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Abstract - The conventional ECG methods used to monitor vital signs are limited by their reliance on hospital equipment,
restricted accessibility, and the late onset of diagnosis. To overcome these obstacles, an loT-based wearable healthcare device
is suggested to track the real-time ECG and analytics in the cloud. The product combines wearable ECG, SpO2, and heart rate
variability sensors with an 10T microcontroller, backed by optimized communication protocols and cloud storage. A hybrid
CNN-LM Deep Learning Model, based on arrhythmia classification, is employed, and mathematical models are utilized to
compare energy efficiency and latency. In experimental testing, an accuracy of 98.6%, a sensitivity of 97.9%, a specificity of
98.2%, a precision of 98.3%, a F1-score of 98.1%, an average latency of 45 ms, a packet delivery ratio of 99.2%, and an energy
consumption of 18.7 mW were achieved. These findings support the efficiency of the developed system in providing scalable,

energy-efficient, and accurate real-time cardiac monitoring to support innovative healthcare applications.

Keywords - Analog to digital converter, Bluetooth Low Energy, Heart Rate Variability, Least Mean Square, Message Queuing

Telemetry Transport, Packet Delivery Ratio, Peripheral capillary oxygen saturation.

1. Introduction

Focusing on Attending Signals Modeled as Behavioral
Signals to Engagement Prediction in a Machine Learning
Environment. The combination of the 10T and wearables is
one of these elements that have become ubiquitous facilitators
of innovative healthcare solutions. CVDs are the most
common causes of worldwide death, and constantly tracking
heart health is a priority. Conventionally, ECG monitoring has
been conducted in a clinical setting using wired devices that
require hospital visits and supervision by trained personnel
[1]. These approaches are good but very difficult in relation to
accessibility, cost, and real-time availability. This is why the
increased demand for wearable and intelligent systems to track
ECG signals in patients throughout their lives is growing.
With wearable gadgets containing biomedical sensors, by
connecting them through 10T networks, the technology can be
used to constantly record physiological marks and send them
to a distant station to keep and process them [2]. Scalable data
storage, powerful analytics, and machine learning also expand
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this ecosystem provided by cloud computing. In this way, the
cardiac abnormalities can be observed in real time, and timely
therapeutic measures can be taken to avert life-threatening
complications [3]. In addition, patients have the power to be
more proactive about their health, and healthcare providers
can access detailed, real-time patient information, regardless
of geographical area. Even as wearable healthcare
technologies continue to advance, current systems have their
fair share of limitations [4]. Most early wearable devices are
characterized by poor detection of cardiac abnormalities
because of noise in raw ECG signals, motion artifacts, and
limited processing. Conventional machine learning methods
like decision trees or support vectors have been promising, but
fail to address the temporal and spatial complexity of ECG
signals. Besides, the 10T networks are still struggling with
latency, which hinders real-time monitoring, and delays in
transmitting data and processing requirements in the cloud
influence responsiveness [5]. Energy consumption is another
bone that is sore, and it needs to be monitored, and most of the
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devices may not have the energy to sustain themselves over
time. The questions of security and privacy are also timely;
the exchange of sensitive medical data over the networks
without an adequate level of protection puts more violations
at risk. In addition, the majority of the systems in availability
are not scalable and cannot handle significant amounts of data
delivered by several patients simultaneously [6]. All these
limitations suggest that there is a high demand for a more
reliable, energy-saving, secure, and competent ECG-
monitoring system. The motivation behind this work is the
necessity to deal with the issues raised above and provide a
system that will be able to provide accurate, power-saving,
and low-latency cardiac monitoring [7]. The cardiovascular
diseases continue to plague the lives of millions of human
beings on the planet. Thus, there is a high demand for
technologies that would detect abnormalities at an early stage,
avoiding hospitalization, and offering customized health care
control [8]. With the further advancement of IloT
communication protocols, wearable sensors, and deep
learning, systems can now be constructed in a way that assists
in bridging the gap between traditional, hospital-based, and
patient-centered continuous care [9]. The main objectives are:

e To develop a wearable ECG monitoring system with loT
modules to have a constantly active and real-time signal.

e To efficiently pre-process ECG signals, it is necessary to
reduce noise and increase the stability of the recorded
data.

e Touse a hybrid CNN-LSTM Deep Learning Network to
classify the ECG patterns accurately and identify
arrhythmias.

e To incorporate cloud analytics to process a large amount
of data, allowing remote monitoring by medical staff.

e To test system-level parameters, including latency,
energy consumption, and packet delivery ratio, to achieve
feasibility in real-world applications.

