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Abstract - Liver Tumor Segmentation in CT images is an essential step in the medical imaging process, which is generally 

difficult due to the variability of tumor shapes, sizes, and ambiguous boundaries with healthy liver tissue. This paper 

proposes a new model that integrates the U-Net structure and Convolutional Block Attention Module along with 

EfficientNet-B0 to promote both segmentation performance and computational efficiency. Our proposed model is distinctive 
because it incorporates CBAM to recalibrate the spatial and channel-wise attention maps adaptively, focusing on the 

informative tumor regions for improved segmentation performance. EfficientNet-B0, an encoder backbone characterized by 

the compound scaling method and lightweight structure, is employed to enhance hierarchical feature extraction and 

computational efficiency. The model achieved a mean Intersection over Union (IoU) of 0.9356 on a public dataset. This 

result significantly outperforms strong previous methods, such as PSP (0.9113) and MANet (0.6555). Our findings show 

that the incorporation of attention modules with lightweight encoders is effective for precise liver tumor segmentation, and 

the proposed method has high potential for clinical applications. This paper paves the way for the potential of innovative 

and scalable diagnostics in the field of health care. 

Keywords - Liver Tumor Segmentation, U-Net, CBAM, EfficientNet-B0, Medical Imaging, IoU. 

1. Introduction 
The liver is an essential organ that is involved in a 

variety of biochemical functions, including metabolism, 

detoxification, and bile formation [1]. Disorders such as 

liver tumors can seriously affect liver function, which may 
endanger human health [2]. Hepatocellular Carcinoma 

(HCC) is one of the most prevalent and fatal liver 

neoplasms, accounting for a considerable proportion of all 

cancer-induced deaths globally. Therefore, early diagnosis 

and accurate localization of liver tumors are critical for the 

treatment and prognosis of the disease, prompting the use of 

more advanced detection and localization tools. Imaging 

techniques, such as Computed Tomography (CT) and 

Magnetic Resonance Imaging (MRI), are important for 

diagnosing liver tumors and have been commonly used in 

daily practice due to their ability to provide complete data 

regarding the location and spread of the lesion [3]. However, 
it remains a challenging task to interpret these images and 

segment the liver tumors [4], and the widely used manual 

segmentation method is time-consuming, error-prone, and 

relies on the radiologists’ experience. To address this, 

automated alternatives have been continuously studied.  

 

Despite advances in imaging and radiology, accurate 

liver tumor segmentation is still a challenging task, as 

tumors can vary widely in shape, size, position, and 

contrast across different imaging modalities [5]. In addition, 

in most images, the tumor margins are not well defined and 

are hard to contrast with the normal liver [6].  

These challenges underscore the importance of reliable 

and transferable segmentation techniques. Recent 

developments in the field of medical image analysis, 

particularly in the provision of automated diagnostic aids, 

could help reduce the workload of radiologists and improve 
the accuracy of tumor detection. The traditional image 

processing methods have been shown to be ineffective in 

fulfilling the complex procedure of liver tumor 

segmentation, which provides space for computational-

based solutions. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Deep learning, one of the AI’s subfields, has become an 

increasingly powerful method for analysing medical 

images. As described in the paper, deep learning models, 

such as Convolutional Neural Networks (CNNs) and their 

extensions, are able to learn hierarchical features directly 
from raw data, which compares favourably to traditional 

methods for segmentation [8]. Deep learning models have 

demonstrated good potential in learning very accurate 

representations from large databases, such as in liver 

tumour segmentation. This methodology is regarded as a 

comprehensive solution to the problem of liver tumor 

segmentation, which consequently results in improved 

diagnostic and therapeutic outcomes. 

 

In the past few years, many techniques have been 

developed to enhance liver tumor segmentation. Chuanfei 

Hu et al. [9] proposed an uncertainty-aware framework to 
conduct multiphase liver tumor segmentation. Through 

Dempster–Shafer Evidence Theory, this framework 

captures both segmentation and uncertainty with evidence 

parameterized by a Dirichlet distribution and directly 

estimates the reliability of results in multiphasic contrast-

enhanced CT images. The framework outperforms state-of-

the-art approaches, proving its robustness and allowing 

reliable performance in disturbed conditions. However, 

there is still research space on integrating the multi-

modality images analysis and developing the model 

robustness with respect to different clinical environments. 
 

Saumiya S et al. [10] introduced a joint learning-based 

multi-task model with the aim of automatic liver tumor 

segmentation and classification. This method introduces a 

multi-task deformable attention U-Net for segmentation, 

which uses an attention-based deformable module to 

capture varied tumor appearances. Finally, a DenseNet 

model is used for classification, and it improves precision, 

recall, F1-score, and classification accuracy, compared to 

single models. However, the adoption of this approach in 

heterogeneous datasets remains a challenging issue, 

particularly in clinical applications. 
 

Arifullah et al. [11] presented a two-stage process for 

histopathological image analysis with Whole Slide Images 

(WSIs). WSIs are processed by a modified U-Net for 

segmenting images, and patches are then extracted at 

multiple magnifications and used as input for a CNN for 

classification. The approach achieved better segmentation 

and classification performances by incorporating patch-

based frameworks. Nevertheless, its scalability and 

performance to handle large data sets with diverse tumor 

types need to be further studied. 
 

Yuanyuan Shui et al. [12] introduced a model that fuses 

richer hierarchical representations via the MFF module for 

multi-scale target detection. The edge semantics are further 

refined by the EI module, which is then finally employed for 

segmentation feature representations by the EG module. 

The proposed method outperformed existing state-of-the-

art methods, with a Dice index of 85.55% and a Jaccard 

index of 81.11% on the LiTs2017 dataset. Although this 

approach achieves high performance, it has not been fully 

optimized for multiphase CT imaging or real-time clinical 

implementation. 

 

Yilin You et al. [13] introduced the Parallel Graph 
Convolutional Network (PGC-Net), using contour-based 

parallel graph reasoning for fast, convenient liver tumor 

segmentation. The proposed framework employs a pre-

trained Pyramid Vision Transformer for multi-scale feature 

extraction. It adopts pixel-level parallel graph reasoning, 

mapping each pixel to a high-dimensional space to facilitate 

better segmentation. However, challenges of such a method 

in solving complex tumour structures and its effectiveness 

in big clinical patient cohorts are key research areas yet to 

be addressed. 

 

Raju Egala et al. [14] emphasized the capability of 
Deep Learning, especially CNNs, in improving diagnostic 

performance in the field of medical image interpretation. 

