6(b). For the 10 client scenario, the average normal and 

malicious instances were distributed as 5398.2 and 4678.8. 

Despite the limited data, the LSTM network’s accuracy 

showed an increasing accuracy from 92.677% to 98.36% for 

the 10 rounds. The testing accuracy from 20% of the whole 

data came to 98.73% which is close to 5 client scenarios with 

half the data available for each node. In the case of the 20-

client environment, the data available for each node is 4% of 

the total available data. Despite training on such limited data, 

the global model achieved 98.48% accuracy. The local models 

have an average initial accuracy of 90.56% and a final training 

accuracy of 97.89% in the last round. The LSTM showed 

better accuracy compared to the Fully Connected Network and 

the Hybrid Network for the binary classification of the KDD 

dataset. 

 

The hybrid network consisted of 3 Fully Connected layers 

followed by 2 LSTM layers. The model was used to classify 

the malicious packets in the network. For 5 clients, each client 

had the average normal data with 10758.4 and malicious data 

with 9396.6 instances. The initial accuracy for all local clients 

averaged at 94.61% in the first round of training and improved 

to 98.58% in the last round.  The testing accuracy also went 

up from 96.50% to 98.54%. Meanwhile, the federated 

accuracy for 10 clients was found to be 98.52%, which started 

with 46.23% only. 

 

 
Fig. 8 Results for binary classification of UNSW NB15 for (a) Fully connected network, (b) LSTM, and (c) Hybrid networks for 5, 10, and clients per 

round. 

 

Table 4. Results for UNSW NB15 binary classifications 

Neural 

Network 

Number 

of Clients 

Average 

Normal 

Instances 

Average 

Attack 

Instances 

Average Initial 

Accuracy 

(Round 1) 

Average Final 

Accuracy 

(Round 10) 

Global 

Testing 

Accuracy 

Fully 

Connected 

Network 

5 5911.4 7261.6 84.66 93.984 95.61 

10 2955.4 3630.6 82.061 92.16 94.00 

20 1477.7 1815.3 79.0835 90.277 92.03 

 

LSTM 

Network 

5 5928.4 7244.6 70.672 92.894 94.26 

10 2959.7 3626.3 74.931 92.475 94.30 

20 1478.8 1814.2 72.0805 90.527 93.63 

 

Hybrid 

Network 

5 5919.6 7253.4 77.334 93.926 94.95 

10 2961.7 3624.3 69.809 90.596 92.67 

20 1479.75 1813.25 69.445 90.7035 92.04 
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The drastic change in accuracy is the result of the 

optimized federated approach employed for model 

aggregation. These accuracies were achieved on an average of 

5378.9 normal and 4681.1 attack instances. Local models gave 

an average accuracy of 84.8% for the first round and 97.44% 

training accuracy in the last round. In the 20 client real-world 

problems, the average data distribution was 2692.58 for the 

normal class and 2345.41 for the attack class. The training 

accuracies in the first round averaged at 96.48% and improved 

to 98.10% by the last round. The accuracy has been shown in 

Table 2. Similarly, the testing accuracies were improved from 

96.48% to 98.38%. Figure 6(c) depicts the increment in 

accuracy per round.  

 

4.4.2. Multi-Class Classification for the NSL-KDD Dataset 

In the multi-class problem, the task is not only to detect 

any intrusive packet, but also to classify the type of intrusion 

performed. The NSL-KDD dataset consists of 24 attack 

classes combined into 4 attack categories. The normal class is 

labelled as 0, whereas the attack classes were marked 1 to 4. 

The label encoder marked these classes in alphabetical order. 

DoS class was assigned as class 1, probe was given 2, R2L 

was provided with label 3, and U2R was given 4 as a label. 

 

For the Fully Connected Network, the 5 client systems 

had an average of 9391.8 normal instances, 6597 DoS 

instances, 1625 probe instances, whereas only 7.4 and 14.8 

average instances were obtained for R2L and U2R classes, 

respectively, depicting high class imbalance in the dataset. 

The initial average accuracy of the five local models was 

found to be 95.57% whereas the final accuracy was obtained 

at 97.36%. Table 3 shows the accuracies of the trained local 

models, the distribution of the classes, and the final testing 

accuracy. The testing accuracy for the first round was obtained 

to be 95.48% and it improved to 97.86% in the last round. The 

improvement in accuracy shows that the weight distribution 

performed by the ABCO algorithm has proven to be efficient 

in practical use. In the 10-client system, the class instances 

were halved for each client compared to the 5-client scenario. 

