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Abstract - The conventional ECG methods used to monitor vital signs are limited by their reliance on hospital equipment, 

restricted accessibility, and the late onset of diagnosis. To overcome these obstacles, an IoT-based wearable healthcare device 

is suggested to track the real-time ECG and analytics in the cloud. The product combines wearable ECG, SpO2, and heart rate 

variability sensors with an IoT microcontroller, backed by optimized communication protocols and cloud storage. A hybrid 

CNN-LM Deep Learning Model, based on arrhythmia classification, is employed, and mathematical models are utilized to 

compare energy efficiency and latency. In experimental testing, an accuracy of 98.6%, a sensitivity of 97.9%, a specificity of 

98.2%, a precision of 98.3%, a F1-score of 98.1%, an average latency of 45 ms, a packet delivery ratio of 99.2%, and an energy 

consumption of 18.7 mW were achieved. These findings support the efficiency of the developed system in providing scalable, 

energy-efficient, and accurate real-time cardiac monitoring to support innovative healthcare applications. 

Keywords - Analog to digital converter, Bluetooth Low Energy, Heart Rate Variability, Least Mean Square, Message Queuing 

Telemetry Transport, Packet Delivery Ratio, Peripheral capillary oxygen saturation.  

1. Introduction  
Focusing on Attending Signals Modeled as Behavioral 

Signals to Engagement Prediction in a Machine Learning 

Environment. The combination of the IoT and wearables is 

one of these elements that have become ubiquitous facilitators 

of innovative healthcare solutions. CVDs are the most 

common causes of worldwide death, and constantly tracking 

heart health is a priority. Conventionally, ECG monitoring has 

been conducted in a clinical setting using wired devices that 

require hospital visits and supervision by trained personnel 

[1]. These approaches are good but very difficult in relation to 

accessibility, cost, and real-time availability. This is why the 

increased demand for wearable and intelligent systems to track 

ECG signals in patients throughout their lives is growing. 

With wearable gadgets containing biomedical sensors, by 

connecting them through IoT networks, the technology can be 

used to constantly record physiological marks and send them 

to a distant station to keep and process them [2]. Scalable data 

storage, powerful analytics, and machine learning also expand 

this ecosystem provided by cloud computing. In this way, the 

cardiac abnormalities can be observed in real time, and timely 

therapeutic measures can be taken to avert life-threatening 

complications [3]. In addition, patients have the power to be 

more proactive about their health, and healthcare providers 

can access detailed, real-time patient information, regardless 

of geographical area. Even as wearable healthcare 

technologies continue to advance, current systems have their 

fair share of limitations [4]. Most early wearable devices are 

characterized by poor detection of cardiac abnormalities 

because of noise in raw ECG signals, motion artifacts, and 

limited processing. Conventional machine learning methods 

like decision trees or support vectors have been promising, but 

fail to address the temporal and spatial complexity of ECG 

signals. Besides, the IoT networks are still struggling with 

latency, which hinders real-time monitoring, and delays in 

transmitting data and processing requirements in the cloud 

influence responsiveness [5]. Energy consumption is another 

bone that is sore, and it needs to be monitored, and most of the 
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devices may not have the energy to sustain themselves over 

time. The questions of security and privacy are also timely; 

the exchange of sensitive medical data over the networks 

without an adequate level of protection puts more violations 

at risk. In addition, the majority of the systems in availability 

are not scalable and cannot handle significant amounts of data 

delivered by several patients simultaneously [6]. All these 

limitations suggest that there is a high demand for a more 

reliable, energy-saving, secure, and competent ECG-

monitoring system. The motivation behind this work is the 

necessity to deal with the issues raised above and provide a 

system that will be able to provide accurate, power-saving, 

and low-latency cardiac monitoring [7]. The cardiovascular 

diseases continue to plague the lives of millions of human 

beings on the planet. Thus, there is a high demand for 

technologies that would detect abnormalities at an early stage, 

avoiding hospitalization, and offering customized health care 

control [8]. With the further advancement of IoT 

communication protocols, wearable sensors, and deep 

learning, systems can now be constructed in a way that assists 

in bridging the gap between traditional, hospital-based, and 

patient-centered continuous care [9]. The main objectives are:  

 To develop a wearable ECG monitoring system with IoT 

modules to have a constantly active and real-time signal.  

