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Abstract - This paper outlines the Artificial Intelligence (AI)-based solutions in managing Diabetes Mellitus (DM) and raising 

awareness about the disease. It also discusses the architecture of a designed e-health platform that integrates Internet of Things 

(IoT), Mobile Computing, and Machine Learning (ML) methods for managing diabetes and forecasting the risk of acquiring the 

disease. The patient-centered platform involves the development and integration of the following subsystems: (a) an IoT-enabled 

physiological signs and blood glucose monitoring system that allows real-time acquisition and analysis of patients’ diabetes-

related symptoms; (b) interactive smartphone and web-based applications that allow patients to track their health status and 

risk factors for diabetes, respond to question lifestyle practices and family history of diabetes, record blood glucose 

measurements, facilitate doctor-patient online communication, and enable doctors to enter medical results, diagnosis and 

treatment plans; and (c) an ensemble ML-based model for the majority voting prediction of clinical health risk due to diabetes 

and its complications. The preliminary results demonstrated that the Random Forest (RF) algorithm performed well relative to 

the Logistic Regression (LR) and Naïve Bayes (NB) approaches, with an accuracy of 97.8%. The developed ensemble ML-based 

model obtained a 97.8% overall accuracy, 98% precision, 97.8% recall, and 97.7% F1-score using majority voting with the RF 

technique as the tiebreaker. Furthermore, validation against actual clinical data showed that the predicted DM-related health 

risk levels were consistent with the assessments from medical experts and established clinical guidelines. 

Keywords - Diabetes management, Diabetes education, Artificial Intelligence, Machine Learning, IoT-based Monitoring. 

1. Introduction  
Diabetes Mellitus (DM) is a metabolic disorder marked 

by consistently elevated Blood Glucose Levels (BGL) 

resulting in irregularities in insulin production, insulin action, 

or both [1]. Type II Diabetes (T2D), the most common form 

of DM, currently affects 589 million individuals worldwide 

and could rise to 853 million by 2050 if this lifestyle-related 

Non-Communicable Disease (NCD) is not properly managed 

[2]. One negative impact of diabetes on individuals and 

society is the increasing cost of treating the disease and its 

complications [3]. Therefore, implementing a comprehensive 

diabetes management plan is essential to reduce its long-term 

effects. 

The objectives of Healthcare Professionals (HCPs) in the 

management of diabetic patients are to regulate the Blood 

Glucose Levels (BGLs) within the normal range, prevent DM-

related complications, and promote DM awareness [4]. 

Regular monitoring of BGLs and other physiological 

parameters is essential for early disease detection, prompt 

clinical intervention, evaluation of treatment plans, and 

prediction of health risks related to DM and its complications 

[4].  Diabetes education is important for patients because it 

provides them with the information, practical skills, and self-

care tools they need to actively manage their health. 

Technological advancements such as AI, ML, and IoT 

can be used to improve diabetes management and raise 

awareness about the disease.  IoT-enabled devices like 

wearable biosensors and glucose monitors allow continuous 

and real-time monitoring of clinical parameters, thereby 

addressing the limitations imposed by traditional episodic 

measurements [5, 6]. Large and complex diabetes-related 

datasets can be analyzed using ML techniques to uncover 

underlying patterns and relationships, which improves 

evidence-based clinical decisions [5-7]. However, a single 

ML-based model has its own limitations. To address this, 

ensemble Machine Learning (ML) techniques combine 

multiple classifiers, each contributing its particular strengths. 

By combining the outputs of ML classifiers and applying 
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majority voting, the ensemble techniques can lower 

misclassification errors and provide more accurate predictions 

[7, 8].  Using these frameworks, a patient-centered e-health 

platform was designed and implemented to support diabetes 

management and education.  

The e-health platform comprises of the three modules:  (a) 

an IoT-Enabled Physiological Signs And Blood Glucose 

Monitoring System (IPSBGMS) that performs real-time and 

non-invasive collection and analysis of Body Temperature 

(BT), Heart Rate (HR), Blood Pressure (BP), Respiratory Rate 

(RR), Blood Oxygen Level (SpO2) and Random Blood 

Glucose Level (RBGL) using Particle Photon 

Microcontrollers (PPmCs) connected with biosensors; (b) 

interactive smartphone and web-based applications that help 

patients to keep track of their health status and diabetes risk 

factors, complete lifestyle and family history assessments, 

record blood glucose measurements, and communicate online 

with healthcare professionals. These applications also enable 

doctors to enter medical results, diagnoses, and treatment 

plans, thereby facilitating managed care; and (c) an ensemble 

ML-driven predictive model that integrates Naïve Bayes 

(NB), Logistic Regression (LR), and Random Forest (RF) 

classifiers through majority voting to forecast diabetes-related 

clinical health risk levels, classified as usual/low, medium, or 

high. This model supports medical decision-making and 

proactive clinical intervention. The remaining sections of the 

paper are organized in the following sequence: (a) the second 

part of the paper discusses the various AI solutions in 

managing diabetes and raising awareness of the disorder; (b) 

the third segment of the article presents the design and 

implementation of an e-health platform for diabetes 

management and education, including the development of an 

ensemble ML-based risk prediction model associated with 

DM; (c) the fourth section analyzes the preliminary findings 

of the designed platform; and (d) the final part of the paper 

covers the conclusion and future works in improving of the e-

health platform. 

2. Current Advancements in AI Related to 

Diabetes Management, Education, and 

Treatment  
2.1. AI and its Sub-Fields  

AI is the development of tools or machines that can 

perform things that humans can do, such as understanding 

language, making decisions, and recognizing speech [9, 10]. 

AI systems can be programmed to learn from given data, 

identify trends, predict results, and adapt to changing 

conditions [10].  Table 1 summarizes the different fields of AI 

that are commonly used in diabetes management and 

awareness. 

2.2. Role of AI and Its Applications in Diabetes Management 

and Education  

The use of AI in diabetic care is growing to improve 

diabetes awareness, diagnosis, and management [18]. Its roles 

and applications related to diabetes management and 

education are summarized in Table 2. ML methods are 

employed to assess enormous amounts of patient information 

to identify people with a high potential for developing diabetes 

[19, 20]. These algorithms consider many factors such as age, 

gender, anthropometric measurements, family history, 

lifestyle, blood sugar levels, lipid profile, and medical history 

in predicting the probability of developing diabetes. A study 

showed that the Support Vector Machine (SVM), Linear 

Regression, and ANN algorithms accurately predicted 

undiagnosed T2D patients [19]. The works of [20] show the 

utilization of both supervised and unsupervised ML 

techniques, namely K-Means and SVM, in precisely 

diagnosing and assessing diabetes. 