The normal class had an average of 4695.9 instances, DoS 

class had 3298.5 instances, probe class had 812.5, whereas 

R2L and U2R had 3.7 and 7.4 instances respectively. In the 

first round, the average training accuracy was 94.54%, 

whereas the testing accuracy of the aggregated model was 

96.03%. After the optimized federated learning was executed 

for 10 rounds, the training accuracy averaged at 97.53% and 

the final testing accuracy was obtained as 97.70%. In the case 

of 20 clients, the average normal instances were 2347.95, DoS 

were 1649.25, probes were 406.25, and R2L and U2R were 

obtained at 1.85 and 3.7 only. The initial accuracy for training 

was found to be 92.74% whereas the initial testing accuracy 

was evaluated as 96.45%. After 10 rounds of optimal 

federated learning with ABCO determining the local share, the 

training accuracy was evaluated as 97.01% and the final 

testing accuracy was 97.10%.  

 

For the LSTM network, the 5 client scenarios have 

10770.6 average normal instances, 7506 DoS instances, 

1853.2 probe instances, along with 7.8 and 17.4 instances of 

R2L and U2R, respectively. The initial average training 

accuracy was 90.60%, and after the global aggregation of the 

model with optimal local share, the testing accuracy in the first 

round was 97.26%. High testing accuracy determines that the 

model aggregation compensated for the losses in the local 

client model. At the end of the last round, the local models 

were able to achieve an average accuracy of 98.54% with a 

global testing accuracy of 98.97%. This accuracy shows that 

the optimal federated learning algorithm outperformed many 

state-of-the-art algorithms with even massive models. In the 

case of the 10 client systems, the results were not affected due 

to the lack of data individual local sites possessed. The normal 

class had an average of 5385 instances for all clients, DoS 

averaged at 3752.8 instances per client, probe averaged at 

926.6 instances per client, R2L at 3.9, and U2R at 8.7 per 

client. 

 

 

 
Fig. 9 Results for multiclass classification of UNSW NB15 for (a) Fully connected Network, (b) LSTM, and (c) Hybrid networks for 5, 10, and clients 

per round.  
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Table 5. Results for UNSW NB15 multiclass classifications 

 
Table 6. Comparison of the proposed framework with existing 

researches 

S. NO. Author Technique Accuracy 

1. VinayKumar [32] Deep Learning 75.20 

2. Almeseidin [33] J48 93.20 

3. Ingre [34] DT 90.30 

4. Jin [35] Rule Based 98 

5. Friha [9] FL+CNN 93.29 

6. Jin [11] FL+CNN-GRU 68.78 

7. Our Method 
FL+LSTM 

(KDD Binary) 
99.14 

8. Our Method 
FL+LSTM  

(KDD Multi) 
98.97 

9. Our Method 
FL+ FCN 

(NB15 Bin) 
95.61 

10. Our Method 
FL+ Hybrid 

(NB15 Multi) 
82.78 

 

The round 1 average training accuracy was 87.02% and 

the aggregated global accuracy was 96.67%. In the final 

round, the global aggregate was able to achieve an accuracy 

of 98.56%, with an average training accuracy of 97.98%. In 

the 20-client scenario, the data were further distributed among 

20 clients, with 2692.05, 1876.35, 463.3, 1.95, and 4.35 

average instances for normal, DoS, probe, R2L, and U2R 

classes, respectively. In the initial round, an average of 

80.95% training accuracy was observed, with a testing 

accuracy of 88.17%. As the local models were suffering from 

data insufficiency, the global aggregate showed slower  

convergence to the final value. In the last round of federated 

training, the average training accuracy was 97% with a global 

testing accuracy of 97.79%. The testing accuracies per round 

for different numbers of clients have been depicted in Figure 

7(b). 

 

For the Hybrid model, the 5 client scenario had an average 

instance of normal class as 10792.8, DoS class as 7476.8, 

probe class as 1860.2, R2L class as 8.4, and U2R class as 16.8. 

