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Abstract - Accurate analysis of embryonic cell structures is important to evaluate the embryo quality during early
developmental stages. The overlapping blastomeres, fragmentation, and irregular morphologies in microscopic images
complicate the cell counting and centroid localization procedure. Conventional methods that utilize convolutions and
progressive upsampling struggle to model long-range dependencies and adapt to the dense cell regions’ spatial irregularities.
This research work is proposed with the objective of developing a precise and adaptable model to overcome the limitations in
conventional methods. The proposed SwinDePeriNet is a combination of a hierarchical Swin Transformer encoder with a
deformable perceptual module, which is specifically developed to capture the dynamic spatial relationships and structural
variations. Additionally, a Gaussian-based probabilistic estimator is incorporated to generate localized confidence maps for
accurate centroid detection. The proposed model is trained and tested using a benchmark cell image dataset and exhibited
95.3% accuracy, 97.6% R2 score, 26 MAE, 250 MSE, 93.1% perfect localization rate, 5.2 pixels mean Euclidean error, and a
false positive rate of 2.6% which is better than conventional models.

Keywords - Microscopic Embryo Imaging, Cell Count Regression, Centroid Detection, Framework, Spatial Confidence

Mapping, Transformer-Based Encoding, Deformable Context Fusion, Gaussian Localization.

1. Introduction

In embryology, accurate cell detection during early-stage
development is essential to evaluate the quality and viability
of the embryo. Microscopic imaging is generally used for
detailed observation of embryo morphology. It is specifically
helpful during the cleavage stages, where cellular division
patterns reveal important developmental indicators. The need
for multi-carrier signal processing in biomedical imaging has
increased in recent times for enhancing the contrast,
localization precision, and structural clarity.

Specifically, multi-carrier techniques decompose the
complex embryonic images into frequency sub-bands, which
allows better granular detection of overlapping blastomeres,
fragmented nuclei, and irregular cellular arrangements [1].
Thus, applying multi-carrier models in the process of cell
detection will enhance the visualization and improve the
evaluation by extracting and analyzing the spatial and
spectral level features.

The conventional embryo image analysis with multi-
carrier systems faces issues like channel estimation and
detection. Since the cellular features in microscopy images
generally exhibit low reflectance, inconsistent illumination,

OSOE)

and texture non-uniformity. Thus, it will distort the detection
signal across carriers, and also these variations cause inter-
channel interference, which makes centroid localization and
cell boundary estimation a highly sensitive process.
Moreover, the biological complexity and morphological
variability of early-stage embryos make the conventional
estimation methods produce high false positive rates,
especially in densely packed or irregularly shaped blastomere
regions. Hence, accurate cell detection requires improved
signal recovery strategies and deformable perception
mechanisms, which are specifically developed for biological
input analysis.

Several detection algorithms have been developed in
recent times to mitigate these limitations. Methods such as
frequency-based sub-band filtering, pyramid convolutional
networks, and wavelet transform-based deconvolution are
used in various research works. Specifically, a hierarchical
convolutional backbone exhibits better performance when it
is combined with progressive upsampling [2]. However, this
approach fails to model long-range interactions between
densely clustered cells. Few researchers incorporated
Fourier-domain CNNs and Laplacian pyramid regression to
decompose images into multiple carrier bands for fine-
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grained detection [3-5]. However, these methods suffer from
poor generalization due to the use of fixed kernel sampling
and static receptive fields.

Few hybrid models have also evolved using deformable
convolutions to accommodate local variance, but they lag in
performance while attending to the morphologically irregular
regions [6, 7]. Transformer-based methods in recent times
are computationally intensive and inefficient in dense
cellular structures [8-10]. These conventional methods’
limitations highlight the need for developing a model that
should exhibit better tradeoff between the spatial
adaptiveness and detection granularity in cell detection.

The research work is aimed at developing a robust cell
counting and localization model incorporating frequency-
aware representations with spatial deformability. This
ensures global contextual awareness and localized precision
in embryo image analysis. The perceptual flexibility in the
proposed method, with a transformer-guided encoder-
decoder, handles the channel estimation issues and improves
the morphological interpretability.

To enable global context encoding and to extract the
hierarchical frequency features, the encoder network is used.
To handle the morphological irregularities, a deformable
perceptual decoder is used so that the attention weights are
dynamically adjusted across spatial carriers.