  
Table 1. Fields of AI commonly used in diabetes management and awareness 

AI Field Definition References 

Machine Learning 

(ML) 

Enables computers to analyze datasets and make predictions or decisions 

using statistical and computational models. 
[11, 12] 

Deep Learning (DL) 
A neural network-based approach that mimics human brain processes to solve 

complex analytical and recognition tasks. 
[13] 

Natural Language 

Processing (NLP) 

Allows machines to understand, interpret, and generate human language for 

effective interaction with text data. 
[14] 

Computer Vision 

(CV) 

Focuses on enabling computers to interpret and analyze visual content from 

images and videos. 
[15] 

Expert Systems (ES) 
Utilizes predefined rules and domain expertise to support reasoning and 

decision-making processes. 
[16] 

Fuzzy Logic (FL) 
Handles uncertainty and imprecision in data, allowing systems to make 

flexible, human-like decisions. 
[17] 
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Table 2. Roles and applications of AI in various aspects of diabetes management and education 

Aspects of Diabetes 

Care 
Roles and Applications  of AI 

Early Detection, 

Diagnosis and 

Prognosis of DM 

AI-based and ML-based models improve diagnostic and preventive measures by helping in 

the early identification of people who have high likelihood of developing diabetes [19, 20, 

54-57]. Ensemble ML and DL algorithms strengthen predictive reliability and 

interpretability for forecasting disease progression and complications [7, 8, 56]. 

Diabetes Awareness 

and Education 

Intelligent chatbots and digital assistants teach patients about DM, answer health-related 

questions, and encourage better medication adherence through interactive communication 

[14, 21, 22]. 

Lifestyle and 

Behavioral 

Analytics 

AI-based systems and smart wearables analyze patients’ lifestyle behaviors, including diet, 

physical activity and sleep patterns, to determine how they affect blood glucose regulation 

and overall metabolic balance [23-26]. These systems provide recommendations to help 

patients maintain healthy lifestyles and glycemic control [27]. 

Personalized Care 

and Medication 

Adherence 

AI-enabled mobile health platforms provide individualized care to individuals, such as meal 

planning, dietary guidance and insulin dosage modifications [24, 25, 41]. Smart insulin 

delivery and reminder systems enhance adherence and precision in treatment management 

[39-42, 44, 45]. AI-driven and FL-based clinical decision support systems (CDSS) in help 

HCPs in monitoring and optimizing treatment plans for DM [6, 16, 17, 48, 49].  

Continuous and 

Remote Monitoring 

(CGM) 

AI-integrated CGM and IoT-based telemedicine systems monitors BGL trends in real time, 

predict irregularities, and provide timely alerts to patients and HCPs [6, 36]. These systems 

reduce hospital visits and expand remote care accessibility [5, 6, 44, 45, 47, 54]. 

Predictive Analytics 

for DM-related 

Complications 

AI and image processing approaches enable early detection of diabetic retinopathy [28-30], 

while analogous systems assist in identification of diabetic foot ulcers [31],  neuropathy [32, 

33] and nephropathy [34, 35], supporting proactive interventions and improved prognosis. 

Pharmaceutical 

Research and 

Development 

AI models analyze large biomedical datasets to discover new drugs, biomarkers, and 

regulatory pathways, boosting diabetes research and therapeutic innovations [46]. 

 

Awareness about diabetes helps people improve their 

glucose control practices.  Chatbots and virtual assistants 

employing NLP can aid with diabetes education [14, 21, 22]. 

The carbohydrate content of food is an important contributor 

to high blood sugar in people with diabetes. AI-driven dietary 

management systems were designed to assist individuals in 

managing their nutrition, improving blood sugar control, and 

shedding off weight [23-26].  

AI systems providing carbohydrate content and calorie 

count through an image of a particular food help the patient to 

make individualized dietary modifications, thereby assisting 

in controlling BGL [23, 24]. Digital healthcare platforms that 

incorporate dietary management using AI can be utilized to 

develop personalized diet plans, track food intake, and provide 

nutritional advice based on an individual's health data [25]. An 

FL-based dietary guidance system was developed for patients 

with T2D to help them enhance their lifestyle and effectively 

control their BGLs [26, 27]. An AI-based platform for pre-

diabetic individuals to keep track of physical activities and 

help lose weight.  

 

AI and image processing techniques are increasingly used 

to diagnose DM-related complications, including (a) diabetic 

retinopathy, where  AI can identify early indicators of from 

retinal (fundus) pictures, facilitating timely intervention and 

preventing vision loss [28-30]; (b) diabetic foot ulcers, where 

analysis of foot photos allow prompt detection and 

management of ulcers, reducing the risk of severe infection or 

amputation [31]; (c) diabetic neuropathy, where AI algorithms 

evaluate the severity of nerve damage, helping manage 

discomfort or loss of sensation [32, 33] and (d) diabetic 

nephropathy, where AI-driven image analysis detects kidney 

disease before the onset of clinical signs, enabling early 

intervention [34, 35]. 

 

Continuous Glucose Monitoring (CGM) using ES 

provides comprehensive reports and real-time alert 

notifications for doctors and patients [36]. Research studies on 

FL and reinforcement learning investigated the potential of 

managing insulin pumps and converting them into a non-

natural pancreas [37-39]. AI-based approaches can enhance 

insulin administration and minimize the risk of 

hypoglycaemia or hyperglycaemia [39-41].  

 

The incorporation of AI technology, mobile computing, 

and internet-based applications in diabetes management, 

along with the use of online communication platforms 

between doctors and patients, enhanced treatment outcomes 

[42-44]. The application of AI-driven Twin Precision 
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Treatment Technology (TPT) improves the rate of diabetic 

remission relative to conventional care [43]. With AI and IoT 

technologies, doctors can perform real-time telemonitoring of 

diabetic patients to enable continuous health monitoring and 

timely treatment plan modifications [45]. Moreover, AI has 

demonstrated its practical application in pharmaceutical 

technology, including drug discovery, formulation design, 

Pharmacokinetics/Pharmacodynamics (PK/PD) research, and 

process optimization [46]. 

 

The research conducted by [5-8, 47-57] utilized AI-based 

techniques to analyze patient data and find patterns to predict 

the likelihood of a patient developing diabetes-related 

complications like hypertension, CVD, and 

dyslipidaemia.  [6] developed a Fuzzy Inference System (FIS) 

that predicts the health risk related to DM and CVD with a 

96.19% accuracy when compared to physician assessments. 

