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Abstract - Liver Tumor Segmentation in CT images is an essential step in the medical imaging process, which is generally
difficult due to the variability of tumor shapes, sizes, and ambiguous boundaries with healthy liver tissue. This paper
proposes a new model that integrates the U-Net structure and Convolutional Block Attention Module along with
EfficientNet-B0 to promote both segmentation performance and computational efficiency. Our proposed model is distinctive
because it incorporates CBAM to recalibrate the spatial and channel-wise attention maps adaptively, focusing on the
informative tumor regions for improved segmentation performance. EfficientNet-B0, an encoder backbone characterized by
the compound scaling method and lightweight structure, is employed to enhance hierarchical feature extraction and
computational efficiency. The model achieved a mean Intersection over Union (loU) of 0.9356 on a public dataset. This
result significantly outperforms strong previous methods, such as PSP (0.9113) and MANet (0.6555). Our findings show
that the incorporation of attention modules with lightweight encoders is effective for precise liver tumor segmentation, and

the proposed method has high potential for clinical applications. This paper paves the way for the potential of innovative

and scalable diagnostics in the field of health care.
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1. Introduction

The liver is an essential organ that is involved in a
variety of biochemical functions, including metabolism,
detoxification, and bile formation [1]. Disorders such as
liver tumors can seriously affect liver function, which may
endanger human health [2]. Hepatocellular Carcinoma
(HCC) is one of the most prevalent and fatal liver
neoplasms, accounting for a considerable proportion of all
cancer-induced deaths globally. Therefore, early diagnosis
and accurate localization of liver tumors are critical for the
treatment and prognosis of the disease, prompting the use of
more advanced detection and localization tools. Imaging
techniques, such as Computed Tomography (CT) and
Magnetic Resonance Imaging (MRI), are important for
diagnosing liver tumors and have been commonly used in
daily practice due to their ability to provide complete data
regarding the location and spread of the lesion [3]. However,
it remains a challenging task to interpret these images and
segment the liver tumors [4], and the widely used manual
segmentation method is time-consuming, error-prone, and
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relies on the radiologists’ experience. To address this,
automated alternatives have been continuously studied.

Despite advances in imaging and radiology, accurate
liver tumor segmentation is still a challenging task, as
tumors can vary widely in shape, size, position, and
contrast across different imaging modalities [5]. In addition,
in most images, the tumor margins are not well defined and
are hard to contrast with the normal liver [6].

These challenges underscore the importance of reliable
and transferable segmentation techniques. Recent
developments in the field of medical image analysis,
particularly in the provision of automated diagnostic aids,
could help reduce the workload of radiologists and improve
the accuracy of tumor detection. The traditional image
processing methods have been shown to be ineffective in
fulfilling the complex procedure of liver tumor
segmentation, which provides space for computational-
based solutions.
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Deep learning, one of the AI’s subfields, has become an
increasingly powerful method for analysing medical
images. As described in the paper, deep learning models,
such as Convolutional Neural Networks (CNNs) and their
extensions, are able to learn hierarchical features directly
from raw data, which compares favourably to traditional
methods for segmentation [8]. Deep learning models have
demonstrated good potential in learning very accurate
representations from large databases, such as in liver
tumour segmentation. This methodology is regarded as a
comprehensive solution to the problem of liver tumor
segmentation, which consequently results in improved
diagnostic and therapeutic outcomes.

In the past few years, many techniques have been
developed to enhance liver tumor segmentation. Chuanfei
Hu et al. [9] proposed an uncertainty-aware framework to
conduct multiphase liver tumor segmentation. Through
Dempster—Shafer Evidence Theory, this framework
captures both segmentation and uncertainty with evidence
parameterized by a Dirichlet distribution and directly
estimates the reliability of results in multiphasic contrast-
enhanced CT images. The framework outperforms state-of-
the-art approaches, proving its robustness and allowing
reliable performance in disturbed conditions. However,
there is still research space on integrating the multi-
modality images analysis and developing the model
robustness with respect to different clinical environments.

Saumiya S et al. [10] introduced a joint learning-based
multi-task model with the aim of automatic liver tumor
segmentation and classification. This method introduces a
multi-task deformable attention U-Net for segmentation,
which uses an attention-based deformable module to
capture varied tumor appearances. Finally, a DenseNet
model is used for classification, and it improves precision,
recall, F1-score, and classification accuracy, compared to
single models. However, the adoption of this approach in
heterogeneous datasets remains a challenging issue,
particularly in clinical applications.

Arifullah et al. [11] presented a two-stage process for
histopathological image analysis with Whole Slide Images
(WSIs). WSIs are processed by a modified U-Net for
segmenting images, and patches are then extracted at
multiple magnifications and used as input for a CNN for
classification. The approach achieved better segmentation
and classification performances by incorporating patch-
based frameworks. Nevertheless, its scalability and
performance to handle large data sets with diverse tumor
types need to be further studied.

Yuanyuan Shui et al. [12] introduced a model that fuses
richer hierarchical representations via the MFF module for
multi-scale target detection. The edge semantics are further
refined by the EI module, which is then finally employed for
segmentation feature representations by the EG module.
The proposed method outperformed existing state-of-the-
art methods, with a Dice index of 85.55% and a Jaccard
index of 81.11% on the LiTs2017 dataset. Although this

45

approach achieves high performance, it has not been fully
optimized for multiphase CT imaging or real-time clinical
implementation.

Yilin You et al. [13] introduced the Parallel Graph
Convolutional Network (PGC-Net), using contour-based
parallel graph reasoning for fast, convenient liver tumor
segmentation. The proposed framework employs a pre-
trained Pyramid Vision Transformer for multi-scale feature
extraction. It adopts pixel-level parallel graph reasoning,
mapping each pixel to a high-dimensional space to facilitate
better segmentation. However, challenges of such a method
in solving complex tumour structures and its effectiveness
in big clinical patient cohorts are key research areas yet to
be addressed.