The work makes many novel contributions to the area of
competent healthcare:

e Greater Accuracy: The proposed model demonstrated
higher accuracy (98.6%), sensitivity (97.9%), specificity
(98.2%), and an F1-Score of 98.1%, compared to
traditional methods, which achieved an accuracy of
98.6%.

o Flexible 1oT Transmission: The model of energy
consumption was implemented mathematically, and the
average power consumption was 18.7 mW, which is not
high enough to sustain the device in a long-term system.

e Low Latency: The average latency measured was 45 ms,
and a packet delivery ratio of 99.2% provided the system
with near real-time monitoring capabilities.

e Cloud Analytics Integration: Cloud analytics facilitates
the mass storage of data and predictive analytics, allowing
healthcare practitioners to track patients remotely without
incurring expensive delays.

e Comparative Superiority: The proposed system was
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found to be much more effective in terms of performance
in all the crucial parameters, which proves the feasibility
of the proposed system.

The remaining paper is organized as follows. Section 2
will include an in-depth literature review of existing research
on wearable ECG monitoring, 10T integration, and cloud-
based analytics, highlighting the gaps in current solutions.
Section 3 offers the proposed system architecture, sensor
integration, 1oT communication, preprocessing, and cloud-
based Deep Learning Model and mathematical modeling of
energy efficiency, latency, and predictive analysis and talks
about the dataset, training, and evaluation strategy, and results
of the proposed system are discussed in Section 4, where the
performance of the proposed system is compared to the state-
of-the-art approaches. Last, Section 5 provides a conclusion
with an overview of significant contributions, as well as plans
to expand the system to multi-mode healthcare monitoring and
to large-scale implementation.

2. Literature Review

Providing mental and physical health support is getting
more and more crucial in case independent living is planned
because of the aging of many societies and more citizens
getting chronic illnesses such as diabetes, cardiovascular
illness, obesity, and others. Sensing, remote health
monitoring, and identifying daily activities are possible
solutions. At the technological level, the Internet of Things
(1oT) is becoming a widespread trend in many aspects, and
personalized healthcare is among them [10]. In order to have
ubiquitous health monitoring, there has been a wide
distribution of an 1oT Body Area Sensor Network (BASN).
Heart disease is normally diagnosed by the use of ECG
monitoring. The key conclusions of this paper are: Firstly, it
introduces the WISE (Wearable loT-cloud-based Health
monitoring system) as a real-time personal health monitoring
system [11]. WISE is founded on a basic health monitoring
model. Wearable sensors include those that monitor heartbeat,
body temperature, and blood pressure. Second, most wearable
health monitors will require a smartphone to visualize,
process, and transfer data, and this will affect smartphone
usage. WISE can be used to send BASN data directly to the
cloud, but a lightweight wearable LCD can be attached in
order to see data in real-time.

IoT has become a key element of the emerging
applications such as smart cities, smart homes, education,
health, transportation, and defense processes. Healthcare is a
handy field in relation to the applications of 10T, as the
possibility to monitor patients remotely, securely, and in real-
time can be used to enhance the quality of life of people [12].
An overview of the current developments in the healthcare-
monitoring systems and an acquaintance with the role of the
10T in the latter. The benefits of l0T-based healthcare systems
are discussed, taking into account the significance and the
benefits of lIoT healthcare [13]. It introduces a survey of



V. Saravanan et al. / IJECE, 12(12), 88-97, 2025

current literature on the subject of loT-based healthcare-
monitoring systems to determine the most recent publications
related to the subject. The literature review compares the
effectiveness and efficiency, data protection, privacy,
security, and monitoring of various systems. It also includes
wireless- and wearable-sensor-based systems of loT
monitoring, and introduces a list of healthcare-monitoring
sensors classification. It also talks, to a certain extent, about
the difficulties and unresolved problems of healthcare security
and privacy, and QoS [14]. Lastly, conclusions and
recommendations on the applications of 10T in healthcare are
provided at the end, along with future projections in the
direction of various recent technological trends.

