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Abstract - Accurate analysis of embryonic cell structures is important to evaluate the embryo quality during early 

developmental stages. The overlapping blastomeres, fragmentation, and irregular morphologies in microscopic images 

complicate the cell counting and centroid localization procedure. Conventional methods that utilize convolutions and 

progressive upsampling struggle to model long-range dependencies and adapt to the dense cell regions’ spatial irregularities. 

This research work is proposed with the objective of developing a precise and adaptable model to overcome the limitations in 

conventional methods. The proposed SwinDePeriNet is a combination of a hierarchical Swin Transformer encoder with a 

deformable perceptual module, which is specifically developed to capture the dynamic spatial relationships and structural 

variations. Additionally, a Gaussian-based probabilistic estimator is incorporated to generate localized confidence maps for 

accurate centroid detection. The proposed model is trained and tested using a benchmark cell image dataset and exhibited 

95.3% accuracy, 97.6% R² score, 26 MAE, 250 MSE, 93.1% perfect localization rate, 5.2 pixels mean Euclidean error, and a 

false positive rate of 2.6% which is better than conventional models. 

 

Keywords - Microscopic Embryo Imaging, Cell Count Regression, Centroid Detection, Framework, Spatial Confidence 

Mapping, Transformer-Based Encoding, Deformable Context Fusion, Gaussian Localization. 

1. Introduction  
In embryology, accurate cell detection during early-stage 

development is essential to evaluate the quality and viability 

of the embryo. Microscopic imaging is generally used for 

detailed observation of embryo morphology. It is specifically 

helpful during the cleavage stages, where cellular division 

patterns reveal important developmental indicators. The need 

for multi-carrier signal processing in biomedical imaging has 

increased in recent times for enhancing the contrast, 

localization precision, and structural clarity.  

 

Specifically, multi-carrier techniques decompose the 

complex embryonic images into frequency sub-bands, which 

allows better granular detection of overlapping blastomeres, 

fragmented nuclei, and irregular cellular arrangements [1]. 

Thus, applying multi-carrier models in the process of cell 

detection will enhance the visualization and improve the 

evaluation by extracting and analyzing the spatial and 

spectral level features.  

 

The conventional embryo image analysis with multi-

carrier systems faces issues like channel estimation and 

detection. Since the cellular features in microscopy images 

generally exhibit low reflectance, inconsistent illumination, 

and texture non-uniformity. Thus, it will distort the detection 

signal across carriers, and also these variations cause inter-

channel interference, which makes centroid localization and 

cell boundary estimation a highly sensitive process. 

Moreover, the biological complexity and morphological 

variability of early-stage embryos make the conventional 

estimation methods produce high false positive rates, 

especially in densely packed or irregularly shaped blastomere 

regions. Hence, accurate cell detection requires improved 

signal recovery strategies and deformable perception 

mechanisms, which are specifically developed for biological 

input analysis. 

 

Several detection algorithms have been developed in 

recent times to mitigate these limitations. Methods such as 

frequency-based sub-band filtering, pyramid convolutional 

networks, and wavelet transform-based deconvolution are 

used in various research works. Specifically, a hierarchical 

convolutional backbone exhibits better performance when it 

is combined with progressive upsampling [2]. However, this 

approach fails to model long-range interactions between 

densely clustered cells. Few researchers incorporated 

Fourier-domain CNNs and Laplacian pyramid regression to 

decompose images into multiple carrier bands for fine-
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grained detection [3-5]. However, these methods suffer from 

poor generalization due to the use of fixed kernel sampling 

and static receptive fields.  

 

Few hybrid models have also evolved using deformable 

convolutions to accommodate local variance, but they lag in 

performance while attending to the morphologically irregular 

regions [6, 7]. Transformer-based methods in recent times 

are computationally intensive and inefficient in dense 

cellular structures [8-10]. These conventional methods’ 

limitations highlight the need for developing a model that 

should exhibit better tradeoff between the spatial 

adaptiveness and detection granularity in cell detection.  

 

The research work is aimed at developing a robust cell 

counting and localization model incorporating frequency-

aware representations with spatial deformability. This 

ensures global contextual awareness and localized precision 

in embryo image analysis. The perceptual flexibility in the 

proposed method, with a transformer-guided encoder-

decoder, handles the channel estimation issues and improves 

the morphological interpretability.  

 

To enable global context encoding and to extract the 

hierarchical frequency features, the encoder network is used. 

To handle the morphological irregularities, a deformable 

perceptual decoder is used so that the attention weights are 

dynamically adjusted across spatial carriers.  

 

Additionally, a Gaussian-based probabilistic estimator is 

incorporated to produce spatial confidence maps for precise 

centroid prediction. The Key Contributions of this research 

work are presented as follows.  

 

 Proposed a hierarchical Swin Transformer-based 

encoder to extract frequency-aware spatial features for 

enhanced context modeling in embryo imaging. Also, a 

deformable perceptual module is introduced to address 

irregular cell morphologies and adjust attention 

dynamically based on structural variance. 

 A Gaussian probabilistic estimator is incorporated to 

generate precise confidence maps for dot-level centroid 

detection, thereby reducing segmentation overhead. 

Finally, a lightweight and scalable framework is 

incorporated to maintain high precision across multiple 

frequency bands.  

 Experimental validation on the benchmark cell image 

dataset demonstrates the superior performance of the 

proposed model over conventional models in terms of 

accuracy and centroid localization. 

 

The remaining discussion in the article is arranged in the 

following order. Section 2 presents a detailed literature 

review. Section 3 presents the mathematical model for the 

proposed work. Section 4 presents the results and discussion. 

Finally, the conclusion is presented in section 5.  

2. Related Works 
Recent advancements in biomedical imaging introduced 

various strategies for automatic cell detection, segmentation, 

and counting. In this section, recent architectures, instance 

segmentation models, and density regression networks are 

xanalyzed to address the challenges in complex cell 

environments. The segmentation and tracking algorithm 

designed in [11] for analyzing cell migration utilizes time-

lapse microscopy with block-matching 3D filtering for noise 

suppression. To minimize halo interference, k-means 

clustering is used, and for boundary extraction, active 

contour models are incorporated. The experimental analysis 

exhibits the presented model with better error reduction over 

existing methods. However, the presented approach is highly 

sensitive to uneven background and illumination variations.  