Raju Egala et al. [14] emphasized the capability of
Deep Learning, especially CNNs, in improving diagnostic
performance in the field of medical image interpretation.
Recent improvements in DL methodologies, including new
activation functions, optimization methods, and loss
functions, have led to a considerable improvement in the
abilities of CNNs, and they are a good tool for radiologists.
However, the interpretability of deep learning models for
medical image analysis and their integration into clinical
workflows remains a topic that requires further
investigation.

Kai-Ni Wang et al. [15] proposed SBCNet, a dual-
branch architecture for liver tumor segmentation. The
architecture consists of a tumor variation encoding module
and a boundary enhancement module. The method shows
comparable results to the state of the art on the LiTS
dataset, demonstrating the value of the dual-branch model
in segmenting a problem. However, it is not yet clear how
this approach can be extended to diverse tumor types and
how robust it will be to image artifacts across scanning
protocols.

Ali Mohammed Hendi et al. [16] proposed using a
hybrid CNN+LSTM model for liver disease diagnosis and
prognosis, which consists of CNNs and Long Short-Term
Memory (LSTM) networks. This method is far superior to
CNN, RNN, and LSTM models, achieving an accuracy of
98.73% and robust metrics (precision, recall, F1-score, and
AUC-ROC). However, the universal application of the
model to the liver non-contrast imaging modalities and
multi-center cohort still potentially exists as a study
limitation.

Recent contributions in liver segmentation have
increasingly focused on the integration of attention
mechanisms and EfficientNet backbones, highlighting
improvements in segmentation accuracy and efficiency.
One notable work is EAR-U-Net: EfficientNet and
attention-based residual U-Net for automatic liver
segmentation in CT [17]. This study leverages EfficientNet-
B4 as the encoder and integrates attention gates into the skip
connections of a residual U-Net. The use of EfficientNet
significantly improves feature extraction, while the attention
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mechanism enables the model to focus on relevant regions
of the liver, resulting in enhanced segmentation accuracy.
This approach is highly relevant to our work, particularly
when comparing your EfficientNet-BO variant against a
more advanced backbone, such as EfficientNet-B4. The
paper [18] introduces a dual attention mechanism (both
channel-wise and spatial attention) in a 3D U-Net
architecture for liver segmentation. The attention
mechanism refines the segmentation process by focusing on
the most relevant features in both the spatial and channel
dimensions. Although this work does not explicitly utilize
EfficientNet, it presents an innovative application of
attention that could complement or be incorporated into
your attention-enhanced U-Net model.

In 2025, a study by Limprapaipong et al. [19] used a
Multi-Scale Attention Network (MA-Net) with cross-
branch feature fusion for tumor segmentation. While the
main focus was on liver tumor segmentation in a different
imaging modality (SPECT/CT), the approach incorporates
EfficientNet-B6 as the backbone and utilizes attention for
improved segmentation. This work is particularly valuable
for comparison, as it explores how EfficientNet combined
with attention mechanisms can be applied in a different
context, demonstrating the versatility of this approach.
These developments in deep learning and medical image
analysis are increasingly breaking through the limits of
automatic liver tumor segmentation, bringing great
prospects for clinical diagnosis and treatment. Yet, several
research efforts to date have not focused on multi-modality
integration, strong evidence of model robustness through
testing on multiple datasets, and real-time clinical
application. This research aims to fill in these gaps by
designing a hybrid deep learning architecture that combines
U-Net and EfficientNet-BO through the addition of
attention mechanisms, such as CBAM, for feature extraction
refinement. The overarching goals of this research are to
enhance the sensitivity of liver tumor detection by
developing a more robust, generalizable, and clinically
deployable approach to liver tumor segmentation that
increases diagnostic accuracy while addressing the
limitations of current research.

Although some new models have made some advances
in liver tumor segmentation, it seems to be difficult to
achieve a great balance of high accuracy and efficient
calculation. Few care about incorporating dual-attention
mechanisms or lightweight backbones for the resource-
limited scenarios. In this paper, we aim to fill this gap by
proposing a new hybrid model that incorporates the
Convolutional Block Attention Module (CBAM) into a U-
Net architecture, utilizing EfficientNet-BO as the encoder.
This novel combination further improves the precision and
speed of the segmentation, and thus can be used for clinical
use, particularly in real-time or resource-scarce conditions.

2. Proposed Model

Liver tumour segmentation refers to the process of
precisely locating and isolating tumour regions found in
medical images, for instance, CT scans. The segmentation
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in this work is done by the U-Net architecture. Semantic
segmentation is the task of classifying each pixel in the
input image; U-Net is a Convolutional Neural Network
(CNN) architecture built for deep learning. The encoder-
decoder structure, skip connections, and fine-grained
feature capturing enable the segmentation of tumors from
the surrounding normal liver anatomy, making it an
excellent U-Net model for medical image segmentation
tasks.

2.1. U-Net Architecture

The U-Net architecture used in this project has a
standard encoder-decoder architecture, more specifically
illustrated in Figure 1. The input image passes through
encoder layers for  feature extraction;  multiple
convolutional and pooling layers follow this to consider
spatial context and high-level features. After that, the
decoder part, which reconstructs the segmentation map,
follows, using transpose convolutions for up-sampling and
a skip connection that concatenates the corresponding
encoder features. These skip connections preserve spatial
information lost due to downsampling, which increases the
accuracy of segmentation.

In this implementation, a U-Net is constructed via
Segmentation Models Pytorch (SMP). Key components
include:

e Encoder: EfficientNet-B0 as the backbone network for
our feature extraction, and pre-train the model on the
ImageNet dataset to leverage transfer learning.

e Decoder: Several layers of upsampling and
convolutional blocks help the network reconstruct the
output segmentation map progressively.

e Attention Mechanism: Here, a custom attention layer
enhances the segmentation map by highlighting key
areas and eliminating undesired regions. The attention
mechanism integrates into the output of the U-Net,
enabling pixel-wise adjustment with a standard Conv2d
layer followed by Sigmoid activation.