The system uses inputs such as Heart Rate (HRbpm), Systolic 

Blood Pressure (SBP), Body Mass Index (BMI), Total 

Cholesterol (TChol), Family Medical History (FMH), Pre-

existing Medical Condition (PMC), and Fasting Blood Sugar 

Level (FBSL) for the risk classification. This system 

illustrates the potential and limitations of rule-based AI 

systems in biomedical decision support.  

 

2.3. Limitations of Existing AI-based Solution in Diabetes 

Management 

Several digital platforms for managing diabetes have been 

developed, but many of them focus on data collection, basic 

alert notifications, or discrete predictive analytics [5, 8, 17, 19, 

20, 48-57].  Some limitations of existing platforms include:  

a) Lack of continuous physiological monitoring, which 

restricts timely feedback and delays detection of acute 

changes in patient health. Many systems rely on 

intermittent manual entries or occasional sensor readings.  

b) Restricted capacity for integrated risk prediction, as most 

ML models only identify the presence or absence of 

diabetes and cannot classify patients into normal/low, 

medium, or high-risk categories based on overall health 

and complications. 

c) Fragmented monitoring of multiple health indicators, 

which requires patients to use several applications, 

devices, or websites to track their BMI, BFP, BMR, 

TDEE, BP, HR, and BGL. This complicates diabetes 

management and delays medical intervention.  

 

2.4. Novelty of the Designed e-Health Platform 
The designed e-health platform integrates IoT, mobile 

computing, and ML approaches for managing diabetes and 

predicting the risk of acquiring the disease. In comparison to 

traditional platforms that primarily focus on data logging and 

basic alert notifications, the developed e-health system allows 

real-time and continuous observation of BGL and other 

physiological signs through the Interactive Mobile 

Application for Diabetes Management and Care (IMADMC) 

and the Biotelemetry and Telemedicine (BTMS) Web-Based 

Application. The digital platforms allow medical 

professionals to assess symptoms of DM and its 

complications, as well as make timely and adaptive treatment 

modifications. Furthermore, the developed e-health platform 

provides an all-in-one solution by combining several health 

assessment tools, thus eliminating the need for users visiting 

several websites to calculate fitness parameters such Body 

Mass Index (BMI), Body Fat Percentage (BFP), Basal 

Metabolic Rate (BMR), and Total Daily Energy Expenditure 

(TDEE), as well as search for normal reference values of 

important health indicators such Blood Pressure (BP), Heart 

Rate (HR) and BGL.  

Compared to the works of [5, 8, 17, 19, 20, 48-57], the 

ensemble ML-based health risk prediction model employs 

NB, LR and RF supervised learning techniques and considers 

Fasting Plasma Glucose Level (FPGL), Systolic Blood 

Pressure (SBP), Glycosuria (GS), BMI, Family History of DM 

(FHDM), Pre-Existing Medical condition associated with DM 

and its complications (PEDM), and Lifestyle Pattern (LSP) as 

input variables for determining whether the patient's health is 

at normal/low risk, medium risk, or high risk due to DM and 

its complications. 

3. Materials and Methods  
The system block diagram of the designed e-health 

platform for diabetes management and education is illustrated 

in Figure 1. The e-health platform consists of the following 

modules: (a) an IoT-enabled physiological signs and blood 

glucose monitoring system, (b) interactive mobile and web-

based applications for diabetes management and care, and (c) 

an ensemble ML-based health risk prediction model 

associated with DM and its complications. 

3.1. Design of the IoT-enabled Physiological Signs and 

Blood Glucose Monitoring System (IPSBGMS) 

The IoT-Enabled Physiological Signs and Blood Glucose 

Monitoring System (IPSBGMS) consists of Wi-Fi-connected 

PPmCs that communicate with biosensors via signal 

conditioning circuits to measure physiological signs of 

patients non-invasively. Sunrom 1437 wrist-type BP sensor is 

used to determine the rhythmic beating of the Heart (HR) in 

Beats Per Minute (bpm) and Systolic/Diastolic Arterial 

Pressure (SBP/DBP) in mmHg [6, 17].  

 

The MAX30105 sensor is used to detect the Peripheral 

Oxygen Saturation Level (SpO2) in percentage (%). The GY-

906 MLX90614 contactless IR temperature sensor estimates 

the RR by counting the thermal variation between inhalation 

and exhalation within one second [6, 17]. In addition, a 

precision TMP117 sensor is used to measure the core Body 

Temperature (BT) in oC.  
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Fig. 1 Block diagram of the designed e-health platform for diabetes management and education  

The STEMMA 940nm infrared light emitter, photodiode, 

and linear regression model are used to estimate Random 

Blood Glucose Levels (RBGL) in mg/dL non-invasively [58]. 

The IR light travels through or reflects off the skin, and the 

photodiode measures the amount of light that is reflected back. 

Because glucose and other blood components absorb light at 

different wavelengths, the measured signal fluctuates in 

response to changes in glucose concentration in the blood.  

These light intensity observations are then analyzed by a linear 

regression model that has been trained on reference glucose 

data. The model learns the link between optical signals and 

actual glucose levels (mg/dL). When a new measurement is 

taken, the glucose level is predicted using this previously 

learned relationship. The basic mathematical formula for the 

linear regression model to estimate the BGL is expressed in 

Equation 1: 

 

𝑒𝐵𝐺𝐿 =  𝛽𝑜 +  𝛽1 ∗  𝑉𝑝ℎ𝑜𝑡𝑜𝑑𝑖𝑜𝑑𝑒 +  𝜀                  (1) 

 

Where: 

eBGL represents the estimated blood glucose concentration in 

mg/dL 

0 is the intercept representing the baseline glucose level when 

Vphotodiode = 0. 

1 is the regression coefficient or the slope representing how 

changes in Vphotodiode relate to changes in the blood glucose 

level. 

Vphotodiode = output voltage of the photodiode, which changes 

depending on how much light is absorbed or reflected by the 

tissue based on the level of glucose in the blood. 

The error term includes noise, measurement error, and 

unmodeled factors. 

 

The physiological data acquired from sensors are 

processed and analyzed by the IPSBGMS. Referring to Table 

3, the BP measurements are evaluated based on the AHA 

clinical recommendations [59], while the RBGL are accessed 

based on the ADA clinical guidelines [1]. The HR and RR 

readings are analyzed based on the National Early Warning 

Score 2 (NEWS2) approach [60]. The BT measurements are 

assessed according to the published clinical criteria of [61].  

