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Abstract - Wireless Sensor Networks (WSN) consist of miniature sensor nodes that communicate among themselves via wireless
channels, often in an unfriendly environment, and nodes can be carried and defeated. Thus, an enemy may also attack the clones
by copying the nodes taken and broadening the breaching areas with the help of clones. Hence, to reduce the losses of clone
nodes to the WSNs, it is crucial to detect them as soon as possible. Other types of clone detection systems have been proposed
in the recent past for WSNs, bearing in mind the dissimilar types of network structures, such as deployment strategies and types
of devices. The Deep Learning (DL) techniques, however, are used to identify and clone nodes in WSN. A Hybrid Optimization-
Based Feature Learning is presented in this paper regarding Clone Detection Using Ensemble Learning Models (HOFLCD-
ELM). The project seeks to create and assess an effective clone detection technique in wireless sensor networks to improve
network security and integrity. The initial phase of data preprocessing is the min-max normalization approach, which
transforms raw data into a usable format for modeling. In the feature subset selection procedure, the proposed HOFLCD-ELM
model develops a hybrid optimization process in the form of Lyrebat Algorithm (LYBA) that integrates Lyrebird Optimization
Algorithm (LOA) and Bat Algorithm (BA) in order to find the optimal features within a dataset. Subsequently, the system of Deep
Belief Network (DBN) model, Convolutional Variational Autoencoder (CVAE) method, and Graph Convolutional Network
(GCN) has been implemented to identify and classify clone attacks. Lastly, the optimization process of the Spider Wasp (SWO)
model is used to acquire the parameter tuning process in enhancing the classification of the ensemble classifier. The
experimental analysis of the HOFLCD-ELM model is done through a benchmark and a dataset. The results of the empirical
study showed that the performance of the HOFLCD-ELM method was improved more than that of the current methods.

Keywords - Clone detection, Wireless Sensor Networks, Spider Wasp Optimization, Hybrid model, Ensemble deep learning.

the nodes that were attacked and stored in the clones, can
authorize the attacker to retrieve the communication
architecture in WSNs [3]. As an example, in a key
management protocol of WSNSs, the clones can be checked as

1. Introduction

The Wireless Sensor Networks (WSNs) and, in particular,
their security issues, have found considerable momentum at
present both industrially and academically. Since small sensor

nodes in WSNs have limited capabilities in aspects of
communication, processing, storage, and power, it is hard to
enforce appropriate security measures and procedures of the
WSNs [1]. Specifically, since WSNs are often deployed in
unfriendly locations, sensor nodes are readily undermined and
lost by attackers who can intercept confidential information in
the lost sensor nodes [2]. After such a violation, the clone
attacks can be launched by imitating the affected nodes and
distributing them in the networks, such that the attacker can
grow the struck areas through the use of the clones.
Confidential information, such as encryption keys, stolen from

OSOE)

important nodes in more than one area, such as disrupting data
aggregation, sending wrong data, and discarding the packets
as they choose. Hence, it is important to detect clone nodes in
order to restrict their damage to WSNs [4]. Figure 1 is the
overall organization of WSNSs.

When such clones are not identified, the network becomes
vulnerable to attackers and thus very vulnerable. As a result,
clone attacks are very harmful. There is a need to have precise
and practical clone attack detection formulations in order to
mitigate their effects [5]. The primary challenge appears due
to the fact that the duplicates also have all the authentication
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information (ID, keys, codes, etc.) of the initial compromised
node [6]. Therefore, they can sign out all checks and not be
known to be counterfeit. Besides, an intelligent clone could be
trying to evade identification by any means. In addition,
clones can also collaborate to deceive the network manager
into believing that they are actual [1]. Research findings
indicate that a sensor node is prone to various risks, i.e., clone
node attacks or node replication, by virtue of its nature, which
includes the lack of non-tamper-responsive hardware, limited
computing power, energy, and memory [7]. Many centralized,
distributed, and network-based detection approaches were
developed to prevent clone node attacks. Wireless Sensor
Networks (WSN) clone nodes are identified using ML and DL
[8]. These paradigms can examine network traffic, behaviour,
and other characteristics of the nodes in order to detect clones.
As it is further investigated and developed, such models will
enhance the security and reliability of WSNs [9].
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A Hybrid Optimization-Based Feature Learning to Clone
Detection is constructed in this paper via Ensemble Learning
Models and referred to as HOFLCD-ELM. The key
contributions of this paper are as illustrated below:

An HOFLCD-ELM s a novel approach proposed to
support and test an effective clone detection model within
WSN in order to achieve network security and integrity.
Normalization in the min-max approach is first applied in
the data preprocessing stage.

