
SSRG International Journal of Electronics and Communication Engineering Volume 12 Issue 10, 232-251, October 2025

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12I10P118 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

An Optimized Federated Learning Algorithm for

Decentralized Intrusion Detection Systems Using

Artificial Bee Colony Optimization

Shourya Shukla1, Ajay Singh Raghuvanshi1, Saikat Majumder1

1Department of Electronics and Communication Engineering, National Institute of Technology, Raipur, Chhattisgarh, India.

1Corresponding Author : sshukla.phd2019.ece@nitrr.ac.in

Received: 18 August 2025 Revised: 20 September 2025 Accepted: 19 October 2025 Published: 31 October 2025

Abstract - With the advancement in IoT technologies, Wireless Sensor Networks have found many applications in the modern

era. Due to this, the malicious activities in the networks have seen a major surge. Data theft and manipulation have been a

serious concern among researchers. In real-time scenarios, the data communication from nodes to the servers increases the

communication overhead and makes the network vulnerable to attacks. A decentralized detection strategy has become a necessity

to detect these intrusions efficiently. Federated Learning algorithms have been a major choice for decentralized learning

frameworks. The federated models learn the data patterns based on the trained local models. In this paper, a novel model

aggregation strategy has been proposed. The weightage or local share of each client is optimized using the Artificial Bee Colony

Optimization algorithm, called the optimized local share. The optimized local share has been utilized for three neural network

architectures with five-layer deep structures. A Fully Connected Network, a Long Short-Term Memory network, and a hybrid

network were employed to detect intrusions in the network. The NSL-KDD and UNSW-NB15 datasets have been distributed into

5, 10, and 20 clients for local training and aggregated using optimized local shares. Binary and multi-class classification

achieved high accuracies, comparable to State-of-the-Art frameworks and centralized learning models, while ensuring data

privacy and integrity of each client.

Keywords - Federated Learning, Intrusion Detection Systems, Artificial Bee Colony Optimization, Deep learning, Model

Aggregation.

1. Introduction
With the advancement in Internet of Things (IoT)

technologies, automated Machine-to-Machine (M2M)

communication has become a reality. IoT uses resource-

constrained, low-weight wireless communication

technologies to communicate between small embedded

systems. IoT devices are small computing devices that

communicate via networking protocols such as Bluetooth,

Wireless Fidelity (WIFI), zigbee, etc., with each other without

human intervention [1].

Smart healthcare equipment, automated drones,

networked sensors, and smart wearable technologies are a few

examples of prominent IoT-based smart technologies. These

devices have the ability to analyze data and communicate with

other IoT devices through ubiquitous interactions such as

alerts, alarms, and other warning systems [2]. IoT devices

working in small clusters form Wireless Sensor Networks

(WSN), where each cluster has sensor devices,

communication devices, and a processing unit. In the WSN,

each sensor has the ability to sense different data.

The increase in IoT-based Machine-to-Machine

communication has led to many security concerns. Data

privacy and Data integrity are often compromised in such

scenarios. An act in which data theft, bandwidth disruption, or

resource manipulation is deliberately performed is known as

an Intrusion.

The Intrusions are malicious activities that may be active

or passive in nature. Active attacks include spontaneous data

or resource depletion. Denial of Service attacks, such as ping

of death, in which large ping data is sent to the victim machine,

depleting its bandwidth. Other commonly employed active

attacks include backdoor, fuzzer, exploits, remote to local, etc.

On the other hand, probe attacks are passive attacks that

seek vulnerabilities in the network. These attacks remain

dormant for most of the time, searching for vulnerabilities in

the victim node. Once such a vulnerability is found, a passive

attack sends information about the same to the intruder. The

attacker then initiates an attack on the vulnerability and, in

most cases, executes a successful intrusion.

http://creativecommons.org/licenses/by-nc-nd/4.0/

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

233

Early detection of these Intrusions leads to safeguarding

the network and the network resources. Intrusion Detection

Systems (IDS) have been able to detect any malicious activity

in the IoT or WSN. IDS shows zero trust toward the packet

received by any node in the network. IDS verifies each packet

based on the ETS signature or learns a pattern to detect

unwanted activity [3]. These checks are not only performed

for external communication, intra-network communications,

such as sensed data packets in a WSN, but inter-cluster packet

transfers within a network are also examined. These steps are

performed not only to protect the network from external

threats but also to detect corrupt internal nodes within the

network. Signature-based IDS (SIDS) maintains a record of

known attacks and has to be frequently updated to detect

malicious activities. The signature-based IDS has a major

drawback when it comes to zero-day attacks. Any novel attack

generally remains undetected by the signature-based IDS. To

overcome this vulnerability of the SIDS, anomaly-based IDS

has gained popularity among many researchers in recent years.

The anomaly-based IDS has the ability to learn the pattern of

normal packets. Any severe variation from the normal

behavior of the packet is marked as an anomaly. This feature

of anomaly-based IDS enables it to detect a zero-day attack.

In the anomaly based IDS, as the number of features

extracted increases, the complexity of the pattern exceeds

human cognitive capability in detecting the intrusions.

Artificial Intelligence, like Machine Learning (ML) and Deep

Learning (DL) algorithms, learns to differentiate the normal

and attack patterns successfully. The ML and DL algorithms

require a large amount of data to train the classifiers

efficiently.

However, recently, many countries and organizations

have restricted the use of users’ data to train and test for

classification purposes due to the risk of data theft, data

leakage, and, in some cases, even data duplication. In 2016,

the General Data Protection Regulation (GDPR) was imposed

by the European Union to safeguard the personal data of

citizens all over the world. In this regulation, user consent was

required to access their data [4]. This regulation considered IP

addresses, unique identifiers, and access points as users’

personal data. Similar regulations were passed by the

California Consumer Privacy Act (CCPA) of the USA and the

Personal Data Protection Act (PDPA) in Singapore. The

Information Technology (IT) Act & Rules in India in the year

2023 published a Digital Personal Data Protection Act, which

gave the Indian citizen the right to access, modify, or delete

personal data from a database.

Moreover, these regulations have deprived researchers

from collecting and training their intelligent systems for the

early detection of intrusions. In the case of WSN, the problem

of data islands has become a severe issue. Each node or access

point has its own data, and data sharing among nodes, or

clusters, or even with the base station has been restricted in

many networks due to these regulations. One of the effective

solutions to this problem is deploying and routing nodes as a

distributed infrastructure. The decentralization property of the

distributed infrastructure enables a network to maintain data

privacy and integrity. As a result, intercommunication within

a network creates vulnerabilities in the system. The

centralized data processing can lead to major data breaches,

and several other attempts can be made to disrupt the normal

working of the IoT devices [5].

Federated Learning (FL) has emerged as a novel approach

for training an expert system on distributed data. Federated

Learning utilizes the local data for training, and the global

model is trained based on the aggregation of local models.

FedAvg [6] and FedProx [7] have been the most used FL

algorithms. The FedAvg algorithm uses the average of the

trained weights as an aggregation function for the global

weight. Meanwhile, FedProx introduced a proximal term to

the local loss function for optimal weight assignment. The FL

algorithms have advanced over conventional centralized

learning models when dealing with non-Independent and

Identically Distributed (non-IID) data. FL models share the

locally learnt model to form the global model, whereas in a

centralized training model, the data acquired by each node is

shared with the server for training. Hence, with FL, user data

is preserved in real-time scenarios while the global FL model

achieves comparable accuracies to the centralized deep

learning architectures.

In this paper, an Optimized Federated learning model has

been proposed. The proposed model is an extension of the

averaging function used to train the global model through

locally trained models. The weightage of each locally trained

is optimized using a metaheuristic optimization algorithm.

Artificial Bee Colony Optimization has been employed to tune

the weightage or local share of the locally trained model on

non-IID data. The network intrusion datasets NSL-KDD and

UNSW-NB15 have been employed to train the local IDS on

different numbers of clients. This paper compares local and

global accuracies based on a fully connected network, long

short-term memory, and a hybrid model employing fully

connected and LSTM layers.

2. Literature Survey
A comprehensive survey of state-of-the-art research has

been presented in the field of federated learning and optimized

FL.

Idrissi et al. [8] proposed an FL-based NIDS. The authors

proposed an anomaly-based detection scheme for various

datasets. USTC-TFC2016, CIC-IDS2017, and CSE-CIC-

IDS2018 datasets were employed. Autoencoders, along with

their variants, were employed along with two variations of

federated learning for the detection of anomalous packets.

FedAvg and FedProx were used to emulate the distributed

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

234

architecture of the network. However, different autoencoders

were able to detect the anomalies better for different datasets.

Hence, it was concluded that federated learning with different

deep learning architectures can provide suitable results in

various scenarios.

Friha et al. [9] suggested an FL-based IDS model for

agricultural IoT. Locally trained FCN, CNN, and RNN were

utilized for a modified Federated learning algorithm. The

authors demonstrated an Agriculture 4.0-based IDS with data

privacy and integrity. A mini-batch gradient was employed for

the weight update mechanism in the distributed scenario, and

the authors achieved 93.29% accuracy.

Oliviera et al. [10] proposed a distributed IDS while

maintaining the balance between accuracy and robustness. For

rule-based attacks, a membership function-based decision was

employed. In addition to the membership, varying levels of

Gaussian Noise were added to the attack instances. An

inversion attack was performed to train a detection device. A

batch size of 1000 with different noise level was trained for 10

rounds, and 10 rounds each round consisted of 10 epochs,

achieving 96.2% accuracy.

Jin et al. [11] proposed a solution for catastrophic

forgetting for older classes. The authors proposed a class

balance gradient loss function, which was employed to update

the learning rate of the deep learning architecture. UNSW-

NB15 and CICIDS2018 datasets were used to train the CNN-

GRU-based model for 10 client systems. 68.764% accuracy

was achieved for UNSW-NB15, and 99.62% accuracy for the

CICIDS2018 dataset was achieved.

Li et al proposed an IDS with a distributed configuration.

Dynamic weighted aggregation was used for learning. CSE-

CIC-IDS2018 was employed to detect some of the latest

attacks. To discard some of the inaccurate models, a local

model has to perform better than a threshold value, which was

set to 0.75. The CNN architecture was used with a 512 batch

size for 10 rounds. The dynamic weighted algorithm gave high

accuracy with less communication overhead [12].

Thein et al. [13] proposed an IDS model against

poisoning attacks. The authors also focused on the

heterogeneity of the data under study. They proposed a logit

adjustment loss function based on mini-batches to train the

local models. Each local model was trained on a 3-layer CNN

architecture consisting of 256, 128, and 64 nodes,

respectively. A dropout layer was added to preserve the most

relevant 80% of the features extracted by CNN layers. A

temperature scaling function was introduced in the cross-

entropy function to adjust the logit adjustment loss.

Attota et al in [14] proposed a multi-view based federated

learning algorithm for the detection of malicious packets in the

network. The extracted features were selected using the Grey

Wolf Optimization (GWO) algorithm. Biflow View, Packet

View, and Uniflow View were used to train the local models.

The authors achieved 94.175% accuracy for the Random

Forest Classifier.

Lazzarini et al. [15] proposed a shallow artificial neural

network architecture for clients, and the FedAvg algorithm

was employed for aggregation of the local model to form a

global model. ToN_IoT and CICIDS2017 datasets were used

to create the decentralized scenario. The shallow network

architecture consisted of a 3-layer fully connected network,

with a 0.01 learning rate and 5 rounds of training with 5 to 8

epochs per round. The proposed model achieved 97.59%

accuracy.