All over the world, statistical reports have classified
Cardiovascular Diseases (CVDs) as the most significant cause
of death. An Electrocardiogram (ECG) is a standard
technology that is used to study CVDs in individuals. The
solution proposed is an effective Internet of Things (loT)
enabled real-time ECG monitoring system via cloud
computing technologies [15]—a cloud-based product to
deliver remote CVD monitoring. The sensed ECG data is
passed to an Amazon Web Services (AWS) S3 bucket via a
mobile gateway. AWS cloud offers data visualization, fast
response, and long-term connection to devices and users over
HTTP and MQTT servers.

The Bluetooth Low Energy (BLE 4.0) protocol is a type
of communication used to transmit low-power data between a
mobile gateway and a device. A filtering algorithm is used to
ignore distractions, environmental noise, and motion artefacts
in the application of the intended system. It further offers ECG
signal analysis to determine the range of parameters, such as
heartbeat, PQRST wave, and QRS complexes, and respiration
rate. As shown, a proposed system prototype is proven to be
reliable in real-time monitoring of remote ECGs.

Real-time health monitoring with the help of monitoring
key health indicators has been transformed by the loT and
wearable devices. The emergence of wearable electronics in
the form of fitness trackers and medical devices capable of
tracking heart rate and glucose. 10T in healthcare is significant
in the context of connecting and exchanging data between the
device, providing and receiving care, and the patient. The
value of integrating loT as the source of real-time data
collection, remote patient monitoring, and enhanced patient
engagement is examined [10]. It also raises questions about
how Al and machine learning can accurately interpret
wearable health data. Predictive analytics, anomaly detection,
and customized health recommendations made by Al can
enhance patient care. The potential of Al analytics to
transform health monitoring can be imagined using case
studies that have been deployed to monitor patients. Promising
development does not necessarily exclude data privacy and
security issues, accuracy and reliability of wearable gadgets,
interface with the health care system, and acceptance
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problems of the users. The technology-driven future of 1oT-
enabled wearables is also discussed in this report.

With the growing need to diagnose and treat patients
quickly and accurately, and as 10T technologies have gained
popularity, healthcare delivery is evolving to enhance patient
monitoring, diagnosis, and prognosis. The emergence of one-
dimensional care providers and distal consultations
exacerbates the need for competent systems that can provide
health-related information in large volumes in real-time. In
this case, Artificial Intelligence (Al) and loT-based healthcare
systems are essential because they need to support predictive
analytics, timely identification of anomalies, and real-time
clinical decision-making [16]. It will examine the significance
of Al in enhancing the functionality of the wearable devices
that use the 10T to monitor health, with consideration to its
efficiency in data transmission, energy consumption, the
communication protocols, and the integrity of the whole
system. Al implementation is the most useful in terms of
accuracy, flexibility, and patient-centric results. It concludes
by highlighting existing challenges, including energy
constraints, data protection, and interoperability, and outlines
future research aimed at creating a next-generation wearable
healthcare system through the Internet of Things.

An intelligent health tracking technology grounded in the
10T that assists in alerting attending doctors to the necessity of
action. The ECG, PPG, and temperature sensors, a
gyroscope/accelerator, and a microcontroller are added to the
developed loT system. The ideal functioning of the loT
system, its reliability, and the relevance of the continuous
cardiac tracking system and data processing were also
critically reviewed, taking into account the available
components in these fields. The issue of tracking the cardiac
activity of patients with arrhythmias, paying attention to the
changes in the parameter of Heart Rate Variability (HRV) of
healthy individuals and patients with Extrasystolic
arrhythmia. It is carried out to determine the efficiency of
systems based on the PPG and ECG sensors of cardiac data
registration and HRV analysis of the loT technology [17]. The
system employs time-domain and frequency-domain analysis
of HRV to determine the status of the autonomic nervous
system. There was a significant difference in the parameters
of HRV, including SDNN, SDANN, RMSSD, and the LF/HF
ratio. These results indicate that both PPG and ECG
techniques provide comparable HRV results, with PPG being
more susceptible to noise. It concludes that PPG and ECG
integration monitoring systems based on loT can be relied
upon to identify arrhythmias and provide real-time data to
support cardiac care.