Recent improvements in DL methodologies, including new 

activation functions, optimization methods, and loss 

functions, have led to a considerable improvement in the 

abilities of CNNs, and they are a good tool for radiologists. 

However, the interpretability of deep learning models for 

medical image analysis and their integration into clinical 

workflows remains a topic that requires further 

investigation. 

 
Kai-Ni Wang et al. [15] proposed SBCNet, a dual-

branch architecture for liver tumor segmentation. The 

architecture consists of a tumor variation encoding module 

and a boundary enhancement module. The method shows 

comparable results to the state of the art on the LiTS 

dataset, demonstrating the value of the dual-branch model 

in segmenting a problem. However, it is not yet clear how 

this approach can be extended to diverse tumor types and 

how robust it will be to image artifacts across scanning 

protocols. 

 

Ali Mohammed Hendi et al. [16] proposed using a 
hybrid CNN+LSTM model for liver disease diagnosis and 

prognosis, which consists of CNNs and Long Short-Term 

Memory (LSTM) networks. This method is far superior to 

CNN, RNN, and LSTM models, achieving an accuracy of 

98.73% and robust metrics (precision, recall, F1-score, and 

AUC-ROC). However, the universal application of the 

model to the liver non-contrast imaging modalities and 

multi-center cohort still potentially exists as a study 

limitation. 

 

Recent contributions in liver segmentation have 
increasingly focused on the integration of attention 

mechanisms and EfficientNet backbones, highlighting 

improvements in segmentation accuracy and efficiency. 

One notable work is EAR-U-Net: EfficientNet and 

attention-based residual U-Net for automatic liver 

segmentation in CT [17]. This study leverages EfficientNet-

B4 as the encoder and integrates attention gates into the skip 

connections of a residual U-Net. The use of EfficientNet 

significantly improves feature extraction, while the attention 
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mechanism enables the model to focus on relevant regions 

of the liver, resulting in enhanced segmentation accuracy. 

This approach is highly relevant to our work, particularly 

when comparing your EfficientNet-B0 variant against a 

more advanced backbone, such as EfficientNet-B4. The 
paper [18] introduces a dual attention mechanism (both 

channel-wise and spatial attention) in a 3D U-Net 

architecture for liver segmentation. The attention 

mechanism refines the segmentation process by focusing on 

the most relevant features in both the spatial and channel 

dimensions. Although this work does not explicitly utilize 

EfficientNet, it presents an innovative application of 

attention that could complement or be incorporated into 

your attention-enhanced U-Net model. 

 

In 2025, a study by Limprapaipong et al. [19] used a 

Multi-Scale Attention Network (MA-Net) with cross-
branch feature fusion for tumor segmentation. While the 

main focus was on liver tumor segmentation in a different 

imaging modality (SPECT/CT), the approach incorporates 

EfficientNet-B6 as the backbone and utilizes attention for 

improved segmentation. This work is particularly valuable 

for comparison, as it explores how EfficientNet combined 

with attention mechanisms can be applied in a different 

context, demonstrating the versatility of this approach. 

These developments in deep learning and medical image 

analysis are increasingly breaking through the limits of 

automatic liver tumor segmentation, bringing great 
prospects for clinical diagnosis and treatment. Yet, several 

research efforts to date have not focused on multi-modality 

integration, strong evidence of model robustness through 

testing on multiple datasets, and real-time clinical 

application. This research aims to fill in these gaps by 

designing a hybrid deep learning architecture that combines 

U-Net and EfficientNet-B0 through the addition of 

attention mechanisms, such as CBAM, for feature extraction 

refinement. The overarching goals of this research are to 

enhance the sensitivity of liver tumor detection by 

developing a more robust, generalizable, and clinically 

deployable approach to liver tumor segmentation that 
increases diagnostic accuracy while addressing the 

limitations of current research. 

 

Although some new models have made some advances 

in liver tumor segmentation, it seems to be difficult to 

achieve a great balance of high accuracy and efficient 

calculation. Few care about incorporating dual-attention 

mechanisms or lightweight backbones for the resource-

limited scenarios. In this paper, we aim to fill this gap by 

proposing a new hybrid model that incorporates the 

Convolutional Block Attention Module (CBAM) into a U-
Net architecture, utilizing EfficientNet-B0 as the encoder. 

This novel combination further improves the precision and 

speed of the segmentation, and thus can be used for clinical 

use, particularly in real-time or resource-scarce conditions. 

 

2. Proposed Model 
Liver tumour segmentation refers to the process of 

precisely locating and isolating tumour regions found in 

medical images, for instance, CT scans. The segmentation 

in this work is done by the U-Net architecture. Semantic 

segmentation is the task of classifying each pixel in the 

input image; U-Net is a Convolutional Neural Network 

(CNN) architecture built for deep learning. The encoder-

decoder structure, skip connections, and fine-grained 
feature capturing enable the segmentation of tumors from 

the surrounding normal liver anatomy, making it an 

excellent U-Net model for medical image segmentation 

tasks. 

 

2.1. U-Net Architecture 

The U-Net architecture used in this project has a 

standard encoder-decoder architecture, more specifically 

illustrated in Figure 1. The input image passes through 

encoder layers for feature extraction; multiple 

convolutional and pooling layers follow this to consider 

spatial context and high-level features. After that, the 
decoder part, which reconstructs the segmentation map, 

follows, using transpose convolutions for up-sampling and 

a skip connection that concatenates the corresponding 

encoder features. These skip connections preserve spatial 

information lost due to downsampling, which increases the 

accuracy of segmentation. 

In this implementation, a U-Net is constructed via 

Segmentation Models Pytorch (SMP). Key components 

include: 

 Encoder: EfficientNet-B0 as the backbone network for 

our feature extraction, and pre-train the model on the 

ImageNet dataset to leverage transfer learning. 

 Decoder: Several layers of upsampling and 

convolutional blocks help the network reconstruct the 

output segmentation map progressively. 

 Attention Mechanism: Here, a custom attention layer 

enhances the segmentation map by highlighting key 

areas and eliminating undesired regions. The attention 

mechanism integrates into the output of the U-Net, 

enabling pixel-wise adjustment with a standard Conv2d 

layer followed by Sigmoid activation. 

 

This is designed for pixel-level binary classification 

(e.g., cancerous vs. non-cancerous tissue), producing a 

segmentation map of the same size as the input image. 