This is designed for pixel-level binary classification
(e.g., cancerous vs. non-cancerous tissue), producing a
segmentation map of the same size as the input image.
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Fig. 1 U-Net Architecture with CBAM Integration
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The diagram shows the U-Net-based network
architecture modified with Convolutional Block Attention
Module (CBAM) for better segmentation. It is an encoder-
decoder style of architecture with its components and
connections described in detail below:

e Encoder Pathway: The encoder progressively reduces
the spatial resolution of the input image while
extracting features. The encoder has several levels of
convolutional layers with the ReLU activation
function, as well as a downsampling layer in the form
of max-pooling. With the reduction in spatial size, the
number of filters increases with each level to catch
more complex features.

e Attention Mechanism: The CBAM is integrated in a
way that highlights its significant characteristics.
Spatial and channel-wise attention is used so that the
network focuses on significant areas and minimizes
unnecessary background information. Such training
refines the model’s attention towards high-resolution
structures present in the input image.

e Bottleneck: It connects the encoder and decoder paths
through a central bottleneck block. It employs deeper
Convolutional operations to detect high-level, abstract
features and prepares the Feature maps for the up-
sampling stages.

e Decoder Pathway: By performing up-sampling
operations and connecting feature maps from the
corresponding encoder levels through the skip
connection, the decoder recovers the spatial resolution.
These residual connections help carry spatial details
from the encoder so that outputs, when reconstructing,
maintain finer details and boundaries.

e 1x1 Convolution and SoftMax Activation: The last
layer uses a 1x1 convolution to convert feature maps
into the desired number of output classes (2 in this
case). The final class probabilities are computed using
a softmax activation function via multi-class
segmentation for each pixel.

o Visual Flow: The final structure facilitates the flow of
low-level features from the early stages of the encoder
and high-level abstract features from the bottleneck.
Together with CBAM modules, this gives a very
intuitive perspective of the CAPCA base network
design, enhancing its ability to accurately segment
complex structures as applicable in the case of medical
image analysis, etc.

Convolutional Block Attention Module

{Channel ("
= i Attention | Spatial

 Module | Attention ]
/ — \ / Module \ L
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Fig. 2 CBAM Architecture

The Convolutional Block Attention Module (CBAM)
refines features through two attention mechanisms, channel
attention and spatial attention, in sequence. The channel
attention module calculates the correlation between each
channel, allowing the relevant feature maps to receive
greater prominence.

The high-level refined features are subsequently
forwarded to the spatial attention module, which
emphasizes more spatially significant areas via the spatial
attention map by highlighting decisive zones in the feature
map. Both outputs are then element-wise multiplied by
input features to yield a refined feature representation.
CBAM utilizes attention in a sequential manner that helps
the model focus on rare and process features of information,
promoting an enhancement in performance while returning
minimal characteristics.

2.2. U-Net with CBAM

The implementation proposed a U-Net model with a
Convolutional Block Attention Module (CBAM) for
improving segmentation accuracy. Itisan attention method
that gradually applies both spatial and channel attention to
boost received feature maps adaptively. CBAM effectively
improves feature representation and segmentation output by
minimizing irrelevant details while emphasizing the
dominant regions. The CBAM is easily integrated into the
decoder blocks of the U-Net. First, global pooling is
combined with a learnable transformation to assign channel
attention to the informative channels of the feature map.
Next, spatial attention further refines the spatial focus
through an independent convolutional operation. This pair
of attention metrics guides the U-Net in concentrating on
cancerous areas while retaining delicate details. As
demonstrated, CBAMU-Net improved the localization of
small and non-uniform tumor regions, which were the most
challenging in terms of tumor morphology variability when
incorporated within a U-Net. This high segmentation
accuracy, validated through Dice and loU metrics, confirms
the model’s efficiency for liver tumor segmentation tasks.

2.3. EfficientNetB0 Encoder

In this U-Net implementation, EfficientNet-BO is
utilized as the encoder and acts as a strong feature extraction
backbone. It utilizes a compound scaling method to
effectively balance the depth, width, and resolution of the
network while achieving performance with significantly
fewer parameters. EfficientNet-BO, pre-trained on
ImageNet, encapsulates the pixels’ texture and maintains
the high-level information necessary for liver tumors
segmentation.

Block 1
Block 4
Block 7

Block 2
Block 3
Block 5
Block 6

Input Crop Image
v
Feature Map

Conv3x3
MBConv6 3 x 3
Conv3x3
MBConvé, 5 x5
MBConv6, 5 x 5
MBConvé6, 3 x3
MBConv6, 3x3
MBConv6, 3 x3
MBConv6, 5 x5
MBConv6, 5 x5
MBConv6, 5 x5
MBConvé6, 5 x5
MBConvé6, 5 x5
MBConve6, 5 x5
MBConve6, 5 x5
MBConv6, 3 x3

MBConvl, 3 x3

Fig. 3 EfficientNetBO model

2.3.1. Key Architectural Innovations
In working towards a better balance of accuracy and
efficiency in models, EfficientNet-BO employs a unique
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design that compounds the scaling of the model. Key
features include:

MBConv Blocks (Mobile Inverted Bottleneck Convolutions)

These blocks enhance computational efficiency by
using  depth-wise separable  convolutions and
bottleneck layers.

This is one way of recalibration of feature channels,
which allows a network to focus on more important
features using the Squeeze-and-Excitation (SE)
mechanism. In medical imaging, where things like
tumor edges are important, this is particularly
important.

Depth-wise separable convolutions eliminate redundant
computation while retaining performance, yielding a
faster and lighter model.

Compound Scaling

It scales them jointly and consistently to ensure their
features are captured in all levels of detail, and the
efficiency of those passed features is kept constant.
This scaling is particularly important in liver tumor
segmentation as it allows for high-resolution CT
images to be processed efficiently without the need for
extremely expensive computational resources.