3. Proposed Work
3.1. Adaptive Bio-Signal Acquisition Framework

The success of any wearable healthcare system will
largely be determined by the quality of physiological signals
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obtained through continuous monitoring. The new framework
is designed to include wearable ECG sensors combined with
loT modules to facilitate real-time cardiac monitoring in
everyday life settings.

One of the main issues when acquiring an ECG is the
occurrence of undesired interference, such as motion artifact,
electrode noise, and environmental interference. These
components tend to blur the accurate cardiac waveform, which
is why the signals are hard to interpret and classify by
subsequent algorithms. Mathematically, the raw ECG signal
is written in equation (1),

x(t) = s(t) + n(t) 1)

Where s(t) is the actual shape of the ECG and n(t) is
random noise. Adaptive filtering is used to remove noise and
retain the necessary cardiac information to maintain reliable
monitoring. In equation (2), the filtered signal is provided.

S(t) = x(t)—x.n(t) )

In this case, o it is a dynamic scaling coefficient that is
optimised according to the Least Mean Square (LMS)
algorithm. LMS optimization varies the filter coefficients in

Signal Preprocessing (Noise

MIT-BIH ECG Removal & Normalization)

- .
ataset Feature Extraction (R-R

Interval, QRS Complex)

Data Partitioning (70%
Training, 30% Testing)

30% Testing
(Independent
Validation)

70% Training
(Cross
Validation)

response to minimizing the error, such that the error waveform
of the clean ECG is determined within as low a level of
distortion as possible. The advantages of this dynamic
acquisition model are numerous.

To begin with, it enables a large signal fidelity in motion,
which is a highly significant attribute in wearable contexts.
Second, the system saves on calculation and energy expenses
and improves the life of the battery-powered devices. Third, it
ensures that the preprocessed ECG signals are robust, enabling
them to be extracted into features and classified by subsequent
deep learning models.

To summarize, the adaptive bio-signal acquisition system
provides a platform wherein precise, low-energy-consuming,
noise-free ECG monitoring is guaranteed. The combination of
wearable sensors with 10T connectivity and LMS-based
adaptive filtering makes sure the suggested healthcare device
is accurate enough to be used in a clinical setting. In Figure 1,
this pipeline starts with the MIT-BIH ECG data set and goes
through the pre-processing, feature extraction, and
partitioning. The CNN-LSTM hybrid classifier is trained and
validated, and optimized ECG prediction is obtained,
measured using measures of accuracy, sensitivity, specificity,
and F1-score.

CNN-LSTM
Hybrid
Model

Performance
Metrics
Accuracy,
Sensitivity,
Specificity,
F1-Score

Optimized ECG

Classifier

Fig. 1 Intelligent ECG data-to-decision pipeline
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3.2. Cloud-Synchronized 10T Transmission Model

Reliable energy-efficient transmission of physiological
signals is a critical need in wearable healthcare systems. The
proposed framework includes an 10T transfer model, which
provides a smooth transfer of processed ECG signals on the
wearable device to cloud infrastructures in real time. The loT
module will use small communication protocols like MQTT
(Message Queuing Telemetry Transport) and CoAP
(Constrained Application Protocol), which are developed
specifically to support resource-constrained devices. These
standards reduce overhead, communication, and bandwidth
usage, which is ideal for continuous health monitoring
applications. The mathematical model of the energy used in
transmission in equation (3),

Etx = Pex. Tex + Pigie- Tiare ©))

Let P, Describe the power of a transmission,
T¢, Describe the time the device remains active while making
a transmission. P;4;, Describe the time the device remains idle
when it is not transmitting, and T;,4;, Describe the idle time.
Here, both active and idle states are considered, allowing for
an accurate assessment of the wearable's energy efficiency as

Bluetooth Low
Energy (BLE) Module

!