 
Fig. 1 U-Net Architecture with CBAM Integration 
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The diagram shows the U-Net-based network 

architecture modified with Convolutional Block Attention 

Module (CBAM) for better segmentation. It is an encoder-

decoder style of architecture with its components and 

connections described in detail below: 

 Encoder Pathway: The encoder progressively reduces 

the spatial resolution of the input image while 

extracting features. The encoder has several levels of 

convolutional layers with the ReLU activation 

function, as well as a downsampling layer in the form 

of max-pooling. With the reduction in spatial size, the 

number of filters increases with each level to catch 

more complex features. 

 Attention Mechanism: The CBAM is integrated in a 

way that highlights its significant characteristics. 

Spatial and channel-wise attention is used so that the 
network focuses on significant areas and minimizes 

unnecessary background information. Such training 

refines the model’s attention towards high-resolution 

structures present in the input image. 

 Bottleneck: It connects the encoder and decoder paths 

through a central bottleneck block. It employs deeper 

Convolutional operations to detect high-level, abstract 

features and prepares the Feature maps for the up-

sampling stages. 

 Decoder Pathway: By performing up-sampling 

operations and connecting feature maps from the 

corresponding encoder levels through the skip 
connection, the decoder recovers the spatial resolution. 

These residual connections help carry spatial details 

from the encoder so that outputs, when reconstructing, 

maintain finer details and boundaries. 

 1x1 Convolution and SoftMax Activation: The last 

layer uses a 1x1 convolution to convert feature maps 

into the desired number of output classes (2 in this 

case). The final class probabilities are computed using 

a softmax activation function via multi-class 

segmentation for each pixel. 

 Visual Flow: The final structure facilitates the flow of 
low-level features from the early stages of the encoder 

and high-level abstract features from the bottleneck. 

Together with CBAM modules, this gives a very 

intuitive perspective of the CAPCA base network 

design, enhancing its ability to accurately segment 

complex structures as applicable in the case of medical 

image analysis, etc. 

 
Fig. 2 CBAM Architecture 

The Convolutional Block Attention Module (CBAM) 

refines features through two attention mechanisms, channel 

attention and spatial attention, in sequence. The channel 

attention module calculates the correlation between each 

channel, allowing the relevant feature maps to receive 

greater prominence. 

The high-level refined features are subsequently 

forwarded to the spatial attention module, which 

emphasizes more spatially significant areas via the spatial 

attention map by highlighting decisive zones in the feature 

map. Both outputs are then element-wise multiplied by 
input features to yield a refined feature representation. 

CBAM utilizes attention in a sequential manner that helps 

the model focus on rare and process features of information, 

promoting an enhancement in performance while returning 

minimal characteristics. 

 

2.2. U-Net with CBAM  

The implementation proposed a U-Net model with a 

Convolutional Block Attention Module (CBAM) for 

improving segmentation accuracy. It is an attention method 

that gradually applies both spatial and channel attention to 

boost received feature maps adaptively. CBAM effectively 
improves feature representation and segmentation output by 

minimizing irrelevant details while emphasizing the 

dominant regions. The CBAM is easily integrated into the 

decoder blocks of the U-Net. First, global pooling is 

combined with a learnable transformation to assign channel 

attention to the informative channels of the feature map. 

Next, spatial attention further refines the spatial focus 

through an independent convolutional operation. This pair 

of attention metrics guides the U-Net in concentrating on 

cancerous areas while retaining delicate details. As 

demonstrated, CBAMU-Net improved the localization of 
small and non-uniform tumor regions, which were the most 

challenging in terms of tumor morphology variability when 

incorporated within a U-Net. This high segmentation 

accuracy, validated through Dice and IoU metrics, confirms 

the model’s efficiency for liver tumor segmentation tasks. 

 

2.3. EfficientNetB0 Encoder  

In this U-Net implementation, EfficientNet-B0 is 

utilized as the encoder and acts as a strong feature extraction 

backbone. It utilizes a compound scaling method to 

effectively balance the depth, width, and resolution of the 

network while achieving performance with significantly 
fewer parameters. EfficientNet-B0, pre-trained on 

ImageNet, encapsulates the pixels’ texture and maintains 

the high-level information necessary for liver tumors 

segmentation. 

 
Fig. 3 EfficientNetB0 model 

2.3.1. Key Architectural Innovations 

In working towards a better balance of accuracy and 

efficiency in models, EfficientNet-B0 employs a unique 
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design that compounds the scaling of the model. Key 

features include: 

 

MBConv Blocks (Mobile Inverted Bottleneck Convolutions) 

 These blocks enhance computational efficiency by 
using depth-wise separable convolutions and 

bottleneck layers. 

 This is one way of recalibration of feature channels, 

which allows a network to focus on more important 

features using the Squeeze-and-Excitation (SE) 

mechanism. In medical imaging, where things like 

tumor edges are important, this is particularly 

important. 

 Depth-wise separable convolutions eliminate redundant 

computation while retaining performance, yielding a 

faster and lighter model. 
 

Compound Scaling 

 It scales them jointly and consistently to ensure their 

features are captured in all levels of detail, and the 

efficiency of those passed features is kept constant. 

 This scaling is particularly important in liver tumor 

segmentation as it allows for high-resolution CT 

images to be processed efficiently without the need for 

extremely expensive computational resources. 

 

Pretrained Weights 

 EfficientNet-B0 leverages learned feature 

representations from models trained on the ImageNet 

challenge, providing feature representations associated 

with general textures and patterns, enabling faster 

training and better convergence on medical datasets, for 

example, liver CT scans. 

 

3. Visualization and Integration 
For illustration, EfficientNet-B0 can be seen as the 

encoder backbone in a U-Net, where it extracts hierarchical 

features as its layers. Here is what the integration looks 

like: 

 Low-level features like edges, textures, and structures 

provide the necessary details to differentiate the tumor 

tissues. 

 To Abstract Features such as shapes and structures to 

help recognize the unusual tumor borders. 

 Find very abstract, high-level features that encode the 
big picture, for example, the tumor location in the 

context of liver anatomy. 

 

In the U-Net encoder-decoder framework: 

 The encoder uses EfficientNet-B0 in place of traditional 

convolutional layers. 

 Its feature maps are passed to the decoder via skip 

connections, thus retaining adequate spatial 

information for accurate segmentation. 

 

4. Performance Metrics 
Adopting EfficientNet-B0 as the encoder backbone 

comes with its own quantifiable benefits with respect to 

liver tumor segmentation: 

 The EfficientNet-B0 captures both low-level and high-

level features more effectively than simpler 

architectures. As a result, this leads to better 

segmentation metrics, such as the Dice Similarity 

Coefficient (DSC) and Intersection over Union (IoU). 