Zhao et al. [16] proposed a semi-supervised FL model for

IDS. The authors focus on three issues for federated learning

based IDS: data reproduction, non-IID data, and

communication overhead. The distillation method and the

CNN architecture were introduced for classifier and

discriminator networks. An eight-layer CNN was employed

for feature extraction for five communication rounds with the

Adam optimizer. The authors were able to achieve 87.40%

accuracy on the semi-supervised IoT data.

Verma et al. [17] proposed an FCN, CNN, and LSTM-

based hybrid neural network for training non-IID data. The

authors employed encryption techniques to secure the model

gradient over the communication channel. With the log loss

function, the hybrid model was able to achieve 99.44%

accuracy over the IIoT dataset with 15 client nodes used to

train the hybrid 11-layer model on distributed data.

Authors in [18] proposed an automatic weight-optimized

federated learning algorithm. In this model, the loss function

was optimized by taking heterogeneity into consideration. The

MNIST dataset was used for training. The dynamic model

with a novel loss function provided high accuracy on MNIST

data for a two-layer CNN structure.

Li et al in [19] proposed a weight-optimized federated

learning algorithm for the MNIST dataset. The authors

employed several bio-inspired optimization algorithms to

optimize the weights of the local clients. A genetic algorithm

was applied to randomly generated weights, and new offspring

were used to test the accuracy. If the new accuracy is found to

be better than the older model, the model is replaced. The

model provided 68% testing accuracy.

Park et al. [20] proposed a Particle Swarm Optimization

(PSO) based FL algorithm. PSO was employed to reduce the

model's communication cost. In each iteration, the best-

performing client shares the model parameters instead of the

weight update from each client. The weight update steps were

performed on a hybrid deep learning structure with four CNN

and four DNN layers on the CIFAR and MNIST datasets.

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

235

A similar approach was employed by the author in [21],

where PSO was employed to reduce the communication

overhead and hasten the decision for lung legion due to

COVID-19 infection. Instead of the weight update by the back

propagation step in the neural networks, PSO was employed

to optimize the speed of change in the weight matrix.

Xu et al in [22] proposed a learning rate optimizer for

federated learning algorithms. Dynamic learning rates were

adapted by local clients to overcome the effects of a fading

channel. The authors tested the model on CIFAR and MNIST

datasets. However, 92.51% accuracy was achieved for CIFAR

with a dynamic learning rate. The algorithm proved to perform

better than the FedAvg algorithm.

Other distributed systems include the use of various

distributed algorithms and distributed datasets. Blockchain

technology and cloud-based IoT services have been one

among the most widely used distributed technologies along

with federated learning. Kumar et al. [23] proposed a

blockchain-based IDS for a distributed system architecture.

The authors used fog computing to detect a DDoS attack. RF

and XGBoost algorithms were employed in a fog IoT

environment to detect malicious packets.

Gad et al in [24] employed the ToN-IoT dataset to learn

the model based on IoT devices. An XGBoost classifier was

used to compare the accuracies on the full set of features and

reduced sets of features. The feature selection was performed

using chi-square analysis and a correlation matrix. The

reduced set was given to SMOTE to mitigate the class

imbalance problem. The XGBoost classifier was able to

achieve 98.3% accuracy on the dataset.

Samunnisa et al. [25] proposed a distributed cloud

computing algorithm for IDS. The authors employed

clustering and classification algorithms for detection

purposes. Clustering algorithms such as K-means and GMM

were employed for feature transformation, and Machine

learning algorithms were used for classification based on the

transformed features. Different thresholds were defined for

the RF classifier; the 0.5 threshold gave 99.85% accuracy.

Segura et al. [26] focused on the Software Defined

Networks (SDN). The author used the IEEE 805.15.4 protocol

for the nodes. Online change point detectors were installed on

the nodes to identify any malicious activity in the network.

Rule-based or signature-based thresholds were proposed for

the centralized and distributed detection model.

Sokkalingam et al. [27] proposed a hybrid optimization

algorithm with Support Vector Machine (SVM) for the

detection of intrusive packets. 10-fold cross-validation on the

NSL-KDD dataset. Particle Swarm Optimization and Harris

Hawk Optimization were employed for feature selection, and

SVM was used for classification purposes. Eight features

were selected for training, and the model was able to achieve

97% accuracy.

Based on the rationale survey, the following gaps were

found in the existing state-of-the-art methods:

 In real-world scenarios, the data collected by the sensor is

often sent to the central node. This results in an increased

communication overhead in the network.

 In [8–10], authors employed a decentralized framework

for detection purposes. However, the authors did not take

class imbalance into consideration.

Based on the mentioned research gaps, the proposed

research has the following highlights:

 For a decentralized approach, a federated learning

framework has been proposed in the proposed model for

a different number of clients.

 To incorporate the class imbalance problem, the Artificial

Bee Colony optimization algorithm has been employed to

evaluate the optimized local share for each client.

 Three different deep neural network architectures have

been trained for the detection of intrusions on two

standard datasets, NSL-KDD and UNSW-NB15. Both

binary and multi-class global classifiers were trained

based on optimized local share.

The paper is organized as follows: The first section

comprises the Introduction to FL and IDS. Section II consists

of the literature survey based on optimization algorithms and

federated learning models. The methodology of the

framework is provided in Section III. Section IV contains

details about the experimental results and a discussion.

Section V has the conclusion of the research along with future

work.

3. Methodology
In this paper, an optimized federated learning model has

been proposed. The weighted federated learning algorithm has

been optimized using Artificial Bee Colony Optimization. The

framework has been depicted in Figure 1. Three different

neural network architectures have been trained on the local

data, and a Global model has been trained using model

aggregation. The detailed description of the methodology

employed is as follows:

3.1. Federated Learning

An Intrusion Detection System is deployed in the network

with either a centralized or a distributed infrastructure. In the

centralized deployment of the IDS, the data sensed by each

cluster or client is communicated to the base station. At the

base station, the data is analyzed for any malicious packets. If

the packet contains a virus, the packet gets discarded. In the

case of a distributed deployment strategy, the IDS is equipped

with multiple nodes over the network [28]. For the distributed

learning framework, Federated Learning provides a

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

236

hierarchical approach between the distributed nodes and the

central station. The decentralized training is performed by the

client, and the base station acts as a server for the deployed

IDS. The training and testing of the framework are divided

between the server and client sides, where the training of the

data is performed by the clients, and on the other hand, the

model aggregation is performed by the server, where the

accuracy of the framework is tested.

The data can be divided horizontally or vertically. In the

horizontal distribution of data, the data instances are randomly

distributed among the clients, whereas in the case of vertical

distribution, the features are divided among the clients. Each

client contributes to the training of a different set of features.

In the proposed algorithm, the network intrusion datasets are

distributed horizontally and equally among each client.

Fig. 1 Pictorial representation of the proposed framework

In Federated Learning, many variations have been

invented in recent years. FedAvg is one of the most commonly

used algorithms [6]. In this method, the weights of the neural

network, trained by each client, are averaged, and hence, equal

weightage is provided to each client. In the case of weighted

FedAvg, the unequal data distribution is performed by random

Global Model

Local

Data

Local Deep Learning Model

Sensors

Client 1

Local

Data

Local Deep Learning Model

Sensors

Client 2

Local
Data

Local Deep Learning Model

Sensors

Client 3

Local

Data

Local Deep Learning Model

Sensors

Client N

W

W

W

W

A
rt

if
ic

ia
l

B
ee

 C
o
lo

n
y

O
p
ti

m
iz

er

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

237

allocation of the sensed data to a client. The percentage data

acts as the weights of the client while model aggregation is

performed. These models lack the ability to take data

heterogeneity into consideration. FedProx and FedPSO [20]

are also very readily used Federated Learning algorithms. The

FedProx algorithm tweaks the loss function with a penalty

term responsible for resisting any abrupt change in the client

model from the global model.

Fig. 2 Fully connected network layers

In the proposed framework, each client's weightage or

local share is generated by an Artificial Bee Colony algorithm-

based exploration strategy. The proposed framework consists

of the following steps:

3.1.1. Global Model Initialization

In this step, the Neural Networks are generated by the

server. Three different neural networks have been proposed

for comparative training and testing. In this step, the weight

initialization, layer activation, and learning rates are defined

along with other hyperparameters. The three neural networks

used for training and testing are:

For the first Neural Network, a five-layer hidden fully

connected network is initialized with random weights and a

learning rate. Binary classification is performed using binary

cross-entropy, whereas multi-class classification is performed

using sparse categorical cross-entropy.

The FCN is a deep learning architecture in which the

output of each filter of the preceding layer is connected to

every filter of the succeeding layer. This characteristic of the

dense network enables it to establish linear as well as non-

linear relations between input and output. The features

extracted by the Fully Connected Layers are given as:

𝑦 = 𝜙(𝜁 ∗ 𝑥 + 𝛽) (1)

Where y is the extracted feature for the x input, the

weights and bias are given as 𝜁, 𝛽, respectively.

Fig. 3 LSTM network layers

This 𝜙 is the activation function used to introduce non-

linearity in the feature extraction process. In the FCN, the

ReLU activation is employed to eliminate negative features.

The ReLU function is given as:

Fig. 4 Hybrid network layers

Dense

Input shape: (None, 41) Output shape: (None, 64)

Dense

Input shape: (None, 64) Output shape: (None, 128)

Dense

Input shape: (None, 128) Output shape: (None, 256)

Dense

Input shape: (None, 256) Output shape: (None, 128)

Dense

Input shape: (None, 128) Output shape: (None, 64)

Dense

Input shape: (None, 64) Output shape: (None, 1)

LSTM

Input shape: (None, 41, 1) Output shape: (None, 41, 64)

LSTM

Input shape: (None, 41, 64) Output shape: (None, 41, 64)

LSTM

Input shape: (None, 41, 64) Output shape: (None, 41, 32)

LSTM

Input shape: (None, 41, 32) Output shape: (None, 41, 16)

LSTM

Input shape: (None, 41, 16) Output shape: (None, 4)

LSTM

Input shape: (None, 4) Output shape: (None, 1)

Dense

Input shape: (None, 41) Output shape: (None, 128)

Dense

Input shape: (None, 128) Output shape: (None, 256)

Reshape

Input shape: (None, 256) Output shape: (None, 256, 1)

LSTM

Input shape: (None, 256, 1) Output shape: (None, 256, 64)

LSTM

Input shape: (None, 256, 64) Output shape: (None, 256, 16)

LSTM

Input shape: (None, 256, 16) Output shape: (None, 4)

Dense

Input shape: (None, 4) Output shape: (None, 1)

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

238

𝑅𝑒 𝐿 𝑈(𝜃) = 𝜙(𝜃) = 𝑚𝑎𝑥(𝜃, 0) (2)

A five-layer Fully Connected Network has been

employed in the proposed algorithm for training each client,

as shown in Figure 2. The input layer has 41 filters for the

NSL-KDD dataset, whereas it has 43 filters for the UNSW-

NB15 dataset. The input layer is followed by a 64 filter dense

layer; more features were extracted with 128 and 256 filter

layers. To mitigate overfitting, the important features were

selected and passed to the output layer with 128 and 64 filter

layers providing a bottleneck structure.