Wearable ECG
Sensor s
,,,,, ou
o Database
9 (ECG :
l:lear? Rate | Microcontroller 5G/LoRaWAN Reconds) Clmg} Afpalytlcs
Variability Sensor (ESP32) Module atform

SpO, Sensor ‘

Wearable Display/
OLED

a whole. The model provides substantial power savings in
terms of transmission intervals, duty cycles, and protocol
choice, thereby prolonging the device's operation. Cloud
synchronization is a crucial factor in providing scalability and
continuous monitoring. Once the ECG signals have been
readied and transmitted to the cloud, they are stored in secure
databases, where they are processed using high-level analytics
to identify features, identify arrhythmia, and make
predictions. With the help of the cloud infrastructure, the
healthcare providers will also be able to access the patient
records online and stay connected at all times, and will be able
to make the necessary interventions in time. Overall, the
cloud-synchronized 10T transmission model has not only
ensured low battery usage and high connectivity but also
allowed mass and real-time healthcare analytics. Both the
efficiency of the communication system using loT and cloud
intelligence make the system highly reliable in long-term
cardiac monitoring. In Figure 2, an ESP32 microcontroller
using 5G/LoRaWAN transmission and HRV, SpO2, and
Wearable ECG sensors is connected. The data is transferred to
a cloud analytics platform, which is then provided to a
prediction API. Dashboards provide real-time health
information and decision support to patients and physicians.

o

Prediction API)

Patient/Healthcare
Provider

Fig. 2 loT-enabled wearable healthcare framework

3.3. Deep Rhythm Interpretation Engine

Proper diagnosis of heart conditions such as arrhythmia
and atrial fibrillation requires complex models capable of
identifying morphological alterations and rhythm variability
of the ECG records. Do achieve this, it employs a hybrid Deep
Learning Architecture that utilizes CNN with LSTM units.
The CNN layers are effective in extracting spatial features,
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such as QRS complexes, P-wave, and T-wave morphology.
However, LSTM layers detect time dependencies in the
multicardiac cycle. The twofold feature preserves both the
structural and sequential characteristics of ECG signals,
enabling them to be categorized correctly. Mathematically,
extracted ECGs (fy, f2, -, fn) are fed into a CNN-LSTM
network, which gives an output in equation (4),
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y = o(W,.tanh(W,.f + b;) + b,) 4
Where f is the feature vector, W, and W, are trainable
weight matrices, b; and b, are biased, and ¢ is a softmax
activation which gives weights to the output category, which
may be the term Normal, Arrhythmia, or Atrial Fibrillation.
The model is trained and validated using the MIT-BIH
Arrhythmia Database of PhysioNet, which is a collection of
48 half-hour physioNet records, sampled at 360 Hz and
manually annotated by medical experts. To reduce the class
imbalance and to generalize, windowing and resampling data
augmentation methods are used. The data is further divided
into 70% training, 15% validation, and 15% testing data.

Wearable ECG Sensor + SpO;
Sensor + HRV Sensor

0T Microcontroller (ESP32)

Experimental analysis showed good performance with the
CNN-LSTM engine, achieving an accuracy of 98.6%, a
sensitivity of 97.9%, a specificity of 98.2%, and a precision of
98.3% alongside a F1-score of 98.1%. These findings confirm
the promise of the proposed deep rhythm interpretation engine
to deliver clinically reliable real-time cardiac monitoring.

In Figure 3, Wearable sensors record the vital signals and
process them in an edge processing unit. Extraction is done on
features, which are then stored temporarily, coded, and sent to
a cloud synchronization module. The system has a low-power
management unit that is efficient in operating the system
constantly.

BLE/5G/LoRaWAN

Cloud Analytics Platform

(Cloud Database + ML
Prediction Service)

Doctor/Patient Dashboard
(Mobile & Web App)

Fig. 3 Edge-to-cloud synchronization model for ECG monitoring

3.4. Predictive Health Risk Modeling

The key demands of any wearable healthcare are the
correct and timely prediction of cardiac abnormalities. In
addition to the real-time detection of abnormalities, the
proposed framework is integrated with a predictive health risk
modeling sub-component that approximates the probability of
cardiac events in the future.