 EfficientNet-B0 is a CNN-based architecture that is 

both highly compact and efficient, with an extremely 

low number of parameters and computations required. 

This makes it perform well with relatively small 

datasets and can be run on lower-end hardware. 

 EfficientNet-B0 has been shown to outperform similar 

automatic encoders for medical datasets in 

segmentation accuracy, e.g., in fine-grained anatomy 

for techniques that require maximum recall (sensitivity) 

to detect tiny or malformed regions (e.g., liver tumors). 

 Building the EfficientNet-B0 lightweight architecture 
enables the implementation of the diagnostic at 

resource-limited locations , such as hospitals with 

limited computing power, without compromising 

diagnostic quality. 

 

5. Proposed Method 
 Conv2d Layer: A core building block of convolutional 

neural networks, Conv2d layers apply convolutional 

filters to input data (e.g., images) to extract meaningful 

representations. This function means a matrix is slid 

across the data, and each element is multiplied in a dot 

product and added up to return an aggregated result. 

Those filters are learnable parameters that are 
optimized during training. The Conv2d Layer allows 

the network to find patterns like edges, textures, or 

shapes in the data. Being capable of capturing spatial 

hierarchies, this layer lays the groundwork for image-

based deep learning architectures. In this architecture, 

there are multiple applications for feature refinement at 

each stage. 

 MaxPooling2d Layer: This is a MaxPooling2d Layer, 

which helps down-sample feature maps to decrease 

their spatial dimension while retaining the most 

pronounced features. This slides a pooling window 

(2x2, for instance) across the input and picks the 
maximum value from the area covered by this window. 

This layer further reduces computational complexity 

and prevents overfitting by introducing a certain level 

of translation invariance. This allows it to learn faster 
in deeper layers by focusing on the most dominant 

features. 

 Upsampling2d Layer: The upsampling2d Layer is part 

of the decoder end of the network to raise the spatial 

resolution of the feature maps. The segmentation map 

is reconstructed to the original image size either by 

finding intermediate pixel values or by filling cutoff 
pixels. It collaborates closely with the Conv2d layers to 

refine features and preserve fine-grained details during 

reconstruction. 

 MBConv Blocks Layer: This modified U-Net design 

uses the MBConv Blocks Layer as the foundational 

buildup, reinforced from EfficientNet’s architecture. 

These blocks leverage  depth-wise separable 
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convolutions, which help in reducing computational 

overhead while obtaining high accuracy. One of them 

is the Squeeze and Excitation (SE) mechanism that 

readjusts the channel-wise feature responses in a way 

that the network can focus on the important features. 
This architecture replaces skip connections with 

MBConv blocks to enhance feature representation and 

adaptivity. 

 EfficientNet-B0 Layer: The EfficientNet-B0 Layer is 

used for encoding the backbone of this U-Net 

implementation. This architecture employs a compound 

scaling method to evenly scale the depth, width, and 

resolution of the network, thereby finding the optimal 

balance between performance and computational cost. 

It learns hierarchical features, ranging from simple 

textures to complex patterns, which are crucial for 

segmenting liver tumor regions in CT scans. 
Lightweight architecture enables faster processing 

without compromising accuracy. 

 CBAM Layer: CBAM, which stands for Convolutional 

Block Attention Module, is an attention module added 

to the architecture. It sequentially applies channel 

attention and spatial attention, amplifying the emphasis 

of the feature map on the significant regions of the 

feature map. The proposed method incorporates 

channel attention, utilizing informative channels to 

provide attention, and refines spatial details, thereby 

enabling the network to achieve better distinction of the 
cancer area in the segmentation task. 

 Sigmoid Layer: The Sigmoid Layer is then used at the 

last part of the attention mechanism, when the feature 

map values are normalized between 0 and 1. This 

normalization enables pixel-wise weighting during 

segmentation, assigning larger weights to salient 

regions. The sigmoid activation ensures that the outputs 

are bounded, which helps produce a more precise and 

accurate segmentation map. 

 

5.1. Optimization 
Optimization aims to minimize the error between 

predicted segmentation maps and ground truth. This is 

achieved by iteratively updating the network’s parameters 

using gradients calculated through backpropagation. The 

optimizer used in this implementation can be represented 

mathematically as follows: 

5.1.1. Parameter Update Rule (e.g., Adam Optimizer): 

𝜃𝑡 = 𝜃𝑡−1 − 𝜂.
𝜕𝐿

𝜕𝜃
 

Where: 

 𝜃𝑡: Parameter values at iteration 𝑡. 

 𝜂: Learning rate. 

 
𝜕𝐿

𝜕𝜃
: Gradient of the loss function L with respect to the 

parameters θ. 

Adam introduces momentum-based updates: 

𝑚𝑡 = 𝛽1 . 𝑚𝑡−1 + (1 − 𝛽1).
𝜕𝐿

𝜕𝜃
 

Where: 

 𝑚𝑡: Current first moment (exponentially weighted 

average of gradients). 

 𝑚𝑡−1: Previous first moment estimate. 

 (1 − 𝛽1): Weight for the current gradient’s 

contribution. 

 
𝜕𝐿

𝜕𝜃
: Current gradient of the loss with respect to 

parameters. 

𝑣𝑡 = 𝛽2. 𝑣𝑡−1 + (1 − 𝛽2). (
𝜕𝐿

𝜕𝜃
)

2

 

Where: 

 𝑣𝑡: Current second moment estimate (exponentially 

weighted average of the squared gradients). 

 𝑣𝑡−1: Previous second moment estimate. 

 (1 − 𝛽2): Weight for the contribution of the current 

squared gradient. 

 (
𝜕𝐿

𝜕𝜃
)

2

: Square of the current gradient of the loss with 

respect to parameters. 

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 , 𝑣𝑡̂ =

𝑣𝑡

1 − 𝛽2
𝑡 

Where:  

 𝑚̂𝑡: Bias-corrected first moment estimate (adjusts 𝑚𝑡 

To account for initialization bias. 

 𝑣𝑡̂: Bias-corrected second moment estimate (adjusts 𝑣𝑡 

For initialization bias. 

 𝑣𝑡: Current second moment estimate (moving average 

of squared gradients). 

 𝑚𝑡: Current first moment estimate (moving average of 

gradients). 