 To efficiently pre-process ECG signals, it is necessary to 

reduce noise and increase the stability of the recorded 

data.  

 To use a hybrid CNN-LSTM Deep Learning Network to 

classify the ECG patterns accurately and identify 

arrhythmias.  

 To incorporate cloud analytics to process a large amount 

of data, allowing remote monitoring by medical staff.  

 To test system-level parameters, including latency, 

energy consumption, and packet delivery ratio, to achieve 

feasibility in real-world applications.  

 

The work makes many novel contributions to the area of 

competent healthcare: 

 Greater Accuracy: The proposed model demonstrated 

higher accuracy (98.6%), sensitivity (97.9%), specificity 

(98.2%), and an F1-Score of 98.1%, compared to 

traditional methods, which achieved an accuracy of 

98.6%.  

 Flexible IoT Transmission: The model of energy 

consumption was implemented mathematically, and the 

average power consumption was 18.7 mW, which is not 

high enough to sustain the device in a long-term system.  

 Low Latency: The average latency measured was 45 ms, 

and a packet delivery ratio of 99.2% provided the system 

with near real-time monitoring capabilities.  

 Cloud Analytics Integration: Cloud analytics facilitates 

the mass storage of data and predictive analytics, allowing 

healthcare practitioners to track patients remotely without 

incurring expensive delays.  

 Comparative Superiority: The proposed system was 

found to be much more effective in terms of performance 

in all the crucial parameters, which proves the feasibility 

of the proposed system.  

 

The remaining paper is organized as follows. Section 2 

will include an in-depth literature review of existing research 

on wearable ECG monitoring, IoT integration, and cloud-

based analytics, highlighting the gaps in current solutions. 

Section 3 offers the proposed system architecture, sensor 

integration, IoT communication, preprocessing, and cloud-

based Deep Learning Model and mathematical modeling of 

energy efficiency, latency, and predictive analysis and talks 

about the dataset, training, and evaluation strategy, and results 

of the proposed system are discussed in Section 4, where the 

performance of the proposed system is compared to the state-

of-the-art approaches. Last, Section 5 provides a conclusion 

with an overview of significant contributions, as well as plans 

to expand the system to multi-mode healthcare monitoring and 

to large-scale implementation. 

2. Literature Review  
Providing mental and physical health support is getting 

more and more crucial in case independent living is planned 

because of the aging of many societies and more citizens 

getting chronic illnesses such as diabetes, cardiovascular 

illness, obesity, and others. Sensing, remote health 

monitoring, and identifying daily activities are possible 

solutions. At the technological level, the Internet of Things 

(IoT) is becoming a widespread trend in many aspects, and 

personalized healthcare is among them [10]. In order to have 

ubiquitous health monitoring, there has been a wide 

distribution of an IoT Body Area Sensor Network (BASN). 

Heart disease is normally diagnosed by the use of ECG 

monitoring. The key conclusions of this paper are: Firstly, it 

introduces the WISE (Wearable IoT-cloud-based Health 

monitoring system) as a real-time personal health monitoring 

system [11]. WISE is founded on a basic health monitoring 

model. Wearable sensors include those that monitor heartbeat, 

body temperature, and blood pressure. Second, most wearable 

health monitors will require a smartphone to visualize, 

process, and transfer data, and this will affect smartphone 

usage. WISE can be used to send BASN data directly to the 

cloud, but a lightweight wearable LCD can be attached in 

order to see data in real-time. 

 

IoT has become a key element of the emerging 

applications such as smart cities, smart homes, education, 

health, transportation, and defense processes. Healthcare is a 

handy field in relation to the applications of IoT, as the 

possibility to monitor patients remotely, securely, and in real-

time can be used to enhance the quality of life of people [12]. 

An overview of the current developments in the healthcare-

monitoring systems and an acquaintance with the role of the 

IoT in the latter. The benefits of IoT-based healthcare systems 

are discussed, taking into account the significance and the 

benefits of IoT healthcare [13]. It introduces a survey of 
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current literature on the subject of IoT-based healthcare-

monitoring systems to determine the most recent publications 

related to the subject. The literature review compares the 

effectiveness and efficiency, data protection, privacy, 

security, and monitoring of various systems. It also includes 

wireless- and wearable-sensor-based systems of IoT 

monitoring, and introduces a list of healthcare-monitoring 

sensors classification. It also talks, to a certain extent, about 

the difficulties and unresolved problems of healthcare security 

and privacy, and QoS [14]. Lastly, conclusions and 

recommendations on the applications of IoT in healthcare are 

provided at the end, along with future projections in the 

direction of various recent technological trends. 