In the process of selecting a feature subset, the proposed
HOFLCD-ELM model develops a hybrid optimization
algorithm called Lyrebat Algorithm (LYBA) that was
developed by combining Lyrebird Optimization
Algorithm (LOA) and Bat Algorithm (BA).

The Deep Belief Network (DBN) model, the
Convolutional Variational Autoencoder (CVAE) method,
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and the Graph Convolutional Network (GCN) system
have been implemented.

Finally, the parameter tuning process is achieved using
the Spider Wasp Optimization (SWO) model.

2. Literature Review

Nashaat et al. [10] introduced CloneXformer, a novel
method to detect code clones. This method implements a
collaborative methodology that employs several Large
Language Models (LLMs) to understand code. This method
utilizes a primary phase for preprocessing the input code,
which assists the model in understanding and representing the
code effectively. Later, these techniques are fine-tuned to
recognize code clones with explainable outcomes, which
clarify the types of clones. Dora et al. [11] presented an
Intelligent Clone Detection and classification through Cat
Swarm Optimizer alongside a DL approach for WSN. This
approach’s motive is to identify and classify clone nodes
within the network accurately. Swilam et al. [12] introduced
an improved AST, optimized by the presence of Condition-
Type Edges that efficiently model logical connections in
control structures. This new addition provides an in-depth
semantic understanding of the code's decision-making,
overcoming the flaws of traditional ASTs, which focus on
syntactic relations. By incorporating this improved AST with
Graph Neural Networks (GNNSs), this methodology acquires
strong feature representations that extract structural and
semantic differences across programming languages.

A Novel Adaptive Sea-Horse Optimized Light Gradient
Boosting Machine (ASHO-LGBM) technology by Bhaskar et
al. [13] protected the network against node identity duplicates.
ASHO-LGBM uses ASHO to improve LGBM feature
accuracy. The node Intrusion Detection (ID) duplications are
utilized in the selection of the most dependable
communication way. In [14], a process known as Stacked
Ensemble Learning-Clone Attack Detection (SEL-CND) has
been proposed as a procedure for detecting clone attacks. This
identifies the clone nodes of the Mobile WSN. The sensor
network is segmented into groups. Clusters have a central
node and an arbitrary number of sensor nodes. The Entropy
Dove Swarm Optimizer (EDSO) selects the Cluster Head to
enhance network performance. The EDSO model uses dove
foraging. WSN clone nodes are identified via the SEL-CND
module.

Vatambeti et al. [15] proposed an ML-based CND
algorithm on WSN clone node detection. The objective is to
detect clones to avert clone attacks accurately. The Optimized
Extreme Learning Machine (OELM) and ELM kernels were
utilized, optimized by the Horse Herd Metaheuristic
Optimizer (HHO) approach. Bhuvana et al. proposed an
upgraded transfer learning model using NFI-SSFS. [16], aims
to ensure Cooperative Secure Optimal Link Stability Routing
Allocation (CS-OLSR) and is contingent upon the detection of



P. Kalvikkarasi & K. Selvakumar / IJECE, 12(12), 134-146, 2025

clone attacks. The logs of communications are amalgamated
in order to use the level of variance feature of the rates of
packet discrepancy with the reliance on the memory and
transmission errors, which focuses on the Time Stamp
Communication Behavior Rate (TSCBR), and the False
Injection Impact Rate (FIIR). Second, the CS-OLSR is applied
to ensure secure routing in the area of clone attack.

3. Proposed System

The objective of the paper is to derive and analyze an
effective clone detection model in the WSNs to increase the
network security and integrity. To achieve that, the HOFLCD-
ELM system has normalization of min-max, selection of
features, an ensemble model, and parameter optimization. The
total action of the HOFLCD-ELM system is shown in Figure
2.
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Fig. 2 Overall procedure of HOFLCD ELM system

3.1. Data Preprocessing Model

Min-max normalization is the first data preparation
approach used to prepare raw data for modeling. The Min-
Max Normalization is a prominent preprocessing process that
is used to normalize numerical data within a specific interval,
which in most cases is [0,1] or the range [-1,1]. The model will
ensure every feature plays a fair role during the training of a
model, and not focus on features that are big [17]. Deep
Learning (DL) techniques can generate better detection results
and be trained on patterns by normalizing the database better.
A general expression of Min-Max Normalization is as follows,
given by Equation (1):

X—Xmin

X - .
max~Xmin

X' = (new_max — new_min) + new_min (1)

Whereas X denotes a new data point, X,;, and Xy ax
represent minimal and maximal values of the feature,
new_min and new_max describe the preferred normalization
range, X' Means normalized value. In the case where data
comprises either positive or negative values, this model is

changed to scale inside a range of [-1,1] as presented in
Equation (2):

X—Xmin

X X
max Xmin

X' =2x -1 (2)

This conversion ensures that the values remain around
zero, which is also beneficial to DL methods because it
stabilizes weight changes during training. It not only
accelerates convergence but also improves the accuracy.