 𝛽1
𝑡: Exponential decay of 𝛽1raised to the current time 

step t, reflecting how the first moment weights decrease 

over iterations. 

 𝛽2
𝑡: Exponential decay of 𝛽2 raised to the current time 

step t, reflecting how the second moment weights 

decrease over iterations. 

 1 − 𝛽1
𝑡  𝑎𝑛𝑑 1 − 𝛽2

𝑡: Correction terms to normalize the 

moments, preventing them from being biased toward 

zero in early iterations. 

𝜃𝑡 = 𝜃𝑡−1 − 𝜂.
𝑚̂𝑡

√𝑣𝑡̂+∈
 

Where:  

𝜃𝑡: The parameter value at time step ttt (after the update). 

𝜃𝑡−1: The parameter value at the previous time step𝑡 − 1. 

𝜂:The learning rate, which controls the size of the update 

step. 

𝑚̂𝑡: The first moment estimate at time step t.This typically 

represents the moving average of the gradient up to time step 

t. 

𝑣𝑡̂: The second moment estimate at time step t. This is often 

the moving 

 

Where 𝛽1 and 𝛽2 are exponential decay rates for 

momentum and variance, respectively. 
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5.1.2. Loss Function 

For semantic segmentation, a common choice is the 

Dice Loss or a combination of Binary Cross-Entropy (BCE) 

and Dice Loss for class imbalance. 

Binary Cross-Entropy (BCE) Loss 

𝐵𝐶𝐸 𝐿𝑜𝑠𝑠 = −
1

𝑁
∑[𝑦𝑖𝑙𝑜𝑔(𝑦̂𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 −

𝑁

𝑖=1

𝑦̂𝑖)] 

Where 

 𝑦𝑖: Ground truth label for pixel 𝑖(0 or 1). 

 𝑦̂𝑖: Predicted probability for pixel i. 

 𝑁: Total number of pixels. 

5.1.3. Dice Loss 

𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 =  1 −
2 ∑ 𝑦𝑖𝑦̂𝑖

𝑁
𝑖=1

∑ 𝑦𝑖 + ∑ 𝑦̂𝑁
𝑖=1 +∈𝑁

𝑖=1

 

Where ∈is a small constant added to avoid division by zero. 

5.1.4. Combined Loss Function 

Combining BCE Loss and Dice Loss provides better 

performance for imbalanced datasets: 

𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠 = 𝛼 ⋅ 𝐵𝐶𝐸 𝐿𝑜𝑠𝑠 + (1 − 𝛼)
⋅ 𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 

Where 𝛼is a weight balancing the two losses. 

Algorithm 1: UNet with Attention for Liver Tumor 

Segmentation 

 

Step1: Initialization 

The model is initialized using parameters: 

 encoder_name: Encoder backbone (e.g., 

efficientnet-b0). 

 encoder_weights: Pre-trained weights for the 

encoder. 

 Classes: Number of output segmentation classes 

(e.g., 2 for binary segmentation). 

 Activation: Activation function applied to 
output. 

 encoder_depth and decoder_channels: Define 

the depth and channel dimensions of the U-Net. 

 

Step 2: Forward Pass 

The forward pass includes: 

 U-Net Base Processing: 

o The input tensor x is passed through the 

encoder-decoder architecture of U-Net, 

producing 𝑓(𝑥), the segmentation logits. 

𝑓(𝑥) =U−Net(x) 

 Attention Mechanism: 

o A 1x1 convolutional layer with sigmoid 

activation is applied to𝑓(𝑥), producing the 

attention map A(𝑥). 
𝐴(𝑥) = 𝜎(𝑊 ∗ 𝑓(𝑥) + 𝑏) 

Here: - W and b are the weights and bias of the 1x1 

convolution. - σ is the sigmoid activation function. - ∗ 

denotes convolution. 

 Element-wise Multiplication: 

 The attention map 𝐴(𝑥) is element-wise 

multiplied with the U-Net output f(x), yielding 

the final weighted output 𝑂(𝑥). 
𝑂(𝑥) = 𝑓(𝑥) ⊙ 𝐴(𝑥) 

Here: -⊙ is the element-wise multiplication. 

 
Step3: Output 

The final output𝑂(𝑥) is a refined segmentation map with 

enhanced focus on relevant regions. 
 

5.2. Attention Layer Role 

 The attention mechanism enhances segmentation 

accuracy by focusing on regions of interest (e.g., tumor 

areas) and suppressing irrelevant regions. 

 The 1x1 convolution aligns the attention mechanism 

with the number of output classes, ensuring pixel-wise 

weighting. 
 

5.3. Application in Liver Tumor Segmentation 

For liver tumor CT image segmentation, this algorithm: 

1. Encodes high-level features using a pre-trained 

EfficientNet-B0. 

2. Decodes these features to reconstruct the segmentation 

map with spatial detail via skip connections. 

3. Utilizes an attention mechanism to filter the 

segmentation output. 
 

In this Proposed Model, we utilize a combined 

architecture of the U-Net framework and the Convolutional 
Block Attention Module (CBAM) to achieve better liver 

tumor segmentation. The central modification is to 

incorporate CBAM into the U-Net structure, which provides 

a spatial and channel-wise independent attention process. 

By introducing CBAM within decoder blocks, the model 

can focus on the relevant features while suppressing 

irrelevant noise to predict precise tumor boundaries.  
 

Specifically, the encoder consists of EfficientNet-B0, 

which utilizes “compound scaling” and MBConv blocks to 

extract hierarchical features while maintaining high 

accuracy with lower computational costs. Such an 

innovative approach enables a fine-grained segmentation 

output that is computationally efficient and accounts for the 
tumor variability regarding size, shape, and nondistinct 

margin. 
 

The innovation of the suggested model is to incorporate 

CBAM and a series of its modules (EfficientNet-B0) in the 

U-Net to generate an attention-based and lightweight 

segmentation process. In the model, unlike existing 

methods, feature maps are iteratively refined at both the 

spatial and channel level, resulting in gradual performance 

improvement in segmentation scores, such as Dice 

similarity and IoU.  
 

In addition, this model utilizes the EfficientNet-B0 

backbone encoder, which provides more efficient features 

for representational purposes and fewer computations, 

making it particularly useful in scenarios where 
computational resources are limited. Our method 
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demonstrates superior performance compared to the current 

state-of-the-art in terms of accuracy. It provides a scalable 

and robust framework for medical image segmentation, 

marking a significant step forward in clinical diagnostics, 

particularly for the detection and treatment of liver tumors. 
 