 

The localization approach presented in [12] incorporated 

automated and semiautomated modules to count the immune 

cells. The challenges in multiple cell morphologies and 

localization are addressed in this research. The experimental 

analysis highlights that automated methods over 

semiautomated models in terms of reliability. However, the 

presented model accuracy is average and needs improvement 

in the localization process.  

 

To improve individual cell localization, a two-

dimensional directional convolutional neural network is 

employed in [13]. The presented approach initially assigns a 

unit vector to each pixel with respect to the cell center. The 

presented model effectively differentiates the overlapping 

cells where the cell image has low contrast and blurred 

boundaries. The experimental analysis presents the improved 

separation accuracy. However, the generalization of the 

presented model to unseen tissue types remains limited due 

to dataset-specific training. 

 

The lightweight encoder–decoder model presented in 

[14] for nuclei instance segmentation predicts the distance 

transform and nuclear masks for accurate separation of 

overlapping nuclei. Using structural distance estimation, the 

presented model attained enhanced instance boundaries 

without depending on complex post-processing. 

Experimental evaluation using benchmark datasets 

demonstrated better performance over state-of-the-art 

models. However, the presented model exhibits performance 

variations while handling the extreme staining differences 

and inconsistent annotations. 

 

The learning network presented in [15] addresses 

challenges in segmenting fluorescent spots within 

microscopy cell images. The presented model incorporates 

Fourier interpolation preprocessing with an enhanced 

YOLOv8 detection architecture. The use of an upsampling 

layer fine-tunes the features and supports boundary-aware 

segmentation at subpixel precision. Compared to the 

conventional models, the presented approach achieved better 
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F1-score with an improvement of up to 8.27% across diverse 

datasets. However, the model’s dependency on high-quality 

fluorescent imaging and computational load may limit 

deployment in low-resource settings. 

 

The U-Net model reported in [16] incorporates a self-

attention mechanism with a conventional U-Net to enable 

effective spatial feature extraction for cell counting in both 

2D and 3D biological images. Additionally, a modified Batch 

Normalization approach is introduced to stabilize training on 

limited datasets. Experimental validation benchmark and 

own datasets confirm the model’s superior performance over 

conventional techniques. However, the GPU memory 

limitations of the presented model limit the applicability in a 

real-time environment. 

 

An interactive dual-network model is presented in [17] 

for automated cell counting. The presented model integrates 

a density map regression model with a dynamic ground truth 

generator for optimal supervision. A hierarchical multi-scale 

attention module is incorporated to enhance the feature 

extraction and density estimation. Evaluations of benchmark 

datasets confirmed the improved accuracy over conventional 

methods. However, the presented model requires fine-tuning 

for unseen modalities, and its iterative training increases 

computational demands compared to single-stage networks. 

 

A deep learning model presented in [18] for cell 

counting, adapting the U-Net for semantic segmentation and 

integrating distance transform with watershed algorithms. 

The presented model effectively handles low-contrast and 

label-free tissue images. Experimental validation using 

human brain tumors exhibits better AUC and a correlation 

coefficient with histological ground truths. However, the 

dependency on morphological consistency across samples 

limits the model’s generalization to highly variable tissue 

types. 

 

The ResUnet model presented in [19] employs a fully 

convolutional U-Net architecture for binary segmentation-

based cell localization in fluorescence microscopy. The 

presented model introduces weighted boundary maps and 

noise oversampling to improve detection performances. The 

experimental results demonstrate the model’s superior 

performance with better F1-score and mean absolute error. 

However, the model’s dependency on dataset-specific 

features may reduce adaptability to varying imaging 

modalities and staining conditions. 

 

A YOLOv5 model is presented in [20] for automatic cell 

recognition and counting in Neubauer chamber images. The 

presented model is pretrained and fine-tuned using 21 

annotated lab images. The experimental evaluation exhibits 

the accuracy and precision of the presented model, which is 

better than conventional U-Net and openCV approaches. 

Although the performance is better, the limitation of dataset 

size and dependency on transfer learning limits the 

generalizability of models across diverse microscopy image 

analysis. 

 
2.1. Research Gap  

The brief literature review clearly highlights the 

challenges in cell counting and localization across various 

methods. The literature analysis confirms that the 

conventional directional field-based separation and distance 

transform models are effective. However, these methods 

struggle to exhibit better performance when the input is 

dense and has overlapping regions, or when low contrast 

boundaries exist. Morphological tracking methods and 

Fourier-interpolated segmentation approaches exhibit better 

improvements.  

 

However, the scalability of these models to large and 

heterogeneous datasets is limited. The attention-enhanced 

architectures U-Net and interactive dual-networks introduce 

precision enhancements. However, these models demand 

extensive training data and are highly sensitive to varying 

cell sizes and densities. In complex images, the cell counting 

process highlights the need for models that should generalize 

across different dataset domains. The object detection 

algorithms lag in performance if the input has combined 

structures and irregular shapes. These limitations highlight 

the need for an adaptive model that should handle the spatial 

deformities, dense clusters, and domain shifts.  

 

3. Proposed Work  
The proposed SwinDePeriNet model incorporates 

multiple models, such as Swin Transformer and a 

Deformable Perceptual Module, for enhancing the cell 

detection performance. The Swin Transformer in the 

proposed model extracts the hierarchical patterns and 

maintains the computational efficiency through shifted 

window attention. This makes the model well-suited for 

handling variable-scale embryonic structures. The 

Deformable Perceptual Module is incorporated to handle the 

morphological inconsistencies by dynamically adjusting 

receptive fields based on contextual variance.  

 

Figure 1 depicts the complete overview of the proposed 

model, which begins with the preprocessing of microscopy 

images to enhance contrast and normalize intensity levels 

across channels. These preprocessed images are passed 

through the Swin Transformer encoder to obtain multi-level 

spatial representations. Further, it is passed through the 

deformable module, which aligns these features and 

highlights the spatial deformations and fragmented regions. 