3.2. Feature Selection using Hybrid Optimization Method

When using the feature subset selection process, the
suggested HOFLCD-ELM model develops a Hybrid
Optimization Algorithm named LYBA. By adding BA's
velocity module to LOA's hiding phase, the LYBA
hybridization strikes a balance between exploration and
exploitation [18].

The decision parameter values in the LYBA are
determined by each participating lyrebird and are contingent
upon the location inside the problem-solving area. A vector is
a defined variable, and every lyrebird is a vector in
mathematics. Equation (3) represents the model population as
LYBA members. LOA members are randomly placed in the
problem-solving domain using Equation (4).

[Xl] [x1,1 Tt X4 X1, m]
| : - : . : |
=|x | = | X1 L‘, xlm | 3
[ : | : -
l JN><m lxN'l XN mJNxm
xi‘d = lbd +7r: (ubd - lbd) (4’)

In this context, m represents the count of decision
parameters, N indicates the total counts of lyrebirds, r is a
random variable within the interval [0,1], and the upper and
lower bounds of the decision variable are denoted by ub,; and
lb, , respectively. The LOA population matrix is represented
by the symbol X, the i*® member of LYBA (promising
solution) by X;, and the d*" dimension in the search region by
x; q. Equation (5) presents the vector representation of the
evaluated values of the problem's objective function.

1“?1 [F(X1)]
|Ij"i | F(X) ()
lF:NJle F(XN) Nx1

Each objective function value is represented by a vector
F, where F; is the i*® LYBA member. The option with the
higher goal function value is best; the option with a lower
objective function value is suboptimal. An exponential factor
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is engaged in enhancing the lyrebird's updated stage position.
This sample of the lyrebird indicates that the population
update process consists of two phases: (i) concealment and (ii)
evasion. When the lyrebird must choose between concealing
itself and fleeing from peril, Equation (6) in the LYBA model
simulates its cognitive deliberation. The placement of each
LYBA member is altered in every iteration just for the
execution of the first or second
stage.

based on Phase 1,n, < 0.5

Updated process for X;: {based on Phase 2, else (6)

In such a case, i, Refers to a random number in the
interval of [0,1].

3.2.1. Stage 1: Exploration (Escaping Strategy)

The LYBA stage makes use of a model based on the
movement of the flight of a lyrebird to increase the density of
population members within the search space. When LYBA is
relocated to a more secure setting, it may demonstrate its
capacity to execute a comprehensive global search and
exploration process. It leads to substantial alterations in roles
and the exploration of alternate locations within the realm of
problem-solving.

The LYBA describes a safer area as a relative position of
the most subjective member of the population that has the
highest values of the objective function. Equation (7) has been
used to find a list of safer areas for all the members of LOA.

SA; ={X\, F, <F; &k €{1,23,..,N}},i =12,..,N (7)

The objective function value (F;) of the kth row of the X
matrix (X, ) is greater than the ith LYBA element (F, < F)).
SA; represents the safe areas for the i*" Lyrebird. The use of
modeling by the lyrebird movement ended on this step. The
new position of every LYBA member is calculated using
Equation (8). The technique adapts its escape strategy to prey
velocities using velocity factors. The model's flexibility lets it
intelligently adjust to environmental or prey changes.
Equation (9) states that the member associated with the
objective will be moved if its value increases.

xf]-l = xi,]- + Vl't.'ri,j. (SSAL’] - Il-,j.xl-‘j) (8)
v =vi 4 (xg — xfff“)Fi 9
Pl pPl ~ .
=l e (10)
X;, else

Whereas x¢°* specifies the best choice and v{ Refers to
the velocity of the prey. In this case, SSA; characterizes the i*"
safer place of the lyrebird; SSA; ;; specifies its jt" size; the
upgraded location is computed according to the recommended
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escaping tactic of LYBA, utilizing Equation (10); FF*
represents the objective function X/*; r;,j represents random
values from [0,1]; I;; Represents randomly picked 1 or 2
numbers.