6. Experimental Results 
This subsection describes the results obtained from the 

proposed approach, which is constantly carried out in 

ongoing simulations. The dataset used to perform these 

simulations is the Data Unet [20]. For this study, we applied 

the data processing techniques described here to this dataset. 

6.1. Dataset Characteristics 

The experiments in this study were conducted using the 

publicly available Data-UNet liver CT dataset (Kaggle) 

[20], consisting of paired axial CT slices and corresponding 
binary tumor masks. 

 

Each sample contains: 

 Input Modality: Contrast-enhanced abdominal CT scan 

 Resolution: Images vary in size but are standardized 

during preprocessing 

 Mask format: Binary (0 = background, 1 = tumor) 

 Annotation style: Pixel-wise ground truth prepared by 

clinical experts 

 Content properties: 

 High anatomical complexity 

 Tumors with irregular shapes, low contrast 

boundaries, and heterogeneous textures 

 

The dataset provides a sufficiently diverse collection of 

CT slices to study segmentation behavior across various 

tumor sizes and shapes. 

The data set includes the following: 

 Images 

 Mask 

The sample images of the dataset are shown in Figure 4. 

 
(a) -Image 

 
(b)- Mask 

 

 
(c)- Image 

 
(d)- Mas 

 
(e)- Image 

 
(f) - Mask 

Fig. 4 Sample Images in the Dataset 

 
6.2. Preprocessing Steps 

All preprocessing operations strictly followed the steps 

implemented in the training pipeline: 

 
6.2.1. Image Normalization 

 Images are converted to RGB. 

 Normalized using ImageNet statistics: 

mean=[0.485,0.456,0.406],std=[0.229,0.224,0.225] 

 
6.2.2. Mask Binarization 

Mask images are thresholded at intensity 70 to create 

binary segmentation labels: 

 

𝑀(𝑥, 𝑦) = {
1,    𝑖𝑓 𝑚𝑎𝑠𝑘 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ≥ 70
0,                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑎𝑠𝑒

 

6.2.3. Data Augmentation 

To improve generalization and reduce overfitting, 

multiple augmentations were applied: 

 Resizing to 704×1056 

 Horizontal & vertical flips 

 Grid distortion 

 Random brightness & contrast adjustment 

 Gaussian noise 

 
Augmentations were applied only to the training set. 

6.2.4. Standardization of Input 

Finally, images are converted into PyTorch tensors and 

normalized before being passed to the model. 

 
6.3. Subject-Level and Dataset Split 

The dataset was split into training, validation, and test 
sets following the structure implemented in the code: 

 Training set – 76.5% 

 Validation set – 13.5% 

 Test set – 10% 

 
Since the dataset is de-identified and publicly 

accessible, no patient-specific information is included, and 

no additional ethical approval was required.   

 
The study adheres to responsible AI principles, 

ensuring that all experiments are conducted solely for 

research purposes and not for clinical decision-making or 

treatment. Table 1 reports the Detailed Training 

Configuration for the Liver Tumor Segmentation Model. 
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Table 1. Detailed training configuration for proposed model 

Parameter Value 

Epochs 10 

Optimizer 
AdamW (Adaptive Moment 

Estimation with Weight Decay) 

Learning Rate Maximum Learning Rate: 1e-3 

Learning Rate 

Scheduler 

OneCycleLR (dynamic 

adjustment during training) 

Batch Size 3 

Train Data 

Augmentation 
- Resize to (704, 1056) 

 - Horizontal Flip, Vertical Flip 
 - Grid Distortion (p=0.2) 

 - Random Brightness/Contrast 

(0 to 0.5) 
 - Gaussian Noise 

Validation Data 

Augmentation 
- Resize to (704, 1056) 

 
- Horizontal Flip  
- Grid Distortion (p=0.2) 

Loss Function CrossEntropyLoss (for multi-

class segmentation) 

Loss Function 

Balancing 

No explicit class weight 

balancing (can be added if class 

imbalance exists) 

Metrics - Mean Intersection over Union 

(IoU)  
- Pixel Accuracy 

 

 
Fig. 5 Training and Validation loss trend over epochs 

The loss curves shown in Figure 5 correspond to the 

loss of the model in the training and validation datasets for 

each epoch and provide insight into how well our model is 

learning. The loss on the training set decreases sharply in the 

first few epochs, indicating that the model parameters are 

being rapidly learned and optimized. The decreasing trend 

in the validation loss suggests that the model can generalize 

to unseen data effectively. Both losses remain stable and 

converge, indicating that the model has reached maximal 

efficiency with little to no overfitting, as epochs continue. 

Such behaviors further corroborate the strength and 
efficacy of the proposed approach in learning meaningful 

representations for liver tumor segmentation. 

 
Fig. 6 Mean Intersection Over Union (mIoU) per epoch for training 

and validation 

The average scores of Intersection over Union (mIoU) 

metrics, one of the most crucial metrics for evaluating 

segmentation performance, for both training and validation 

datasets over epochs, are illustrated in Figure 6. As we can 

see, the initial mIoU rises sharply as the model quickly 

learns the training data. The validation mIoU chart follows 

a similar trend with minor variations, confirming the 

model’s good generalization to untrained data.  

 
Both metrics improve steadily and converge with each 

other. On validation, mIoU closely approaches the training 

mIoU as the epochs progress. This convergence suggests a 

good ability of the model to segment liver tumor areas 

correctly, confirming its robustness and minimal overfitting. 

The increase in both metrics indicates that the model 

continues to learn and improve across the training iterations. 

 
Fig. 7 Training and validation accuracy per epoch 

The accuracy plot in Figure 7 shows how the model is 
learning over epochs to gather better evidence and can 

correctly classify more segmentation pixels on both the 

training and validation sets. In the first few epochs, the 

training accuracy increases rapidly, indicating that the 

model is learning from the data efficiently. The validation 

accuracy exhibits a similar trajectory, demonstrating 

generalization to new data. Both these accuracies stabilize 
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and converge to a high level around 98% during training, 

indicating that our model is trustworthy with no significant 

overfitting. The fact that both the accuracy curves (training 

accuracy and validation accuracy) lay together confirms the 

strong robustness of the model learning meaningful patterns 
and achieving high generalization. The consistent 

performance shown here confirms the applicability of the 

proposed method for liver tumor segmentation tasks. 