It is a predictive layer that not only ensures that the
existing conditions are detected but also warns patients about
the potential risks early, therefore, preventing future
healthcare. The model is a probabilistic Bayesian estimate of
the likelihood of a given condition C (Normal, Arrhythmia, or
Atrial Fibrillation) given a set of ECG features X. The model
is expressed as equation (5),

P(X|C).p(0)

P(clx) = “E

®)

In this case, P (X|C) is the probability of seeing the feature
set X given the condition C, P (C) is the probability of
condition C, and P (X) is the probability of the feature set over
all classes. The Posterior Probability P(C|X) is a measure of
the risk of a particular cardiac condition in a particular patient.
This probabilistic model is constantly improved based on the
incoming real-time streams of ECG data by means of cloud
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analytics. Over time, as additional information is obtained, the
prior distributions are revised dynamically, which increases
their predictive accuracy. The cloud environment also makes
it possible to conduct cross-patient data analysis so that the
system can learn data at the population scale without losing
the risk assessment on an individual level.

The proposed model was evaluated experimentally and
demonstrated encouraging results. With the help of
characteristics based on the MIT-BIH arrhythmia database,
the predictive model of risk was applied successfully to the
abnormal conditions with more than 97% accuracy.

In addition, the system produced early warnings with few
false positives, making the system clinically trustworthy. To
conclude, the predictive health risk modeling element
complements the system through managing detection to
prevention, providing proactive healthcare intervention and
proactive patient outcomes in the long run. In Figure 4, this
system starts with an ECG and vital sensors unit, which does
preprocessing, noise removal, and the extraction of features.
Packeting and transmission of data through an edge
processing unit to the cloud is done temporarily, and then low-
power energy management ensures ongoing efficient
monitoring.



V. Saravanan et al. / IJECE, 12(12), 88-97, 2025

)

ECG & Vital

Sensors Module Feature

Extraction (R-
peak, HRV,
Morphology)

Preprocessing
& Noise
Filtering

loT
Transmission
Encoding

i

Low-Power Energy Management Unit

H

Fig. 4 Edge-driven cloud-linked ECG monitoring architecture

3.5. Cyber-Replica Testbed for l1oT-Enabled ECG Systems

The testing of wearable loT-based healthcare systems
under realistic conditions is a necessary step before
implementation. In response to this, this proposed framework
also implements a Cyber-Replica Testbed, a simulated digital
twin environment (which operates in real-time) that replicates
the behavior of the I0T-enabled ECG monitoring system. This
digital twin can bridge between the real and virtual worlds by
simulating the biomedical signal processing pipeline as well
as the network of communication, and provide thorough
validation in realistic conditions.

The given simulation is conducted on the hybrid platform:
ECG signal processing, noise-filtering, and training of the
CNN-LSTM deep learning model are performed with the help
of MATLAB/Simulink, and the simulation of the
communication dynamics of the 10T network along with the
network latency, packet losses, and energy consumption in the
transportation-like network of wearable devices are conducted
with the help of OMNeT++. It is a dual-platform strategy that
gives a comprehensive picture of the system behavior at the
sensor level to the cloud analytics layer. Measures of key
performance metrics are measured, such as latency L,
throughput T, packet delivery ratio PDR, and energy
efficiency E. Latency is computed as equation (6),

N
L = Zi=1(treceive,i_t5end,i)
N

(6)

Where N is the quantity of packets sent, tse,q; Is the
transmission time, and t,qceive; IS the reception time. The
results of the experiment with the simulation show that the
system attains an average latency of 45 ms, a packet delivery
rate of 99.2%, a throughput of 250 kbps, and a power
consumption of 18.7 mW. The proposed architecture, which
is based on these values, confirms its strength in terms of
ongoing healthcare monitoring. Finally, the Cyber-Replica
Testbed will ensure that the loT-enabled ECG system is
thoroughly tested for scalability, efficiency, and reliability,
and can be used in large-scale applications in real-world
healthcare settings.
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4. Results

The capability of a cardiac monitoring system to
differentiate normal rhythms and abnormal occurrences with
a high level of reliability is what is finally deemed to
determine the performance of any cardiac monitoring system.
The assessment of the proposed CNN-LSTM model that has
been developed to detect both morphological and temporal
characteristics of ECG signals has been summarized in Table
1. The presented metrics, including accuracy, sensitivity,
specificity, and precision, as well as Fl-score, give the
complete picture of the classification power of the system.
This model achieved an accuracy of 98.6%, indicating that it
is effective in classifying ECGs as normal or abnormal.
However, reliability is not possible through high accuracy—
the reason why other important metrics were assessed. The
sensitivity of 97.9% represents the model's ability to
accurately diagnose cardiac  abnormalities, thereby
minimizing the number of false negatives. This is particularly
essential, especially in medical applications, where a missed
abnormality can have severe health consequences. The
specificity of 98.2% is also noteworthy.