Additionally, a Gaussian-based probabilistic estimator is
incorporated to produce spatial confidence maps for precise
centroid prediction. The Key Contributions of this research
work are presented as follows.

e Proposed a hierarchical Swin Transformer-based
encoder to extract frequency-aware spatial features for
enhanced context modeling in embryo imaging. Also, a
deformable perceptual module is introduced to address
irregular cell morphologies and adjust attention
dynamically based on structural variance.

e A Gaussian probabilistic estimator is incorporated to
generate precise confidence maps for dot-level centroid
detection, thereby reducing segmentation overhead.
Finally, a lightweight and scalable framework is
incorporated to maintain high precision across multiple
frequency bands.

e Experimental validation on the benchmark cell image
dataset demonstrates the superior performance of the
proposed model over conventional models in terms of
accuracy and centroid localization.

The remaining discussion in the article is arranged in the
following order. Section 2 presents a detailed literature
review. Section 3 presents the mathematical model for the
proposed work. Section 4 presents the results and discussion.
Finally, the conclusion is presented in section 5.
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2. Related Works

Recent advancements in biomedical imaging introduced
various strategies for automatic cell detection, segmentation,
and counting. In this section, recent architectures, instance
segmentation models, and density regression networks are
xanalyzed to address the challenges in complex -cell
environments. The segmentation and tracking algorithm
designed in [11] for analyzing cell migration utilizes time-
lapse microscopy with block-matching 3D filtering for noise
suppression. To minimize halo interference, k-means
clustering is used, and for boundary extraction, active
contour models are incorporated. The experimental analysis
exhibits the presented model with better error reduction over
existing methods. However, the presented approach is highly
sensitive to uneven background and illumination variations.

The localization approach presented in [12] incorporated
automated and semiautomated modules to count the immune
cells. The challenges in multiple cell morphologies and
localization are addressed in this research. The experimental
analysis  highlights that automated methods over
semiautomated models in terms of reliability. However, the
presented model accuracy is average and needs improvement
in the localization process.

To improve individual cell localization, a two-
dimensional directional convolutional neural network is
employed in [13]. The presented approach initially assigns a
unit vector to each pixel with respect to the cell center. The
presented model effectively differentiates the overlapping
cells where the cell image has low contrast and blurred
boundaries. The experimental analysis presents the improved
separation accuracy. However, the generalization of the
presented model to unseen tissue types remains limited due
to dataset-specific training.

The lightweight encoder—decoder model presented in
[14] for nuclei instance segmentation predicts the distance
transform and nuclear masks for accurate separation of
overlapping nuclei. Using structural distance estimation, the
presented model attained enhanced instance boundaries
without  depending on  complex  post-processing.
Experimental evaluation wusing benchmark datasets
demonstrated better performance over state-of-the-art
models. However, the presented model exhibits performance
variations while handling the extreme staining differences
and inconsistent annotations.

The learning network presented in [15] addresses
challenges in segmenting fluorescent spots within
microscopy cell images. The presented model incorporates
Fourier interpolation preprocessing with an enhanced
YOLOVS detection architecture. The use of an upsampling
layer fine-tunes the features and supports boundary-aware
segmentation at subpixel precision. Compared to the
conventional models, the presented approach achieved better
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F1-score with an improvement of up to 8.27% across diverse
datasets. However, the model’s dependency on high-quality
fluorescent imaging and computational load may limit
deployment in low-resource settings.

The U-Net model reported in [16] incorporates a self-
attention mechanism with a conventional U-Net to enable
effective spatial feature extraction for cell counting in both
2D and 3D biological images. Additionally, a modified Batch
Normalization approach is introduced to stabilize training on
limited datasets. Experimental validation benchmark and
own datasets confirm the model’s superior performance over
conventional techniques. However, the GPU memory
limitations of the presented model limit the applicability in a
real-time environment.

An interactive dual-network model is presented in [17]
for automated cell counting. The presented model integrates
a density map regression model with a dynamic ground truth
generator for optimal supervision. A hierarchical multi-scale
attention module is incorporated to enhance the feature
extraction and density estimation. Evaluations of benchmark
datasets confirmed the improved accuracy over conventional
methods. However, the presented model requires fine-tuning
for unseen modalities, and its iterative training increases
computational demands compared to single-stage networks.

A deep learning model presented in [18] for cell
counting, adapting the U-Net for semantic segmentation and
integrating distance transform with watershed algorithms.
The presented model effectively handles low-contrast and
label-free tissue images. Experimental validation using
human brain tumors exhibits better AUC and a correlation
coefficient with histological ground truths. However, the
dependency on morphological consistency across samples
limits the model’s generalization to highly variable tissue

types.

The ResUnet model presented in [19] employs a fully
convolutional U-Net architecture for binary segmentation-
based cell localization in fluorescence microscopy. The
presented model introduces weighted boundary maps and
noise oversampling to improve detection performances. The
experimental results demonstrate the model’s superior
performance with better Fl-score and mean absolute error.
However, the model’s dependency on dataset-specific
features may reduce adaptability to varying imaging
modalities and staining conditions.