A Gaussian-based probabilistic estimator then processes 

these features to generate a confidence map, from which 

centroids are extracted. The final output includes cell count 

and precise localization, supporting morphological 

evaluation. 
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Fig. 1 Proposed model overview 

 

3.1. Input Image Acquisition and Preprocessing  

The initial stage of the SwinDePeriNet acquires and 

preprocesses the embryo microscopy images. Consider the 

raw microscopy image, denoted by ℐ ∈. 𝑅𝐻×𝑊×𝐶  Where ℐ is 

the raw input embryo image captured through a microscope, 

𝐻 and 𝑊 represent the height and width in pixels, 

respectively, 𝐶 indicates the number of image channels. 

Since the raw image may include intensity disparities and 

background noise, the first operation is mean subtraction to 

center the pixel intensity distribution. This is achieved using. 
  

    ℐ𝒸(𝑥, 𝑦) = ℐ(𝑥, 𝑦) − μℐ           (1)  
 

Where ℐ𝒸(𝑥, 𝑦) represents the centered pixel intensity, μℐ 

is the entire image global mean intensity. Mathematically, it 

is formulated as  
 

μℐ =
1

𝐻𝑊𝐶
∑ ∑ ∑ ℐ(𝑥, 𝑦, 𝑐)𝑊

𝑦=1
𝐻
𝑥=1

𝐶
𝑐=1                         (2) 

 

This operation reduces the bias that is introduced by 

background illumination or varying image acquisition 

settings. Followed by standard deviation normalization, 

which is applied to scale the image intensities to a consistent 

range. The normalization procedure is mathematically 

formulated as  

ℐ𝓃(𝑥, 𝑦) =
ℐ𝒸(𝑥,𝑦)

σℐ
                (3) 

Where ℐ𝓃(𝑥, 𝑦) is the normalized pixel value, σℐ is the 

standard deviation of image intensities across all pixels and 

channels, calculated as 

σℐ =

√
1

𝐻𝑊𝐶
∑ ∑ ∑ (ℐ(𝑥, 𝑦, 𝑐) − μℐ)2𝑊

𝑦=1
𝐻
𝑥=1

𝐶
𝑐=1         (4)

  

This ensures that the pixel values are distributed around 

zero with unit variance and exhibit stable convergence during 

learning. To further enhance the visual features for the 

boundaries and blastomeres textures, contrast stretching is 

applied on ℐ𝓃 Using intensity percentile limits. 

Mathematically, it is expressed as:  

 

ℐ𝓈(𝑥, 𝑦) =
ℐ𝓃(𝑥,𝑦)−𝑝𝑙

𝑝ℎ−𝑝𝑙
  (5) 

 
 

Where ℐ𝓈(𝑥, 𝑦) Is the contrast-stretched output pixel, 𝑝𝑙  

and 𝑝ℎ are the lower and upper percentile limits of ℐ𝓃, Values 

below 𝑝𝑙  are clipped to 0, and above 𝑝ℎ are clipped to 1. The 

final result of this preprocessing stage is the preconditioned 

image ℐ𝓈 ∈ 𝑅𝐻×𝑊×𝐶, which contains uniform illumination, 

enhanced boundaries, and a standardized dynamic range. 

This image is then forwarded to the patch partitioning 

module in the encoder stage for feature extraction. 

 
3.2. Hierarchical Feature Encoding using Swin 

Transformer  

Following preprocessing, the enhanced image ℐ𝓈 ∈
𝑅𝐻×𝑊×𝐶 It is partitioned into fixed-size, non-overlapping 

patches. Each patch ℐ𝓈
(𝒾)

∈ 𝑅𝑝×𝑝×𝐶 is then flattened into a 
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vector and transformed into an embedding vector through a 

learned projection. 

        𝑧0
𝑖 = 𝑊𝑝 ⋅ 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝐼𝑠

(𝑖)
) + 𝑏𝑝 (6) 

 

Where 𝑧0
𝑖 ∈ 𝑅𝑑 Is the embedding vector for the 𝑖th 

image patch, 𝑊𝑝 ∈ 𝑅𝑝2𝐶×𝑑 Is the learnable weight matrix for 

patch embedding  𝑏𝑝 ∈ 𝑅𝑑 Is the bias vector for embedding, 

𝑑: Dimension of the token embedding, Flatten(⋅) It is the 

operator that converts a patch into a one-dimensional vector. 

These embedding vectors are grouped into square regions 

called windows of size 𝑀 × 𝑀. For each window, a self-

attention operation is computed to capture the interaction 

between each pair of patches within that window. For a given 

query vector 𝑞𝑖 ∈ 𝑅𝑑 , the attention output is calculated as:  

 

𝑜𝑖 = ∑ 𝛼𝑖𝑗
𝑀2

𝑗=1 ⋅ 𝑣𝑗    (7) 

 

Where 𝑜𝑖 ∈ 𝑅𝑑 is the output vector for query 𝑖, α𝑖𝑗 Is the 

attention score between query 𝑖 and key 𝑗, computed as:  

 

       𝛼𝑖𝑗 =
𝑒𝑥𝑝(

𝑞𝑖
⊤⋅𝑘𝑗+𝑏𝑖𝑗

√𝑑
)

∑ 𝑒𝑥𝑝(
𝑞𝒊

⊤⋅𝑘𝑙+𝑏𝑖𝑙

√𝑑
)𝑀2

𝑙=1

   (8)

  

Where 𝑘𝑗 ∈ 𝑅𝑑 Is the key vector for token 𝑗, 𝑣𝑗 ∈ 𝑅𝑑  Is 

the value vector for token 𝑗, 𝑏𝑖𝑗 ∈ 𝑅 is the learnable relative 

positional bias between positions 𝑖 and 𝑗, √𝑑 Is the scaling 

factor to stabilize the gradient for each vector 𝑞𝑖 , 𝑘𝑗 , 𝑣𝑗 is 

obtained from the token embeddings using separate learned 

linear projections. 