The sensor-read parameters are stored instantaneously in the 

ThingSpeak IoT cloud and MariaDB database servers. Figure 

2 shows the IPSBGMS prototype. 
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Table 3. Physiological sign parameter range, assessment and recommendation based on clinical guidelines 

Physiological 

Sign 

Parameter 

Range 
Category Assessment and Clinical Recommendations Reference 

Blood 

Pressure 

(SBP/DBP) in 

mmHg 

< 90 / < 60 Low 
Indicates hypotension; evaluate underlying cause and 

monitor perfusion status. 

[59] 

90–119 / 60–79 Normal 
Optimal blood pressure; maintain healthy lifestyle and 

regular monitoring. 

120–129 / < 80 Moderate 
Elevated blood pressure; advise dietary modification, 

weight control, and routine monitoring. 

≥ 130 / ≥ 80 High 
Hypertension; requires medical evaluation and 

possible therapeutic intervention per AHA guidelines. 

Random 

Blood 

Glucose 

(RBGL)       

in mg/dL 

< 70 Low 
Hypoglycemia; may cause weakness, dizziness, or 

confusion. Administer glucose and reassess. 

[1] 

70–139 Normal 
Euglycemia; within normal glycemic control range. 

Continue regular monitoring. 

140–199 Moderate 
Prediabetic range; Recommend lifestyle modification 

and follow-up testing. 

≥ 200 High 

Hyperglycemia; diagnostic of diabetes mellitus if 

confirmed. Initiate medical assessment and 

management. 

Heart Rate 

(HR)  

in bpm 

≤ 50 Low 
Bradycardia; Evaluate clinically for heart related 

causes. 

[60] 

51–90 Normal 
Normal sinus rhythm; no clinical concern. Continue 

observation. 

91–110 Moderate 

Mild tachycardia; may result from anxiety, 

dehydration, or early infection. Monitor trend and 

contributing factors. 

≥ 111 High 

Marked tachycardia; may indicate fever, cardiac 

arrhythmia, or systemic stress. Requires clinical 

evaluation. 

Respiratory 

Rate (RR) 

in brpm 

≤ 8 Low 

Bradypnea; may indicate central nervous system 

causes, drug effect, or respiratory failure. Urgent 

assessment required. 

[60] 

9–20 Normal 
Eupnea; normal respiratory pattern. No intervention 

needed. 

21–24 Moderate 
Mild tachypnea; may be due to exertion, stress, or 

early illness. Observe and reassess. 

≥ 25 High 

Severe tachypnea; suggests respiratory distress, 

hypoxia, or metabolic acidosis. Requires prompt 

evaluation. 

Body 

Temperature 

(BT) in oC 

≤ 35.0 Low 
Hypothermia; assess for exposure, sepsis, or endocrine 

disorder. Initiate warming measures. 

[61] 

36.1–37.2 Normal 
Normothermia; normal thermoregulation. Maintain 

hydration and monitoring. 

37.3–38.0 Moderate 
Low-grade fever; monitor for early infection or 

inflammation. 

38.1–39.0 High 
Moderate fever; likely infectious etiology. Encourage 

rest and antipyretic if symptomatic. 

> 39.1 
Very 

High 

High-grade fever (hyperpyrexia); may indicate severe 

infection or systemic inflammation. Seek urgent 

medical attention. 
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Fig. 2 IPSBGMS prototype 

 

3.2. Development of the Interactive Mobile and Web-based 

Applications for Diabetes Management and Care  

The Interactive Mobile Application for Diabetes 

Management and Care (IMADMC) developed using MIT App 

Inventor 2 and the Biotelemetry and Telemedicine System 

(BTMS) web application created using PHP, HTML, 

Bootstrap and Hostinger website templates, NGINX server, 

and MariaDB database provide the following operations: (a) 

enables patients and doctors to register and login-in securely 

to the system; (b) facilitates the entry of patient health-related 

data such as age, height, weight, FHDM, PEDM, LSP, as well 

as the clinical test results of Fasting Plasma Glucose Level 

(FPGL) and Presence of Glucose in the Urine (GS), and then 

stores the parameters in the cloud and database servers; (c) 

allows the user to view the patient's estimated BMI, PBF, and 

TDEE based on the BMR and LSP utilizing mobile 

computing; (d) provides online access to the physiological 

sign assessments, clinical recommendations, medical reports 

and treatment plans of patients; (e) if diabetes or the onset of 

any health-related condition is detected, the mobile app 

displays the personalized recommended daily calorie intake 

and physical activity to lose weight and control sugar levels, 

(f) generates a referral notice for proper consultation with a 

medical specialist through the telemedicine platform, and (g) 

facilitates teleconferencing or videoconferencing for online 

doctor-patient interaction [6].  

With the IMADMC and BTMS.cloud applications, 

individuals gain self-awareness about their health and well-

being, along with an understanding of diabetes-related health 

problems. In addition, the doctors can evaluate the health 

status and interact with their patients in an all-in-one platform. 

To use the IMADMC, the application must be installed on the 

user’s mobile device. The BTMS.cloud online application, on 

the other hand, can be accessed by entering https://btms.cloud 

in a web browser and clicking the Sign In button.   Figure 3 

shows the login page for the BTMS cloud online application. 

Registered users are required to enter their username, 

password, and captcha code to obtain safe access. The 

password is encrypted to guarantee secure data transmission. 

Similarly, users must enter their correct credentials on the 

IMADMC login screen, as shown in Figure 4(a), to access the 

different features of the application.  

Upon successful login, the IMADMC application leads 

the user to the home screen, as seen in Figure 4(b) for doctors 

and Figure 4(c) for patients-likewise, successful 

authentication in the BTMS. Cloud redirects the users to the 

dashboard home page shown in Figure 5 for doctors and 

Figure 6 for patients, where health data, predictive analytics, 

and user settings can be accessed. If the login attempt fails, the 

system remains on the login page, displays an error message, 

and allows the user to re-enter valid credentials.  For any 

authentication-related issues, users may contact the 

administrator via email or text message.  Figures 4 to 6 

illustrate how users can navigate and access the different 

features of the digital platform by clicking on buttons or links. 

In addition, the IMADMC application incorporates the MIT 

App Inventor text-to-speech component to provide voice 

instruction capability, enhancing the user interaction and 

accessibility.

 
Fig. 3 Log-in page of the BTMS. Cloud web-based application 
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Fig. 4 IMADMC application screens, (a) Login screen, (b) Home screen for doctors, and (c) Home screen for patients. 