LSTM Network: The Long Short-Term Memory

Network is a feedback-type neural network. The LSTM is a

special case of a Recurrent Network that comprises the input

gate, forget gate, and output gates. The feedback behaviour of

the LSTM enables it to analyse sequential data or signal more

efficiently. In the proposed model, the five-layer hidden-layer

LSTM network assumes that the intrusion features are

sequential in nature. The proposed architecture consists of an

input layer with units equal to the number of features in the

dataset. The input layer is followed by the hidden network.

The hidden layer forms a converging bottleneck structure for

preserving important features. The hidden layer consists of

two 64-unit layers followed by a converging 32, 16, and 4-unit

layers for feature extraction and selection purposes. The

feature extraction of the LSTM layer relies on feedback for

longer retention of the extracted information. The decision to

store or eliminate an extracted feature is made by the forget

gate. The feature extraction is given as:

𝑓𝑔𝑡𝜏 = 𝜎(𝜁𝑓𝑔𝑡 . [ℎ𝜏−1, 𝑥𝜏] + 𝛽𝑓𝑔𝑡)

𝑖𝑛𝑝𝜏 = 𝜎(𝜁𝑖𝑛𝑝 . [ℎ𝜏−1, 𝑥𝜏] + 𝛽𝑖𝑛𝑝)

𝐶̂𝜏 = 𝑡𝑎𝑛ℎ(𝜁𝐶 . [ℎ𝜏−1, 𝑥𝜏] + 𝛽𝐶)
𝐶𝜏 = 𝑓𝑔𝑡𝑡 . 𝐶𝜏−1 + 𝑖𝑛𝑝𝜏 . 𝐶̂𝜏
𝑜𝑢𝑡𝜏 = 𝜎(𝜁𝑜𝑢𝑡 . [ℎ𝜏−1, 𝑥𝜏] + 𝛽𝑜𝑢𝑡)
𝑎𝑛𝑑
ℎ𝜏 = 𝑜𝑢𝑡𝜏. 𝑡𝑎𝑛ℎ(𝐶𝜏) (3)

Where 𝑓𝑔𝑡 is the output of the forget gate, 𝑖𝑛𝑝 is the

input gate, 𝐶̂𝜏 is the candidate cell state for𝜏time, 𝐶is the cell

state, and 𝑜𝑢𝑡, ℎare the output and hidden states, respectively.

The activation functions are fixed for LSTM networks, with

𝜎the sigmoid and hyperbolic tangent functions for candidate

and hidden states given by:

𝑡𝑎𝑛ℎ(𝛼) =
𝑒𝑖𝛼−𝑒−𝑖𝛼

𝑒𝑖𝛼+𝑒−𝑖𝛼 (4)

Hybrid Neural Network (HNN): In the hybrid model, the

HNN consists of 2-layer Fully Connected Layers, a reshape

layer, and then followed by three LSTM layers, as shown in

Figure 3. The reshape layer was added to make the features

extracted by dense layers compatible with the sequential

analysers of the LSTM layers. The structure consists of a

dense layer of 128 filters, followed by another dense layer

with 256 filters. The extracted features were made into a

sequential tensor using a reshape layer. The LSTM part of the

hybrid neural network consisted of 64, 16, and 4 units for the

selection of relevant features. The dense layers were activated

using ReLU activation, whereas the LSTM layers were

activated by the hyperbolic tangent function.

3.1.2. Local Weight Updates

Each client model updates their model weights through

back-propagation. The output of the neural network after each

epoch calculates the loss present in the prediction of the

malicious packet. Cross-entropy has been employed as the

loss function for the proposed framework. The loss function is

given as:

ℓ(𝛾, 𝛾) = −[𝛾 ∗ 𝑙𝑜𝑔(𝛾) + (1 − 𝛾) ∗ 𝑙𝑜𝑔(1 − 𝛾)]
(5)

Where 𝛾 is the true class, and 𝛾is the predicted class by

the local model? Then, the gradient of the loss function is

evaluated, and the new weights are given as:

𝜁𝑛𝑒𝑤 = 𝜁 − 𝜂 ∗
𝜕ℓ

𝜕𝜁
 (6)

Where 𝜂 is the learning rate.

3.1.3. Global Aggregation

The global model is evaluated once all the client models

are trained with their sensed data. This step is known as model

aggregation. This step represents the most important feature

of Federated Learning. Instead of communicating data, each

client broadcasts their learnt model, and with the help of these

models, a global model is constructed. In the proposed

framework, instead of averaging or weightage being assigned

according to the data share, the weightage allocation or the

local share allocation is performed by exploring an optimal set

of shares using a metaheuristic algorithm. In this paper, the

Artificial Bee Colony algorithm has been employed for

exploration purposes. The proposed global weight is formed

by the sum of client models with their respective local shares.

The global weight is given as:

𝜁𝐺𝑏𝑙 = ∑ 𝑤𝜅 . 𝜁𝜅𝜅 = 𝑤1𝜁1 + 𝑤2𝜁2+. . . +𝑤𝑁𝜁𝑁 (7)

Where 𝜁𝐺𝑏𝑙is the global model, 𝜁𝜅is the kth client's

weights, and 𝑤𝜅is the optimal local share of the kth client.

3.2. Artificial Bee Colony Optimization (ABCO)

In this paper, an FL-based neural network has been

proposed for the detection of malicious packets in a

decentralized network. The trained neural networks trained by

each client are used to form the global model. The FedAvg [6],

as the name suggests, forms the aggregate using the mean or

weighted average of the model weights of each client.

Weighted averaging of the models is performed on the

percentage of data used to train the model, without taking

Class imbalance and local model accuracies into account.

Hence, these algorithms lack the qualitative aspect of the local

models and focus on the quantitative aspect.

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

239

In this paper, the weightage of the local share of the

clients is considered independent of the quantitative aspect of

the data; the study focused on the optimal weights known as

the local share of the client models. The paper proposes an

ABCO-based optimum local share for each client.

ABCO was proposed by Karaboga in 2007 [29]. In the

optimization algorithm, the optimal solution is inspired by a

swarm of bees around the hive. The honeybees are a highly

social species, so their swarm behaviour around the hive is

studied in the ABCO. Swarm Intelligence is the study of the

collective behaviour of a social colony or other animal

societies to design an algorithm or problem-solving strategies.

Self-organization and division of tasks among the bees

inspired the ABCO algorithm. The solutions in the

optimization problem are considered a food source or

connected to the objective function of profitability.

According to the division of labour in the beehive, the bee

population can be divided into three groups. The first group

represents the Employed Bees (EB), followed by Onlooker

Bees (OB) and Scout Bees (SB), collectively known as

Unemployed Bees (UB). The population of the bees is

initialized as:

𝑤 = 𝑙𝑜𝑤_𝑏𝑛𝑑 + 𝑟 ∗ (𝑢𝑝𝑝_𝑏𝑛𝑑 − 𝑙𝑜𝑤_𝑏𝑛𝑑) (8)

Where 𝑁𝑃 is the number of bees. 𝑁𝐶represents the

number of clients employed to train the local models, forming

a list of arrays. The dimension of the lower bound given by

𝑙𝑜𝑤_𝑏𝑛𝑑, upper bounds given by 𝑢𝑝𝑝_𝑏𝑛𝑑 , and random

number sequence (𝑟) is (PN 𝑁𝐶). As the local shares are the

weightage of the local client, they must sum up to 1; hence,

each bee in the population is transformed to make fit the

requirement by using the equation given below. Once the

population of the bees is compensated, the Employed Bee

Phase is executed.

𝑤𝑐𝑜𝑚𝑝 =
|𝑤𝑖|

∑ |𝑤𝑖|
𝑁𝑐
𝑖=1

 (9)

In the ABCO, the fitness function of the solution and

the objective function are related as given in the equation:

𝑓𝑡𝑛 = {

1

1+𝐹𝑜𝑏𝑗
, 𝑖𝑓𝐹𝑜𝑏𝑗 ≥ 0

1 + |𝐹𝑜𝑏𝑗|, 𝑖𝑓𝐹𝑜𝑏𝑗 < 0
 (10)

3.2.1. Employed Bee Phase (EBP)

The bee population is then divided into EB and UB. The

EB are the bees that are currently exploiting a food source or

contain information such as distance and direction from the

optimal solution. The EB can perform one of the three tasks:

either dance around the food source and recruit new onlooker

bees with a certain probability, or abandon the food source or

continue to forage for the optimal solution. The OB watches

the EB dance and interacts with them in hopes of becoming

EB, whereas the SB spontaneously start searching around the

hive. In the EBP, the number of food sources, the number of

EB, and OB are set to Np/2, that is, half of the population

forages for an optimal solution. In this phase, all the solutions

get a chance to generate a new solution. The new solution in

the employed bee phase is given by:

𝑤𝑛𝑒𝑤
𝑖 = 𝑤𝑥𝑠𝑡

𝑖 + 𝜑 ∗ (𝑤𝑥𝑠𝑡
𝑖 − 𝑤𝑝𝑡𝑛

𝑖) (11)

Where phi 𝜑 is the random number between -1 and +1,

Wp is the randomly selected partner bee, 𝑤𝑛𝑒𝑤
𝑖 and is the local

share of the ith local client randomly selected to generate new

solutions. As the new solution changes the total share,

equation 3 is applied to the new solutions, which maintains

their value as 1. After the new solutions are generated, they

are used as a local share of the clients to generate global

weights. The new global weights are tested on the data, and

objective functions are evaluated for each solution or local

share matrix. A greedy selection algorithm is applied to the

new set of solutions. The greedy search algorithm is given by:

{
𝑤 ← 𝑤𝑛𝑒𝑤

𝐹𝑜𝑏𝑗 ← 𝐹𝑜𝑏𝑗 ,𝑛𝑒𝑤
, 𝑖𝑓𝑓𝑡𝑛𝑛𝑒𝑤 > 𝑓𝑡𝑛 (12)

A trial counter is incremented each time the new solution

is inferior to the existing one. If the new replaces the existing

solution, the trial counter is set to 0.

𝑡𝑟𝑖𝑎𝑙𝑛𝑒𝑤 = {
𝑡𝑟𝑖𝑎𝑙 + 1, 𝑖𝑓𝑓𝑡𝑛 ≥ 𝑓𝑡𝑛𝑛𝑒𝑤

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13)

In the next step, the probabilities of modification of each

solution are generated. The probabilities are based on the

fitness function derived from the objective function. Solutions

with higher fitness value have higher chances of participating

in the onlooker bee phase. The probability using the equation:

𝑝𝑟𝑜𝑏𝑖 = 0.9 ∗
𝑓𝑡𝑛𝑖

𝑚𝑎𝑥(𝑓𝑡𝑛)
+ 0.1 (14)

After calculating the probabilities of the solutions, the

Onlooker Bee Phase is implemented.

3.2.2. Onlooker Bee Phase (OBP)

In the OBP, each of the solutions gets a chance to generate

a new solution based on a random number. Onlooker bees in

the hive interact with worker bees, and the information about

the solution is passed to the working bees with a random

probability higher than the evaluated probability.