 

𝑞𝑖 = 𝑊𝑞 ⋅ 𝑧𝑖 ,  𝑘𝑗 = 𝑊𝑘 ⋅ 𝑧𝑗 ,  𝑣𝑗 = 𝑊𝑣 ⋅ 𝑧𝑗               (9) 

 

Where 𝑊𝑞 , 𝑊𝑘 , 𝑊𝑣 ∈ 𝑅𝑑×𝑑 It is the learnable 

transformation matrix. After attention, each token vector is 

refined by passing it through a feed-forward transformation 

consisting of two linear mappings with a non-linear 

activation in between:  

 

𝑧𝑜𝑢𝑡
𝑖 = 𝑊2. 𝜙(𝑊1 ⋅ 𝑜𝑖 + 𝑏𝑖) + 𝑏2          (10) 

 

Where 𝑊1 ∈ 𝑅𝑑×4𝑑, 𝑊2 ∈ 𝑅4𝑑×𝑑 is the learnable 

weights for the two fully connected layers, 𝑏1 ∈ 𝑅4𝑑 , 𝑏2 ∈
𝑅𝑑 is the bias vectors, ϕ(⋅) Is the non-linear activation 

function, typically Gaussian Error Linear Unit (GELU). To 

extend the receptive field and capture cross-window 

relationships, a shift in the spatial location of each window is 

applied in alternate layers. This ensures that each token is 

allowed to interact with tokens in neighboring windows, 

without increasing computational complexity. Following the 

attention and token update, a patch merging operation is 

conducted at the end of each stage to reduce the spatial 

resolution and expand the feature depth. For four adjacent 

patches 𝑧1, 𝑧2, 𝑧3, 𝑧4, their merged representation is given by 

 

𝑧𝑚 = 𝑊𝑚 ⋅ 𝐶𝑜𝑛𝑐𝑎𝑡(𝑧1, 𝑧2, 𝑧3, 𝑧4)           (11) 

 

Where 𝑧𝑚 ∈ 𝑅2𝑑 is the merged output vector, 𝑊𝑚 ∈
𝑅4𝑑×2𝑑 is the linear projection matrix after Concatenation, 

𝐶𝑜𝑛𝑐𝑎𝑡(⋅) Indicates the Concatenation of four vectors into 

one. These encoded features are then forwarded to the 

deformable perception module for adaptive spatial 

refinement. 

 

3.3. Deformable Perceptual Module 

The encoded features obtained from the Swin-based 

hierarchical transformer are processed further through a 

deformable perceptual module. For each output position 
(𝑥, 𝑦) in the deformable feature map, a set of offset vectors 

{(δ𝑥𝑘 , δ𝑦𝑘)}𝑘=1
𝐾  It is learned that 𝐾 represents the number of 

sampling points in the neighborhood. These offsets 

adaptively relocate the sampling coordinates relative to the 

central pixel. The deformable feature at position (𝑥, 𝑦) is 

computed as: 

 

ℱ𝒹(𝑥, 𝑦) = ∑ 𝑤𝑘(𝑥, 𝑦)𝐾
𝑘=1 ⋅ 𝐹𝑒𝑛𝑐(𝑥 + δ𝑥𝑘 , 𝑦 + δ𝑦𝑘)  (12) 

 

Where ℱ𝒹(𝑥, 𝑦) Is the output feature at the spatial 

coordinate (𝑥, 𝑦) from the deformable module, 𝐹𝑒𝑛𝑐 Is the 

input feature map from the encoder, δ𝑥𝑘 , δ𝑦𝑘 is the learnable 

spatial offsets for sampling point 𝑘, 𝑤𝑘(𝑥, 𝑦) Is the attention-

based weight assigned to the 𝑘th sampling point at the 

location (𝑥, 𝑦), 𝐾 is the total number of sampling locations in 

the neighborhood. These weights 𝑤𝑘 They are derived by 

applying a normalization operation over the local region to 

ensure the weighted sum is stable and context-sensitive. 

 

𝑤𝑘(𝑥, 𝑦) =
exp(𝑠𝑘(𝑥,𝑦))

∑ exp(𝑠𝑗(𝑥,𝑦))𝐾
𝑗=1

        (13) 

 

Where 𝑠𝑘(𝑥, 𝑦) Is the raw importance score generated 

by a learnable function for sampling point 𝑘. The offset 

values δ𝑥𝑘, δ𝑦𝑘  They are not static but predicted from the 

feature context using a separate convolutional block. Let Δ ∈

𝑅𝐻′×𝑊′×𝟚𝐾  Represent the offset tensor, where the channel 

dimension stores both horizontal and vertical displacements 

for all 𝐾 points: 

𝛥(𝑥, 𝑦) = 𝑊𝛥 ∗ 𝐹𝑒𝑛𝑐(𝑥, 𝑦)       (14) 

 

Where 𝑊𝛥 Is the learnable kernel responsible for 

predicting offsets, ∗ indicating the Convolution operation, 

Δ(𝑥, 𝑦) indicates the contents [δ𝑥1, δ𝑦1, … , δ𝑥𝐾 , δ𝑦𝐾] at 

position (𝑥, 𝑦). To handle non-integer positions resulting 

from offsets, bilinear interpolation is applied when sampling. 

𝐹𝑒𝑛𝑐. If the offset leads to fractional coordinates (𝑥′, 𝑦′) =
(𝑥 + δ𝑥𝑘, 𝑦 + δ𝑦𝑘), then the interpolated value is computed 

by: 
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𝐹𝑒𝑛𝑐(𝑥′, 𝑦′) = ∑ ∑ γ𝑚𝑛
1
𝑛=0

1
𝑚=0 ⋅ 𝐹𝑒𝑛𝑐(⌊𝑥′⌋ + 𝑚, ⌊𝑦′⌋ + 𝑛)

         (15)  

 

Where γ𝑚𝑛 Indicates the bilinear interpolation 

coefficient. This deformable mechanism allows the network 

to highlight the regions with curvature and the changes in 

texture. The result is a refined representation. ℱ𝒹 ∈

𝑅𝐻′×𝑊′×𝐷 That preserves biological fidelity and reduces the 

spatial noise. Finally, the enhanced features ℱ𝒹 They are 

forwarded to the probabilistic localization block, in which a 

confidence map is generated using a Gaussian estimator to 

obtain the centroid positions without performing complete 

segmentation. 