 

All over the world, statistical reports have classified 

Cardiovascular Diseases (CVDs) as the most significant cause 

of death. An Electrocardiogram (ECG) is a standard 

technology that is used to study CVDs in individuals. The 

solution proposed is an effective Internet of Things (IoT) 

enabled real-time ECG monitoring system via cloud 

computing technologies [15]—a cloud-based product to 

deliver remote CVD monitoring. The sensed ECG data is 

passed to an Amazon Web Services (AWS) S3 bucket via a 

mobile gateway. AWS cloud offers data visualization, fast 

response, and long-term connection to devices and users over 

HTTP and MQTT servers.  

 

The Bluetooth Low Energy (BLE 4.0) protocol is a type 

of communication used to transmit low-power data between a 

mobile gateway and a device. A filtering algorithm is used to 

ignore distractions, environmental noise, and motion artefacts 

in the application of the intended system. It further offers ECG 

signal analysis to determine the range of parameters, such as 

heartbeat, PQRST wave, and QRS complexes, and respiration 

rate. As shown, a proposed system prototype is proven to be 

reliable in real-time monitoring of remote ECGs. 

 

Real-time health monitoring with the help of monitoring 

key health indicators has been transformed by the IoT and 

wearable devices. The emergence of wearable electronics in 

the form of fitness trackers and medical devices capable of 

tracking heart rate and glucose. IoT in healthcare is significant 

in the context of connecting and exchanging data between the 

device, providing and receiving care, and the patient. The 

value of integrating IoT as the source of real-time data 

collection, remote patient monitoring, and enhanced patient 

engagement is examined [10]. It also raises questions about 

how AI and machine learning can accurately interpret 

wearable health data. Predictive analytics, anomaly detection, 

and customized health recommendations made by AI can 

enhance patient care. The potential of AI analytics to 

transform health monitoring can be imagined using case 

studies that have been deployed to monitor patients. Promising 

development does not necessarily exclude data privacy and 

security issues, accuracy and reliability of wearable gadgets, 

interface with the health care system, and acceptance 

problems of the users. The technology-driven future of IoT-

enabled wearables is also discussed in this report. 

 

With the growing need to diagnose and treat patients 

quickly and accurately, and as IoT technologies have gained 

popularity, healthcare delivery is evolving to enhance patient 

monitoring, diagnosis, and prognosis. The emergence of one-

dimensional care providers and distal consultations 

exacerbates the need for competent systems that can provide 

health-related information in large volumes in real-time. In 

this case, Artificial Intelligence (AI) and IoT-based healthcare 

systems are essential because they need to support predictive 

analytics, timely identification of anomalies, and real-time 

clinical decision-making [16]. It will examine the significance 

of AI in enhancing the functionality of the wearable devices 

that use the IoT to monitor health, with consideration to its 

efficiency in data transmission, energy consumption, the 

communication protocols, and the integrity of the whole 

system. AI implementation is the most useful in terms of 

accuracy, flexibility, and patient-centric results. It concludes 

by highlighting existing challenges, including energy 

constraints, data protection, and interoperability, and outlines 

future research aimed at creating a next-generation wearable 

healthcare system through the Internet of Things. 

 

An intelligent health tracking technology grounded in the 

IoT that assists in alerting attending doctors to the necessity of 

action. The ECG, PPG, and temperature sensors, a 

gyroscope/accelerator, and a microcontroller are added to the 

developed IoT system. The ideal functioning of the IoT 

system, its reliability, and the relevance of the continuous 

cardiac tracking system and data processing were also 

critically reviewed, taking into account the available 

components in these fields. The issue of tracking the cardiac 

activity of patients with arrhythmias, paying attention to the 

changes in the parameter of Heart Rate Variability (HRV) of 

healthy individuals and patients with Extrasystolic 

arrhythmia. It is carried out to determine the efficiency of 

systems based on the PPG and ECG sensors of cardiac data 

registration and HRV analysis of the IoT technology [17].  The 

system employs time-domain and frequency-domain analysis 

of HRV to determine the status of the autonomic nervous 

system. There was a significant difference in the parameters 

of HRV, including SDNN, SDANN, RMSSD, and the LF/HF 

ratio. These results indicate that both PPG and ECG 

techniques provide comparable HRV results, with PPG being 

more susceptible to noise. It concludes that PPG and ECG 

integration monitoring systems based on IoT can be relied 

upon to identify arrhythmias and provide real-time data to 

support cardiac care. 