𝑖𝑓𝑝𝑟𝑜𝑏𝑖 > 𝑟𝑛𝑑
𝑤𝑛𝑒𝑤

𝑖 = 𝑤𝑥𝑠𝑡
𝑖 + 𝜑 ∗ (𝑤𝑥𝑠𝑡

𝑖 − 𝑤𝑝𝑡𝑛
𝑖) (15)

 Where r is the random number between 0 and 1, phi (Φ)

is the random number between -1 and +1, and Wp is the

randomly selected partner bee. 𝑤𝑛𝑒𝑤
𝑖 is the local share of the

ith local client randomly selected to generate new solutions.

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

240

The roulette wheel method is employed for onlooker bees to

generate new solutions. In the next step, a similar approach to

the Employed bee phase is used. The new solutions are

modified and then used to train the neural networks on the

network intrusion datasets. The new fitness values are

evaluated, and based on the greedy selection algorithm, the

solution with higher fitness values is accepted. If the existing

solution is found to be better, the trial counter is incremented;

otherwise, it is reset to 0.

3.2.3. Scout Bee Phase (SBP)

In the SBP, the solution that has exceeded the

abandonment criteria of the trial limit is replaced by a new

solution. Only one solution enters this phase at a given round.

The new solution is altogether generated using the

initialization equation. For the new solution, the trial counter

is reset to 0. In the proposed method, the abandonment criteria

are set to 50. A higher value of the abandonment criteria is set

to reduce the chances of the mitigation of a potential global

optimum. The optimal set of local shares is obtained at the end

of all iterations.

3.3. Objective Function

This paper has replicated data acquisition and detection

of malicious activities in a real-world scenario of a

decentralized IoT or WSN. The dataset has been distributed

among various clients, and the models are trained locally.

Each client has been trained to use a fully connected network,

an LSTM network, and a hybrid network for the detection of

intrusions. A novel model aggregation strategy has been

proposed.

The weights learnt by the neural network during training

are used to build the global model. The weightage parameters

of each client, known as local share, are optimized by the

ABCO. The ABCO initiates the local share randomly, and

with each iteration, the local share matrix tries to approach

optimal values based on the global accuracy. The objective of

the optimization is to maximize the accuracy of the global

model aggregated in the server by assigning an optimal local

share to each client. The sum of weightage or the local share

has to be unity, representing the qualitative approach to the FL

model aggregation. The proposed objective function is given

as:

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑚𝑎𝑥
[𝑤1,𝑤2,...𝑤𝑛]

#𝑃𝑎𝑐𝑘𝑒𝑡𝑠(𝐶𝑙𝑎𝑠𝑠𝑝𝑟𝑒𝑑=𝐶𝑙𝑎𝑠𝑠𝑎𝑐𝑡)

𝑇𝑜𝑡𝑎𝑙⥂𝑃𝑎𝑐𝑘𝑒𝑡𝑠
 (16)

Where 𝑤1,𝑤2, . . . 𝑤𝑛 is the local share of

𝐶𝑙𝑖𝑒𝑛𝑡1,𝐶𝑙𝑖𝑒𝑛𝑡2, . . . 𝐶𝑙𝑖𝑒𝑛𝑡𝑛the ratio of packets with correctly

predicted classes to the total number of packets, which

represents the accuracy of the neural networks.

4. Experimental Results and Discussion
4.1. Experimental Setup

The experiment was performed on a Dell Precision 5820

workstation. The workstation has a 32 GB DDR4 RAM with

a 2 TB HDD. The Workstation is equipped with an Intel Xeon

W-2133 CPU and a 4 GB Nvidia Quadro P2000 GPU. For the

software, the proposed model was trained and tested using

Python 3.8.20 with Numpy version 1.23.5 and Pandas version

2.2.3. The preprocessing steps were performed using the

sklearn 2.2.0 library. Deep Learning libraries were used

instead of federated learning libraries as they provide more

leverage to modify the FL weight matrices. Tensorflow base

library with version 2.3.0 was employed to train the local

model and aggregate the global model.

4.2. Datasets

NSL-KDD Dataset: The NSL-KDD dataset is the most

popular dataset for network-based Intrusions. The origin of

this data dates back to 1998. The network intrusion simulated

by DARPANET in 1998 was published as the DARPA

dataset, which contained the packets received while multiple

attacks were simulated on the Defense ARPANET systems.

The experimentations were performed by MIT Lincoln Lab.

Network traffic features were extracted from the raw packets

of the DARPA dataset, and a new dataset was formed, which

has more than 500,000 instances. These extracted features

were named the KDD CUP99 or simply the KDD99 dataset.

The KDD99 dataset has data duplication and redundancy

issues. Tavallaee mitigated these issues [30]. The redundant

data were removed from the KDD99 dataset, and a more

manageable NSL-KDD dataset was proposed.

The dataset contains 125,973 packet instances along with

41 network features for each. The dataset contains instances

belonging to 24 attack types and normal packet data for the

benchmark. The 24 types of attacks belong to 4 classes,

namely, DoS, which is a denial of service attack strategy.

During a DoS attack, the network resources of a victim

machine are depleted to the extent that complete failure of the

node takes place. The next is the R2L attack, in which the

unauthorized attacker tries to penetrate the network. The U2R

is the user-to-root attack in which a user tries to gain superuser

access. The last class is the Probe class, in which the passive

attacks are executed to find vulnerabilities in the system. The

dataset contains basic features, content features, time-based

features, and host-based features.

UNSW-NB15 dataset: The dataset was recorded by

sampling the network packets by the University of New South

Wales (UNSW) in 2015 using the IXIA Perfect Storm toolbox.

The dataset contains 9 attack types, and normal class instances

were also provided [31]. The dataset consists of 43 features,

which are categorized as Time features, basic features, flow

features, and content features. The dataset has a collection of

active attacks, such as Fuzzer, DoS, Backdoor, Generic,

Shellcode, and worm; On the other hand, passive attacks such

as Analysis have been simulated using 3 network structures.

The classes are highly imbalanced, leading to problems of

over-fitting and under-fitting during the training of an

anomaly-based IDS.

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

241

Fig. 5 Flowchart of the proposed algorithm

Split Data for N clients

Local Client 1 Local Client 2 Local Client N

Read

Data

Label

Encoder

Convert Alpha-
numeric features into

numeric

Normalization

Split the Data

Training Data

(80%)
Testing Data

(20%)

D
at

a
P

re
p

ro
ce

ss
in

g

F
ed

er
at

ed
 L

ea
rn

in
g

O
n

lo
o

k
er B

ee

P
h

ase

Y N

Y

Is Abandon Criteria Reached?

Generate New Bee

S
co

u
t B

ee P
h
ase

Is

MaxIter

All Employed

Bees

Participated?

Find New Solution with Random Number

E
m

p
lo

y
ed

 B
ee P

h
ase

N

N

Apply Greedy Selection Algorithm

Is New

Fit

Replace Existing

Solution

Set Trial Counter =

0

Increment Trial Counter

Y N

Evaluate Probability for Onlooker

Bees

Is Prob>Rnd?

Find New Solutions with Random Partner

Apply Greedy Selection

Algorithm

Is New Fit

Better?

Replace Existing

Solution

Set Trial Counter = 0

Increment Trial Counter

Initialize Bee Population

Evaluate Compensated Weights

[W1, W2, W3, …, WN]

Evaluate Objective

Function

Evaluate Fitness Function

In
itializatio

n

Y

N

<=Local Share/Testing

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

242

4.3. Experimental Steps
Figure 5 shows the flowchart of the proposed method.

The network intrusion data is read and stored as dataframes

using the Pandas library. The data undergoes preprocessing

before classification and detection of malicious activities in

the network. The preprocessing starts with the class label

encoding. For binary classification, the NSL-KDD and

UNSW-NB15 datasets, which have malicious packets, have

been assigned +1 classes, and those instances that are normal

classes are assigned 0 classes. However, in the case of multi-

class classifications, the instance classes were assigned based

on the type of attack executed by the packet. Since there are

24 attack categories in the NSL-KDD dataset, the 4 major

attacks are assigned 4 labels: DoS, probe, R2L, and U2R,

respectively. Moreover, it was observed that the dataset

suffers from a severe class imbalance problem. Hence, these

four attack classes, along with the normal class, create a multi-

class dataset for classification. On the other hand, there are 10

classes in the UNSW-NB15 dataset. The 9 attack classes

include analysis, backdoor, DoS, exploits, fuzzer, generic,

reconnaissance, shellcode, and worm attacks, along with the

normal class. High class imbalance was observed in the

dataset. The next step in the preprocessing stage includes label

encoding the data. The alphanumeric features are assigned

numeric values before being fed to the tensorflow

environment. The NSL-KDD dataset has three alphanumeric

features, namely, protocol_type, service, and flag. The

protocol_type contains information about the communication

protocol used by the nodes in the network. TCP, UDP, and

ICMP protocols were assigned labels using the label encoder.

Service includes network services employed at the

destination. These are http, ftp, telnet, or smtp. The flag

feature contains the flag given to each packet, including 11

flags that were used to define the status of a packet. Similarly,

in the UNSW-NB15 dataset, there are three features with

alphanumeric values. The protocol used by the network is

mentioned in the proto feature, and the service used in the

destination is mentioned in the service feature. The connection

status was also coded using alphanumeric keywords. These

features are then normalized to confine their values between 0

and 1. This step makes sure that the features follow a similar

random distribution of their values. The normalized values of

the features are given by:

Table 1. Parameters and values used in the experiments

S. No. Parameters Values

1 Number of Clients [5, 10, 20]

2 Types of Neural Networks FCN, LSTM, Hybrid Neural Network

3 Batch Size 32

4 Epochs per Round 10

5 Federated Rounds 10

6 Learning Rate 0.01

7 Layer Activation
FCN: ReLU

LSTM: Tanh

8 Optimizer Adam

9 Loss
Binary Classifier: Binary Cross-Entropy

Multiclass Classifier: Sparse Categorical Cross-entropy

10 Metric Accuracy

𝜌𝑁 =
𝜌𝑖−𝜌𝑀𝑖𝑛

𝜌𝑀𝑎𝑥−𝜌𝑀𝑖𝑛
 (17)

Where 𝜌𝑖 is the 𝑖𝑡ℎinstance of the feature, with the

extrema values of the feature, 𝜌𝑀𝑎𝑥 , 𝜌𝑀𝑖𝑛respectively.

Training and testing were split in an 80% to 20% ratio with a

random shuffle.

The data and classes are divided equally among N clients

in the federated learning phase. The proposed work used three

neural network architectures to train the data locally. A five-

layer Fully Connected Network, a five-layer LSTM network,

and a hybrid network with two Fully Connected Layers

followed by three LSTM layers were concatenated. The Fully

Connected Layers were activated using the ReLU activation

function, and the LSTM layers used the hyperbolic tangent

function as their activation function. For the input layers, the

number of filters or units in the neural network was set to the

number of features in the dataset. In the UNSW-NB15 dataset,

the ID feature was removed as it contains the packet ID and

provides no information about the malicious activities. The

output layers were initialized with a sigmoid activation

function and 1 unit for the detection of the intrusive packet. In

the case of multi-class classification, the output units were

made equal to the number of classes, and a softmax activation

function was used for probabilistic assignment of classes.

Parallel to the federated learning phase, the Artificial Bee

Colony Optimization was initialized with a random population

of bees. The bee determines the local share of each local client.

The initial population is used to find the preliminary global

accuracies of all the local clients. The local weights and their

respective local share are used to form the global model as

given in equation 7. These global models then make up the

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

243

employed and unemployed bee populations. The employed

bees are then partnered with a random bee and form a new

solution. Half of the total swarm size participates in this phase.