 

 
Fig. 5 BTMS. Cloud application home page for registered doctor 
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Fig. 6 BTMS. Cloud home page for registered patient 

 

3.3. Design of the Ensemble ML-based Prediction Model for 

DM-Related Clinical Health Risk 
The ensemble ML-Based DM-Related Clinical Health 

Risk Prediction Model (EMLDRPM), which is installed on the 

doctor’s computer, is a Python-driven program that analyzes 

historical and real-time health data to forecast the Clinical 

Health Risk Associated with DM and its Complications 

(CHRDM). The EMLDRPM accepts patient health-related 

features imported from ThingSpeak cloud, such as FPGL, 

SBP, GS, BMI, FHDM, PEDM, and LSP, analyzes the data 

using three supervised learning algorithms: NB, LR, and RF, 

and classifies whether the patient’s CHRDM is normal/low, 

medium, or high based on majority voting and the RF model 

to break three-way ties. Low risk suggests that the patient is 

unlikely to develop diabetes or its complications. The glucose 

levels, blood pressure, BMI, and other health indicators are all 

within acceptable limits. Medium risk indicates that the 

patient has certain risk factors that could develop into diabetes 

or complications if not well controlled. Lifestyle changes and 

medical monitoring are recommended. High risk indicates that 

the patient has significant risk factors, such as high FPGL, 

hypertension, obesity, or a PEDM. Immediate medical 

attention and modifications to LSP are required to prevent 

significant health issues.  

3.3.1. Prediction of Clinical Health Risk associated with DM 

and its Complications (CHRDM) using NB, LR, and RF 

Models   

In diabetes risk prediction, NB, a probabilistic classifier, 

considers that all features are conditionally independent based 

on the class label [55]. Equation 2 presents the NB formula for 

determining the CHRDM. The posterior probability 𝑃(𝐶𝑟|𝑋)  

It is generated for each risk class (Cr), and the class with the 

greatest likelihood is used to forecast the health risk. This ML 

technique allows for efficient computing, making it simple to 

work with large datasets.  

𝑃(𝐶𝑟|𝑋) =
𝑃(𝐶𝑟)∗ ∏ 𝑃(𝑋𝑖|𝐶𝑟)7

𝑖=1

𝑃(𝑋)
              (2) 

 

𝑃(𝑋) = ∑ 𝑃(𝐶𝑗)3
𝑗=1 ∗  ∏ 𝑃(𝑋𝑖|𝐶𝑗)7

𝑖=1         (3) 

Where: 

𝑃(𝐶𝑟|𝑋) The posterior probability, which represents the 

likelihood that a patient belongs to a specific risk class Cr, 

given the health-related features X.  

 

𝑃(𝐶𝑟) is the prior probability, which denotes the likelihood of 

a patient being associated with a specific risk class Cr before 

considering the input features X. 

 

𝑃(𝑋𝑖|𝐶𝑟) Is the likelihood of observing a specific feature value 

Xi given that the patient belongs to a particular class Cr. 

 

𝑋𝑖 Stands for each health-related features, including FPGL, 

SBP, GS, BMI, FHDM, PEDM, and LSP. 

 

∏ 𝑃(𝑋𝑖|𝐶𝑟)7
𝑖=1  It is the product of the individual probabilities 

of all seven features, so it represents their combined 

likelihood. 

 

𝑃(𝑋) Equation 3 is the evidence or normalization factor 

showing the total probability of detecting the input features X 

for all potential classes, and it ensures the posterior 

probabilities across all classes sum to 1. 

 

CJ stands for several probable risk categories. 
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Assuming that the independent variables and the 

dependent variables' log-odds are related in a linear manner, 

the LR statistical model estimates the likelihood of an 

outcome based on one or more prediction factors [56]. This 

model helps one to understand how every factor affects the 

diabetes risk. In multinomial LR, the log-odds of each 

category except a reference category are modelled as a linear 

function of predictor variables. The model computes the 

probability of each outcome using the softmax function, 

ensuring that all probabilities sum to one. Equation 4 shows 

the general form of the multinomial LR equation for 

predicting CHRDM. Based on the calculations, the risk 

category with the highest probability is the predicted health 

risk.  

𝑃(𝑌 = 𝑘) =  
𝑒(𝛽0𝑘+𝛽1𝑘𝑋1+𝛽2𝑘𝑋2+⋯+𝛽𝑛𝑘𝑋𝑛)

1+ ∑ 𝑒
(𝛽0𝑗+𝛽1𝑗𝑋1+𝛽2𝑗𝑋2+⋯+𝛽𝑛𝑗𝑋𝑛)𝐾

𝑗=1

  (4) 

Where: 

Y is the outcome variable representing the Clinical Health Risk 

Associated with DM and its Complications (CHRDM) 

k is the risk category  

𝑃(𝑌 = 𝑘) is the probability of Y being in risk category k 

e is the base of the natural logarithm. 

𝛽0𝑘 is the intercept for category k. 

𝛽𝑖𝑘 Represents the coefficients for each predictor variable Xi 

for category k. 

 

X1, X2, X3 to Xn are the independent variables representing the 

health-related predictors such as FPGL, SBP, GS, BMI, 

FHDM, PEDM, and LSP. 

 

𝑒(𝛽0𝑘+𝛽1𝑘𝑋1+𝛽2𝑘𝑋2+⋯+𝛽𝑛𝑘𝑋𝑛)Is the exponentiated log-odds of 

the outcome belonging to category k relative to the reference 

category.  

K denotes the number of possible categories. 

 

1 +  ∑ 𝑒(𝛽0𝑗+𝛽1𝑗𝑋1+𝛽2𝑗𝑋2+⋯+𝛽𝑛𝑗𝑋𝑛)𝐾
𝑗=1  Is the sum of the 

exponentiated log-odds for all categories, ensuring that the 

probabilities sum to 1. 

 

On the other hand, RF is a collective learning technique 

that generates several Decision Trees (DTs) during the 

training phase [57]. For classification tasks, it determines the 

final forecast by combining the results from all the individual 

trees through a majority vote, as shown in Equation 5. Without 

an explicit definition, it catches non-linear correlations and 

interactions between features. The classification result that 

receives the highest number of votes from the trees represents 

the predicted CHRDM. 

𝑌̂ = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒 (𝑓1(𝑋), 𝑓2(𝑋), … . , 𝑓𝑛(𝑋)        (5) 

Where: 

𝑌̂ represents the health risk category associated with DM and 

its complications (CHRDM) 

T is the quantity of DTs in the random forest. 