A YOLOVS5 model is presented in [20] for automatic cell
recognition and counting in Neubauer chamber images. The
presented model is pretrained and fine-tuned using 21
annotated lab images. The experimental evaluation exhibits
the accuracy and precision of the presented model, which is
better than conventional U-Net and openCV approaches.
Although the performance is better, the limitation of dataset
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size¢ and dependency on transfer learning limits the
generalizability of models across diverse microscopy image
analysis.

2.1. Research Gap

The brief literature review clearly highlights the
challenges in cell counting and localization across various
methods. The literature analysis confirms that the
conventional directional field-based separation and distance
transform models are effective. However, these methods
struggle to exhibit better performance when the input is
dense and has overlapping regions, or when low contrast
boundaries exist. Morphological tracking methods and
Fourier-interpolated segmentation approaches exhibit better
improvements.

However, the scalability of these models to large and
heterogeneous datasets is limited. The attention-enhanced
architectures U-Net and interactive dual-networks introduce
precision enhancements. However, these models demand
extensive training data and are highly sensitive to varying
cell sizes and densities. In complex images, the cell counting
process highlights the need for models that should generalize
across different dataset domains. The object detection
algorithms lag in performance if the input has combined
structures and irregular shapes. These limitations highlight
the need for an adaptive model that should handle the spatial
deformities, dense clusters, and domain shifts.

3. Proposed Work

The proposed SwinDePeriNet model incorporates
multiple models, such as Swin Transformer and a
Deformable Perceptual Module, for enhancing the cell
detection performance. The Swin Transformer in the
proposed model extracts the hierarchical patterns and
maintains the computational efficiency through shifted
window attention. This makes the model well-suited for
handling  variable-scale ~ embryonic  structures. The
Deformable Perceptual Module is incorporated to handle the
morphological inconsistencies by dynamically adjusting
receptive fields based on contextual variance.

Figure 1 depicts the complete overview of the proposed
model, which begins with the preprocessing of microscopy
images to enhance contrast and normalize intensity levels
across channels. These preprocessed images are passed
through the Swin Transformer encoder to obtain multi-level
spatial representations. Further, it is passed through the
deformable module, which aligns these features and
highlights the spatial deformations and fragmented regions.
A Gaussian-based probabilistic estimator then processes
these features to generate a confidence map, from which
centroids are extracted. The final output includes cell count
and precise localization, supporting morphological
evaluation.
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Fig. 1 Proposed model overview

3.1. Input Image Acquisition and Preprocessing

The initial stage of the SwinDePeriNet acquires and
preprocesses the embryo microscopy images. Consider the
raw microscopy image, denoted by 7 €. RH*W*¢ Where 7 is
the raw input embryo image captured through a microscope,
H and W represent the height and width in pixels,
respectively, C indicates the number of image channels.
Since the raw image may include intensity disparities and
background noise, the first operation is mean subtraction to
center the pixel intensity distribution. This is achieved using.

1.(6,y) =73(x,y) — 1y (1

Where J,.(x,y) represents the centered pixel intensity, py
is the entire image global mean intensity. Mathematically, it
is formulated as

1

M9 = e g=1 297:1 Z;V/V=1 I(x,y,¢) 2

This operation reduces the bias that is introduced by
background illumination or varying image acquisition
settings. Followed by standard deviation normalization,
which is applied to scale the image intensities to a consistent
range. The normalization procedure is mathematically
formulated as

7,(x,y) = &2 3)

ag
Where 7,,(x,y) is the normalized pixel value, o5 is the
standard deviation of image intensities across all pixels and
channels, calculated as
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07 =

e X X0y, 0) — py)? 4)

x

HWC

This ensures that the pixel values are distributed around
zero with unit variance and exhibit stable convergence during

learning. To further enhance the visual features for the
boundaries and blastomeres textures, contrast stretching is

applied on J, Using intensity percentile limits.
Mathematically, it is expressed as:
In(xy)—
IGey) =222 (5)

Ph—P1

Where 7,(x,y) Is the contrast-stretched output pixel, p;
and pj, are the lower and upper percentile limits of 7,,, Values
below p; are clipped to 0, and above pj, are clipped to 1. The
final result of this preprocessing stage is the preconditioned
image J, € R"*W*C which contains uniform illumination,
enhanced boundaries, and a standardized dynamic range.
This image is then forwarded to the patch partitioning
module in the encoder stage for feature extraction.