This confirms that the system is effective at detecting
typical cases, thus it does not create unnecessary alarms, and
reduces the work of health care providers. The precision
turned out to be 98.3%, implying that the abnormalities
detected in the model are highly reliable and the rate of false
positives is very low. And finally, the F1-score of 98.1% also
aligns with the sensitivity and precision, suggesting that
unequal datasets will not significantly impact the system.
These findings demonstrate that the proposed CNN-LSTM
framework outperforms more traditional ones. This system is
a reliable tool for real-time cardiac monitoring, thanks to its
ability to maintain high performance across various evaluation
criteria. The model not only ensures patient safety but also
enhances the overall efficiency of remote healthcare services,
as it provides clinically reliable outcomes. In Figure 5, the
graph demonstrates superior performance, with accuracy,
sensitivity, specificity, precision, and F1-score all above 97%,
which proves the strength of the proposed CNN-LSTM
method in providing reliable ECG monitoring.
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Precision Spectrum of CNN-LSTM ECG Classifier
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Fig. 5 Precision spectrum of CNN-LSTM ECG classifier

Table 1. Benchmarking cardiac intelligence through CNN-LSTM
accuracy spectrum

Metric Value (%)
Accuracy 98.6
Sensitivity (Recall) 97.9
Specificity 98.2
Precision 98.3
F1-Score 98.1

The accuracy of classification is only one aspect that
preconditions the efficiency of an loT-enabled healthcare
framework, but also the efficiency with which the system
provides results in real-time. The evaluation of the proposed
ECG monitoring architecture at the system level is described
in Table 2, highlighting the main critical parameters used to
assess reliability, responsiveness, and sustainability during
continuous health tracking. The mean latency was 45 ms,
indicating that the packet of data produced by the wearable
sensors is practically instantaneous in reaching the cloud
analytics module. This low latency is necessary when the
application will be used for arrhythmia detection, as any delay
will render early warnings less effective. There was an
impressive figure of 99.2% for the Packet Delivery Ratio
(PDR), indicating the strength of the communication model.
Having a high PDR means that most of the information in the
captured ECG data is preserved during transmission, and the
lost information is limited, which enhances the accuracy of
cloud-based diagnosis. The system had an average power
consumption of 18.7 mW, which was relatively low in terms
of energy efficiency. This low power consumption enables the
device to be used over an extended duration, allowing patients
to wear the system without the need to constantly replace
batteries or charge it, a crucial requirement for real-world
implementation. The data rate of 250 kbps is fast enough to
support full-resolution ECG and other bio signal streams with
ease, in case the need arises. Despite this throughput, the delay
of the cloud processor did not exceed 0.9 seconds, which
suggests that in the analytics platform, one can analyze signals
in a timely manner and provide diagnostic information with
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minimal waiting time. Overall, these conclusions render the
system a tradeoff: fast, reliable, and energy-sensitive. A more
effective communication protocol and lightweight cloud
analytics will ensure that the patients and clinicians will be
able to trust the device to not only provide accuracy but also
useful and reliable real-time capabilities in their day-to-day
healthcare monitoring. This comparison chart, presented in
Figure 6, illustrates the gradual replacement of traditional
SVM-based wearables with the modern 10T + CNN-LSTM
cloud architecture, resulting in increased accuracy, reduced
latency, and enhanced power savings in modern ECG
healthcare monitoring.