𝑓𝑛(𝑋) Denotes the predicted class from the nth DT. 

The majority vote is the most frequently predicted class 

among all the decision trees. 

X is a vector of input features used for prediction, as shown in 

Equation 6. 

 

X = (FPGL, SBP, GS, BMI, FHDM, PEDM, LSP)      (6) 

 

3.3.2. Prediction of Clinical Health Risk Associated with DM 

and its Complications (CHRDM) using Ensemble ML Model   

The final clinical health risk prediction for a patient based 

on the ensemble machine learning model is expressed in 

Equation 7. Each based model (NB, LR, RF) forecasts the 

patient’s diabetes related health risk. The ensemble model 

tallies the votes for each risk category. If one class attains a 

majority, that class is designated as the final CHRDM. In case 

of a three-way tie, the prediction of the RF model determines 

the final CHRDM.  

3.3.3. Datasets for Training the EMLDRPM 

The EMLDRPM was trained using the DiaHealth dataset 

[58] and an additional clinical dataset collected from 50 

volunteer patients who signed consent forms prior to testing. 

The DiaHealth dataset, developed by researchers at United 

International University and Southeast University in 

Bangladesh, comprises 4,554 participants aged 21 to 60 years 

with 3,379 females and 1,175 males, including 279 diabetic 

and 4,275 non-diabetic individuals [62]. It contains 

information such as age, gender, HR, SBP, DBP, BGL, height, 

weight, and BMI, along with health history indicators 

including FHDM, hypertension, Cardiovascular Disease 

(CVD), and stroke. 

 

𝐻𝑅𝐷𝑀 (𝑥) = {
arg max

𝑐∈𝐶
[𝑉(𝑐; 𝑥)] ,                            𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑐𝑙𝑒𝑎𝑟 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒

 arg max
𝑐∈𝑀(𝑥)

[𝑃𝑅𝐹(𝑐|𝑥)] , 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 3 − 𝑤𝑎𝑦 𝑡𝑖𝑒 (𝑅𝐹 𝑡𝑖𝑒 − 𝑏𝑟𝑒𝑎𝑘𝑒𝑟)
  (7) 

Where:  

𝑥 is the input features related to DM and its complications, including FPGL, SBP, GS, BMI, FHDM, PEDM, LSP. 

𝐶 = {𝐿𝑜𝑤, 𝑀𝑒𝑑𝑖𝑢𝑚, 𝐻𝑖𝑔ℎ} is the set of possible risk levels. 

𝑉(𝑐; 𝑥) is the number of models predicting class c. 

𝑀(𝑥) is the set of classes tied with the highest votes. 

𝑃𝑅𝐹(𝑐|𝑥) is the probability from RF model for class c. 

𝐶𝐻𝑅𝐷𝑀 (𝑥) is the final predicted clinical health risk associated with DM and its complication (Low, Medium or Hig
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The clinical dataset from 50 volunteer patients between 

ages 21 and 60, includes 24 females and 26 males, with 19 of 

them having diabetes and 31 are non-diabetic individuals.  The 

clinical dataset contains features such as FPGL, SBP, GS, 

BMI, FHDM, PEDM, and LSP. Since some parameters were 

unavailable in the DiaHealth dataset, the multiple imputation 

technique was used, in which missing values were substituted 

with valid estimates after consulting with medical healthcare 

specialists [63].  

The EMLDRPM dataset was divided into subsets for 

training the model and testing subsets to evaluate its 

performance on unseen data with an 80:20 split. The 

EMLDRPM was trained on a total of 445 cases, including 395 

cases from DiaHealth and all 50 clinical cases, using domain 

knowledge feature selection. This method improved the 

performance of the model by picking only the most clinically 

important features based on the knowledge of experts [64]. 

This helped make the model more accurate and refined.  

4. Results and Discussion 
4.1. Results and Discussion for the IoT-enabled 

Physiological Signs and Blood Glucose Monitoring System 

(IPSBGMS) 

Prior to deployment, IPSBGMS sensors were calibrated 

using medical-grade test equipment. The physiological 

parameters were taken non-invasively from 80 volunteer 

patients, a combination of male and female, with age groups 

from 21 to 60, who all signed a consent form. Figure 7 

compares the HR, SBP, and DBP of the IPSBGMS prototype 

to a commercially available Braun BP monitor. The HR 

readings collected from both devices were 74 bpm, resulting 

in a percent difference of 0%. The SBP measurements from 

the two devices were 113 mmHg from the IPSBGMS and 115 

mmHg from Braun, yielding an absolute percent difference of 

1.75%. Figure 8 shows the SpO2 and RR readings from the 

IPSBGMS prototype and a commercially available Tomorotec 

pulse oximeter. The SpO2 and RR values exhibited identical 

readings, with a 0% difference for both measurements.  Figure 

9 presents the BT readings from the IPSBGMS prototype and 

the medical - grade infrared thermometer. The BT 

measurements were the same, giving a 0% difference in the 

readings. Figure 10 compares RBGL from the IPSBGMS 

prototype with that of the One-touch invasive type 

glucometer. The two readings were nearly close, with 121.44 

mg/dL from the IPSBGMS and 121 mg/dL from the One-

touch glucometer, resulting in a percent difference of 0.363%.  

The minor differences in measurements from the 

designed prototype readings and readily available medical test 

devices are due to sensor positioning, movement artifacts, and 

the time it took to take the samples. Overall, these data 

indicate that the IPSBGMS readings are comparable to those 

of standard medical testing equipment.   All medical-related 

parameters obtained from the IPSBGMS and IMADMC were 

saved in the ThingSpeak cloud and database servers. By 

providing the correct username and password, patients and 

doctors could securely access clinical information through 

IMADMC and the BTMS cloud website. 

 
Fig. 7 HR, SBP, and DBP from the IPSBGMS prototype and a 

commercially available braun BP monitor 

 
Fig. 8 SpO2 and RR readings from the IPSBGMS prototype and a 

commercially available tomorotec pulse oximeter 

 
Fig. 9 BT readings from the IPSBGMS prototype and the medical-grade 

infrared thermometer 
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Fig. 10 RBGL of the IPSBGMS prototype and One-touch invasive type 

glucometer 

4.2. Results and Discussion of the Ensemble ML-based 

Prediction Model for DM-Related Clinical Health Risk  
4.2.1. Performance Metrics Comparison of EMLDRPM and 

Base ML Models 

Using 356 subsets for training and 89 subsets for testing, 

the risk predictions from the three supervised ML algorithms 

were evaluated. The performance metrics for each ML 

technique were calculated, including Accuracy (A) as per 

Equation 8, Precision (P) based on Equation 9, Recall (R) as 

per Equation 10, and F1-score (F1s) according to Equation 11. 