3.2.  Hierarchical

Transformer
Following preprocessing, the enhanced image I, €

RHXWXC Tt is partitioned into fixed-size, non-overlapping

patches. Each patch 7§“ € RP*PXC s then flattened into a

Feature Encoding using Swin
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vector and transformed into an embedding vector through a
learned projection.

z5 = W, - Flatten(I”) + b, (6)

Where zi € R Is the embedding vector for the it
image patch, W, € RP?C%d g the learnable weight matrix for
patch embedding b, € R% Is the bias vector for embedding,
d: Dimension of the token embedding, Flatten(-) It is the
operator that converts a patch into a one-dimensional vector.
These embedding vectors are grouped into square regions
called windows of size M X M. For each window, a self-
attention operation is computed to capture the interaction
between each pair of patches within that window. For a given
query vector q; € R%, the attention output is calculated as:

0; = 2?221 aij - v; (7

Where o; € R® is the output vector for query i, o; ;i Is the

attention score between query i and key j, computed as:

q;r-kj+bij
exp| ==

ai' = —-—
J 2 qT-kl+b-
Zfilew( i ll)

®)
7

Where k; € R? Ts the key vector for token j, v; € R4 Is
the value vector for token j, b;; € R is the learnable relative

positional bias between positions i and j, Vd Is the scaling
factor to stabilize the gradient for each vector g, k;, v; is
obtained from the token embeddings using separate learned
linear projections.
q =Wy -z, kj=Wyr -z, v;=W, z ©)
Where W, Wy, W, € R4*4 Tt is the learnable
transformation matrix. After attention, each token vector is
refined by passing it through a feed-forward transformation
consisting of two linear mappings with a non-linear
activation in between:
Zout = Wa. @(Wy - 0; + b;) + b, (10)
Where W, € RY* W, € R*@*4 is the learnable
weights for the two fully connected layers, b; € R*?, b, €
R is the bias vectors, ¢(-) Is the non-linear activation
function, typically Gaussian Error Linear Unit (GELU). To
extend the receptive field and capture cross-window
relationships, a shift in the spatial location of each window is
applied in alternate layers. This ensures that each token is
allowed to interact with tokens in neighboring windows,
without increasing computational complexity. Following the
attention and token update, a patch merging operation is
conducted at the end of each stage to reduce the spatial
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resolution and expand the feature depth. For four adjacent
patches z;, z,, z3, Z4, their merged representation is given by

Zm = Wy, - Concat(zq, z,, 23, 24) (11)

Where z, € R*® is the merged output vector, W,, €

R*4x2d g the linear projection matrix after Concatenation,

Concat(-) Indicates the Concatenation of four vectors into

one. These encoded features are then forwarded to the

deformable perception module for adaptive spatial
refinement.

3.3. Deformable Perceptual Module

The encoded features obtained from the Swin-based
hierarchical transformer are processed further through a
deformable perceptual module. For each output position
(x,y) in the deformable feature map, a set of offset vectors
{(8xy, 8y, )}¥_, Tt is learned that K represents the number of
sampling points in the neighborhood. These offsets
adaptively relocate the sampling coordinates relative to the
central pixel. The deformable feature at position (x,y) is
computed as:

Fa(t,y) = D=1 Wi (6, ) + Fonc(x + 8x, y + 8y,)  (12)

Where F,(x,y) Is the output feature at the spatial
coordinate (x,y) from the deformable module, F,,. Is the
input feature map from the encoder, 6xy, 8y, is the learnable
spatial offsets for sampling point k, w; (x, y) Is the attention-
based weight assigned to the k™ sampling point at the
location (x, y), K is the total number of sampling locations in
the neighborhood. These weights w, They are derived by
applying a normalization operation over the local region to
ensure the weighted sum is stable and context-sensitive.

exp(sk(x.y))
K exp(sj(xy))

Wk(x!y) = (13)

Where s, (x,y) Is the raw importance score generated
by a learnable function for sampling point k. The offset
values Oxy, 8y, They are not static but predicted from the
feature context using a separate convolutional block. Let A €

RH'XW'X2K Represent the offset tensor, where the channel
dimension stores both horizontal and vertical displacements
for all K points:
A(x,y) = Wy * Fope(x,y) (14)
Where W, Is the learnable kernel responsible for
predicting offsets, * indicating the Convolution operation,
A(x,y) indicates the contents [8xq,8Yy,...,8xk, 8Vk]| at
position (x,y). To handle non-integer positions resulting
from offsets, bilinear interpolation is applied when sampling.
F,,c. If the offset leads to fractional coordinates (x',y') =
(x + &xy,y + 8yy), then the interpolated value is computed
by:
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Fenc(x,' J") = Zrlnzo Z‘}lzo Ymn - Fenc(l_x,J +m, l}"J + Tl)
(15)

Where v,,, Indicates the bilinear interpolation
coefficient. This deformable mechanism allows the network
to highlight the regions with curvature and the changes in
texture. The result is a refined representation. F, €
RH'*W'XD That preserves biological fidelity and reduces the
spatial noise. Finally, the enhanced features F, They are
forwarded to the probabilistic localization block, in which a
confidence map is generated using a Gaussian estimator to
obtain the centroid positions without performing complete
segmentation.