The first-round accuracies averaged at 76.82%, with local 

clients having no interactions among them. In the first 

interaction, as optimal models were shared, the testing 

accuracy was 87.84%. As the interaction took place, the 

accuracy went up to 97.23% for training and 97.92% for 

testing. The 10-client model showed similar results due to an 

optimized model aggregation strategy. The classes had an 

average of 5396, 3738.4, 930, 4.2, and 8.4 per client. The 

starting average training accuracy was 75.60% with an 

aggregated testing accuracy of 86.9%. With the training and 

model aggregation with optimal local share of each client, the 

final training accuracies were averaged at 97.56% and the 

global accuracy was found to be 97.89%. The 20-client 

scenario has an even lower number for each client. The normal 

class instances per client were evaluated as 2697.7, whereas 

DoS was 1869, probe instances were 465, and only 2.1 and 4.2 

instances per client were R2L and U2R, respectively. The 

NN 
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initial accuracy of the local clients was averaged at 76.82% 

and the final accuracies after 10 rounds of optimized federated 

learning were improved to 97.23%. However, the testing 

accuracies, which were evaluated after each round of 

aggregation, were found to be improving from 87.37% to 

97.74%. This is depicted in Figure 7(c), concluding that the 

data requirement can be minimized by sharing the model 

instead of the data.  

4.4.3. UNSW-NB15 Binary Classification 

Similar to the NSL-KDD dataset, for the UNSW-NB15 

dataset, three neural networks with a fully connected network, 

a long short-term memory network, and a hybrid network with 

three fully connected layers and 2 LSTM layers were 

employed to train the local models. An aggregate using local 

share was formed, and the global model was tested with 20% 

of the data as testing data. Artificial Bee Colony optimization 

was used to calibrate the local share. The number of clients 

varied from 5 to 20.  

 

For the Fully Connected Network, the 5 client scenario 

was trained with an average of 5911.4 normal instances per 

client, whereas an average of 7244.6 instances of attack per 

client were distributed randomly. The initial average training 

accuracy of 84.66% for 5 clients was evaluated. The global 

model was aggregated with an optimal local share, giving an 

accuracy of 90.59% in the first round. The accuracy improved 

to 93.98% for training in the last round, and the testing 

accuracy improved to 95.61% after 10 rounds of aggregation. 

Table 4 illustrates the distribution of data over clients and 

accuracy in the training phase. The testing accuracy after 

every round has been depicted in Figure 8.  For 10 client 

systems, initial accuracy averaged at 82.06% with 2955.4 

normal and 3630.6 attack instances per client. After all rounds 

of training, model aggregation, and global weight 

communication were performed, the average training 

accuracy was found to be 92.16%. The testing accuracies were 

initially evaluated as 87.69% and improved to 94% with the 

proposed framework. In the 20-client scenario, the average 

and attack instances per client were 1477.7 and 1815.3 for the 

binary classifications. In the first round, the average training 

accuracy was observed to be 79.08% and the aggregated 

testing accuracy was evaluated as 85.84%. As the proposed 

framework was executed, the average training accuracy 

improved to 90.27%, and the global model achieved an 

accuracy of 92.03%. 

 

For the LSTM network, the five client models have a class 

distribution of 5928.4 to 7244.6 instances for normal to attack 

per client. The initial average accuracy was 70.67% which 

improved to 92.89% at the end of the last round of training, 

whereas the testing accuracy of the global model, without 

being explicitly trained on any data, came out to be 86.38% 

for the first round and was improved to 94.26%. Figure 8 

shows the changes in accuracy with respect to the number of 

rounds in the training phase. In the 10 client system, the 

normal and attack instances per client averaged at 2959.7 and 

3626.3 for normal and attack classes, respectively. The initial 

average accuracy in the first round, independent of other 

models, was found to be 69.80%. After the first aggregation, 

the global accuracy was evaluated as 90.95%. At the end of 

the last round, the average accuracy of the client was evaluated 

at approximately 90.6%, whereas the testing accuracy was 

evaluated at 94.30% for the global model. In the 20-client 

scenario, the average client accuracy was obtained as 69.44% 

with an average of 1479.75 normal and 1813.25 attack 

instances, respectively. The testing accuracy obtained for 20 

client systems was 85.21% and improved to 92.63% by the 

tenth round. At the same time, the average training was 

90.70% in the last round. LSTM with less data has proven to 

be more accurate compared to the Fully Connected Network, 

as the feedback networks create more attributes than the feed-

forward network. 