 

3.4. Gaussian Confidence Estimation  

In this stage, the encoded feature maps, which have the 

fine-tuned spatial information, are processed for Gaussian 

confidence estimation. The proposed model utilizes a 

probabilistic approach, which generates a continuous value 

confidence map to highlight each pixel’s likelihood. Using a 

differentiable Gaussian distribution, a dot-level annotation is 

performed. The confidence map generates a dense, smooth 

prediction surface, which enables better localization even in 

blurred or overlapping cell structures. Let the ground truth 

contain 𝑁 annotated centroids, each located at spatial 

coordinates. (𝑥𝑛 , 𝑦𝑛), where 𝑛 ∈ {1, 2, … , 𝑁}. The Gaussian 

confidence value at each pixel position (𝑥, 𝑦) In the image, it 

is formulated as 

 

𝒢(𝑥, 𝑦) = ∑ exp (−
(𝑥−𝑥𝑛)2+(𝑦−𝑦𝑛)2

2σ2 )𝑁
𝑛=1          (16) 

 

Where 𝒢(𝑥, 𝑦) indicates the confidence score at the 

location (𝑥, 𝑦), 𝑁 indicates the total number of annotated 

centroids in the training image, (𝑥𝑛 , 𝑦𝑛) is the coordinates of 

the 𝑛th cell centroid, σ indicates the standard deviation of the 

Gaussian kernel, which controls the spatial spread around 

each centroid. During training, the model learns to regress a 

predicted confidence map. 𝒢̂(𝑥, 𝑦) from the refined feature 

map ℱ𝒹. A prediction head composed of a convolutional 

layer is used to map the deep features into a single-channel 

output representing the estimated confidence for each pixel. 

Let this mapping be defined as: 

 

𝒢̂(𝑥, 𝑦) = 𝑤𝑔 ∗ ℱ𝒹(𝑥, 𝑦) + 𝑏𝑔                 (17)

  

Where 𝒢̂(𝑥, 𝑦) Is the predicted confidence score at the 

location (𝑥, 𝑦), 𝑤𝑔 Are the convolutional kernel weights for 

Gaussian map prediction, 𝑏𝑔 Is the Bias term associated with 

the convolution, ∗: Denotes the convolution operation. To 

ensure alignment with ground truth and guide model 

optimization, a loss function is computed between the 

predicted map and the ground truth. 𝒢̂(𝑥, 𝑦) and the ground 

truth Gaussian map 𝒢(𝑥, 𝑦). The error is measured using the 

squared Euclidean distance over all pixel positions, given by 

ℒ𝓂𝒶𝓅 =
1

𝐻′𝑊′
∑ ∑ (𝒢̂(𝑥, 𝑦) − 𝒢(𝑥, 𝑦))

2
𝑊′

𝑦=1
𝐻′

𝑥=1      (18) 

 

Where ℒ𝓂𝒶𝓅 Is the mean-squared error loss between 

predicted and accurate confidence maps, 𝐻′ , 𝑊′ Is the spatial 

dimension of the output map. After training, during 

inference, the predicted confidence map 𝒢̂(𝑥, 𝑦) It is post-

processed to extract the most probable centroid locations. 

This is achieved by identifying local maxima in the map and 

applying a confidence threshold τ to suppress spurious 

peaks. The final set of detected centroids 𝒞 is obtained by: 

 

𝒞 = {(𝑥, 𝑦) ∣ 𝒢 ̂(𝑥, 𝑦) ≥ τ "𝑎𝑛𝑑 " 𝒢 ̂(𝑥, 𝑦) >

𝒢 ̂(𝑥^′, 𝑦^′ ) ∀ (𝑥^′, 𝑦^′ ) ∈ 𝒩(𝑥, 𝑦) }             (19) 

 

Where 𝒞 is the final predicted set of centroid 

coordinates, τ is the confidence threshold, 𝒩(𝑥, 𝑦) Is the 

local neighborhood around (𝑥, 𝑦) For identifying maxima. 

 

3.5. Loss Formulation and Training Objective  

To ensure the SwinDePeriNet model accurately learns to 

localize cell centroids from embryo microscopy images, a 

loss function must be defined that penalizes deviations 

between predicted outputs and known ground truth. Since the 

model is trained to generate continuous-valued confidence 

maps rather than categorical labels or masks, a pixel-wise 

regression loss is more suitable than classification-based 

metrics. The primary learning objective is to minimize the 

squared error between the predicted Gaussian response map 

and the annotated ground truth map constructed using dot-

level centroid labels. Let 𝒢̂(𝑥, 𝑦) Represent the predicted 

confidence value at the pixel coordinate. (𝑥, 𝑦), and 𝒢(𝑥, 𝑦) 

Denote the corresponding ground truth value obtained using 

Gaussian kernels centered on annotated centroids. The 

regression loss for a single image is calculated using the 

mean of squared differences over all pixels in the output 

map. 

ℒ𝑡𝑜𝑡𝑎𝑙 =
1

𝐻′⋅𝑊′
∑ ∑ (𝒢̂(𝑥, 𝑦) − 𝒢(𝑥, 𝑦))

2
𝑊′

𝑦=1
𝐻′

𝑥=1      (20) 

 

Where ℒ𝑡𝑜𝑡𝑎𝑙 Is the total loss used to train the model, 

(𝐻′, 𝑊′) Is the height and width of the predicted confidence 

map, 𝒢̂(𝑥, 𝑦) Is the predicted confidence score at the pixel 

(𝑥, 𝑦), 𝒢(𝑥, 𝑦) Is the ground truth Gaussian value at the pixel 
(𝑥, 𝑦). This formulation encourages the model to output 

values close to one near annotated centroids and values 

approaching zero elsewhere. Since the Gaussian peaks are 

spatially continuous, the model also learns to approximate 

the shape and spread of accurate centroids, enabling high-

resolution localization without producing segmentation 

boundaries. In some scenarios, especially when cells are 

densely packed, background pixels may significantly 

outnumber foreground peaks, leading to class imbalance in 

the regression space. To handle this, a spatial weighting mask 

𝒲(𝑥, 𝑦) It is incorporated, which highlights the high-
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confidence zones during learning. The revised loss function 

is then formulated as follows. 