 

3. Proposed Work 
3.1. Adaptive Bio-Signal Acquisition Framework 

The success of any wearable healthcare system will 

largely be determined by the quality of physiological signals 
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obtained through continuous monitoring. The new framework 

is designed to include wearable ECG sensors combined with 

IoT modules to facilitate real-time cardiac monitoring in 

everyday life settings.  

 

One of the main issues when acquiring an ECG is the 

occurrence of undesired interference, such as motion artifact, 

electrode noise, and environmental interference. These 

components tend to blur the accurate cardiac waveform, which 

is why the signals are hard to interpret and classify by 

subsequent algorithms. Mathematically, the raw ECG signal 

is written in equation (1), 

 

 𝑥(𝑡) = 𝑠(𝑡) + 𝑛(𝑡)   (1) 

 

Where s(t) is the actual shape of the ECG and n(t) is 

random noise. Adaptive filtering is used to remove noise and 

retain the necessary cardiac information to maintain reliable 

monitoring. In equation (2), the filtered signal is provided. 

 

𝑆̂(𝑡) = 𝑥(𝑡)−∝. 𝑛(𝑡)             (2) 

 

In this case, ∝ it is a dynamic scaling coefficient that is 

optimised according to the Least Mean Square (LMS) 

algorithm. LMS optimization varies the filter coefficients in 

response to minimizing the error, such that the error waveform 

of the clean ECG is determined within as low a level of 

distortion as possible. The advantages of this dynamic 

acquisition model are numerous.  

 

To begin with, it enables a large signal fidelity in motion, 

which is a highly significant attribute in wearable contexts. 

Second, the system saves on calculation and energy expenses 

and improves the life of the battery-powered devices. Third, it 

ensures that the preprocessed ECG signals are robust, enabling 

them to be extracted into features and classified by subsequent 

deep learning models. 

 

To summarize, the adaptive bio-signal acquisition system 

provides a platform wherein precise, low-energy-consuming, 

noise-free ECG monitoring is guaranteed. The combination of 

wearable sensors with IoT connectivity and LMS-based 

adaptive filtering makes sure the suggested healthcare device 

is accurate enough to be used in a clinical setting. In Figure 1, 

this pipeline starts with the MIT-BIH ECG data set and goes 

through the pre-processing, feature extraction, and 

partitioning. The CNN-LSTM hybrid classifier is trained and 

validated, and optimized ECG prediction is obtained, 

measured using measures of accuracy, sensitivity, specificity, 

and F1-score. 

  

 
Fig. 1 Intelligent ECG data-to-decision pipeline 
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3.2. Cloud-Synchronized IoT Transmission Model 

Reliable energy-efficient transmission of physiological 

signals is a critical need in wearable healthcare systems. The 

proposed framework includes an IoT transfer model, which 

provides a smooth transfer of processed ECG signals on the 

wearable device to cloud infrastructures in real time. The IoT 

module will use small communication protocols like MQTT 

(Message Queuing Telemetry Transport) and CoAP 

(Constrained Application Protocol), which are developed 

specifically to support resource-constrained devices. These 

standards reduce overhead, communication, and bandwidth 

usage, which is ideal for continuous health monitoring 

applications. The mathematical model of the energy used in 

transmission in equation (3), 

 

𝐸𝑡𝑥 = 𝑃𝑡𝑥 . 𝑇𝑡𝑥 + 𝑃𝑖𝑑𝑙𝑒 . 𝑇𝑖𝑑𝑙𝑒          (3) 

 

Let 𝑃𝑡𝑥 Describe the power of a transmission, 

𝑇𝑡𝑥  Describe the time the device remains active while making 

a transmission. 𝑃𝑖𝑑𝑙𝑒  Describe the time the device remains idle 

when it is not transmitting, and 𝑇𝑖𝑑𝑙𝑒  Describe the idle time. 