Pretrained Weights

EfficientNet-BO leverages learned feature
representations from models trained on the ImageNet
challenge, providing feature representations associated
with general textures and patterns, enabling faster
training and better convergence on medical datasets, for
example, liver CT scans.

3. Visualization and Integration

For illustration, EfficientNet-BO can be seen as the

encoder backbone in a U-Net, where it extracts hierarchical
features as its layers. Here is what the integration looks

like:

Low-level features like edges, textures, and structures
provide the necessary details to differentiate the tumor
tissues.

To Abstract Features such as shapes and structures to
help recognize the unusual tumor borders.

Find very abstract, high-level features that encode the
big picture, for example, the tumor location in the
context of liver anatomy.

In the U-Net encoder-decoder framework:

The encoder uses EfficientNet-B0 in place of traditional
convolutional layers.

Its feature maps are passed to the decoder via skip
connections, thus retaining adequate  spatial
information for accurate segmentation.

4. Performance Metrics

Adopting EfficientNet-BO as the encoder backbone

comes with its own quantifiable benefits with respect to
liver tumor segmentation:
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The EfficientNet-B0 captures both low-level and high-
level features more effectively than simpler
architectures. As a result, this leads to better
segmentation metrics, such as the Dice Similarity
Coefficient (DSC) and Intersection over Union (loU).
EfficientNet-BO is a CNN-based architecture that is
both highly compact and efficient, with an extremely
low number of parameters and computations required.
This makes it perform well with relatively small
datasets and can be run on lower-end hardware.
EfficientNet-BO has been shown to outperform similar
automatic encoders for medical datasets in
segmentation accuracy, e.g., in fine-grained anatomy
for techniques that require maximum recall (sensitivity)
to detect tiny or malformed regions (e.g., liver tumors).
Building the EfficientNet-BO lightweight architecture
enables the implementation of the diagnostic at
resource-limited locations , such as hospitals with
limited computing power, without compromising
diagnostic quality.

. Proposed Method

Conv2d Layer: A core building block of convolutional
neural networks, Conv2d layers apply convolutional
filters to input data (e.g., images) to extract meaningful
representations. This function means a matrix is slid
across the data, and each element is multiplied in a dot
product and added up to return an aggregated result.
Those filters are learnable parameters that are
optimized during training. The Conv2d Layer allows
the network to find patterns like edges, textures, or
shapes in the data. Being capable of capturing spatial
hierarchies, this layer lays the groundwork for image-
based deep learning architectures. In this architecture,
there are multiple applications for feature refinement at
each stage.

MaxPooling2d Layer: This is a MaxPooling2d Layer,
which helps down-sample feature maps to decrease
their spatial dimension while retaining the most
pronounced features. This slides a pooling window
(2x2, for instance) across the input and picks the
maximum value from the area covered by this window.
This layer further reduces computational complexity
and prevents overfitting by introducing a certain level
of translation invariance. This allows it to learn faster
in deeper layers by focusing on the most dominant
features.

Upsampling2d Layer: The upsampling2d Layer is part
of the decoder end of the network to raise the spatial
resolution of the feature maps. The segmentation map
is reconstructed to the original image size either by
finding intermediate pixel values or by filling cutoff
pixels. It collaborates closely with the Conv2d layers to
refine features and preserve fine-grained details during
reconstruction.

MBConv Blocks Layer: This modified U-Net design
uses the MBConv Blocks Layer as the foundational
buildup, reinforced from EfficientNet’s architecture.
These blocks leverage  depth-wise separable
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convolutions, which help in reducing computational
overhead while obtaining high accuracy. One of them
is the Squeeze and Excitation (SE) mechanism that
readjusts the channel-wise feature responses in a way
that the network can focus on the important features.
This architecture replaces skip connections with
MBConv blocks to enhance feature representation and
adaptivity.

o EfficientNet-BO Layer: The EfficientNet-BO Layer is
used for encoding the backbone of this U-Net
implementation. This architecture employs a compound
scaling method to evenly scale the depth, width, and
resolution of the network, thereby finding the optimal
balance between performance and computational cost.
It learns hierarchical features, ranging from simple
textures to complex patterns, which are crucial for
segmenting liver tumor regions in CT scans.
Lightweight architecture enables faster processing
without compromising accuracy.

e CBAM Layer: CBAM, which stands for Convolutional
Block Attention Module, is an attention module added
to the architecture. It sequentially applies channel
attention and spatial attention, amplifying the emphasis
of the feature map on the significant regions of the
feature map. The proposed method incorporates
channel attention, utilizing informative channels to
provide attention, and refines spatial details, thereby
enabling the network to achieve better distinction of the
cancer area in the segmentation task.

e Sigmoid Layer: The Sigmoid Layer is then used at the
last part of the attention mechanism, when the feature
map values are normalized between 0 and 1. This
normalization enables pixel-wise weighting during
segmentation, assigning larger weights to salient
regions. The sigmoid activation ensures that the outputs
are bounded, which helps produce a more precise and
accurate segmentation map.

5.1. Optimization
Optimization aims to minimize the error between
predicted segmentation maps and ground truth. This is
achieved by iteratively updating the network’s parameters
using gradients calculated through backpropagation. The
optimizer used in this implementation can be represented
mathematically as follows:

5.1.1. Parameter Update Rule (e.g., Adam Optimizer):

oL
0y =01 — 77-%

Where:
e  0,:Parameter values at iteration t.
e 1: Learning rate.

. Z—;: Gradient of the loss function L with respect to the
parameters 6.

Adam introduces momentum-based updates:

oL
my = p.me_q + (1 - [”1)%
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Where:

e m,:Current first moment (exponentially weighted
average of gradients).

e m,_,: Previous first moment estimate.

e (1—p;):Weight for the current
contribution.

gradient’s

o g—;: Current gradient of the loss with respect to
parameters.