 

ℒ𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =
1

𝐻′⋅𝑊′
∑ ∑ 𝒲(𝑥, 𝑦)𝑊′

𝑦=1 ⋅ (𝒢̂(𝑥, 𝑦) − 𝒢(𝑥, 𝑦))
2

𝐻′

𝑥=1

                                                  (21) 

  

Where 𝒲(𝑥, 𝑦) Represents the weighting function. The 

final objective is to minimize ℒ𝑡𝑜𝑡𝑎𝑙 Over the entire training 

set. For a dataset containing 𝑁𝐼 Images, the total batch loss is 

formulated as:  

ℒ𝑏𝑎𝑡𝑐ℎ =
1

𝑁𝐼
∑ ℒ𝑡𝑜𝑡𝑎𝑙

(𝑖)𝑁𝐼
𝑖=1     (22) 

 

Where ℒ𝑏𝑎𝑡𝑐ℎ represents the final averaged loss, 𝑁𝐼 

represents the current batch image count, ℒ𝑡𝑜𝑡𝑎𝑙
(𝑖)

 represents 

the loss computed for the 𝑖th training image.  

 

3.6. Post-Processing and Final Output Extraction  

After the confidence map 𝒢̂(𝑥, 𝑦) ∈ 𝑅𝐻′×𝑊′
 The next 

process is to convert the continuous-valued heatmap into a 

discrete set of centroid coordinates. In the post-processing, a 

predefined confidence threshold (τ ∈ [0,1]) It is used to 

eliminate low-confidence regions. The thresholded binary 

mask ℬ(𝑥, 𝑦) is formulated as 

 

ℬ(𝑥, 𝑦) = {1 𝑖𝑓 𝒢̂(𝑥, 𝑦) ≥ 𝜏
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (23)

  

Where ℬ(𝑥, 𝑦) indicates the binary indicator for the 

candidate centroid at pixel (𝑥, 𝑦), τ is the minimum 

confidence, 𝒢̂(𝑥, 𝑦) Represents the predicted confidence 

score.  
 

Further, the local maxima are identified to ensure that 

prominent peaks in each region are selected. Let 𝒩(𝑥, 𝑦) 

Denote the square neighborhood of size. (𝑟 × 𝑟) pixels 

centered at (𝑥, 𝑦). A location is considered a local maximum 

if its value is greater than or equal to all others in the defined 

window. 

(𝑥, 𝑦) ∈ 𝒞 if 𝒢̂(𝑥, 𝑦) =
max

(𝑢,𝑣)∈𝒩(𝑥,𝑦)
𝒢̂ (𝑢, 𝑣) and ℬ(𝑥, 𝑦) = 1 (24) 

 

Where 𝒞 represents the final set of predicted centroid 

coordinates, 𝒩(𝑥, 𝑦) Indicates the local neighborhood 

around pixel, 𝑟 indicates the square window side length. This 

ensures that the final output has only confident and isolated 

peaks. Further, a coordinate adjustment step is applied to 

fine-tune the predictions. Let ℛ𝓀 represents a region around 

the 𝑘th detected maximum (𝑥𝑘 , 𝑦𝑘), then the refined centroid 

(𝑥̃𝑘 , 𝑦̃𝑘) is computed as 

 

𝑥̃𝑘 =
∑ 𝑢⋅𝒢̂(𝑢,𝑣)(𝑢,𝑣)∈ℛ𝑘

∑ 𝒢̂(𝑢,𝑣)(𝑢,𝑣)∈ℛ𝑘

, 𝑦̃𝑘 =
∑ 𝑣⋅𝒢̂(𝑢,𝑣)(𝑢,𝑣)∈ℛ𝑘

∑ 𝒢̂(𝑢,𝑣)(𝑢,𝑣)∈ℛ𝑘

      (25) 

Where 𝑥̃𝑘 , 𝑦̃𝑘 represents the refined coordinates, ℛ𝓀 

Represents the local region around the detected peak for 

interpolation, 𝑢, 𝑣 indicates the pixel coordinates, 𝒢̂(𝑢, 𝑣) 

The confidence values are used as weights. This 

interpolation-based fine-tuning reduces the quantization 

errors introduced in earlier stages of the process. 

Additionally, it enhances sub-pixel localization accuracy, 

which is crucial in microscopy image analysis. The final 

output of this step is the complete list of predicted centroids, 

which is mathematically expressed as:  

 

𝒞𝒻𝒾𝓃𝒶ℓ = {(𝑥̃𝑘 , 𝑦̃𝑘); |; 𝑘 = 1,2, … , 𝑁𝑝}    (26) 

 

Where 𝒞𝒻𝒾𝓃𝒶ℓ represents the set of all predicted cell 

centroids, 𝑁𝑝 Represents the total number of final detections. 

The summarized pseudocode for the proposed model is 

presented as follows.  

 
Pseudocode: SwinDePeriNet – Cell Centroid 

Detection 

Input: (ℐ ∈ 𝑅𝐻×𝑊×𝐶) — Raw embryo image 

Output: 𝒞f𝒾n𝒶l = (𝑥1̃, 𝑦1̃), (𝑥2̃, 𝑦2̃), … , (𝑥𝑁̃ , 𝑦𝑁̃) — 

Detected centroid coordinates 

Initialization: Set patch size 𝑝, window size 𝑀, 

embedding dimension 𝑑, define Gaussian spread 𝜎, Set 

threshold (𝜏 ∈ [0,1]) for post-processing, Initialize 

learnable parameters (𝑊𝑝, 𝑏𝑝, 𝑊𝑞 , 𝑊𝑘, 𝑊𝑣 , 𝑊𝛥, 𝑊𝑔) 

Begin  

Compute global mean 𝜇 ← Mean(ℐ) 

Compute standard deviation 𝜎ℐ ← StdDev(ℐ) 

Normalize image ℐ ∗ 𝑛(𝑥, 𝑦) =
ℐ(𝑥,𝑦)−𝜇

𝜎∗ℐ
 

Apply contrast stretching  

Divide ℐ𝓃 into non-overlapping patches of size (𝑝 × 𝑝) 

For each patch 𝑖, compute the embedding. 𝑧0
𝑖 = 𝑊𝑝 ⋅

𝐹𝑙𝑎𝑡𝑡𝑒𝑛(ℐ𝓃
(𝒾)

) + 𝑏𝑝 

Organize tokens into windows of size. (𝑀 × 𝑀) 

For each window 

Compute self-attention weights using projected queries, 

keys, and values. 

Apply relative positional encoding. 