3.4. Gaussian Confidence Estimation

In this stage, the encoded feature maps, which have the
fine-tuned spatial information, are processed for Gaussian
confidence estimation. The proposed model utilizes a
probabilistic approach, which generates a continuous value
confidence map to highlight each pixel’s likelihood. Using a
differentiable Gaussian distribution, a dot-level annotation is
performed. The confidence map generates a dense, smooth
prediction surface, which enables better localization even in
blurred or overlapping cell structures. Let the ground truth
contain N annotated centroids, each located at spatial
coordinates. (x,,¥,), where n € {1, 2, ..., N}. The Gaussian
confidence value at each pixel position (x,y) In the image, it
is formulated as

( —An 2 —Jn 2

207 (16)
Where G(x,y) indicates the confidence score at the
location (x,y), N indicates the total number of annotated
centroids in the training image, (x,, y,,) is the coordinates of
the n® cell centroid, o indicates the standard deviation of the
Gaussian kernel, which controls the spatial spread around
each centroid. During training, the model learns to regress a
predicted confidence map. G(x,y) from the refined feature
map F,. A prediction head composed of a convolutional
layer is used to map the deep features into a single-channel
output representing the estimated confidence for each pixel.
Let this mapping be defined as:
G(x,y) = wy * Fy(x,y) + by (17)
Where G(x,y) Is the predicted confidence score at the
location (x,y), w, Are the convolutional kernel weights for
Gaussian map prediction, b, Is the Bias term associated with
the convolution, *: Denotes the convolution operation. To
ensure alignment with ground truth and guide model
optimization, a loss function is computed between the
predicted map and the ground truth. G(x,y) and the ground
truth Gaussian map G(x, y). The error is measured using the
squared Euclidean distance over all pixel positions, given by
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1

Lonap = 2L 20 (6Gay) - 6Gey)) (19)

Where L,,,,, Is the mean-squared error loss between
predicted and accurate confidence maps, H', W' Is the spatial
dimension of the output map. After training, during
inference, the predicted confidence map G(x,y) It is post-
processed to extract the most probable centroid locations.
This is achieved by identifying local maxima in the map and
applying a confidence threshold t to suppress spurious
peaks. The final set of detected centroids C is obtained by:

C={»1Gxy)=T "and
G, yNIVY (M, yN) EN(xy) }

Where C is the final predicted set of centroid
coordinates, T is the confidence threshold, N (x,y) Is the
local neighborhood around (x, y) For identifying maxima.

"G(xy) >
(19)

3.5. Loss Formulation and Training Objective

To ensure the SwinDePeriNet model accurately learns to
localize cell centroids from embryo microscopy images, a
loss function must be defined that penalizes deviations
between predicted outputs and known ground truth. Since the
model is trained to generate continuous-valued confidence
maps rather than categorical labels or masks, a pixel-wise
regression loss is more suitable than classification-based
metrics. The primary learning objective is to minimize the
squared error between the predicted Gaussian response map
and the annotated ground truth map constructed using dot-
level centroid labels. Let G(x,y) Represent the predicted
confidence value at the pixel coordinate. (x,y), and G(x,y)
Denote the corresponding ground truth value obtained using
Gaussian kernels centered on annotated centroids. The
regression loss for a single image is calculated using the
mean of squared differences over all pixels in the output
map.

1 ! ! ~ 2
Leotar = oy AL T (6 3) — G6(x,3)) - (20)

Where L;,;q; Is the total loss used to train the model,
(H',W") Is the height and width of the predicted confidence
map, G(x,y) Is the predicted confidence score at the pixel
(x,v), G(x,y) Is the ground truth Gaussian value at the pixel
(x,y). This formulation encourages the model to output
values close to one near annotated centroids and values
approaching zero elsewhere. Since the Gaussian peaks are
spatially continuous, the model also learns to approximate
the shape and spread of accurate centroids, enabling high-
resolution localization without producing segmentation
boundaries. In some scenarios, especially when cells are
densely packed, background pixels may significantly
outnumber foreground peaks, leading to class imbalance in
the regression space. To handle this, a spatial weighting mask
W(x,y) It is incorporated, which highlights the high-
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confidence zones during learning. The revised loss function
is then formulated as follows.