Here, both active and idle states are considered, allowing for 

an accurate assessment of the wearable's energy efficiency as 

a whole. The model provides substantial power savings in 

terms of transmission intervals, duty cycles, and protocol 

choice, thereby prolonging the device's operation. Cloud 

synchronization is a crucial factor in providing scalability and 

continuous monitoring. Once the ECG signals have been 

readied and transmitted to the cloud, they are stored in secure 

databases, where they are processed using high-level analytics 

to identify features, identify arrhythmia, and make 

predictions. With the help of the cloud infrastructure, the 

healthcare providers will also be able to access the patient 

records online and stay connected at all times, and will be able 

to make the necessary interventions in time. Overall, the 

cloud-synchronized IoT transmission model has not only 

ensured low battery usage and high connectivity but also 

allowed mass and real-time healthcare analytics. Both the 

efficiency of the communication system using IoT and cloud 

intelligence make the system highly reliable in long-term 

cardiac monitoring. In Figure 2, an ESP32 microcontroller 

using 5G/LoRaWAN transmission and HRV, SpO2, and 

Wearable ECG sensors is connected. The data is transferred to 

a cloud analytics platform, which is then provided to a 

prediction API. Dashboards provide real-time health 

information and decision support to patients and physicians.

  

 
Fig. 2 IoT-enabled wearable healthcare framework 

 

3.3. Deep Rhythm Interpretation Engine 

Proper diagnosis of heart conditions such as arrhythmia 

and atrial fibrillation requires complex models capable of 

identifying morphological alterations and rhythm variability 

of the ECG records. Do achieve this, it employs a hybrid Deep 

Learning Architecture that utilizes CNN with LSTM units. 

The CNN layers are effective in extracting spatial features, 

such as QRS complexes, P-wave, and T-wave morphology. 

However, LSTM layers detect time dependencies in the 

multicardiac cycle. The twofold feature preserves both the 

structural and sequential characteristics of ECG signals, 

enabling them to be categorized correctly. Mathematically, 

extracted ECGs (𝑓1, 𝑓2, … , 𝑓𝑛) are fed into a CNN-LSTM 

network, which gives an output in equation (4), 
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𝑦 = 𝜎(𝑊2. tanh(𝑊1. 𝑓 + 𝑏1) + 𝑏2)       (4) 

  

Where f is the feature vector, 𝑊1 and 𝑊2 are trainable 

weight matrices, 𝑏1 and 𝑏2 are biased, and 𝜎 is a softmax 

activation which gives weights to the output category, which 

may be the term Normal, Arrhythmia, or Atrial Fibrillation. 

The model is trained and validated using the MIT-BIH 

Arrhythmia Database of PhysioNet, which is a collection of 

48 half-hour physioNet records, sampled at 360 Hz and 

manually annotated by medical experts. To reduce the class 

imbalance and to generalize, windowing and resampling data 

augmentation methods are used. The data is further divided 

into 70% training, 15% validation, and 15% testing data. 

Experimental analysis showed good performance with the 

CNN-LSTM engine, achieving an accuracy of 98.6%, a 

sensitivity of 97.9%, a specificity of 98.2%, and a precision of 

98.3% alongside a F1-score of 98.1%. These findings confirm 

the promise of the proposed deep rhythm interpretation engine 

to deliver clinically reliable real-time cardiac monitoring.  

 

In Figure 3, Wearable sensors record the vital signals and 

process them in an edge processing unit. Extraction is done on 

features, which are then stored temporarily, coded, and sent to 

a cloud synchronization module. The system has a low-power 

management unit that is efficient in operating the system 

constantly. 

 

 
Fig. 3 Edge-to-cloud synchronization model for ECG monitoring 

 

3.4. Predictive Health Risk Modeling 

The key demands of any wearable healthcare are the 

correct and timely prediction of cardiac abnormalities. In 

addition to the real-time detection of abnormalities, the 

proposed framework is integrated with a predictive health risk 

modeling sub-component that approximates the probability of 

cardiac events in the future.  

 

It is a predictive layer that not only ensures that the 

existing conditions are detected but also warns patients about 

the potential risks early, therefore, preventing future 

healthcare. The model is a probabilistic Bayesian estimate of 

the likelihood of a given condition 𝐶 (Normal, Arrhythmia, or 

Atrial Fibrillation) given a set of ECG features 𝑋. The model 

is expressed as equation (5), 

 

𝑃(𝐶|𝑋) =
𝑃(𝑋|𝐶).𝑃(𝐶)

𝑃(𝑋)
         (5) 

 

In this case, P (X|C) is the probability of seeing the feature 

set 𝑋 given the condition 𝐶, P (C) is the probability of 

condition 𝐶, and P (X) is the probability of the feature set over 

all classes. The Posterior Probability P(C|X) is a measure of 

the risk of a particular cardiac condition in a particular patient. 