The greedy algorithm is used to replace the solutions with

better ones. This forms the EBP.

In the next step, the OBP is executed. The roulette

interaction takes place based on their probabilities of

interaction. New local shares are explored in this phase, and

global accuracies are evaluated. It is not guaranteed that every

employed bee participates in the exploration of new solutions.

The new solutions are then compared to these existing

solutions using the greedy algorithm. If a solution exceeds the

abandonment criteria, the solution enters the scout phase. In

this phase, new solutions are explored, and the solution with

abandoning criteria is exploited. The global accuracies are

evaluated using the testing dataset, and after the iterations are

over, the best solution is achieved. The parameters used in the

experiments are provided in Table 1. The optimal weights or

optimal local share are used to aggregate the global model, and

the results are presented in the next section.

4.4. Results

4.4.1. Binary Classification on NSL-KDD Dataset

The average results of binary classification on the NSL-

KDD dataset have been illustrated in Table 2. In the

experiment, the dataset has been horizontally divided into 5,

10, and 20 clients, respectively. The non-IID is divided

randomly, and each client was provided with different

numbers of normal and attack data. For the 5 client scenarios,

the first client received 10,678 instances belonging to the

normal class and 9,477 instances of the attack class.

On the other hand, the rest of the clients received 10,776,

10,944, 10,732, and 10,791 normal packets along with 9,379,

9,211, 9,423, and 9,364 packets of intrusion classes,

respectively. The data was applied to a Fully Connected

Network having a 5-layer architecture. The local network

weights were initialized with a random normal initializer. A

0.01 learning rate with the Adam optimizer was employed for

weight optimization. Due to the limited data received by each

client, the initial training suffered from low accuracy.

Fig. 6 Results for binary classification of NSL-KDD for (a) Fully connected network, (b) LSTM, and (c) Hybrid networks for 5, 10, and clients per

round.

Table 1. Results for NSL-KDD binary classifications

Neural

Network

Number

of Clients

Average

Normal

Instances

Average

Attack

Instances

Average Initial

Accuracy

(Round 1)

Average Final

Accuracy

(Round 10)

Global

Testing

Accuracy

Fully

Connected

Network

5 10784.2 9370.8 88.02 97.49 97.81

10 5394.7 4682.3 90.21 98.08 97.46

20 2696.9 2341.1 90.82 96.77 96.57

LSTM

Network

5 10755 9400 93.986 98.81 99.14

10 5398.2 4678.8 92.677 98.36 98.73

20 2698.75 2339.25 90.56 97.89 98.48

Hybrid

Network

5 10758.4 9396.6 94.61 98.58 98.54

10 5378.9 4698.1 84.48 97.44 98.56

20 2692.58 2345.41 96.48 98.10 98.38

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

244

In the first round, the accuracy was 88.66% for the first

client, 87.26% for the second client, 87.62% for the third

client, 87.72% for the fourth client, and 88.86% for the fifth

client. The global testing accuracy is 95.61% for the optimal

local share. The global testing accuracy against the number of

rounds has been depicted in Figure 6(a) for a 5-client scenario.

With optimal local share provided to the training node, the

accuracies are increased from 95.16% to 97.81% for the last

round. This is the final result of training the global model

through the aggregation of the local model with an optimal

local share.

For 10 client systems, the data is divided into 10 equal

sections, and each client received different ratios of normal

and intrusion instances. The first client instances consist of

5384 and 4693 instances of normal and intrusion classes,

respectively. The second client received 5412 normal and

4665 malicious instances, whereas the third client had 5451

and 4626 instances. Other clients had 5455, 5372, 5372, 5360,

5413, 5445, 5319, and 5371 normal instances and 4622, 4705,

4717, 4664, 4632, 4758, and 4706 intrusion instances,

respectively. The average initial local accuracy of 90.21% was

achieved. Furthermore, the accuracy after every round has

been depicted in Figure 6(a). From Figure 6(a), it can be

concluded that, as the rounds increase, the global model trains

with the optimal local models learns efficiently without

sharing the local data. This feature of the proposed algorithm

enhances global accuracy without compromising the privacy

of the local nodes. The final accuracy of 97.46% was achieved

by the global model for 10 client scenarios on the FCN. The

global accuracy of the 10-client scenario is comparable to the

5-client scenario, which shows that the data insufficiency

issue is resolved in the proposed method.

Figure 6(a) shows the accuracy of 20 clients on a Fully

Connected Network. The average normal and intrusive

instances distributed among 20 clients were found to be

2696.9 and 2341.1, respectively. The initial round accuracies

of all the local nodes averaged at 90.82% whereas with

optimal federated learning, the final round training reached

96.77%. At the end of each round, the global accuracy went

from 90.03% to 96.57%.

Fig. 7 Results for multiclass classification of NSL-KDD for (a) Fully connected network, (b) LSTM, and (c) Hybrid networks for 5, 10, and clients per

round.

Table 3. Results for NSL-KDD multiclass classifications

Neural

Network

Number

of

Clients

Avg.

Normal

Inst.

Avg.

DoS

Inst.

Avg.

Probe

Inst.

Avg.

R2L

Inst.

Avg.

U2R

Inst.

Avg.

Initial Acc.

(Round 1)

Avg.

Final

Acc.

(Round

10)

Global

Test

Acc.

Fully

Connected

Network

5 9391.8 6597 1625 7.4 14.8 95.57 97.63 97.86

10 4695.9 3298.5 812.5 3.7 7.4 94.54 97.53 97.70

20 2347.95 1649.25 406.25 1.85 3.7 92.74 97.01 97.10

LSTM

Network

5 10770.6 7506 1853.2 7.8 17.4 90.60 98.54 98.97

10 5385 3752.8 926.6 3.9 8.7 67.02 97.98 98.56

20 2692.05 1876.35 463.3 1.95 4.35 60.95 97.00 97.79

Hybrid

Network

5 10792.8 7476.8 1860.2 8.4 16.8 86.02 97.77 97.92

10 5396 3738.4 930 4.2 8.4 75.60 97.56 97.89

20 2697.7 1869 465 2.1 4.2 76.82 97.23 97.74

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

245

Despite the fact that deep learning algorithms require a

huge amount of training and testing data, an optimal federated

learning model achieves a comparable accuracy with respect

to a centralized learning algorithm with big data. For the

LSTM network, the features of NSL-KDD data are considered

as time series features. The data is divided into several clients.

For a 5-client system, the average number of normal data and

intrusion data was 10755 and 9400. The initial accuracy was

found to be 93.986% and after 10 rounds of optimal federated

learning aggregation of the global model, the training

accuracy was increased to 98.81%. After the last round of

aggregation, the final testing accuracy of 99.14% was

achieved with the optimal local share of 0.183 for the first

client, 0.209 for the second client, 0.356, 0.135, and 0.115 for

the rest of the clients, respectively. Table 2 illustrates the class

distribution and training and testing accuracies. The testing

with respect to the rounds of training is depicted in Figure

6(b). For the 10 client scenario, the average normal and

malicious instances were distributed as 5398.2 and 4678.8.

Despite the limited data, the LSTM network’s accuracy

showed an increasing accuracy from 92.677% to 98.36% for

the 10 rounds. The testing accuracy from 20% of the whole

data came to 98.73% which is close to 5 client scenarios with

half the data available for each node. In the case of the 20-

client environment, the data available for each node is 4% of

the total available data. Despite training on such limited data,

the global model achieved 98.48% accuracy. The local models

have an average initial accuracy of 90.56% and a final training

accuracy of 97.89% in the last round. The LSTM showed

better accuracy compared to the Fully Connected Network and

the Hybrid Network for the binary classification of the KDD

dataset.

The hybrid network consisted of 3 Fully Connected layers

followed by 2 LSTM layers. The model was used to classify

the malicious packets in the network. For 5 clients, each client

had the average normal data with 10758.4 and malicious data

with 9396.6 instances. The initial accuracy for all local clients

averaged at 94.61% in the first round of training and improved

to 98.58% in the last round. The testing accuracy also went

up from 96.50% to 98.54%. Meanwhile, the federated

accuracy for 10 clients was found to be 98.52%, which started

with 46.23% only.

Fig. 8 Results for binary classification of UNSW NB15 for (a) Fully connected network, (b) LSTM, and (c) Hybrid networks for 5, 10, and clients per

round.

Table 4. Results for UNSW NB15 binary classifications

Neural

Network

Number

of Clients

Average

Normal

Instances

Average

Attack

Instances

Average Initial

Accuracy

(Round 1)

Average Final

Accuracy

(Round 10)

Global

Testing

Accuracy

Fully

Connected

Network

5 5911.4 7261.6 84.66 93.984 95.61

10 2955.4 3630.6 82.061 92.16 94.00

20 1477.7 1815.3 79.0835 90.277 92.03

LSTM

Network

5 5928.4 7244.6 70.672 92.894 94.26

10 2959.7 3626.3 74.931 92.475 94.30

20 1478.8 1814.2 72.0805 90.527 93.63

Hybrid

Network

5 5919.6 7253.4 77.334 93.926 94.95

10 2961.7 3624.3 69.809 90.596 92.67

20 1479.75 1813.25 69.445 90.7035 92.04

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

246

The drastic change in accuracy is the result of the

optimized federated approach employed for model

aggregation. These accuracies were achieved on an average of

5378.9 normal and 4681.1 attack instances. Local models gave

an average accuracy of 84.8% for the first round and 97.44%

training accuracy in the last round. In the 20 client real-world

problems, the average data distribution was 2692.58 for the

normal class and 2345.41 for the attack class. The training

accuracies in the first round averaged at 96.48% and improved

to 98.10% by the last round. The accuracy has been shown in

Table 2. Similarly, the testing accuracies were improved from

96.48% to 98.38%. Figure 6(c) depicts the increment in

accuracy per round.

4.4.2. Multi-Class Classification for the NSL-KDD Dataset

In the multi-class problem, the task is not only to detect

any intrusive packet, but also to classify the type of intrusion

performed. The NSL-KDD dataset consists of 24 attack

classes combined into 4 attack categories. The normal class is

labelled as 0, whereas the attack classes were marked 1 to 4.

The label encoder marked these classes in alphabetical order.

DoS class was assigned as class 1, probe was given 2, R2L

was provided with label 3, and U2R was given 4 as a label.

For the Fully Connected Network, the 5 client systems

had an average of 9391.8 normal instances, 6597 DoS

instances, 1625 probe instances, whereas only 7.4 and 14.8

average instances were obtained for R2L and U2R classes,

respectively, depicting high class imbalance in the dataset.

The initial average accuracy of the five local models was

found to be 95.57% whereas the final accuracy was obtained

at 97.36%. Table 3 shows the accuracies of the trained local

models, the distribution of the classes, and the final testing

accuracy. The testing accuracy for the first round was obtained

to be 95.48% and it improved to 97.86% in the last round. The

improvement in accuracy shows that the weight distribution

performed by the ABCO algorithm has proven to be efficient

in practical use. In the 10-client system, the class instances

were halved for each client compared to the 5-client scenario.