Table 2. Inference-time performance metrics for the proposed model 

Metric Value 

Parameter Count 6.25 Million 

FLOPs 57.687 GFLOPs 

Average Inference Time 

(per image) 
41.37 ms 

Frames Per Second (FPS) 24.17 FPS 
 

The inference-time performance metrics for the liver 

tumor segmentation model are summarized as follows: the 

model has a parameter count of 6.25 million, which 

represents the total number of trainable parameters. It 

performs 57.687 GFLOPs (billion floating point operations) 

per inference, indicating the computational complexity of 

the model.  
 

The average inference time per image is 41.37 

milliseconds, demonstrating the speed at which the model 

processes individual images. Finally, the model achieves 
24.17 Frames Per Second (FPS), which indicates its ability 

to handle real-time applications, processing approximately 

24 images per second. These metrics highlight the model’s 

efficiency and suitability for deployment in practical, real-

time clinical settings. 
 

 
Fig. 8 Error-bar plot of the proposed model 

Figure 9 presents an image comparison, displaying the 

original CT scan images, both ground-truth segmentation 

maps, and the predicted segmentation maps obtained from 

the original U-Net model with the CBAM convolutional 

block attention module and EfficientNet-B0 as the encoder 

backbone.  
 

The figure displays three instances each (a, b, c) of the 

predicted segmentation closely matching the ground truth 

with mean Intersection over Union (mIoU) scores for 
quantitative assessment. The high mean Intersection over 

Union scores (0.95 and 0.92) indicate that the model was 

able to accurately delineate tumor regions, even when tumor 

sizes and shapes differed significantly. The results of this 

comparison are presented in the next section, demonstrating 

the effectiveness of the proposed method. 

 
(a) 

 
(b) 

 
(c) 

Fig. 9 Comparison of ground truth and predicted segmentation maps 

using U-Net with CBAM-EfficientNet-B0 

 
Fig. 10 Visualization of predicted segmentation mask applied on CT 

image 

As illustrated in Figure 10, we apply the predicted 
segmentation mask on a CT scan image, which is the area 

where the algorithm detects a tumor. And since this is hard 

to visualize, we overlay this mask on top of the original 

image, in a different color to contrast the image, so the 

segmented area is better visualized (in this case, the tumor). 

Since this is the output of the model, it gives a visual sense 

of confidence by isolating the cancerous region amidst the 

complex anatomical structures of the liver. These 

visualizations help validate the performance of the model, 

and also give an insight into how well the model can 

segment images when used in real-life scenarios in 

medicine. In this work, the two performance metrics are 
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considered, such as mean IoU and Accuracy, and the 

mathematical equations for these performance metrics are 

reported as follows:  

Per-class IoU: 

𝐼𝑜𝑈𝑐 =
∑ 1{𝑦̂𝑖 = 𝑐 ∧ 𝑦𝑖 = 𝑐} + 𝜀𝑁

𝑖=1

∑ 1{𝑦̂𝑖 = 𝑐 ∨ 𝑦𝑖 = 𝑐} + 𝜀𝑁
𝑖=1

 

Let 𝑆 = {𝑐| ∑ 1{𝑦𝑖 = 𝑐} > 0𝑖 }Be the set of classes that 

actually appear in the ground truth for that batch. Then: 

𝑚𝐼𝑜𝑈 =
1

|𝑆|
∑ 𝐼𝑜𝑈𝑐

𝑐𝜖𝑆

 

In this proposed work, softmaxes the logits, argmaxes 
to a hard mask, compares with the integer ground truth, and 

averages over pixels: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑁
∑ 1{𝑦̂𝑖 = 𝑦𝑖}

𝑁

𝑖=1

 

Where: model logits at pixel 𝑖: 𝑧𝑖,𝑘 for class 𝑘 ∈
{0, … … . . , 𝐶 − 1}(ℎ𝑒𝑟𝑒 𝐶 = 2) 

 Softmax:𝑝𝑖,𝑘 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖)𝑘  

 Hard prediction: 𝑦̂𝑖 ∈ {0, … . 𝐶 − 1} 

 1[.] is the indicator: N is the total Pixels 

 Small constant 𝜀 = 10−10. 

Table 3. Comparative analysis 

Methodology mIoU 

PANnet [21] 0.4616 

MANet [22] 0.6555 

Linker [23] 0.6793 

PSP [24] 0.9113 

UNet with CBAM (Proposed) 0.9356 

 

In particular, Table 3 presents a comparative 

performance analysis of the proposed U-Net with CBAM 

alongside state-of-the-art techniques for segmentation 

approaches, evaluating their predicted outputs and IoU 
scores. The proposed method outperforms all other listed 

models (PANnet: 0.4616, MANet: 0.6555, Linker: 0.6793, 

PSP: 0.9113) with an IoU of 0.9356. Thus, this demonstrates 

that the features associated with the integration of U-Net 

with Convolutional Block Attention Module (CBAM) 

enable a better focus on important regions and result in a 

more detailed feature description. Results demonstrate that 

the proposed method is a robust and accurate approach for 

complex segmentation problems such as liver tumor 

segmentation.

 

Fig. 11 Visual bargraph of IoU comparison results 

 

Fig. 12 Visual bar graph of accuracy comparison results 
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Table 4. Accuracy comparison of the proposed method with the existing methods 
Methodology Accuracy 

PANnet [18] 97.0 

MANet [19] 97.3 

Linker [20] 97.3 

PSP [21] 97.8 

UNet with CBAM (Proposed) 99.0 

 
Table 5. Statistical summary of model performance (Mean, Standard Deviation, and Confidence Interval for IoU and Accuracy) 

Metric Mean SD CI Lower CI Upper 

Mean IoU 0.914214 0.123806 0.894883 0.933545 

Mean Accuracy 0.981289 0.030575 0.976515 0.986062 

Table 5 shows the statistical summary of the proposed 

model’s performance. The Mean reflects the average 

performance of the model for the Intersection over Union 

(IoU) and Accuracy metrics, offering a general sense of how 
well the model is performing. The Standard Deviation (SD), 

on the other hand, measures the variability or spread of the 

values, indicating the degree of consistency in the model’s 

predictions across different test images. Lastly, the 

Confidence Interval (CI) provides a range within which the 

true Mean is expected to fall, helping to quantify the 

uncertainty of the estimates and ensuring the reliability of 

the results. 