Ve = Bo Vg + (1= B). <Z_§)2

Where:
e v,.:Current second moment estimate (exponentially
weighted average of the squared gradients).
e v,_,: Previous second moment estimate.
e (1 —pB,):Weight for the contribution of the current
squared gradient.
daL

2
. (ﬁ) : Square of the current gradient of the loss with

respect to parameters.

me Ut
l'= ,Utz
1_.31 1_.th

Py

Where:

e 1,: Bias-corrected first moment estimate (adjusts m,
To account for initialization bias.

e ¥,: Bias-corrected second moment estimate (adjusts v,
For initialization bias.

e v,.: Current second moment estimate (moving average
of squared gradients).

e m;: Current first moment estimate (moving average of
gradients).

e % Exponential decay of B, raised to the current time
step t, reflecting how the first moment weights decrease
over iterations.

e [t Exponential decay of 3, raised to the current time
step t, reflecting how the second moment weights
decrease over iterations.

e 1—pfand1— ps: Correction terms to normalize the
moments, preventing them from being biased toward
zero in early iterations.

m;
N
Where:

0,: The parameter value at time step ttt (after the update).
0._,: The parameter value at the previous time stept — 1.
n:The learning rate, which controls the size of the update
step.

m,: The first moment estimate at time step t.This typically
represents the moving average of the gradient up to time step
t.

U,: The second moment estimate at time step t. This is often
the moving

0y =0;1—1.

Where B, and B, are exponential decay rates for
momentum and variance, respectively.
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5.1.2. Loss Function

For semantic segmentation, a common choice is the
Dice Loss or a combination of Binary Cross-Entropy (BCE)
and Dice Loss for class imbalance.

Binary Cross-Entropy (BCE) Loss

N
1
BCE Loss = =3 > [yilog(3) + (1 - y)log(1 - )]

=1

Where
e y;: Ground truth label for pixel i(0 or 1).
e  ¥;: Predicted probability for pixel i.
e N: Total number of pixels.

5.1.3. Dice Loss
2 Z?’=1 yi¥i
2?121 yi + Zév:1 y+€

Dice Loss = 1 —

Where €is a small constant added to avoid division by zero.

5.1.4. Combined Loss Function
Combining BCE Loss and Dice Loss provides better
performance for imbalanced datasets:

Total Loss = a - BCE Loss + (1 — a)
- Dice Loss

Where ais a weight balancing the two losses.

Algorithm 1: UNet with Attention for Liver Tumor
Segmentation

Stepl: Initialization
The model is initialized using parameters:
e encoder_name: Encoder backbone
efficientnet-b0).
e encoder_weights: Pre-trained weights for the
encoder.
e  Classes: Number of output segmentation classes
(e.g., 2 for binary segmentation).
e Activation: Activation function applied to
output.
e encoder_depth and decoder_channels: Define
the depth and channel dimensions of the U-Net.

(e.9.,

Step 2: Forward Pass
The forward pass includes:
e  U-Net Base Processing:

o The input tensor X is passed through the
encoder-decoder architecture of U-Net,
producing f(x), the segmentation logits.

f(x) =U—Net(x)
e Attention Mechanism:

o A 1x1 convolutional layer with sigmoid
activation is applied tof (x), producing the
attention map A(x).

Ax) =o(W * f(x) + D)
Here: - W and b are the weights and bias of the 1x1
convolution. - ¢ is the sigmoid activation function. - *
denotes convolution.
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e Element-wise Multiplication:
e The attention map A(x) is element-wise
multiplied with the U-Net output f(x), yielding
the final weighted output O (x).
0(x) = f(x) ©A(x)

Here: -© is the element-wise multiplication.

Step3: Output
The final outputO (x) is a refined segmentation map with
enhanced focus on relevant regions.

5.2. Attention Layer Role

e The attention mechanism enhances segmentation
accuracy by focusing on regions of interest (e.g., tumor
areas) and suppressing irrelevant regions.

e The 1x1 convolution aligns the attention mechanism
with the number of output classes, ensuring pixel-wise
weighting.

5.3. Application in Liver Tumor Segmentation
For liver tumor CT image segmentation, this algorithm:

1. Encodes high-level features using a pre-trained
EfficientNet-BO0.

2. Decodes these features to reconstruct the segmentation
map with spatial detail via skip connections.

3. Utilizes an attention mechanism to filter
segmentation output.

the

In this Proposed Model, we utilize a combined
architecture of the U-Net framework and the Convolutional
Block Attention Module (CBAM) to achieve better liver
tumor segmentation. The central modification is to
incorporate CBAM into the U-Net structure, which provides
a spatial and channel-wise independent attention process.
By introducing CBAM within decoder blocks, the model
can focus on the relevant features while suppressing
irrelevant noise to predict precise tumor boundaries.

Specifically, the encoder consists of EfficientNet-BO0,
which utilizes “compound scaling” and MBConv blocks to
extract hierarchical features while maintaining high
accuracy with lower computational costs. Such an
innovative approach enables a fine-grained segmentation
output that is computationally efficient and accounts for the
tumor variability regarding size, shape, and nondistinct
margin.

The innovation of the suggested model is to incorporate
CBAM and a series of its modules (EfficientNet-B0) in the
U-Net to generate an attention-based and lightweight
segmentation process. In the model, unlike existing
methods, feature maps are iteratively refined at both the
spatial and channel level, resulting in gradual performance
improvement in segmentation scores, such as Dice
similarity and loU.

In addition, this model utilizes the EfficientNet-B0
backbone encoder, which provides more efficient features
for representational purposes and fewer computations,
making it particularly useful in scenarios where
computational resources are limited. Our method
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demonstrates superior performance compared to the current
state-of-the-art in terms of accuracy. It provides a scalable
and robust framework for medical image segmentation,
marking a significant step forward in clinical diagnostics,
particularly for the detection and treatment of liver tumors.

6. Experimental Results

This subsection describes the results obtained from the
proposed approach, which is constantly carried out in
ongoing simulations. The dataset used to perform these
simulations is the Data Unet [20]. For this study, we applied
the data processing techniques described here to this dataset.