Figure 11 shows the preliminary performance metric results of 

the EMLDRPM. 

𝐴 =  
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
                 (8) 

𝑃 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                  (9) 

𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                 (10) 

𝐹1𝑠 =  2 ∗ 
𝑃 ∗ 𝑅

𝑃 + 𝑅
     (11) 

Where:  

True Positive (TP) = EMLDRPM accurately forecasts that a 

patient’s health is at high risk due to diabetes and its 

complications, and the patient’s health is indeed at high risk.  

False Positive (FP) = EMLDRPM forecasts a patient’s health 

is at high risk when it is not. 

True Negative (TN) = EMLDRPM correctly forecasts that a 

patient's health is at low to medium risk, and not at high risk.  

False Negative (FN) = EMLDRPM predicts a patient’s health 

is at low to medium risk when it is in fact at high risk. 

 
Fig. 11 Performance metrics results of the EMLDRPM 

 

Figure 11 demonstrates how well EMLDRPM performs 

with a dataset of 445 cases, 89 of which were used for testing. 

The RF model correctly predicted the CHRDM in 87 out of 89 

test cases. The accuracy of 97.8% indicates RF’s capability in 

handling numerical and categorical data, as well as identifying 

complex patterns. The LR algorithm correctly predicted the 

CHRDM in 85 out of 89 test samples, with an accuracy of 

95.6%. This shows that LR is good at modeling the linear 

relationship between the predictors. The NB model correctly 

forecasted the CHRDM in 71 out of 89 cases. The low 

accuracy rate of 80% is likely due to the assumption of feature 

independence, which does not work well in health-related 

datasets where variables are interconnected. The ensemble 

model, utilizing majority voting and an RF model to break 

three-way ties, achieved 97.8% accuracy. 

As seen in Figure 11, the RF technique demonstrates 

superior performance compared to NB and LR models in 

terms of precision and recall. With a precision and recall of 

0.980 and 0.978, the RF model shows that almost all predicted 

positive cases are correct with a very few FP, and almost all 

actual positives are detected with a very few FN. The 

ensemble model achieved the same precision and recall values 

as RF. This indicates that combining multiple models with 

majority voting maintained the high precision and recall.  

RF obtains an F1-score of 0.978, proving its ability to 

predict positive cases reliably and its high efficiency in 

recognizing TP instances. The LR algorithm's F1-score of 

0.953 indicates that it works well but falls behind RF due to 

its recall of 0.956, resulting in a slight trade-off between 

precision and recall. NB has a lower F1-score of 0.817, 

reflecting an imbalance between recall of 0.80 and precision 

of 0.872, reducing its overall performance. The ensemble ML-

based model performed comparably to RF with an F1-score of 

0.977.  
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4.2.2. Clinical Data Validation Results and Discussion of the 

EMLDRPM 

During the deployment phase, the actual patient clinical 

data for FPGL, SBP, GS, BMI, FHDM, PEDM, and LSP were 

extracted from the MariaDB database and then exported to the 

ThingSpeak cloud via the IMADMC. The doctor executed the 

EMLDRPM program installed on the computer, utilizing the 

input features imported from the ThingSpeak cloud.  Upon the 

generation of CHRDM, the level score was transmitted back 

to the ThingSpeak cloud, where it can be accessed using the 

BTMS. Cloud app on the computer or IMADMC on a mobile 

device, used by both the doctor and patient. To validate the 

data, the predicted diabetes risk level was compared to 

assessments by medical specialists and published clinical 

guidelines. 

As shown in Figure 12, patient 10000001 had a normal 

FPGL of 98 mg/dL according to [1, 65], a normal SBP of 113 

mmHg as per [59, 66], an overweight BMI classification of 

25.04 kg/m2 as referenced in [67], absence of glucose in urine, 

a familial medical history of DM, no pre-existing medical 

conditions related to DM, and a sedentary or unhealthy 

lifestyle. The CHRDM forecasted by the EMLDRPM 

indicated a medium risk, since family medical history, 

overweight BMI classification, and a sedentary lifestyle can 

cause early onset of DM based on medical experts' advice and 

published clinical guidelines [1, 65, 68-70]. The medium risk 

level score of 1 was stored in the ThingSpeak cloud, as shown 

in Figure 13, and in the MariaDB database server. 

Clinical recommendations for patients with a medium 

CHRDM level focus on lifestyle modifications, such as 

increasing physical activity to 150 minutes weekly and eating 

a balanced diet rich in nutritious grains, lean meats, good 

cholesterol, and vegetables, while limiting processed foods 

and added sugars [71, 72]. Furthermore, keeping the BMI 

within the normal range can considerably reduce your risk of 

developing diabetes [70]. Regular health checkups, which 

include monitoring BGLs, are also recommended to detect any 

early signs of impaired glucose regulation [73]. Figures 14 and 

15 show the recommendations for patient 10000001 with a 

medium CHRDM level as displayed in the BTMS. Cloud 

application and IMADMC, respectively. 

 
Fig. 12 EMLDRPM results for patient with ID 10000001   

 

 
Fig. 13 EMLDRPM output saved in the thingspeak cloud for patient 

10000001

 

 
Fig. 14 Clinical assessments and recommendations displayed in BTMS. Cloud application for patient 10000001 with medium CHRDM level 
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Fig. 15 Clinical assessments and recommendations displayed in imadmc 

for patient 10000001 with medium CHRDM level 

Referring to Figure 16, patient 10000008 had a normal 

SBP of 108 mmHg according to [59] but had an elevated 

FPGL of 116 mg/dL, which is identified as a prediabetes level 

as per the medical guidelines in [1, 65]. The patient had an 

overweight BMI classification of 28.08 kg/m2 based on [67], 

a family medical history of DM, a pre-existing diabetes-

related medical condition, and a sedentary or unhealthy 

lifestyle. The developed model predicted that the patient’s 

health was at high risk due to inadequate glucose regulation, 

excess body weight, genetic predisposition to DM, and an 

inactive lifestyle. Based on the study conducted by [70], 

excessive body weight is a significant risk factor for T2D and 

its complications. Furthermore, a sedentary lifestyle leads to 

the development of diabetes by decreasing insulin sensitivity, 

boosting weight gain, and reducing the body's ability to 

manage blood glucose [69] efficiently. The high-risk level 

score of 2 was saved in the ThingSpeak cloud, as seen in 

Figure 17, and in the MariaDB database server.  