The normal class had an average of 4695.9 instances, DoS

class had 3298.5 instances, probe class had 812.5, whereas

R2L and U2R had 3.7 and 7.4 instances respectively. In the

first round, the average training accuracy was 94.54%,

whereas the testing accuracy of the aggregated model was

96.03%. After the optimized federated learning was executed

for 10 rounds, the training accuracy averaged at 97.53% and

the final testing accuracy was obtained as 97.70%. In the case

of 20 clients, the average normal instances were 2347.95, DoS

were 1649.25, probes were 406.25, and R2L and U2R were

obtained at 1.85 and 3.7 only. The initial accuracy for training

was found to be 92.74% whereas the initial testing accuracy

was evaluated as 96.45%. After 10 rounds of optimal

federated learning with ABCO determining the local share, the

training accuracy was evaluated as 97.01% and the final

testing accuracy was 97.10%.

For the LSTM network, the 5 client scenarios have

10770.6 average normal instances, 7506 DoS instances,

1853.2 probe instances, along with 7.8 and 17.4 instances of

R2L and U2R, respectively. The initial average training

accuracy was 90.60%, and after the global aggregation of the

model with optimal local share, the testing accuracy in the first

round was 97.26%. High testing accuracy determines that the

model aggregation compensated for the losses in the local

client model. At the end of the last round, the local models

were able to achieve an average accuracy of 98.54% with a

global testing accuracy of 98.97%. This accuracy shows that

the optimal federated learning algorithm outperformed many

state-of-the-art algorithms with even massive models. In the

case of the 10 client systems, the results were not affected due

to the lack of data individual local sites possessed. The normal

class had an average of 5385 instances for all clients, DoS

averaged at 3752.8 instances per client, probe averaged at

926.6 instances per client, R2L at 3.9, and U2R at 8.7 per

client.

Fig. 9 Results for multiclass classification of UNSW NB15 for (a) Fully connected Network, (b) LSTM, and (c) Hybrid networks for 5, 10, and clients

per round.

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

247

Table 5. Results for UNSW NB15 multiclass classifications

Table 6. Comparison of the proposed framework with existing

researches

S. NO. Author Technique Accuracy

1. VinayKumar [32] Deep Learning 75.20

2. Almeseidin [33] J48 93.20

3. Ingre [34] DT 90.30

4. Jin [35] Rule Based 98

5. Friha [9] FL+CNN 93.29

6. Jin [11] FL+CNN-GRU 68.78

7. Our Method
FL+LSTM

(KDD Binary)
99.14

8. Our Method
FL+LSTM

(KDD Multi)
98.97

9. Our Method
FL+ FCN

(NB15 Bin)
95.61

10. Our Method
FL+ Hybrid

(NB15 Multi)
82.78

The round 1 average training accuracy was 87.02% and

the aggregated global accuracy was 96.67%. In the final

round, the global aggregate was able to achieve an accuracy

of 98.56%, with an average training accuracy of 97.98%. In

the 20-client scenario, the data were further distributed among

20 clients, with 2692.05, 1876.35, 463.3, 1.95, and 4.35

average instances for normal, DoS, probe, R2L, and U2R

classes, respectively. In the initial round, an average of

80.95% training accuracy was observed, with a testing

accuracy of 88.17%. As the local models were suffering from

data insufficiency, the global aggregate showed slower

convergence to the final value. In the last round of federated

training, the average training accuracy was 97% with a global

testing accuracy of 97.79%. The testing accuracies per round

for different numbers of clients have been depicted in Figure

7(b).

For the Hybrid model, the 5 client scenario had an average

instance of normal class as 10792.8, DoS class as 7476.8,

probe class as 1860.2, R2L class as 8.4, and U2R class as 16.8.

The first-round accuracies averaged at 76.82%, with local

clients having no interactions among them. In the first

interaction, as optimal models were shared, the testing

accuracy was 87.84%. As the interaction took place, the

accuracy went up to 97.23% for training and 97.92% for

testing. The 10-client model showed similar results due to an

optimized model aggregation strategy. The classes had an

average of 5396, 3738.4, 930, 4.2, and 8.4 per client. The

starting average training accuracy was 75.60% with an

aggregated testing accuracy of 86.9%. With the training and

model aggregation with optimal local share of each client, the

final training accuracies were averaged at 97.56% and the

global accuracy was found to be 97.89%. The 20-client

scenario has an even lower number for each client. The normal

class instances per client were evaluated as 2697.7, whereas

DoS was 1869, probe instances were 465, and only 2.1 and 4.2

instances per client were R2L and U2R, respectively. The

NN

No

. of

Cli

Avg.

C1

Inst.

Avg.

C2

Inst.

Avg.

C3

Inst.

Avg.

C4

Inst.

Avg.

C5

Inst.

Avg.

C6

Inst.

Avg.

C7

Inst.

Avg.

C8

Inst.

Avg.

C9

Inst

Avg

.

C10

Inst

Avg.

Initia

l

Acc.

Avg.

Final

Acc.

Globa

l Test

Acc.

FCN

5
109.

8
93.6 653

1772.

4
964.6 3042 5909 559.4 61.6 7.6 71.73

78.7

1
79.91

10 53.3 46.9
328.

8
895.4 486.3

1504.

4
2955 281.9 30.3 3.7 68.36

78.1

0
79.26

20
26.6

5

23.4

5

164.

4
447.7

243.1

5
752.2 1477.5

140.9

5

15.1

5
1.85 65.72

76.3

6
77.69

LSTM

5
109.

2
99.6

658.

6

1775.

4
967.4 3024 5928.2 542.6 61.2 6.8 44.90

80.4

3
82.31

10 53.9 46.2 328 884.6 487.1
1513.

8
2960.7 277.6 30.9 3.2 46.48

74.3

6
75.51

20
26.9

5
23.1 164 442.3

243.5

5
756.9 1480.3 138.8

15.4

5
1.6 44.23 74.1 75.05

Hybri

d

5
109.

8
92

657.

4
1771 977.4

3028.

6
5911.2 558.2 60.4 7 43.93

80.4

3
82.78

10 53.7 47.2
327.

2
885.1 481.5

1510.

1
2967.1 280.6 30 3.5 44.35

81.4

4
82.35

20
26.8

5
23.6

163.

6

442.5

5

240.7

5

755.0

5

1483.5

5
140.3 15 1.75 42.38

77.5

7
78.89

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

248

initial accuracy of the local clients was averaged at 76.82%

and the final accuracies after 10 rounds of optimized federated

learning were improved to 97.23%. However, the testing

accuracies, which were evaluated after each round of

aggregation, were found to be improving from 87.37% to

97.74%. This is depicted in Figure 7(c), concluding that the

data requirement can be minimized by sharing the model

instead of the data.

4.4.3. UNSW-NB15 Binary Classification

Similar to the NSL-KDD dataset, for the UNSW-NB15

dataset, three neural networks with a fully connected network,

a long short-term memory network, and a hybrid network with

three fully connected layers and 2 LSTM layers were

employed to train the local models. An aggregate using local

share was formed, and the global model was tested with 20%

of the data as testing data. Artificial Bee Colony optimization

was used to calibrate the local share. The number of clients

varied from 5 to 20.

For the Fully Connected Network, the 5 client scenario

was trained with an average of 5911.4 normal instances per

client, whereas an average of 7244.6 instances of attack per

client were distributed randomly. The initial average training

accuracy of 84.66% for 5 clients was evaluated. The global

model was aggregated with an optimal local share, giving an

accuracy of 90.59% in the first round. The accuracy improved

to 93.98% for training in the last round, and the testing

accuracy improved to 95.61% after 10 rounds of aggregation.

Table 4 illustrates the distribution of data over clients and

accuracy in the training phase. The testing accuracy after

every round has been depicted in Figure 8. For 10 client

systems, initial accuracy averaged at 82.06% with 2955.4

normal and 3630.6 attack instances per client. After all rounds

of training, model aggregation, and global weight

communication were performed, the average training

accuracy was found to be 92.16%. The testing accuracies were

initially evaluated as 87.69% and improved to 94% with the

proposed framework. In the 20-client scenario, the average

and attack instances per client were 1477.7 and 1815.3 for the

binary classifications. In the first round, the average training

accuracy was observed to be 79.08% and the aggregated

testing accuracy was evaluated as 85.84%. As the proposed

framework was executed, the average training accuracy

improved to 90.27%, and the global model achieved an

accuracy of 92.03%.

For the LSTM network, the five client models have a class

distribution of 5928.4 to 7244.6 instances for normal to attack

per client. The initial average accuracy was 70.67% which

improved to 92.89% at the end of the last round of training,

whereas the testing accuracy of the global model, without

being explicitly trained on any data, came out to be 86.38%

for the first round and was improved to 94.26%. Figure 8

shows the changes in accuracy with respect to the number of

rounds in the training phase. In the 10 client system, the

normal and attack instances per client averaged at 2959.7 and

3626.3 for normal and attack classes, respectively. The initial

average accuracy in the first round, independent of other

models, was found to be 69.80%. After the first aggregation,

the global accuracy was evaluated as 90.95%. At the end of

the last round, the average accuracy of the client was evaluated

at approximately 90.6%, whereas the testing accuracy was

evaluated at 94.30% for the global model. In the 20-client

scenario, the average client accuracy was obtained as 69.44%

with an average of 1479.75 normal and 1813.25 attack

instances, respectively. The testing accuracy obtained for 20

client systems was 85.21% and improved to 92.63% by the

tenth round. At the same time, the average training was

90.70% in the last round. LSTM with less data has proven to

be more accurate compared to the Fully Connected Network,

as the feedback networks create more attributes than the feed-

forward network.

For the hybrid network, the 5 client scenario has an

average of 5919.6 normal instances per client, whereas 7253.4

attack instances per client. The non-IID data was divided

randomly among the clients, and federated learning with

optimal local share obtained 77.33% accuracy in the initial

phase, whereas a combined global system gave an accuracy of

77.82%. The model is run for 10 rounds, and the final average

accuracy was obtained at 93.93% for training and 94.95% for

testing. In the 10 client system, the average normal and attack

instances were found to be 2961.7 and 3624.3 per client,

respectively. The initial average training accuracy was

evaluated as 69.8% and the first aggregate accuracy was

obtained as 68.29%. After the maximum of 10 rounds of

federated learning were completed, the average training

accuracy improved to 90.6% and thus the tenth aggregate

accuracy came out to be 92.78%.

For the 20-client scenario, the normal and attack classes

are distributed at an average of 1479.75 and 1813.25 instances

per client. The pre-federated learning accuracies averaged at

69.45% and after the first round of model aggregation, the

accuracy was obtained as 69.08%. As the rounds of training

were executed, the average training accuracy improved to

90.7%. The final testing accuracy was found to be 92.04%,

comparable to the centralized accuracies achieved by state-of-

the-art algorithms. The Figure depicts the comparison of the

5-client, 10-client, and 20-client systems for the hybrid neural

network.

4.4.4. UNSW-NB15 Multi-Class Classification
The UNSW-NB15 dataset is a network intrusion dataset

with 10 classes. The table illustrates the class distribution,

average accuracies for training, and the final testing accuracy

of the proposed model. The classes are labeled and encoded

by the sklearn library; hence, the classes are assigned a

numeric value in alphabetical order. The Analysis class was

assigned zero and has been denoted as the C1 class. Similarly,

Backdoor, DoS, Exploit, Fuzzer, and Generic classes were

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

249

designated as C2, C3, C4, C5, and C6, respectively.

Meanwhile, the normal class has been denoted as C7.

Reconnaissance, Shellcode, and Worm attacks were given C8,

C9, and C10 classes in the table.