1
H'-w'

SIS W) - (66y) —6(y)
@n

Lweighted =

Where W(x,y) Represents the weighting function. The
final objective is to minimize L;,.4; Over the entire training
set. For a dataset containing N, Images, the total batch loss is
formulated as:

Ny D

1
Lbatch = N_Izizlﬁtotal (22)

Where Lp,:.cn represents the final averaged loss, N;
represents the current batch image count, Lg;)ml represents
the loss computed for the i training image.

3.6. Post-Processing and Final Output Extraction
After the confidence map G(x,y) € R* W' The next
process is to convert the continuous-valued heatmap into a
discrete set of centroid coordinates. In the post-processing, a
predefined confidence threshold (t € [0,1]) It is used to
eliminate low-confidence regions. The thresholded binary
mask B(x, y) is formulated as
By ={t FENZT g
0  otherwise

Where B(x,y) indicates the binary indicator for the
candidate centroid at pixel (x,y), T is the minimum
confidence, G(x,y) Represents the predicted confidence
score.

Further, the local maxima are identified to ensure that
prominent peaks in each region are selected. Let NV (x,y)
Denote the square neighborhood of size. (r X r) pixels
centered at (x,y). A location is considered a local maximum
if its value is greater than or equal to all others in the defined
window.

by)ec if Gy =

max G(uv) and B(x,y)=1 (24)

ww)eN (x,y)

Where C represents the final set of predicted centroid
coordinates, N (x,y) Indicates the local neighborhood
around pixel, r indicates the square window side length. This
ensures that the final output has only confident and isolated
peaks. Further, a coordinate adjustment step is applied to
fine-tune the predictions. Let R, represents a region around
the k™ detected maximum (xy, ¥;), then the refined centroid
(%x, i) is computed as

~ Z(u,v)ERku'g(urv) ~ Z(u,v)eﬂék”'g(u"’)

X, = - , Ve = - 25
k Z(u,v)ekkg(uvv) Yk Z(u,v)Eng(u'V) ( )

Where X, ¥, represents the refined coordinates, R,
Represents the local region around the detected peak for
interpolation, u,v indicates the pixel coordinates, g(u, V)
The confidence values are used as weights. This
interpolation-based fine-tuning reduces the quantization
errors introduced in earlier stages of the process.
Additionally, it enhances sub-pixel localization accuracy,
which is crucial in microscopy image analysis. The final
output of this step is the complete list of predicted centroids,
which is mathematically expressed as:

Cpinae = {(F Ti); | k = 1,2, .., N} (26)

Where Cjpinqe represents the set of all predicted cell
centroids, N, Represents the total number of final detections.
The summarized pseudocode for the proposed model is
presented as follows.

Pseudocode: SwinDePeriNet Cell Centroid

Detection

Input: (7 € R¥*W*C) — Raw embryo image

Output: cfinal = (’X\L 7{), (5‘:\2: %)' ey (55\16! 5]\16)
Detected centroid coordinates

Initialization: Set patch size p, window size M,
embedding dimension d, define Gaussian spread o, Set
threshold (7 € [0,1]) for post-processing, Initialize
learnable parameters (Wp, bp, Wy, Wi, W, Wy, Wg)

Begin
Compute global mean y < Mean(J)

Compute standard deviation gy « StdDev(J)
ICy)-p

Normalize image 7 * n(x,y) = =

Apply contrast stretching

Divide J,, into non-overlapping patches of size (p X p)
For each patch i, compute the embedding. z} = W, -
F latten(?,,(f) )+ b,

Organize tokens into windows of size. (M X M)

For each window

Compute self-attention weights using projected queries,
keys, and values.

Apply relative positional encoding.

Aggregate window responses

Apply shifted windows in alternate layers.

Perform patch merging to reduce spatial size and increase
depth.

Output encoded feature map F,,,.