 

For the hybrid network, the 5 client scenario has an 

average of 5919.6 normal instances per client, whereas 7253.4 

attack instances per client. The non-IID data was divided 

randomly among the clients, and federated learning with 

optimal local share obtained 77.33% accuracy in the initial 

phase, whereas a combined global system gave an accuracy of 

77.82%. The model is run for 10 rounds, and the final average 

accuracy was obtained at 93.93% for training and 94.95% for 

testing. In the 10 client system, the average normal and attack 

instances were found to be 2961.7 and 3624.3 per client, 

respectively. The initial average training accuracy was 

evaluated as 69.8% and the first aggregate accuracy was 

obtained as 68.29%. After the maximum of 10 rounds of 

federated learning were completed, the average training 

accuracy improved to 90.6% and thus the tenth aggregate 

accuracy came out to be 92.78%.  

 

For the 20-client scenario, the normal and attack classes 

are distributed at an average of 1479.75 and 1813.25 instances 

per client. The pre-federated learning accuracies averaged at 

69.45% and after the first round of model aggregation, the 

accuracy was obtained as 69.08%. As the rounds of training 

were executed, the average training accuracy improved to 

90.7%. The final testing accuracy was found to be 92.04%, 

comparable to the centralized accuracies achieved by state-of-

the-art algorithms. The Figure depicts the comparison of the 

5-client, 10-client, and 20-client systems for the hybrid neural 

network. 

 

4.4.4. UNSW-NB15 Multi-Class Classification 
The UNSW-NB15 dataset is a network intrusion dataset 

with 10 classes. The table illustrates the class distribution, 

average accuracies for training, and the final testing accuracy 

of the proposed model. The classes are labeled and encoded 

by the sklearn library; hence, the classes are assigned a 

numeric value in alphabetical order. The Analysis class was 

assigned zero and has been denoted as the C1 class. Similarly, 

Backdoor, DoS, Exploit, Fuzzer, and Generic classes were 
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designated as C2, C3, C4, C5, and C6, respectively. 

Meanwhile, the normal class has been denoted as C7. 

Reconnaissance, Shellcode, and Worm attacks were given C8, 

C9, and C10 classes in the table. 

 

For the Fully Connected Network, the 5 client systems 

had only 109.2 average analysis instances, 93.6 backdoor 

instances, 61.6 shellcode instances, and 7.6 worm instances. 

The classes with a larger share of packets were DoS with 653 

instances, exploits with 1772.4 instances, fuzzer with 964.3, 

and 3042 instances of the generic class per client were 

distributed. The initial average accuracy was obtained at 

71.73% and the global model accuracy of 70.54% was 

achieved by the optimal framework. The final accuracies are 

obtained at 78.71%, which is the average training accuracy, 

and the global accuracy of 79.91% was obtained after 10 

rounds of model aggregation. For the 10 client scenario, the 

analysis class had a share of 53.3 average instances per client, 

the backdoor class had 46.9 average instances, and 328.8 for 

DoS, 895.4 instances were present for training the 10 client 

system. 486.3, 1504.4, 281.9, 30.3, and 3.7 for other attack 

classes, whereas 2955 instances per client were distributed for 

the normal class. The training accuracy before the model 

aggregation was averaged at 68.36% and after the first global 

aggregate, the testing accuracy was found to be 72.93%. At 

the end of the tenth round, the average training accuracy 

reached 78.1% whereas the final global testing accuracy was 

improved to 79.26%. For the 20 client scenario, the normal 

class instances per client were averaged at 1477.5, and the 

attack classes were averaged at 26.65, 23.45, 164.4, 447.7, 

243,15, 752.2, 140.95, 15.15, and 1.85 for analysis, backdoor, 

DoS, exploits, fuzzer, generic, reconnaissance, shellcode, and 

worm attacks, respectively. The initial training accuracy was 

found to be 65.72% and a testing accuracy of 70.99% was 

achieved after the first aggregation. The accuracy improved to 

76.36% for average training accuracy and to 77.68% for 

testing accuracy. Table 5 shows the accuracy and the 

distribution of instances. Figure 9 depicts the testing 

accuracies per round for the Fully Connected Network with 

the UNSW-NB15 dataset divided into different numbers of 

clients. 