6.1. Dataset Characteristics

The experiments in this study were conducted using the
publicly available Data-UNet liver CT dataset (Kaggle)
[20], consisting of paired axial CT slices and corresponding
binary tumor masks.

Each sample contains:

e Input Modality: Contrast-enhanced abdominal CT scan

e Resolution: Images vary in size but are standardized
during preprocessing

e Mask format: Binary (0 = background, 1 = tumor)

e Annotation style: Pixel-wise ground truth prepared by
clinical experts

e Content properties:
e High anatomical complexity
e Tumors with irregular shapes, low contrast

boundaries, and heterogeneous textures

The dataset provides a sufficiently diverse collection of
CT slices to study segmentation behavior across various
tumor sizes and shapes.

The data set includes the following:
e Images
e Mask

The sample images of the dataset are shown in Figure 4.

(b)- Mask

(c)- Image

(d)- Mas
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(e)- Image
Fig. 4 Sample Images in the Dataset

(f) - Mask

6.2. Preprocessing Steps
All preprocessing operations strictly followed the steps
implemented in the training pipeline:

6.2.1. Image Normalization

e Images are converted to RGB.

e Normalized using ImageNet statistics:
mean=[0.485,0.456,0.406],std=[0.229,0.224,0.225]

6.2.2. Mask Binarization
Mask images are thresholded at intensity 70 to create
binary segmentation labels:

1;

if mask intensity =70
My ={y d

otherwiase

6.2.3. Data Augmentation
To improve generalization and reduce overfitting,
multiple augmentations were applied:
e Resizing to 704x1056
Horizontal & vertical flips
Grid distortion
Random brightness & contrast adjustment
Gaussian noise

Augmentations were applied only to the training set.

6.2.4. Standardization of Input
Finally, images are converted into PyTorch tensors and
normalized before being passed to the model.

6.3. Subject-Level and Dataset Split
The dataset was split into training, validation, and test
sets following the structure implemented in the code:
e Training set — 76.5%
e Validation set — 13.5%
e Testset—10%

Since the dataset is de-identified and publicly
accessible, no patient-specific information is included, and
no additional ethical approval was required.

The study adheres to responsible Al principles,
ensuring that all experiments are conducted solely for
research purposes and not for clinical decision-making or
treatment. Table 1 reports the Detailed Training
Configuration for the Liver Tumor Segmentation Model.
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Table 1. Detailed training configuration for proposed model

Parameter Value
Epochs 10
Optimizer AdamW (Adaptive Moment

Estimation with Weight Decay)

Learning Rate

Maximum Learning Rate: 1le-3

Learning Rate

OneCycleLR (dynamic

Scheduler adjustment during training)
Batch Size 3
Train Data

Augmentation - Resize to (704, 1056)

- Horizontal Flip, Vertical Flip
- Grid Distortion (p=0.2)

- Random Brightness/Contrast
(0t0 0.5)

- Gaussian Noise

- Resize to (704, 1056)

Validation Data
Augmentation

- Horizontal Flip
- Grid Distortion (p=0.2)

Loss Function CrossEntropyLoss (for multi-
class segmentation)

Loss  Function | No explicit class weight

Balancing balancing (can be added if class
imbalance exists)

Metrics - Mean Intersection over Union
(loV)
- Pixel Accuracy

Loss per epoch
—8—Train Loss —e=Val Loss
0.4

loss

03 %
0.2 \
01 oJgg

epoch

Fig. 5 Training and Validation loss trend over epochs

The loss curves shown in Figure 5 correspond to the
loss of the model in the training and validation datasets for
each epoch and provide insight into how well our model is
learning. The loss on the training set decreases sharply in the
first few epochs, indicating that the model parameters are
being rapidly learned and optimized. The decreasing trend
in the validation loss suggests that the model can generalize
to unseen data effectively. Both losses remain stable and
converge, indicating that the model has reached maximal
efficiency with little to no overfitting, as epochs continue.
Such behaviors further corroborate the strength and
efficacy of the proposed approach in learning meaningful
representations for liver tumor segmentation.
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Score per epoch

=¢==Train mloU =l=Val mloU

0.9
0.85
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Fig. 6 Mean Intersection Over Union (mloU) per epoch for training
and validation

The average scores of Intersection over Union (mloU)
metrics, one of the most crucial metrics for evaluating
segmentation performance, for both training and validation
datasets over epochs, are illustrated in Figure 6. As we can
see, the initial mloU rises sharply as the model quickly
learns the training data. The validation mloU chart follows
a similar trend with minor variations, confirming the
model’s good generalization to untrained data.

Both metrics improve steadily and converge with each
other. On validation, mloU closely approaches the training
mloU as the epochs progress. This convergence suggests a
good ability of the model to segment liver tumor areas
correctly, confirming its robustness and minimal overfitting.
The increase in both metrics indicates that the model
continues to learn and improve across the training iterations.

Accuracy per epoch

=¢=Train Accuracy ==\Val Accuracy

0.99
g T o
5 094
£l ]/
0.89 1
0.84 T T T T T T T T T 1
0 2 4 6 8
epoch

Fig. 7 Training and validation accuracy per epoch

The accuracy plot in Figure 7 shows how the model is
learning over epochs to gather better evidence and can
correctly classify more segmentation pixels on both the
training and validation sets. In the first few epochs, the
training accuracy increases rapidly, indicating that the
model is learning from the data efficiently. The validation
accuracy exhibits a similar trajectory, demonstrating
generalization to new data. Both these accuracies stabilize
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and converge to a high level around 98% during training,
indicating that our model is trustworthy with no significant
overfitting. The fact that both the accuracy curves (training
accuracy and validation accuracy) lay together confirms the
strong robustness of the model learning meaningful patterns
and achieving high generalization. The consistent
performance shown here confirms the applicability of the
proposed method for liver tumor segmentation tasks.