This probabilistic model is constantly improved based on the 

incoming real-time streams of ECG data by means of cloud 

analytics. Over time, as additional information is obtained, the 

prior distributions are revised dynamically, which increases 

their predictive accuracy. The cloud environment also makes 

it possible to conduct cross-patient data analysis so that the 

system can learn data at the population scale without losing 

the risk assessment on an individual level.  

 
The proposed model was evaluated experimentally and 

demonstrated encouraging results. With the help of 

characteristics based on the MIT-BIH arrhythmia database, 

the predictive model of risk was applied successfully to the 

abnormal conditions with more than 97% accuracy.  

 
In addition, the system produced early warnings with few 

false positives, making the system clinically trustworthy. To 

conclude, the predictive health risk modeling element 

complements the system through managing detection to 

prevention, providing proactive healthcare intervention and 

proactive patient outcomes in the long run. In Figure 4, this 

system starts with an ECG and vital sensors unit, which does 

preprocessing, noise removal, and the extraction of features. 

Packeting and transmission of data through an edge 

processing unit to the cloud is done temporarily, and then low-

power energy management ensures ongoing efficient 

monitoring. 

Wearable ECG Sensor + SpO2 

Sensor + HRV Sensor 
IoT Microcontroller (ESP32) BLE/5G/LoRaWAN 

Cloud Analytics Platform 
(Cloud Database + ML 

Prediction Service) 

Doctor/Patient Dashboard 

(Mobile & Web App) 
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Fig. 4 Edge-driven cloud-linked ECG monitoring architecture 

 

3.5. Cyber-Replica Testbed for IoT-Enabled ECG Systems 

The testing of wearable IoT-based healthcare systems 

under realistic conditions is a necessary step before 

implementation. In response to this, this proposed framework 

also implements a Cyber-Replica Testbed, a simulated digital 

twin environment (which operates in real-time) that replicates 

the behavior of the IoT-enabled ECG monitoring system. This 

digital twin can bridge between the real and virtual worlds by 

simulating the biomedical signal processing pipeline as well 

as the network of communication, and provide thorough 

validation in realistic conditions.  

 

The given simulation is conducted on the hybrid platform: 

ECG signal processing, noise-filtering, and training of the 

CNN-LSTM deep learning model are performed with the help 

of MATLAB/Simulink, and the simulation of the 

communication dynamics of the IoT network along with the 

network latency, packet losses, and energy consumption in the 

transportation-like network of wearable devices are conducted 

with the help of OMNeT++. It is a dual-platform strategy that 

gives a comprehensive picture of the system behavior at the 

sensor level to the cloud analytics layer. Measures of key 

performance metrics are measured, such as latency L, 

throughput T, packet delivery ratio PDR, and energy 

efficiency E. Latency is computed as equation (6), 

 

𝐿 =
∑ (𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑒,𝑖−𝑡𝑠𝑒𝑛𝑑,𝑖)𝑁

𝑖=1

𝑁
        (6) 

 

Where N is the quantity of packets sent, 𝑡𝑠𝑒𝑛𝑑,𝑖 Is the 

transmission time, and 𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑒,𝑖 Is the reception time. The 

results of the experiment with the simulation show that the 

system attains an average latency of 45 ms, a packet delivery 

rate of 99.2%, a throughput of 250 kbps, and a power 

consumption of 18.7 mW. The proposed architecture, which 

is based on these values, confirms its strength in terms of 

ongoing healthcare monitoring. Finally, the Cyber-Replica 

Testbed will ensure that the IoT-enabled ECG system is 

thoroughly tested for scalability, efficiency, and reliability, 

and can be used in large-scale applications in real-world 

healthcare settings. 

4. Results 
The capability of a cardiac monitoring system to 

differentiate normal rhythms and abnormal occurrences with 

a high level of reliability is what is finally deemed to 

determine the performance of any cardiac monitoring system. 