 

For the LSTM neural network, the 5 client simulations 

had a distribution of 5928.2 average normal instances, 

whereas the attack class had 658.6 for DoS, 1775.4 for 

exploits, 967.4 for fuzzer, and 3024 for generic classes. The 

classes with high imbalance suffered with even fewer 

instances, such as analysis, which had 109.2 instances, 

backdoor, which had 99.6, 61.2 for shellcode, and only 6.8 for 

the worm class. The initial average accuracy was found to be 

44.90% and was improved to 80.43% in the last round. The 

testing accuracy of the global aggregate model was obtained 

at 44.69% in the first round and improved to 82.33% by the 

last round. For the 10 client systems, the normal class 

instances were 2960.7 per client, and the attacks per client are 

illustrated in Table 5. In the first round of training, the average 

of the training accuracies was 46.48% and at the end of all 

training rounds, the average accuracy increased to 74.36%. 

The aggregate model gave an accuracy of 44.89% and was 

improved to 75.51% after the tenth round. For the 20-client 

simulation, the initial accuracy for training was 44.23% and 

the testing accuracy was 44.23% as well. The federated 

learning algorithm with the optimal local share provided by 

the ABCO, the average training accuracy reached 74.1% and 

the testing accuracy reached 75.05% as depicted in Figure 9.  

 

For the Hybrid Neural Network, the normal class 

instances were found to be 5911.2, 2967.1, and 1483.55 for 5, 

10, and 20 clients, respectively. The generic class had 3028.6, 

1510.1, and 755.05 for different client systems. The shellcode 

and worm class has the least number of data in the UNSW-

NB15 dataset, with only 60.4, 30, and 15 instances per client 

for shellcode and 7, 3.5, and 1.75 for worm class. For the five 

client systems, the initial average accuracy was evaluated as 

43.93% whereas the testing accuracy was found to be 45.21%. 

These accuracies were improved to 80.43% for training and 

82.78% for testing the global model. In the case of 10 clients, 

the average training accuracy was observed to be comparable 

with the 5-client system, with 44.35% as training and 44.89% 

as testing accuracy initially, and was improved to 81.44% and 

82.35% for training and testing, respectively. In the 20-client 

scenario, the training accuracy improved from 42.38% to 

77.57% and the testing accuracy increased from 42.38% to 

78.89%. For the multi-class classification of the UNSW-NB15 

dataset, the hybrid neural network outperformed the Fully 

Connected and LSTM networks. 

 

Table 6 compares state-of-the-art models published in 

different research studies. The proposed model has 

outperformed many algorithms with centralized and 

distributed training algorithms.   

 

5. Conclusion 
In this paper, a real-time scenario of the Wireless Sensor 

Network with a distributed architecture has been simulated. 

The simulated architecture was employed to train an Intrusion 

Detection System for decentralized data that was divided 

among various clients. The client-server relation has been 

optimized by exploring different local shares for each client in 

the network. Three different neural network architectures have 

been trained on NSL-KDD and UNSW-NB15 datasets for 

binary and multi-class classification. The training data was 

horizontally distributed among 5, 10, and 20 clients.  Each 

client trained a Fully Connected Network, an LSTM network, 

and a hybrid Neural Network with 2 Fully Connected layers 

followed by 3 LSTM layers. The local shares were optimized 

using the Artificial Bee Colony Optimization algorithm with 

10 population size. The Fully Connected Layer architecture 

consisted of 41 feature nodes followed by a 64-node hidden 

layer. The feature exploration was enhanced by 128 and 256-

layer nodes. The important features were propagated through 

128 and 64 nodes in the hidden layers. The client models 
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trained with limited data showed high aggregated accuracies. 

The LSTM architecture consisted of 64 units followed by 

another 64-unit layer. After these layers, the layers converged 

to the output with 32, 16, and 4 unit layers.  

 

The LSTM model showed high accuracy and was able to 

achieve aggregate accuracy comparable to the state-of-the-art 

methodologies. On the other hand, the hybrid model 

outperformed the other models in multi-class classification 

with 128 and 256 nodes, a Fully Connected Layer followed by 

3-layer LSTM networks with 64, 16, and 4 units. The 

proposed optimized algorithm outperformed many centralized 

trained and tested algorithms. The model sharing instead of 

data sharing does not adversely affect the system accuracy. In 

the future, many other metaheuristic optimization algorithms 

can be utilized to explore the optimum values of local share. 

Class imbalance issues can be addressed by adding synthetic 

data with generative algorithms such as SMOTE and GANs.  
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