Table 2. Inference-time performance metrics for the proposed model

Metric Value
Parameter Count 6.25 Million
FLOPs 57.687 GFLOPs
Average In_ference Time 41.37 ms
(per image)
Frames Per Second (FPS) 24.17 FPS

The inference-time performance metrics for the liver
tumor segmentation model are summarized as follows: the
model has a parameter count of 6.25 million, which
represents the total number of trainable parameters. It
performs 57.687 GFLOPs (billion floating point operations)
per inference, indicating the computational complexity of
the model.

The average inference time per image is 41.37
milliseconds, demonstrating the speed at which the model
processes individual images. Finally, the model achieves
24.17 Frames Per Second (FPS), which indicates its ability
to handle real-time applications, processing approximately
24 images per second. These metrics highlight the model’s
efficiency and suitability for deployment in practical, real-
time clinical settings.

loU Variation Across Test Images

0 20 40 60 80
Test Image Index

Fig. 8 Error-bar plot of the proposed model

100 120 160

Figure 9 presents an image comparison, displaying the
original CT scan images, both ground-truth segmentation
maps, and the predicted segmentation maps obtained from
the original U-Net model with the CBAM convolutional
block attention module and EfficientNet-BO as the encoder
backbone.

The figure displays three instances each (a, b, ¢) of the
predicted segmentation closely matching the ground truth
with mean Intersection over Union (mloU) scores for
quantitative assessment. The high mean Intersection over
Union scores (0.95 and 0.92) indicate that the model was
able to accurately delineate tumor regions, even when tumor
sizes and shapes differed significantly. The results of this
comparison are presented in the next section, demonstrating
the effectiveness of the proposed method.
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(c)
Fig. 9 Comparison of ground truth and predicted segmentation maps
using U-Net with CBAM-EfficientNet-B0

Picture with Mask Appplied
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Fig. 10 Visualization of predicted segmentation mask applied on CT
image

As illustrated in Figure 10, we apply the predicted
segmentation mask on a CT scan image, which is the area
where the algorithm detects a tumor. And since this is hard
to visualize, we overlay this mask on top of the original
image, in a different color to contrast the image, so the
segmented area is better visualized (in this case, the tumor).
Since this is the output of the model, it gives a visual sense
of confidence by isolating the cancerous region amidst the
complex anatomical structures of the liver. These
visualizations help validate the performance of the model,
and also give an insight into how well the model can
segment images when used in real-life scenarios in
medicine. In this work, the two performance metrics are



B. Shashikanth & K. Sivani / IJECE, 12(12), 44-59, 2025

considered, such as mean loU and Accuracy, and the
mathematical equations for these performance metrics are
reported as follows:

Per-class loU:

loU XL MPi=cAyi=cl+e
¢ ILiMPi=cvyi=clte

Let S = {c| X; 1{y; = ¢} > 0}Be the set of classes that
actually appear in the ground truth for that batch. Then:

1
mloU = EZ IoU,

ceS

In this proposed work, softmaxes the logits, argmaxes
to a hard mask, compares with the integer ground truth, and
averages over pixels:

N
1
Accuracy = ﬁz 1P, =y}

i=1

Where: model logits at pixel i:z;, for class k €
{0, ........,C — 1}(here C = 2)

Softmax:p; , = softmax(z;)

Hard prediction: ; € {0, ....C — 1}

1[.] is the indicator: N is the total Pixels

Small constant ¢ = 1019,

Table 3. Comparative analysis

Methodology mloU
PANnet [21] 0.4616

MANEet [22] 0.6555

Linker [23] 0.6793

PSP [24] 0.9113

UNet with CBAM (Proposed) 0.9356

In particular, Table 3 presents a comparative
performance analysis of the proposed U-Net with CBAM
alongside state-of-the-art techniques for segmentation
approaches, evaluating their predicted outputs and loU
scores. The proposed method outperforms all other listed
models (PANnet: 0.4616, MANet: 0.6555, Linker: 0.6793,
PSP: 0.9113) with an loU of 0.9356. Thus, this demonstrates
that the features associated with the integration of U-Net
with Convolutional Block Attention Module (CBAM)
enable a better focus on important regions and result in a
more detailed feature description. Results demonstrate that
the proposed method is a robust and accurate approach for
complex segmentation problems such as liver tumor
segmentation.

1 loU 0.9113 0.9356
0.8 0.6555 0.6793
0.6 0.4616
0.4
0.2
0
PANnRet [18] MANet [19] Linker [20] PSP [21] UNet with
CBAM
uloU (Proposed)
Fig. 11 Visual bargraph of loU comparison results
995 Accuracy %
99
98.5
08 97.8
97.3 97.3
97.5 97
97
v B
96
PANnNet [18] MANet [19] Linker [20] PSP [21] UNet with
CBAM
 Accuracy (Proposed)

Fig. 12 Visual bar graph of accuracy comparison results
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Table 4. Accuracy comparison of the proposed method with the existing methods

Methodology Accuracy
PANnet [18] 97.0
MANet [19] 97.3
Linker [20] 97.3
PSP [21] 97.8
UNet with CBAM (Proposed) 99.0

Table 5. Statistical summary of model performance (Mean, Standard Deviation, and Confidence Interval for loU and Accuracy)

Metric Mean SD Cl Lower | Cl Upper
Mean loU 0.914214 | 0.123806 | 0.894883 | 0.933545
Mean Accuracy | 0.981289 | 0.030575 | 0.976515 | 0.986062

Table 5 shows the statistical summary of the proposed
model’s performance. The Mean reflects the average
performance of the model for the Intersection over Union
(loU) and Accuracy metrics, offering a general sense of how
well the model is performing. The Standard Deviation (SD),
on the other hand, measures the variability or spread of the
values, indicating the degree of consistency in the model’s
predictions across different test images. Lastly, the
Confidence Interval (CI) provides a range within which the
true Mean is expected to fall, helping to quantify the
uncertainty of the estimates and ensuring the reliability of
the results.