Table 2. Digital vitality index: evaluating end-to-end system

performance
Parameter Measured Value

Average latency (ms) 45 ms
Packet Delivery Ratio (%) 99.2

Energy Consumption
(mW) 18.7

Data Transmission Rate 250 kbps

Cloud Processing Delay (s) 0.9s

The progress of wearable ECG monitoring devices during
the last several years is one of the clear indications of the
gradual evolution of simple machine learning models toward
rather comprehensive loT-cloud applications. Table 3 gives a
comparative overview of the accuracy, latency, and energy
efficiency improvement in three generations of methods that
will lead to the proposed 10T + CNN-LSTM framework.
Traditional wearable gadgets based on Support Vector
Machines (SVM) were one of the most widespread. Although
it had a reasonable accuracy of 92.1%, an average latency of
130 ms, and high energy consumption of 32.5 mW, it made it
unsuitable for competitive situations involving continuous
monitoring. These systems could not scale up, and they would
also experience delays in data transmission, making them
unsuitable for real-time clinical practice. There was a shift in
the direction of integrating deep learning, specifically CNN-
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based models, into any 10T device. The accuracy was also
improved to 95.4%, the latency was lowered to 80 ms, and the
energy consumption was even lowered to 25.1 mW.

Nevertheless, as these CNN models were mostly
standalone facilities with a limited level of cloud support, their
scalability was average. It has been successful in organized
settings but failed in implementation in bigger populations
that demand real-time cloud analytics. The above solution
reflects how these improvements are made possible with a
combined solution of loT-based sensing, hybrid CNN-LSTM
classification, and cloud synchronization. The final result is a
system with 98.6% accuracy, average latency of 45 ms, and

energy rate of 18.7 mW. This ensures high diagnostic
reliability, while also rendering the system acceptable for
large-scale healthcare deployments. Overall, the comparative
analysis reveals that wearable ECG monitoring technology
has evolved into a reliable, efficient, and clinically useful tool
through the integration of technology, specifically the
transition to hybrid machine learning based on cloud analytics.
In Figure 6, this comparison chart illustrates how the
conventional SVM-based wearables have been gradually
replaced with the state-of-the-art 1oT + CNN-LSTM cloud
architecture, offering improved accuracy, reduced latency,
and enhanced power conservation in modern ECG healthcare
monitoring.

Table 3. Evolutionary milestones in wearable ECG intelligence

Metrics Approach Accuracy (%) | Latency (ms) Energy Efficiency (mW)
A M. Traditional wearable
Abirami [16] +SVM 921 130 325
S. Alyahyan IoT + CNN
[14] (Standalone) 954 80 251
A BF%“ara' 0T + CNN-LSTM 96.3 30 21.4
Proposed Proposed IoT +
Work CNN-LSTM + Cloud 986 45 18.7
Evolutionary Trends in ECG Monitoring Systems
m Accuracy (%) m L atency (ms) Energy Efficiency (mW)
150
Traditional Wearable +
SVM
Proposed 10T + CNN-LSTM
100 10T + CNN (Standalone) 10T + CNN-LSTM + Cloud

Metrics

50

A. M. Abirami [17]

S. Alyahyan [14]

A. Bhattarai [8] Proposed Work

Fig. 6 Evolutionary trends in ECG monitoring systems

5. Conclusion

The proposed loT-enhanced wearable healthcare device,
which includes real-time ECG measurements and cloud
analytics, can demonstrate significant potential in the
development of remote cardiac care. The method of
combining wearable ECG, SpO,, and HRV sensors with an
1oT microcontroller and cloud-based analytics provides the
system with the advantage of continuous monitoring, low
latency, and accurate cardiac event detection. The CNN-
LSTM hybrid model achieved an accuracy of 98.6%,
sensitivity of 97.9%, specificity of 98.2%, precision of 98.3%,
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and an Fl1-score of 98.1%. System-level testing also
demonstrated the efficiency of the architecture, with an
average latency of 45 ms, a packet delivery ratio of 99.2%,
and low energy consumption of 18.7 mW, thereby proving its
efficacy in long-term applications. The innovation of the
proposed framework was noted through a significant increase
in the accuracy, latency, and energy efficiency as compared to
the previous methods in 2022,2023, and 2024. To improve the
system in the future, it is possible to incorporate multi-modal
physiological sensing, including blood glucose and respiratory
rate values, to expand its clinical applications. The use of
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blockchain to securely share medical data and edge Alto make  the resilience of the system in a practical healthcare
decisions faster on-device are promising prospects. environment, leading to the era of intelligent, patient-oriented
Additionally, large-scale clinical trials will be able to confirm cardiac care.
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