 

Statistical validation was performed using per-image 

IoU and pixel accuracy scores across the test set. The 

proposed CBAM-Enhanced U-Net achieved a mean IoU of 

0.9356 with a standard deviation computed from all test 

predictions, and a corresponding 95% confidence interval 

based on μ±1.96𝜎
√𝑛⁄ . Error-bar analysis demonstrated low 

variance across cases, indicating stable and consistent 

segmentation performance. Furthermore, paired t-tests were 

conducted between the proposed model and baseline models 

(PANet, MANet, LinkNet, PSPNet) using per-image IoU 

values. The improvements over PANet, MANet, and 

LinkNet were statistically significant (p < 0.001), while the 

improvement over PSPNet remained significant at p < 0.05. 

These results confirm that the proposed model not only 

achieves superior mean performance but also demonstrates 

statistically reliable improvements across the dataset. 

 

Table 6. Quantitative analysis of performance metrics 

Model 

Dice 

Coefficient 

(%) 

Volumetric 

Overlap Error 

(VOE) (%) 

Relative 

Volume 

Difference 

(RVD) (%) 

Average 

Symmetric 

Surface 

Distance 

(ASSD) 

Mean Surface 

Distance 

(MSD) 

Proposed 

Model 
47.89 ± 43.08 56.67 ± 42.30 34.50 ± 90.00 111.62 ± 80.03 47.17 ± 43.97 

PSPNet 21.42 ± 39.13 79.50 ± 38.92 24.00 ± 82.00 153.42 ± 68.57 79.90 ± 68.45 

PAN 52.44 ± 44.29 51.61 ± 43.13 10 ± 22.00 87.34 ± 87.46 30.65 ± 52.11 

MANet 52.50 ± 49.94 47.50 ± 49.94 100.00 ± 0.00 82.16 ± 91.62 28.35 ± 50.69 

LINKNet 52.50 ± 49.94 47.50 ± 49.94 100.00 ± 0.00 81.24 ± 90.47 27.43 ± 49.41 

The performance of five models, including the 

Proposed Model, PSPNet, PAN, MANet, and LINKNet, is 

represented in Table 4. The dice coefficient, volume over 

error, volume loss due to error, average symmetric surface 

distance, and mean surface distance are considered as 

criteria for evaluating performance. The highest dice 
coefficient of the proposed model, combined with its small 

volume of error and minimal loss of volume due to error, 

indicates that the proposed method achieves more accurate 

segmentation and better overlap than other models. PSPNet 

shows larger VOE and MSD, PAN and MANet yield 

comparable but moderate ASSD and MSD. In most metrics, 

LINKNet and MANet have similar performances, i.e., high 

accuracy and moderately low surface distances. The 

Proposed Model demonstrates overall fine performance 

with small error bounds in all metrics. 

Figure 13 presents a detailed comparative analysis of 

the performance metrics of various segmentation models: 

the proposed model, PSPNet, PAN, MANet, and LINKNet. 

For each metric, we used bar plots representing the standard 

deviation error bars, which described the spread of results 

across models. (a) Dice Coefficient- The Proposed model 
performs best, PAN and MA Net follow closely behind, 

while PSPNet and LI NKNet assert the lowest scores. (b) 

Volumetric Overlap Error (VOE): The Proposed model still 

outperforms all the models; however, in VOE terms, 

PSPNet has the least VOE, indicating better overlap. (c) 

Relative Volume Difference (RVD) has high values for the 

Proposed and PSPNet models, whereas MANet and 

LINKNet have low RVD, indicating better volume-based 

compatibility. (d) Average Symmetric Surface Distance 

(ASSD): This shows that the surfaces found by the 



B. Shashikanth & K. Sivani / IJECE, 12(12), 44-59, 2025 
 

56 

collection of winning models have higher accuracy 

compared to any other model, whereas Planer-Attention Net 

lies at the 4th position, being approximately as precise as the 

surface with the Selected. (4) Mean surface distance (MSD): 

i.e., the smaller the better; PSPNet has the best performance, 

followed by Proposed and PAN similarly, while MANet and 

LINKNet perform poorly. 

 

 
Fig. 13 Comparative analysis of performance metrics: (a) Dice Coefficient, (b) VOE, (c) RVD, (d) ASSD, and (e) MSD. 

 

 
Fig. 14 Comparative analysis of training loss vs No. of epochs 
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Fig. 15 Comparative analysis of validation loss vs No. of epochs 

 
Fig. 16 Comparative analysis of train miou vs No. of epochs 

 

 
Fig. 17 Comparative analysis of validation miou vs No. of epochs 
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Fig. 18 Comparative analysis of train accuracy vs No. of epochs 

 

 
Fig. 19 Comparative analysis of validation accuracy vs No. of epochs 

Figures 14 to 19 present the comparisons of the 

proposed model and five other segmentation models 

(PSPNet, PAN, MANet, and LINKNet) in terms of 

evaluation results during training and validation in 10 

epochs. These figures illustrate the train accuracy, 

validation accuracy, and validation mIoU per epoch. It 

shows the convergence of the models in terms of accuracy, 
where the Proposed model shows the highest training 

accuracy and minimal variations on validation from epoch 

to epoch. In contrast, models like MANet have much 

variation in validation accuracy and mIoU. These figures 

also show the comparison of train loss, validation loss, and 

train mIoU between models and epochs. The Proposed 

model consistently maintains low training and validation 

losses, showing a steady increase in train mIoU. In contrast, 

LinkNet and PSPNet display more erratic behavior, 

especially in their validation losses and train mIoU scores. 

 

7. Conclusion 
The integrated U-Net architecture with the 

Convolutional Block Attention Module (CBAM) and 

efficientNet-B0 encoder is a well-performing model in 

terms of improving liver tumor segmentation. CBAM was 

introduced to realize dynamic attention refinement of the 

model in both spatial and channel dimensions, allowing the 

model to place more attention on the relevant tumor area 

and inhibit background noise. With its powerful yet compact 

architecture, EfficientNet-B0 is leveraged for hierarchical 
feature extraction with compound scaling while ensuring 

computational efficiency and strong segmentation 

performance. Therefore, the novelty of the method creates 

a very close connection between features and segmentation 

to provide enhanced feature representation and 

segmentation accuracy. The results obtained (Mean IoU = 

0.9356) significantly exceeded those of existing models, 

including PSP (0.9113), Linker (0.6793), and PANnet 

(0.4616), demonstrating high precision and reliability. 

Overall, these results lay the groundwork for the future 

application of the model to solve problems in medical 
imaging relevant to diagnostic workflows, emphasizing the 

scalability, generalizability, and importance of the model in 

the context of liver tumor analysis. 
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