Statistical validation was performed using per-image
loU and pixel accuracy scores across the test set. The

proposed CBAM-Enhanced U-Net achieved a mean loU of
0.9356 with a standard deviation computed from all test
predictions, and a corresponding 95% confidence interval
based on p£1.969 / N Error-bar analysis demonstrated low

variance across cases, indicating stable and consistent
segmentation performance. Furthermore, paired t-tests were
conducted between the proposed model and baseline models
(PANet, MANet, LinkNet, PSPNet) using per-image loU
values. The improvements over PANet, MANet, and
LinkNet were statistically significant (p < 0.001), while the
improvement over PSPNet remained significant at p < 0.05.
These results confirm that the proposed model not only
achieves superior mean performance but also demonstrates
statistically reliable improvements across the dataset.

Table 6. Quantitative analysis of performance metrics

Relative Average
Dice Volumetric Volume Symmetric Mean Surface
Model Coefficient Overlap Error Difference Surface Distance
(%) (VOE) (%) (RVD) (%) Distance (MSD)
: (ASSD)
ngz‘fd 47.89+43.08 | 56.67+42.30 | 34.50+90.00 | 111.62+80.03 | 47.17 +43.97
PSPNet 21.42 +39.13 79.50 + 38.92 24.00+82.00 | 153.42 £68.57 | 79.90 +68.45
PAN 52.44 + 44.29 51.61+43.13 10 £ 22.00 87.34 + 87.46 30.65+52.11
MANet 52.50 + 49.94 47.50 £49.94 100.00 + 0.00 82.16 £ 91.62 28.35 +50.69
LINKNet 52.50 + 49.94 47.50 £49.94 100.00 + 0.00 81.24 +90.47 27.43+49.41
The performance of five models, including the Figure 13 presents a detailed comparative analysis of

Proposed Model, PSPNet, PAN, MANet, and LINKNet, is
represented in Table 4. The dice coefficient, volume over
error, volume loss due to error, average symmetric surface
distance, and mean surface distance are considered as
criteria for evaluating performance. The highest dice
coefficient of the proposed model, combined with its small
volume of error and minimal loss of volume due to error,
indicates that the proposed method achieves more accurate
segmentation and better overlap than other models. PSPNet
shows larger VOE and MSD, PAN and MANet yield
comparable but moderate ASSD and MSD. In most metrics,
LINKNet and MANet have similar performances, i.e., high
accuracy and moderately low surface distances. The
Proposed Model demonstrates overall fine performance
with small error bounds in all metrics.
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the performance metrics of various segmentation models:
the proposed model, PSPNet, PAN, MANet, and LINKNet.
For each metric, we used bar plots representing the standard
deviation error bars, which described the spread of results
across models. (a) Dice Coefficient- The Proposed model
performs best, PAN and MA Net follow closely behind,
while PSPNet and LI NKNet assert the lowest scores. (b)
Volumetric Overlap Error (VOE): The Proposed model still
outperforms all the models; however, in VOE terms,
PSPNet has the least VOE, indicating better overlap. (c)
Relative Volume Difference (RVD) has high values for the
Proposed and PSPNet models, whereas MANet and
LINKNet have low RVD, indicating better volume-based
compatibility. (d) Average Symmetric Surface Distance
(ASSD): This shows that the surfaces found by the



collection of winning models have higher accuracy
compared to any other model, whereas Planer-Attention Net
lies at the 4th position, being approximately as precise as the
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surface with the Selected. (4) Mean surface distance (MSD):
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Dice Coefficient

i.e., the smaller the better; PSPNet has the best performance,
followed by Proposed and PAN similarly, while MANet and
LINKNet perform poorly.
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Fig. 13 Comparative analysis of performance metrics: (a) Dice Coefficient, (b) VOE, (c) RVD, (d) ASSD, and (e) MSD.
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Fig. 14 Comparative analysis of training loss vs No. of epochs
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Validation Loss per Epoch
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Fig. 15 Comparative analysis of validation loss vs No. of epochs
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Fig. 16 Comparative analysis of train miou vs No. of epochs
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Fig. 17 Comparative analysis of validation miou vs No. of epochs
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Validation Accuracy per Epoch
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Fig. 19 Comparative analysis of validation accuracy vs No. of epochs

Figures 14 to 19 present the comparisons of the
proposed model and five other segmentation models
(PSPNet, PAN, MANet, and LINKNet) in terms of
evaluation results during training and validation in 10
epochs. These figures illustrate the train accuracy,
validation accuracy, and validation mloU per epoch. It
shows the convergence of the models in terms of accuracy,
where the Proposed model shows the highest training
accuracy and minimal variations on validation from epoch
to epoch. In contrast, models like MANet have much
variation in validation accuracy and mloU. These figures
also show the comparison of train loss, validation loss, and
train mloU between models and epochs. The Proposed
model consistently maintains low training and validation
losses, showing a steady increase in train mloU. In contrast,
LinkNet and PSPNet display more erratic behavior,
especially in their validation losses and train mloU scores.

7. Conclusion
The integrated U-Net architecture with the
Convolutional Block Attention Module (CBAM) and
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efficientNet-BO encoder is a well-performing model in
terms of improving liver tumor segmentation. CBAM was
introduced to realize dynamic attention refinement of the
model in both spatial and channel dimensions, allowing the
model to place more attention on the relevant tumor area
and inhibit background noise. With its powerful yet compact
architecture, EfficientNet-B0 is leveraged for hierarchical
feature extraction with compound scaling while ensuring
computational  efficiency and strong  segmentation
performance. Therefore, the novelty of the method creates
a very close connection between features and segmentation
to provide enhanced feature representation and
segmentation accuracy. The results obtained (Mean loU =
0.9356) significantly exceeded those of existing models,
including PSP (0.9113), Linker (0.6793), and PANnet
(0.4616), demonstrating high precision and reliability.
Overall, these results lay the groundwork for the future
application of the model to solve problems in medical
imaging relevant to diagnostic workflows, emphasizing the
scalability, generalizability, and importance of the model in
the context of liver tumor analysis.
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