The assessment of the proposed CNN-LSTM model that has 

been developed to detect both morphological and temporal 

characteristics of ECG signals has been summarized in Table 

1. The presented metrics, including accuracy, sensitivity, 

specificity, and precision, as well as F1-score, give the 

complete picture of the classification power of the system. 

This model achieved an accuracy of 98.6%, indicating that it 

is effective in classifying ECGs as normal or abnormal. 

However, reliability is not possible through high accuracy—

the reason why other important metrics were assessed. The 

sensitivity of 97.9% represents the model's ability to 

accurately diagnose cardiac abnormalities, thereby 

minimizing the number of false negatives. This is particularly 

essential, especially in medical applications, where a missed 

abnormality can have severe health consequences. The 

specificity of 98.2% is also noteworthy.  

 

This confirms that the system is effective at detecting 

typical cases, thus it does not create unnecessary alarms, and 

reduces the work of health care providers. The precision 

turned out to be 98.3%, implying that the abnormalities 

detected in the model are highly reliable and the rate of false 

positives is very low. And finally, the F1-score of 98.1% also 

aligns with the sensitivity and precision, suggesting that 

unequal datasets will not significantly impact the system. 

These findings demonstrate that the proposed CNN-LSTM 

framework outperforms more traditional ones. This system is 

a reliable tool for real-time cardiac monitoring, thanks to its 

ability to maintain high performance across various evaluation 

criteria. The model not only ensures patient safety but also 

enhances the overall efficiency of remote healthcare services, 

as it provides clinically reliable outcomes.  In Figure 5, the 

graph demonstrates superior performance, with accuracy, 

sensitivity, specificity, precision, and F1-score all above 97%, 

which proves the strength of the proposed CNN-LSTM 

method in providing reliable ECG monitoring. 
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Fig. 5 Precision spectrum of CNN-LSTM ECG classifier 

 

Table 1. Benchmarking cardiac intelligence through CNN-LSTM 

accuracy spectrum 

Metric Value (%) 

Accuracy 98.6 

Sensitivity (Recall) 97.9 

Specificity 98.2 

Precision 98.3 

F1-Score 98.1 

 

The accuracy of classification is only one aspect that 

preconditions the efficiency of an IoT-enabled healthcare 

framework, but also the efficiency with which the system 

provides results in real-time. The evaluation of the proposed 

ECG monitoring architecture at the system level is described 

in Table 2, highlighting the main critical parameters used to 

assess reliability, responsiveness, and sustainability during 

continuous health tracking. The mean latency was 45 ms, 

indicating that the packet of data produced by the wearable 

sensors is practically instantaneous in reaching the cloud 

analytics module. This low latency is necessary when the 

application will be used for arrhythmia detection, as any delay 

will render early warnings less effective. There was an 

impressive figure of 99.2% for the Packet Delivery Ratio 

(PDR), indicating the strength of the communication model. 

Having a high PDR means that most of the information in the 

captured ECG data is preserved during transmission, and the 

lost information is limited, which enhances the accuracy of 

cloud-based diagnosis. The system had an average power 

consumption of 18.7 mW, which was relatively low in terms 

of energy efficiency. This low power consumption enables the 

device to be used over an extended duration, allowing patients 

to wear the system without the need to constantly replace 

batteries or charge it, a crucial requirement for real-world 

implementation. The data rate of 250 kbps is fast enough to 

support full-resolution ECG and other bio signal streams with 

ease, in case the need arises. Despite this throughput, the delay 

of the cloud processor did not exceed 0.9 seconds, which 

suggests that in the analytics platform, one can analyze signals 

in a timely manner and provide diagnostic information with 

minimal waiting time. Overall, these conclusions render the 

system a tradeoff: fast, reliable, and energy-sensitive. A more 

effective communication protocol and lightweight cloud 

analytics will ensure that the patients and clinicians will be 

able to trust the device to not only provide accuracy but also 

useful and reliable real-time capabilities in their day-to-day 

healthcare monitoring. This comparison chart, presented in 

Figure 6, illustrates the gradual replacement of traditional 

SVM-based wearables with the modern IoT + CNN-LSTM 

cloud architecture, resulting in increased accuracy, reduced 

latency, and enhanced power savings in modern ECG 

healthcare monitoring. 
 