For the Fully Connected Network, the 5 client systems

had only 109.2 average analysis instances, 93.6 backdoor

instances, 61.6 shellcode instances, and 7.6 worm instances.

The classes with a larger share of packets were DoS with 653

instances, exploits with 1772.4 instances, fuzzer with 964.3,

and 3042 instances of the generic class per client were

distributed. The initial average accuracy was obtained at

71.73% and the global model accuracy of 70.54% was

achieved by the optimal framework. The final accuracies are

obtained at 78.71%, which is the average training accuracy,

and the global accuracy of 79.91% was obtained after 10

rounds of model aggregation. For the 10 client scenario, the

analysis class had a share of 53.3 average instances per client,

the backdoor class had 46.9 average instances, and 328.8 for

DoS, 895.4 instances were present for training the 10 client

system. 486.3, 1504.4, 281.9, 30.3, and 3.7 for other attack

classes, whereas 2955 instances per client were distributed for

the normal class. The training accuracy before the model

aggregation was averaged at 68.36% and after the first global

aggregate, the testing accuracy was found to be 72.93%. At

the end of the tenth round, the average training accuracy

reached 78.1% whereas the final global testing accuracy was

improved to 79.26%. For the 20 client scenario, the normal

class instances per client were averaged at 1477.5, and the

attack classes were averaged at 26.65, 23.45, 164.4, 447.7,

243,15, 752.2, 140.95, 15.15, and 1.85 for analysis, backdoor,

DoS, exploits, fuzzer, generic, reconnaissance, shellcode, and

worm attacks, respectively. The initial training accuracy was

found to be 65.72% and a testing accuracy of 70.99% was

achieved after the first aggregation. The accuracy improved to

76.36% for average training accuracy and to 77.68% for

testing accuracy. Table 5 shows the accuracy and the

distribution of instances. Figure 9 depicts the testing

accuracies per round for the Fully Connected Network with

the UNSW-NB15 dataset divided into different numbers of

clients.

For the LSTM neural network, the 5 client simulations

had a distribution of 5928.2 average normal instances,

whereas the attack class had 658.6 for DoS, 1775.4 for

exploits, 967.4 for fuzzer, and 3024 for generic classes. The

classes with high imbalance suffered with even fewer

instances, such as analysis, which had 109.2 instances,

backdoor, which had 99.6, 61.2 for shellcode, and only 6.8 for

the worm class. The initial average accuracy was found to be

44.90% and was improved to 80.43% in the last round. The

testing accuracy of the global aggregate model was obtained

at 44.69% in the first round and improved to 82.33% by the

last round. For the 10 client systems, the normal class

instances were 2960.7 per client, and the attacks per client are

illustrated in Table 5. In the first round of training, the average

of the training accuracies was 46.48% and at the end of all

training rounds, the average accuracy increased to 74.36%.

The aggregate model gave an accuracy of 44.89% and was

improved to 75.51% after the tenth round. For the 20-client

simulation, the initial accuracy for training was 44.23% and

the testing accuracy was 44.23% as well. The federated

learning algorithm with the optimal local share provided by

the ABCO, the average training accuracy reached 74.1% and

the testing accuracy reached 75.05% as depicted in Figure 9.

For the Hybrid Neural Network, the normal class

instances were found to be 5911.2, 2967.1, and 1483.55 for 5,

10, and 20 clients, respectively. The generic class had 3028.6,

1510.1, and 755.05 for different client systems. The shellcode

and worm class has the least number of data in the UNSW-

NB15 dataset, with only 60.4, 30, and 15 instances per client

for shellcode and 7, 3.5, and 1.75 for worm class. For the five

client systems, the initial average accuracy was evaluated as

43.93% whereas the testing accuracy was found to be 45.21%.

These accuracies were improved to 80.43% for training and

82.78% for testing the global model. In the case of 10 clients,

the average training accuracy was observed to be comparable

with the 5-client system, with 44.35% as training and 44.89%

as testing accuracy initially, and was improved to 81.44% and

82.35% for training and testing, respectively. In the 20-client

scenario, the training accuracy improved from 42.38% to

77.57% and the testing accuracy increased from 42.38% to

78.89%. For the multi-class classification of the UNSW-NB15

dataset, the hybrid neural network outperformed the Fully

Connected and LSTM networks.

Table 6 compares state-of-the-art models published in

different research studies. The proposed model has

outperformed many algorithms with centralized and

distributed training algorithms.

5. Conclusion
In this paper, a real-time scenario of the Wireless Sensor

Network with a distributed architecture has been simulated.

The simulated architecture was employed to train an Intrusion

Detection System for decentralized data that was divided

among various clients. The client-server relation has been

optimized by exploring different local shares for each client in

the network. Three different neural network architectures have

been trained on NSL-KDD and UNSW-NB15 datasets for

binary and multi-class classification. The training data was

horizontally distributed among 5, 10, and 20 clients. Each

client trained a Fully Connected Network, an LSTM network,

and a hybrid Neural Network with 2 Fully Connected layers

followed by 3 LSTM layers. The local shares were optimized

using the Artificial Bee Colony Optimization algorithm with

10 population size. The Fully Connected Layer architecture

consisted of 41 feature nodes followed by a 64-node hidden

layer. The feature exploration was enhanced by 128 and 256-

layer nodes. The important features were propagated through

128 and 64 nodes in the hidden layers. The client models

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

250

trained with limited data showed high aggregated accuracies.

The LSTM architecture consisted of 64 units followed by

another 64-unit layer. After these layers, the layers converged

to the output with 32, 16, and 4 unit layers.

The LSTM model showed high accuracy and was able to

achieve aggregate accuracy comparable to the state-of-the-art

methodologies. On the other hand, the hybrid model

outperformed the other models in multi-class classification

with 128 and 256 nodes, a Fully Connected Layer followed by

3-layer LSTM networks with 64, 16, and 4 units. The

proposed optimized algorithm outperformed many centralized

trained and tested algorithms. The model sharing instead of

data sharing does not adversely affect the system accuracy. In

the future, many other metaheuristic optimization algorithms

can be utilized to explore the optimum values of local share.

Class imbalance issues can be addressed by adding synthetic

data with generative algorithms such as SMOTE and GANs.

References
[1] Leonrdo Babun et al., “A Survey on IoT Platforms: Communication, Security, and Privacy Perspectives,” Computer Networks, vol. 192,

2021. [CrossRef] [Google Scholar] [Publisher Link]

[2] Aejaz Nazir Lone, Suhel Mustajab, and Mahfooz Alam, “A Comprehensive Study on Cybersecurity Challenges and Opportunities in the

IoT World,” Security and Privacy, vol. 6, no. 6, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[3] Danish Javeed et al., “A Federated Learning-Based Zero Trust Intrusion Detection System for Internet of Things,” Ad Hoc Networks, vol.

162, pp. 1-13, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[4] Evgenia Novikova, Elena Doynikova, and Sergey Golubev, “Federated Learning for Intrusion Detection in the Critical Infrastructures:

Vertically Partitioned Data Use Case,” Algorithms, vol. 15, no. 4, pp. 1-14, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[5] Chen Zhang et al., “A Survey on Federated Learning,” Knowledge-Based Systems, vol. 216, 2021. [CrossRef] [Google Scholar] [Publisher

Link]

[6] Brendan McMahan et al., “Communication-Efficient Learning of Deep Networks from Decentralized Data,” Proceedings of the 20th

International Conference on Artificial Intelligence and Statistics, PMLR, vol. 54, pp. 1273-1282, 2017. [Google Scholar] [Publisher Link]

[7] Tian Li et al., “Federated Optimization in Heterogeneous Networks,” Proceedings of Machine Learning and Systems 2, 2018. [Google

Scholar] [Publisher Link]

[8] Meryem Janati Idrissi et al., “Fed-ANIDS: Federated Learning for Anomaly-Based Network Intrusion Detection Systems,” Expert Systems

with Applications, vol. 234, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[9] Othmane Friha et al., “FELIDS: Federated Learning-Based Intrusion Detection System for Agricultural Internet of Things,” Journal of

Parallel and Distributed Computing, vol. 165, pp. 17-31, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[10] Jonathas A. de Oliveira et al., “F-NIDS — A Network Intrusion Detection System based on Federated Learning,” Computers Networks,

vol. 236, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[11] Zhigang Jin et al., “FL-IIDS: A Novel Federated Learning-Based Incremental Intrusion Detection System,” Future Generation Computer

Systems, vol. 151, pp. 57-70, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[12] Jianbin Li et al., “An Efficient Federated Learning System for Network Intrusion Detection,” IEEE Systems Journal, vol. 17, no. 2, pp.

2455-2464, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[13] Thin Tharaphe Thein, Yoshiaki Shiraishi, and Masakatu Morii, “Personalized Federated Learning-Based Intrusion Detection System:

Poisoning Attack and Defense,” Future Generation Computer Systems, vol. 153, pp. 182-192, 2024. [CrossRef] [Google Scholar]

[Publisher Link]

[14] Dinesh Chowdary Attota et al., “An Ensemble Multi-View Federated Learning Intrusion Detection for IoT,” IEEE Access, vol. 9, pp.

117734-117745, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[15] Riccardo Lazzarini, Huaglory Tianfield, and Vassilis Charissis, “Federated Learning for IoT Intrusion Detection,” AI, vol. 4, no. 3, pp.

509-530, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[16] Ruijie Zhao et al., “Semisupervised Federated-Learning-Based Intrusion Detection Method for Internet of Things,” IEEE Internet of

Things Journal, vol. 10, no. 10, pp. 8645-8657, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[17] Priyanka Verma, John G. Breslin, and Donna O’Shea, “FLDID: Federated Learning Enabled Deep Intrusion Detection in Smart

Manufacturing Industries,” Sensors, vol. 22, no. 22, pp. 1-18, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[18] Xi Yu et al., “Federated Learning Optimization Algorithm for Automatic Weight Optimal,” Computational Intelligence and Neuroscience,

vol. 2022, no. 1, pp. 1-19, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[19] Xinyan Li, Huimin Zhao, and Wu Deng, “IOFL: Intelligent-Optimization-Based Federated Learning for Non-IID Data,” IEEE Internet

Things Journal, vol. 11, no. 9, pp. 16693-16699, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[20] Sunghwan Park, Yeryoung Suh, and Jaewoo Lee, “FedPSO: Federated Learning using Particle Swarm Optimization to Reduce