Aggregate window responses 

Apply shifted windows in alternate layers. 

Perform patch merging to reduce spatial size and increase 

depth. 

Output encoded feature map ℱe𝓃c 

Predict spatial offsets 𝛥(𝑥, 𝑦) = 𝑊𝛥 ∗ ℱe𝓃c(𝑥, 𝑦) 

For each pixel (𝑥, 𝑦), initialize ℱ𝒹(𝑥, 𝑦) ← 0 

Loop over 𝑘 = 1 to 𝐾 

Compute the deformed location. (𝑥𝑘 , 𝑦𝑘) =
(𝑥 + 𝛿𝑥𝑘 , 𝑦 + 𝛿𝑦𝑘) 

Interpolate ℱe𝓃c(𝑥𝑘 , 𝑦𝑘) using the bilinear method 

Weight using learned scalar 𝑤𝑘 

Accumulate ℱ𝑑(𝑥, 𝑦)+= 𝑤𝑘(𝑥, 𝑦) ⋅ ℱe𝓃c(𝑥𝑘 , 𝑦𝑘) 
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Convolve (ℱ𝒹) to produce a prediction 𝒢̂(𝑥, 𝑦) = 𝑊𝑔 ∗

ℱ𝒹(𝑥, 𝑦) + 𝑏𝑔 

Construct ground truth Gaussian map 𝒢(𝑥, 𝑦) using 

annotated centroids 

Compute loss ℒ =
1

𝐻′𝑊′
∑ (𝒢̂(𝑥, 𝑦) − 𝒢(𝑥, 𝑦))

2

𝑥,𝑦  

Initialize set 𝒞f𝒾n𝒶l ← ∅ 

For all (𝑥, 𝑦) 

If 𝒢̂(𝑥, 𝑦) ≥ 𝜏 

Check if 𝒢̂(𝑥, 𝑦) is maximum in the neighborhood 

If yes, define local region ℛ 

Compute refined position 

𝑥̃ =
∑ 𝑢(𝑢,𝑣)∈ℛ ⋅𝒢̂(𝑢,𝑣)

∑ 𝒢̂(𝑢,𝑣)(𝑢,𝑣)∈ℛ
  𝑦̃ =

∑ 𝑣(𝑢,𝑣)∈ℛ ⋅𝒢̂(𝑢,𝑣)

∑ 𝒢̂(𝑢,𝑣)(𝑢,𝑣)∈ℛ
 

Append (𝑥̃, 𝑦̃) to 𝒞f𝒾n𝒶l 

Return 

End  

 

4. Results and Discussion  
The proposed SwinDePeriNet’s experimentation is 

validated through a Python tool that incorporates CUDA-

enabled GPU acceleration for improved training and testing. 

The benchmark dataset used in the proposed model includes 

cell images from the Kaggle repository. The entire dataset is 

divided into a 70% training set and a 30% testing set. The 

preprocessing steps include normalization, contrast 

enhancement, and resolution standardization. The training 

used Adam optimizer with an initial learning rate of 0.0001 

and a batch size of 8. For better validation, the proposed 

model is compared with existing methods, and the details of 

simulation hyperparameters are presented in Table 1 for all 

the models.  

 

The proposed model’s experimentation is validated 

using a benchmark cell image dataset available in the Kaggle 

repository [21]. The dataset has synthetically generated 

microscopy images that replicate the visual and structural 

characteristics of biological cell cultures. The images in the 

dataset are also accompanied by their binary masks, which 

clearly display the individual cell boundaries. All the input 

images are preprocessed and processed through the proposed 

modules. A summary of the dataset is presented in Table 2. 

 
Table 1. Simulation hyperparameters 

S.No Method Parameter Value 

1 

Proposed 

SwinDePeriNet 

Learning Rate 0.0001 

2 Batch Size 8 

3 Optimizer Adam 

4 Patch Size 4 × 4 

5 Window Size 7 × 7 

6 Depth of Transformer 4 

7 Number of Attention Heads 6 

8 Epochs 200 

9 Weight Decay 1e-4 

10 Loss Function Density + Content 

11 

Cell-Net 

Learning Rate 0.001 

12 Batch Size 8 

13 Optimizer Adam 

14 Epochs 200 

15 Atrous Dilation Rates [1, 2, 3] 

16 Pyramid Levels 3 

17 Residual Blocks 5 

18 

CSRNet 

Learning Rate 0.0005 

19 Batch Size 8 

20 Optimizer SGD 

21 Momentum 0.9 

22 Epochs 200 

23 Backbone VGG-16 

24 

MCNN 

Learning Rate 0.0001 

25 Batch Size 8 

26 Optimizer Adam 

27 Epochs 200 

28 Number of Columns 3 

29 Filter Sizes 9, 7, 5 
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Table 2. Dataset description 

Class / Subset Total Samples Training Samples (80 %) Testing Samples (20 %) 

All images (cell-count labels) 19,200 15,360 3,840 

Images with segmentation masks 

(foreground/background) 
1,200 960 240 

Total 20400 16320 4080 

 

The proposed model training and testing performance is 

presented in Table 3 for the metrics like MAE, MSE, 

accuracy, R2 Score, perfect localization rate, and FPR 

metrics. The results clearly demonstrate the superior 

performance of the proposed model, with a lower MAE of 

6.21 and MSE of 50.3 during training. During testing, the 

MAE increases to 6.90, and the MSE increases to 59.2.  

 

This indicates the minimal overfitting of the proposed 

model. The overall accuracy of the proposed model is 96.8% 

during training and 95.2% during testing. The training and 

testing values of the perfect localization rate are 94.2% and 

93.1%, respectively, whereas the mean Euclidean distance 

increases from 3.5 to 3.9 pixels. This enhanced performance 

highlights the better precision of the proposed model.   

 
Table 3. Proposed model training and testing performances  

Metric 
Training 

Phase 

Testing 

Phase 

Mean Absolute Error (MAE) 6.21 6.90 

Mean Squared Error (MSE) 50.3 59.2 

Accuracy (%) 96.8 95.2 

R² Score 0.982 0.976 

Mean Euclidean Distance (pixels) 3.5 3.9 

Perfect Localization Rate (%) 94.2 93.1 

False Positive Rate (%) 2.4 2.6 

 

 
Fig. 2 MSE analysis 

 

To validate the proposed model with existing methods, a 

detailed comparative analysis is performed. The proposed 

model’s performance is analyzed in comparison to existing 

methods, including Cell-Net, CSRNet, and MCNN models. 