Table 2. Digital vitality index: evaluating end-to-end system 

performance 

Parameter Measured Value 

Average latency (ms) 45 ms 

Packet Delivery Ratio (%) 99.2 

Energy Consumption 

(mW) 
18.7 

Data Transmission Rate 250 kbps 

Cloud Processing Delay (s) 0.9 s 

 

The progress of wearable ECG monitoring devices during 

the last several years is one of the clear indications of the 

gradual evolution of simple machine learning models toward 

rather comprehensive IoT-cloud applications. Table 3 gives a 

comparative overview of the accuracy, latency, and energy 

efficiency improvement in three generations of methods that 

will lead to the proposed IoT + CNN-LSTM framework. 

Traditional wearable gadgets based on Support Vector 

Machines (SVM) were one of the most widespread. Although 

it had a reasonable accuracy of 92.1%, an average latency of 

130 ms, and high energy consumption of 32.5 mW, it made it 

unsuitable for competitive situations involving continuous 

monitoring. These systems could not scale up, and they would 

also experience delays in data transmission, making them 

unsuitable for real-time clinical practice. There was a shift in 

the direction of integrating deep learning, specifically CNN-
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based models, into any IoT device. The accuracy was also 

improved to 95.4%, the latency was lowered to 80 ms, and the 

energy consumption was even lowered to 25.1 mW. 

 

Nevertheless, as these CNN models were mostly 

standalone facilities with a limited level of cloud support, their 

scalability was average. It has been successful in organized 

settings but failed in implementation in bigger populations 

that demand real-time cloud analytics. The above solution 

reflects how these improvements are made possible with a 

combined solution of IoT-based sensing, hybrid CNN-LSTM 

classification, and cloud synchronization. The final result is a 

system with 98.6% accuracy, average latency of 45 ms, and 

energy rate of 18.7 mW. This ensures high diagnostic 

reliability, while also rendering the system acceptable for 

large-scale healthcare deployments. Overall, the comparative 

analysis reveals that wearable ECG monitoring technology 

has evolved into a reliable, efficient, and clinically useful tool 

through the integration of technology, specifically the 

transition to hybrid machine learning based on cloud analytics. 

In Figure 6, this comparison chart illustrates how the 

conventional SVM-based wearables have been gradually 

replaced with the state-of-the-art IoT + CNN-LSTM cloud 

architecture, offering improved accuracy, reduced latency, 

and enhanced power conservation in modern ECG healthcare 

monitoring.

  

Table 3. Evolutionary milestones in wearable ECG intelligence 

Metrics Approach Accuracy (%) Latency (ms) Energy Efficiency (mW) 

A. M. 

Abirami [16] 

Traditional wearable 

+ SVM 
92.1 130 32.5 

S. Alyahyan 

[14] 

IoT + CNN 

(Standalone) 
95.4 80 25.1 

A. Bhattarai 

[8] 
 IoT + CNN-LSTM  96.3 30 21.4 

Proposed 

Work 

Proposed IoT + 

CNN-LSTM + Cloud 
98.6 45 18.7 

 

 

Fig. 6 Evolutionary trends in ECG monitoring systems 

5. Conclusion 
The proposed IoT-enhanced wearable healthcare device, 

which includes real-time ECG measurements and cloud 

analytics, can demonstrate significant potential in the 

development of remote cardiac care. The method of 

combining wearable ECG, SpO2, and HRV sensors with an 

IoT microcontroller and cloud-based analytics provides the 

system with the advantage of continuous monitoring, low 

latency, and accurate cardiac event detection. The CNN-

LSTM hybrid model achieved an accuracy of 98.6%, 

sensitivity of 97.9%, specificity of 98.2%, precision of 98.3%, 

and an F1-score of 98.1%. System-level testing also 

demonstrated the efficiency of the architecture, with an 

average latency of 45 ms, a packet delivery ratio of 99.2%, 

and low energy consumption of 18.7 mW, thereby proving its 

efficacy in long-term applications. The innovation of the 

proposed framework was noted through a significant increase 

in the accuracy, latency, and energy efficiency as compared to 

the previous methods in 2022,2023, and 2024. To improve the 

system in the future, it is possible to incorporate multi-modal 

physiological sensing, including blood glucose and respiratory 

rate values, to expand its clinical applications. The use of 
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blockchain to securely share medical data and edge AI to make 

decisions faster on-device are promising prospects. 

Additionally, large-scale clinical trials will be able to confirm 

the resilience of the system in a practical healthcare 

environment, leading to the era of intelligent, patient-oriented 

cardiac care.
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