Communication Costs,” Sensors, vol. 21, no. 2, pp. 1-13, 2021. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1016/j.comnet.2021.108040
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+on+IoT+platforms%3A+Communication%2C+security%2C+and+privacy+perspectives&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1389128621001444
https://doi.org/10.1002/spy2.318
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+comprehensive+study+on+cybersecurity+challenges+and+opportunities+in+the+IoT+world&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/spy2.318
https://doi.org/10.1016/j.adhoc.2024.103540
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+federated+learning-based+zero+trust+intrusion+detection+system+for+Internet+of+Things&btnG=
https://www.sciencedirect.com/science/article/pii/S1570870524001513
https://doi.org/10.3390/a15040104
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Federated+Learning+for+Intrusion+Detection+in+the+Critical+Infrastructures%3A+Vertically+Partitioned+Data+Use+Case&btnG=
https://www.mdpi.com/1999-4893/15/4/104
https://doi.org/10.1016/j.knosys.2021.106775
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=C.+Zhang%2C+A+survey+on+federated+learning&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950705121000381
https://www.sciencedirect.com/science/article/abs/pii/S0950705121000381
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Communication-Efficient+Learning+of+Deep+Networks+from+Decentralized+Data.+In+Proceedings+of+the+20th+International+Conference+on+Artificial+Intelligence+and+Statistics&btnG=#d=gs_cit&t=1761887799011&u=%2Fscholar%3Fq%3Dinfo%3Aqw8WjTtZ6lwJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Den
https://proceedings.mlr.press/v54/mcmahan17a?ref=https://githubhelp.com
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Federated+Optimization+in+Heterogeneous+Networks&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Federated+Optimization+in+Heterogeneous+Networks&btnG=
https://proceedings.mlsys.org/paper_files/paper/2020/hash/1f5fe83998a09396ebe6477d9475ba0c-Abstract.html
https://doi.org/10.1016/j.eswa.2023.121000
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fed-ANIDS%3A+Federated+learning+for+anomaly-based+network+intrusion+detection+systems&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0957417423015026
https://doi.org/10.1016/j.jpdc.2022.03.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FELIDS%3A+Federated+learning-based+intrusion+detection+system+for+agricultural+Internet+of+Things&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0743731522000570
https://doi.org/10.1016/j.comnet.2023.110010
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=F-NIDS+%E2%80%94+A+Network+Intrusion+Detection+System+based+on+federated+learning&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1389128623004553
https://doi.org/10.1016/j.future.2023.09.019
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FL-IIDS%3A+A+novel+federated+learning-based+incremental+intrusion+detection+system&btnG=
https://www.sciencedirect.com/science/article/pii/S0167739X23003503
https://doi.org/10.1109/JSYST.2023.3236995
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Efficient+Federated+Learning+System+for+Network+Intrusion+Detection&btnG=
https://ieeexplore.ieee.org/abstract/document/10032055
https://doi.org/10.1016/j.future.2023.10.005
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Personalized+federated+learning-based+intrusion+detection+system%3A+Poisoning+attack+and+defense&btnG=
https://www.sciencedirect.com/science/article/pii/S0167739X23003783
https://doi.org/10.1109/ACCESS.2021.3107337
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Ensemble+Multi-View+Federated+Learning+Intrusion+Detection+for+IoT&btnG=
https://ieeexplore.ieee.org/abstract/document/9521524
https://doi.org/10.3390/ai4030028
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Federated+Learning+for+IoT+Intrusion+Detection&btnG=
https://www.mdpi.com/2673-2688/4/3/28
https://doi.org/10.1109/JIOT.2022.3175918
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Semisupervised+Federated-Learning-Based+Intrusion+Detection+Method+for+Internet+of+Things&btnG=
https://ieeexplore.ieee.org/abstract/document/9777753
https://doi.org/10.3390/s22228974
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FLDID%3A+Federated+Learning+Enabled+Deep+Intrusion+Detection+in+Smart+Manufacturing+Industries&btnG=
https://www.mdpi.com/1424-8220/22/22/8974
https://doi.org/10.1155/2022/8342638
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Federated+Learning+Optimization+Algorithm+for+Automatic+Weight+Optimal&btnG=
https://onlinelibrary.wiley.com/doi/full/10.1155/2022/8342638
https://doi.org/10.1109/JIOT.2024.3354942
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=IOFL%3A+Intelligent-Optimization-Based+Federated+Learning+for+Non-IID+Data&btnG=
https://ieeexplore.ieee.org/abstract/document/10400794
https://doi.org/10.3390/s21020600
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FedPSO%3A+Federated+learning+using+particle+swarm+optimization+to+reduce+communication+costs&btnG=
https://www.mdpi.com/1424-8220/21/2/600

Shourya Shukla et al. / IJECE, 12(10), 232-251, 2025

251

[21] Dasaradharami Reddy Kandati, and Thippa Reddy Gadekallu, “Federated Learning Approach for Early Detection of Chest Lesion Caused

by COVID-19 Infection Using Particle Swarm Optimization,” Electronics, vol. 12, no. 3, pp. 1-19, 2023. [CrossRef] [Google Scholar]

[Publisher Link]

[22] Chunmai Xu et al., “Learning Rate Optimization for Federated Learning Exploiting Over-the-Air Computation,” IEEE Journal on Selected

Areas in Communications, vol. 39, no. 12, pp. 3742-3756, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[23] Randhir Kumar et al., “A Distributed Intrusion Detection System to Detect DDoS Attacks In Blockchain-Enabled IoT Network,” Journal

of Parallel and Distributed Computing, vol. 164, pp. 55-68, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[24] Abdallah R. Gad et al., “A Distributed Intrusion Detection System using Machine Learning for IoT based on ToN-IoT Dataset,”

International Journal of Advanced Computer Science and Applications, vol. 13, no. 6, pp. 548-563, 2022. [CrossRef] [Google Scholar]

[Publisher Link]

[25] K. Samunnisa, G. Sunil Vijaya Kumar, and K. Madhavi, “Intrusion Detection System in Distributed Cloud Computing: Hybrid Clustering

and Classification Methods,” Measurement: Sensors, vol. 25, pp. 1-12, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[26] Gustavo A. Nunez Segura, Arsenia Chorti, and Cintia Borges Margi, “Centralized and Distributed Intrusion Detection for Resource-

Constrained Wireless SDN Networks,” IEEE Internet of Things Journal, vol. 9, no. 10, pp. 7746-7758, 2022. [CrossRef] [Google Scholar]

[Publisher Link]

[27] Sumathi Sokkalingam, and Rajesh Ramakrishnan, “An Intelligent Intrusion Detection System for Distributed Denial of Service Attacks:

A Support Vector Machine with Hybrid Optimization Algorithm Based Approach,” Concurrency and Computation: Practice and

Experience, vol. 34, no. 27, pp. 1-18, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[28] Shaashwat Agrawal et al., “Federated Learning for Intrusion Detection System: Concepts, Challenges and Future Directions,” Computer

Communications, vol. 195, pp. 346-361, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[29] Dervis Karaboga, and Bahriye Basturk, “A Powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony

(ABC) Algorithm,” Journal of Global Optimization, vol. 39, pp. 459-471, 2007. [CrossRef] [Google Scholar] [Publisher Link]

[30] Mahbod Tavallaee et al., “A Detailed Analysis of the KDD CUP 99 Data Set,” 2009 IEEE Symposium on Computational Intelligence for

Security and Defense Applications, Ottawa, ON, Canada, pp. 1-6, 2009. [CrossRef] [Google Scholar] [Publisher Link]

[31] Nour Moustafa, and Jill Slay, “UNSW-NB15: A Comprehensive Data Set for Network Intrusion Detection Systems (UNSW-NB15

Network Data Set),” 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, ACT, Australia, pp. 1-6,

2015. [CrossRef] [Google Scholar] [Publisher Link]

[32] R. Vinayakumar et al., “Deep Learning Approach for Intelligent Intrusion Detection System,” IEEE Access, vol. 7, pp. 41525-41550,

2019. [CrossRef] [Google Scholar] [Publisher Link]

[33] Mohammad Almseidin et al., “Evaluation of Machine Learning Algorithms for Intrusion Detection System,” 2017 IEEE 15th International

Symposium on Intelligent Systems and Informatics (SISY), Subotica, Serbia, pp. 277-282, 2017. [CrossRef] [Google Scholar] [Publisher

Link]

[34] Bhupendra Ingre, Anamika Yadav, and Atul Kumar Soni, “Decision Tree based Intrusion Detection System for NSL-KDD Dataset,”

Information and Communication Technology for Intelligent Systems, pp. 207-218, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[35] Dongzi Jin et al., “SwiftIDS: Real-Time Intrusion Detection System based on LightGBM and Parallel Intrusion Detection Mechanism,”

Computers & Security, vol. 97, 2020. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.3390/electronics12030710
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Federated+Learning+Approach+for+Early+Detection+of+Chest+Lesion+Caused+by+COVID-19+Infection+Using+Particle+Swarm+Optimization&btnG=
https://www.mdpi.com/2079-9292/12/3/710
https://doi.org/10.1109/JSAC.2021.3118402
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Learning+Rate+Optimization+for+Federated+Learning+Exploiting+Over-the-Air+Computation&btnG=
https://ieeexplore.ieee.org/abstract/document/9562487
https://doi.org/10.1016/j.jpdc.2022.01.030
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+distributed+intrusion+detection+system+to+detect+DDoS+attacks+in+blockchain-enabled+IoT+network&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0743731522000351
https://dx.doi.org/10.14569/IJACSA.2022.0130667
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Distributed+Intrusion+Detection+System+using+Machine+Learning+for+IoT+based+on+ToN-IoT+Dataset&btnG=
https://thesai.org/Publications/ViewPaper?Volume=13&Issue=6&Code=IJACSA&SerialNo=67
https://doi.org/10.1016/j.measen.2022.100612
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Intrusion+detection+system+in+distributed+cloud+computing%3A+Hybrid+clustering+and+classification+methods&btnG=
https://www.sciencedirect.com/science/article/pii/S266591742200246X
https://doi.org/10.1109/JIOT.2021.3114270
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Centralized+and+Distributed+Intrusion+Detection+for+Resource-Constrained+Wireless+SDN+Networks&btnG=
https://ieeexplore.ieee.org/abstract/document/9542974
https://doi.org/10.1002/cpe.7334
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+intelligent+intrusion+detection+system+for+distributed+denial+of+service+attacks%3A+A+support+vector+machine+with+hybrid+optimization+algorithm+based+approach&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.7334
https://doi.org/10.1016/j.comcom.2022.09.012
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Federated+Learning+for+intrusion+detection+system%3A+Concepts%2C+challenges+and+future+directions&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0140366422003516
https://doi.org/10.1007/s10898-007-9149-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+powerful+and+efficient+algorithm+for+numerical+function+optimization%3A+Artificial+bee+colony+%28ABC%29+algorithm&btnG=
https://link.springer.com/article/10.1007/S10898-007-9149-X
https://doi.org/10.1109/CISDA.2009.5356528
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Detailed+Analysis+of+the+KDD+CUP+99+Data+Set&btnG=
https://ieeexplore.ieee.org/abstract/document/5356528
https://doi.org/10.1109/MilCIS.2015.7348942
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=UNSW-NB15%3A+A+comprehensive+data+set+for+network+intrusion+detection+systems+%28UNSW-NB15+network+data+set%29&btnG=
https://ieeexplore.ieee.org/abstract/document/7348942
https://doi.org/10.1109/ACCESS.2019.2895334
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=R.+Vinayakumar%2C+Deep+Learning+Approach+for+Intelligent+Intrusion+Detection+System&btnG=
https://ieeexplore.ieee.org/abstract/document/8681044
https://doi.org/10.1109/SISY.2017.8080566
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evaluation+of+machine+learning+algorithms+for+intrusion+detection+system&btnG=
https://ieeexplore.ieee.org/abstract/document/8080566
https://ieeexplore.ieee.org/abstract/document/8080566
https://doi.org/10.1007/978-3-319-63645-0_23
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Decision+tree+based+intrusion+detection+system+for+NSL-KDD+dataset&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-63645-0_23
https://doi.org/10.1016/j.cose.2020.101984
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SwiftIDS%3A+Real-time+intrusion+detection+system+based+on+LightGBM+and+parallel+intrusion+detection+mechanism&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167404820302571