Predict spatial offsets A(x,y) = W, * F.,..(x,y)

For each pixel (x, y), initialize F,(x,y) < 0
Loopoverk =1to K
Compute  the  deformed
(x + 6x,,y + 8yx)
Interpolate F,,,.(xy, Vi) using the bilinear method
Weight using learned scalar wy

Accumulate Fy (¥, y) += Wy (%, ¥) - Fone Xk, Vi)

location.  (xg, Vx) =

81
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Convolve (F,) to produce a prediction G(x,y) = W *
Fu(x,y) + by
Construct ground truth Gaussian map G(x,y) using
annotated centroids

2
Compute loss £ = #Zx,y (g(x, y) —G(x, y))
Initialize set Cgypyy « D
For all (x,y)
IfG(x,y) >t
Check if §(x, y) is maximum in the neighborhood
If yes, define local region R
Compute refined position

~ Z(u,v)eRu'g(u’v) ~ _ Z(u,v)eRV'g(u'V)
T Zaumer$@n) 7 Sameri@r)

Append (%, 7) to Crina

Return

End

4. Results and Discussion
The proposed SwinDePeriNet’s experimentation is
validated through a Python tool that incorporates CUDA-

enabled GPU acceleration for improved training and testing.
The benchmark dataset used in the proposed model includes
cell images from the Kaggle repository. The entire dataset is
divided into a 70% training set and a 30% testing set. The
preprocessing  steps include normalization, contrast
enhancement, and resolution standardization. The training
used Adam optimizer with an initial learning rate of 0.0001
and a batch size of 8. For better validation, the proposed
model is compared with existing methods, and the details of
simulation hyperparameters are presented in Table 1 for all
the models.

The proposed model’s experimentation is validated
using a benchmark cell image dataset available in the Kaggle
repository [21]. The dataset has synthetically generated
microscopy images that replicate the visual and structural
characteristics of biological cell cultures. The images in the
dataset are also accompanied by their binary masks, which
clearly display the individual cell boundaries. All the input
images are preprocessed and processed through the proposed
modules. A summary of the dataset is presented in Table 2.

Table 1. Simulation hyperparameters

S.No Method Parameter Value
1 Learning Rate 0.0001
2 Batch Size 8
3 Optimizer Adam
4 Patch Size 4 x4
5 Proposed Window Size 7x7
6 SwinDePeriNet Depth of Transformer 4
7 Number of Attention Heads 6
8 Epochs 200
9 Weight Decay le-4
10 Loss Function Density + Content
11 Learning Rate 0.001
12 Batch Size 8
13 Optimizer Adam
14 Cell-Net Epochs 200
15 Atrous Dilation Rates [1,2,3]
16 Pyramid Levels 3
17 Residual Blocks 5
18 Learning Rate 0.0005
19 Batch Size 8
20 Optimizer SGD
21 CSRNet Momentum 0.9
22 Epochs 200
23 Backbone VGG-16
24 Learning Rate 0.0001
25 Batch Size 8
26 Optimizer Adam
27 MCNN Epochs 200
28 Number of Columns 3
29 Filter Sizes 9,7,5
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Table 2. Dataset description

Class / Subset Total Samples | Training Samples (80 %) | Testing Samples (20 %)
All images (cell-count labels) 19,200 15,360 3,840
Images with segmentation masks
(foreground/background) 1,200 960 240
Total 20400 16320 4080

The proposed model training and testing performance is
presented in Table 3 for the metrics like MAE, MSE,
accuracy, R? Score, perfect localization rate, and FPR
metrics. The results clearly demonstrate the superior
performance of the proposed model, with a lower MAE of
6.21 and MSE of 50.3 during training. During testing, the
MAE increases to 6.90, and the MSE increases to 59.2.

This indicates the minimal overfitting of the proposed
model. The overall accuracy of the proposed model is 96.8%
during training and 95.2% during testing. The training and
testing values of the perfect localization rate are 94.2% and
93.1%, respectively, whereas the mean Euclidean distance

increases from 3.5 to 3.9 pixels. This enhanced performance
highlights the better precision of the proposed model.

Table 3. Proposed model training and testing performances

. Trainin Testin:
Metric Phase ° Phaseg

Mean Absolute Error (MAE) 6.21 6.90
Mean Squared Error (MSE) 50.3 59.2
Accuracy (%) 96.8 95.2

R? Score 0.982 0.976
Mean Euclidean Distance (pixels) 3.5 3.9
Perfect Localization Rate (%) 94.2 93.1
False Positive Rate (%) 2.4 2.6

Mean Squared Error
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Fig. 2 MSE analysis

To validate the proposed model with existing methods, a
detailed comparative analysis is performed. The proposed
model’s performance is analyzed in comparison to existing
methods, including Cell-Net, CSRNet, and MCNN models.
The comparative analysis of the mean squared error metric
presented in Figure 2 highlights the lower MSE of the
proposed SwinDePeriNet model, which is 40.3, compared to
the MSE of 91.4%, 109.6%, and 124.1% for the Cell-Net,
CSRNet, and MCNN models, respectively. The perfect
localization rate analysis presented in Figure 4 highlights the
better location ability of the proposed model over
conventional methods. The proposed model exhibits a better
localization rate of 93.1% for the 200™ epoch. In contrast, the
existing method, Cell-Net, exhibits 82.1%, CSRNet exhibits
77.1% and MCNN exhibits 74.0% which is lower than the
proposed model. The consistent improvement of the

proposed model is due to the deformable perceptual encoding
and Swin attention modules, which effectively capture the
changes and morphological changes in embryo structures.