The comparative analysis of the mean squared error metric 

presented in Figure 2 highlights the lower MSE of the 

proposed SwinDePeriNet model, which is 40.3, compared to 

the MSE of 91.4%, 109.6%, and 124.1% for the Cell-Net, 

CSRNet, and MCNN models, respectively. The perfect 

localization rate analysis presented in Figure 4 highlights the 

better location ability of the proposed model over 

conventional methods. The proposed model exhibits a better 

localization rate of 93.1% for the 200th epoch. In contrast, the 

existing method, Cell-Net, exhibits 82.1%, CSRNet exhibits 

77.1% and MCNN exhibits 74.0% which is lower than the 

proposed model. The consistent improvement of the 

proposed model is due to the deformable perceptual encoding 

and Swin attention modules, which effectively capture the 

changes and morphological changes in embryo structures.  

 

The R² Score comparative analysis across different 

window sizes is presented in Figure 4 to demonstrate the 

robustness of the models. The proposed model exhibits an R² 

Score of 0.9756 for the optimal window size of 7. Whereas 

the existing methods like Cell-Net exhibit 0.9455, CSRNet 

exhibits 0.9282, and MCNN exhibits 0.9056, which is less 

than the proposed model. For the other window sizes, like 5, 

6, 8, and 9, the proposed model exhibits superior 

performance compared to existing methods. The consistent 

performance of the proposed model highlights the model’s 

ability to capture the long-range spatial dependencies in cell 

structure analysis. 
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Fig. 3 Perfect localization rate analysis 

 

 
Fig. 4 R2 Score analysis 

 

 
Fig. 5 FPR Analysis 
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The False Positive Rate (FPR) comparative analysis of 

the proposed and existing methods is presented in Figure 5. 

The results clearly present the proposed model’s initial lower 

rate of 6.1% which is better compared to Cell-Net, which 

exhibits 7.8%, CSRNet, which exhibits 8.5% and MCNN, 

which exhibits 9.3%. For the maximum epoch, the proposed 

model reaches an FPR of 2.6% which is better compared to 

the existing Cell-Net, CSRNet, and MCNN methods’ FPR of 

4.1%, 4.5% and 5.2% respectively. The better FPR of the 

proposed model ensures enhanced centroid identification and 

accurate differentiation between the cell regions.  

 

The variation in localization accuracy is comparatively 

presented in Figure 6 over patch size. The proposed 

SwinDePeriNet exhibits better localization precision by 

exhibiting the lowest Mean Euclidean Distance (MED) of 

3.88px. The existing methods like Cell-net, CSRNet, and 

MCNN exhibit high values of 4.82 px, 5.01 px, and 5.30 px 

for a patch size of 4. When the patch size is increased to 10, 

the MCNN reaches a maximum MED of 6.4px, whereas the 

proposed model maintains a stable precision with 5.22px. 

These precision results highlight the robustness of the 

proposed model over spatial resolution changes and 

enhanced localization accuracy.  

 

 
Fig. 6 Localization precision analysis 

 

 
Fig. 7 Accuracy analysis 

 

Figure 7 presents the accuracy comparative analysis of 

the proposed SwinDePeriNet. The comparative analysis 

clearly highlights better performance of the proposed model 

with an accuracy of 95.3% for the maximum epoch. The 

existing model Cell-Net exhibits an accuracy of 87.1% 

whereas CSRNet exhibits an accuracy of 86.2% and MCNN 

exhibits an accuracy of 83.2% which is lower than the 

proposed model. The better improvement in accuracy of the 
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proposed model confirms its better convergence behavior 

and feature extraction ability.  

 

The overall performance analysis presented in Table 4 

highlights the proposed model's superior performance for all 

the metrics. The proposed model exhibits the highest 

accuracy of 95.3% which is better than cell accuracy of 

87.1%, CSR-Net accuracy of 86.2% and MCNN model 

accuracy of 83.2%. In case of perfect localization rate, the 

proposed model is superior with 93.1% whereas the existing 

methods attain in the range of 745 to 82% which is lesser. 

The regression precision metrics demonstrate the proposed 

model’s better performance by attaining an R2 score of 

97.6% which is better than other existing methods. The 

performance of the proposed model for the false positive rate 

is better, with the lowest rate of 2.6% whereas existing 

methods exhibit a range of 4.1 to 5.2%. Overall, the 

proposed model’s performance metrics are much better than 

existing methods in cell counting and centroid localization of 

microscopy images. 

   
Table 4. Overall performance analysis 

Metric Cell-Net CSRNet MCNN Proposed SwinDePeriNet 

Accuracy (%) 87.1 86.2 83.2 95.3 

Perfect Localization Rate (%) 82.2 77.0 74.0 93.1 

R² Score (Window Size = 7) 94.5 92.8 90.8 97.6 

False Positive Rate (%) 4.1 4.5 5.2 2.6 

Mean Euclidean Distance (px) 6.1 6.2 6.4 5.2 

Mean Absolute Error (MAE) 35 42 48 26 

Mean Squared Error (MSE) 300 350 420 250 

 

5. Conclusion  
This research work presents a transformer model, 

SwinDePeriNet, to count the cells and localize the centroid in 

microscopy images. The proposed work incorporates the 

Swin transformer encoder along with a deformable 

perceptual layer for adaptive feature processing.  

 

The experimentation utilizes the Adam optimizer to train 

and test the proposed model. Benchmark dataset exhibits the 

proposed model performance as 95.3% accuracy, 93.1% 

perfect localization rate, and a R² score of 97.6%. Error 

values were minimized with an MAE of 26, MSE of 250, and 

Euclidean distance of 5.2 pixels. Compared to existing 

methods such as Cell-Net, CSRNet, and MCNN, the 

performance of the proposed model is much better for all the 

metrics. Apart from the advantages, the proposed model has 

a minor limitation, as the experimentation utilizes synthetic 

data. Future work will overcome this limitation by 

incorporating real cell images and optimization procedures to 

improve the computational efficiency.  
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