 

Clinical guidelines for patients with high CHRDM level 

emphasize immediate and long-term lifestyle changes to avoid 

further DM-related health complications. This includes living 

an active lifestyle through frequent physical activity and 

eating a low-carb, nutrient-dense diet [71, 72].  When lifestyle 

changes are insufficient, pharmaceutical intervention, such as 

the use of metformin, may be required and should be started 

under the supervision of an endocrinologist [74]. Regular 

blood glucose testing and continued medical support are 

required to effectively manage the diabetes-related health risk 

[73]. Figure 18 and Figure 19 show the recommendations for 

patient 10000008 with a high CHRDM level as displayed in 

IMADMC and BTMS.cloud application, respectively. 
 

 
Fig. 16 Emldrpm results for patient with ID 10000008  

  

 
Fig. 17 EMLDRPM output saved in the thingspeak cloud for patient 

10000008 

 

 
Fig. 18 Clinical assessments and recommendations displayed in imadmc 

for patient 10000008 with high CHRDM level 
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Fig. 19 Clinical assessments and recommendations displayed in BTMS. Cloud application for patient 10000008 with high CHRDM level 

 

 As seen in Figure 20, patient 10000009's physiological 

and blood chemistry findings were within normal limits. The 

patient led an active lifestyle and had no family history or pre-

existing medical conditions associated with DM. Based on the 

clinical data, EMLDRPM produced a low-risk output 

prediction with a score of 0, which was then stored in the 

ThingSpeak cloud, as illustrated in Figure 21. Since the 

patient’s CHRDM level is normal, the patient is advised to 

maintain the current weight, eat healthy food, and continue to 

be physically active.  Figure 22 and Figure 23 present the 

recommendations for patient 10000009 with low/normal 

CHRDM level as displayed in IMADMC and BTMS.cloud 

application, respectively. 

 
Fig. 20 EMLDRPM results for patient with ID 10000009  

 

 
Fig. 21 Emldrpm output saved in the thingspeak cloud for patient 

10000009 

 
Fig. 22 Clinical assessments and recommendations displayed in imadmc 

for patient 10000009 with Low/Normal CHRDM level 

 

4.2.3. Comparison of CHRDM Level Scores from Doctor 

Assessments and Clinical Guidelines with the EMLDRPM 

Using t-Test Statistical Analysis 

Table 4 shows the comparison of the CHRDM level 

scores obtained from (a) doctors’ assessment and published 

clinical guidelines, and (b) the designed EMLDRPM using t-

test statistical analysis.  The mean difference between the two 

CHRDM level scores from 30 clinical test samples is 0.0666, 

which is very small. The minor discrepancy is due to 

borderline cases where the EMLDRPM forecasted one level 

higher than the CHRDM level obtained from the doctor’s 

evaluation and clinical guidelines. The two-tailed p-value of 

0.1608 exceeds the significance threshold of 0.05, indicating 

that the two CHRDM level scores are statistically comparable. 

Furthermore, the |t-stat| of 1.4392  is less than the two-tailed 

Critical t-value of  2.0452, demonstrating that there is no 

significant difference between the CHRDM level scores. 
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Fig. 23 Clinical assessments and recommendations displayed in BTMS. Cloud application for patient 10000009 with low/normal CHRDM level 

 

 
Fig. 24 BTMS. Cloud telemedicine services 

 

Table 4. Statistical comparison of CHRDM level scores using the T-test 

Statistic 

parameters 

CHRDM level scores 

Doctor’s 

Assessment and 

Published 

Clinical 

Guidelines  EMLDRPM 

Mean 1.1667 1.2333 

SD 0.9129 0.8976 

N 30 30 

df 29 29 

t-Stat -1.4392 - 

p-value (one-tail) 0.0804 - 

t-Critical (one-tail) 1.6991 - 

p-value (two-tail) 0.1608 - 

t-Critical (two-tail) 2.0452 - 

Mean Difference 0.0666 - 

 

4.3. Results and Discussion for the IMADMC and BTMS. 

Cloud Applications  

Patients can securely view their own clinical health 

metrics and CHRDM levels, as well as real-time assessments 

and recommendations using the IMADMC and BTMS.cloud 

applications, as shown in Figures 14, 15, 18, 19, 22, and 23. 

These digital platforms enable patients to schedule an 

appointment for a face-to-face consultation or video 

conference with their doctors, as illustrated in Figures 24 and 

25. The integration of these applications into the IPSBGMS 

and EMLDRPM promotes health awareness among patients 

and improves patient-doctor communication. Moreover, the 

EMLDRPM results seen in the mobile and web-based 

applications assist the doctors in making informed clinical 

decisions related to DM and its complications. By enabling 

medical file exchange and access to medical diagnoses and 

treatment plans, the platform establishes a closed-loop e-

health system that ensures continuous, timely intervention and 

enhanced diabetes management. 

  

 
Fig. 25 IMADMC telemedicine services 

 

5. Conclusion  
The research paper discussed the importance of AI and its 

applications in diabetes management and awareness. It 

demonstrated how AI-powered and IoT-based technologies 

can be used to monitor patients remotely, forecast DM-related 

clinical health risks, advise medical interventions, and 

recommend lifestyle modifications.  Based on the 
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experimental results, EMLDRPM correctly predicted DM-

related clinical health risks with 97.8% accuracy, which is 

comparable with the health care professional evaluations and 

published clinical guidelines. The t-test statistical analysis 

indicated that the CHRDM levels based on the doctor’s 

assessment and clinical guidelines are nearly equivalent to the 

CHRDM level scores obtained using the EMLDRPM. Data 

access and visualization were made possible using the 

developed IMADMC and BTMS web-based applications. 

Digital platforms like IPSBGMS, IMADMC, and EMLDRPM 

can improve patient involvement, long-term health 

monitoring, and proactive doctor-patient communication. 

Future works to improve the current e-health platform 

include collecting more clinical data to train the EMLDRPM 

and improving its accuracy in predicting CHRDM. Other AI 

algorithms may be employed, and their performance metrics 

compared to those of the existing platform. More training data 

and validation tests are needed to improve the accuracy of the 

IPSBGMS in detecting BGL non-invasively. It is also 

recommended that the IMADMC and BTMS applications be 

enhanced by incorporating Natural Language Interaction 

(NLI) features to help physicians and other medical 

professionals in understanding how the system works and how 

to use it more effectively. 
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