The R? Score comparative analysis across different
window sizes is presented in Figure 4 to demonstrate the
robustness of the models. The proposed model exhibits an R?
Score of 0.9756 for the optimal window size of 7. Whereas
the existing methods like Cell-Net exhibit 0.9455, CSRNet
exhibits 0.9282, and MCNN exhibits 0.9056, which is less
than the proposed model. For the other window sizes, like 5,
6, 8 and 9, the proposed model exhibits superior
performance compared to existing methods. The consistent
performance of the proposed model highlights the model’s
ability to capture the long-range spatial dependencies in cell
structure analysis.

83



R. Barkavi et al. / 1JECE, 12(12), 75-87, 2025
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The False Positive Rate (FPR) comparative analysis of
the proposed and existing methods is presented in Figure 5.
The results clearly present the proposed model’s initial lower
rate of 6.1% which is better compared to Cell-Net, which
exhibits 7.8%, CSRNet, which exhibits 8.5% and MCNN,
which exhibits 9.3%. For the maximum epoch, the proposed
model reaches an FPR of 2.6% which is better compared to
the existing Cell-Net, CSRNet, and MCNN methods’ FPR of
4.1%, 4.5% and 5.2% respectively. The better FPR of the
proposed model ensures enhanced centroid identification and
accurate differentiation between the cell regions.

The variation in localization accuracy is comparatively
presented in Figure 6 over patch size. The proposed
SwinDePeriNet exhibits better localization precision by
exhibiting the lowest Mean Euclidean Distance (MED) of
3.88px. The existing methods like Cell-net, CSRNet, and
MCNN exhibit high values of 4.82 px, 5.01 px, and 5.30 px
for a patch size of 4. When the patch size is increased to 10,
the MCNN reaches a maximum MED of 6.4px, whereas the
proposed model maintains a stable precision with 5.22px.
These precision results highlight the robustness of the
proposed model over spatial resolution changes and
enhanced localization accuracy.

Localization Precision vs Patch Size
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Fig. 7 Accuracy analysis

Figure 7 presents the accuracy comparative analysis of
the proposed SwinDePeriNet. The comparative analysis
clearly highlights better performance of the proposed model
with an accuracy of 95.3% for the maximum epoch. The
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existing model Cell-Net exhibits an accuracy of 87.1%
whereas CSRNet exhibits an accuracy of 86.2% and MCNN
exhibits an accuracy of 83.2% which is lower than the
proposed model. The better improvement in accuracy of the
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proposed model confirms its better convergence behavior
and feature extraction ability.

The overall performance analysis presented in Table 4
highlights the proposed model's superior performance for all
the metrics. The proposed model exhibits the highest
accuracy of 95.3% which is better than cell accuracy of
87.1%, CSR-Net accuracy of 86.2% and MCNN model
accuracy of 83.2%. In case of perfect localization rate, the
proposed model is superior with 93.1% whereas the existing

methods attain in the range of 745 to 82% which is lesser.
The regression precision metrics demonstrate the proposed
model’s better performance by attaining an R? score of
97.6% which is better than other existing methods. The
performance of the proposed model for the false positive rate
is better, with the lowest rate of 2.6% whereas existing
methods exhibit a range of 4.1 to 5.2%. Overall, the
proposed model’s performance metrics are much better than
existing methods in cell counting and centroid localization of
microscopy images.

Table 4. Overall performance analysis

Metric Cell-Net | CSRNet | MCNN Proposed SwinDePeriNet

Accuracy (%) 87.1 86.2 83.2 95.3

Perfect Localization Rate (%) 82.2 77.0 74.0 93.1

R? Score (Window Size = 7) 94.5 92.8 90.8 97.6
False Positive Rate (%) 4.1 4.5 5.2 2.6
Mean Euclidean Distance (px) 6.1 6.2 6.4 5.2
Mean Absolute Error (MAE) 35 42 48 26
Mean Squared Error (MSE) 300 350 420 250

5. Conclusion

This research work presents a transformer model,
SwinDePeriNet, to count the cells and localize the centroid in
microscopy images. The proposed work incorporates the
Swin transformer encoder along with a deformable
perceptual layer for adaptive feature processing.

The experimentation utilizes the Adam optimizer to train
and test the proposed model. Benchmark dataset exhibits the
proposed model performance as 95.3% accuracy, 93.1%
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