3.2.2. Stage 2: Exploitation (Hiding Strategy)

The positioning of people in the search range at this
LYBA level is similar to the strategy of the lyrebird to retreat
to a surrounding and safer nest. This is the tactic used by the
lyrebird, which gradually changes its location as it carefully
explores its immediate environment and walks around seeking
shelter.

This demarcates LYBA's application in local search tasks.
The original place of each member is ascertained by LYBA
mimicking that of the lyrebird in flying to a favourite hiding
place in the neighbourhood, as described in Equation (11). If
Equation (12) is met, the associated member's objective
function is substituted with the new location if it expands.

ub;-lb;
xff = x+ (1=2r,).—— (11)
XxP2, FP?2 < F,
.= 12
' {Xi,else (12)

The iteration number in this sample is t, and the random
integers are denoted as follows. r; ; are drawn from the interval

[0.1], x[7 represents the j** dimension, F/? denotes the
objective function value, and the new position of the ‘"
Lyrebird is determined wusing the proposed LYBA’s
concealing method. The Area of Fitness Measure (FF)
concerning the classification accuracy and the desired number
of features is measured. It reduces the set size of attributes and
enhances the classifier's precision. The subsequent FF

calculates individual solutions as shown in Equation (13):

Fitness = a * ErrorRate + (1 — a) * FAILF (13)

In this instance, ErrorRate is the rate of error when
using the labeled features for classification. ErrorRate
pertains to the wrong (i.e., erroneous) percentage assigned to
the classification counts made, and is defined as the product
of (0,1) and SF is counts of features picked in the new
database, F represents the total number of characteristics in the
new database, whereas an is employed to govern the
importance of quality and size of subgroups within the
classifications.

3.3. Ensemble Classification Process

Then, the system of the DBN model, CVAE technique,
and GCN system has been implemented to detect and classify
clone attacks.
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3.3.1. DBN Model

In order to effectively recognize the complex and
dynamic patterns within raw data, without any extra structure,
consider a DBN structure [19]. Based on the outstanding
research of DBNS, it has acquired significance regarding its
ability to discover composite, hierarchical representations of
unlabeled data. DBNs can be used to model higher-
dimensional distributions, and thus are largely applicable to
the nonlinear and nonstationary character of data by stacking
many layers of Restricted Boltzmann Machines (RBMs).
Provided the raw data matrix X € R™*¢ (while n denotes
sample counts and d refers to feature counts), It converts this
data into a novel data area H over numerous layers. Every
DBN layer [, with parameters 6, Uses a nonlinear
transformation: H® = fp (H¢Y), while H® =X and f,
Characterizes the transformation by every RBM. An RBM
models the combined distribution among the observed vector
v and the Hidden Layer (HL) h utilizing a bipartite graph:

P(v,h; 0) =

70 exp(—E(v, h; 9)

(14)

Whereas E (v, h; 8) refers to configuration energy (v, h):

hj_zbivi_zcj
i

]

With hidden biases c;, weights w;;, visible biases b;, and
the partition function Z(8) that standardizes the distribution.
The layers of DBN are trained using the contrastive
divergence, gradually enhancing the feature representation as
the states that are close to seizure appear, as compared to
different ones. The DBN compresses lower-level data or
higher-level trends, enhancing adaptability to new trends due
to concept drift by showing the tourism industry data at
various levels of abstraction. The success of the DBN in this
model lies in its label-free nature, as it is an unsupervised
algorithm that learns hierarchical feature representations
directly from the data. The DBN leverages graphics and
identifies motifs in the information dispersion, recognizing
changes in the data distribution by modeling the joint
likelihood distribution of concealed and visible units, without
labeling samples.

E(U,h,e) = _Zviwi]’

i,j

hi  (15)

3.3.2. CVAE Technique

Neural networks can be trained unsupervised to duplicate
their input [20]. The AE's basic diagram has output and input.
Commonly used for data compression. Autoencoders
translate input data into feature space z using encoders.
Feature space is the latent encoder space. This decoding
challenge derives latent data representations and predicts the
data for the input region.

Nevertheless, a single-layered autoencoder would be
unable to eradicate the descriptive characteristics of raw data.
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It requires a sophisticated AE. This process was further
complicated by obligating the latent representation to comply
with some distributions, like Gaussian, Variational
Autoencoders (VAES). It resulted in the latent variable z
shifting to a latent space that has a probability distribution and
constant statistical measures.

This is utilized to get the variance, o, and mean, m, of the
latent variable z, which entails encoding to extract the
decoding inputs, employing the specified latent variable
distribution, z. The VAE encoder will transform an input
picture point into a distribution throughout the latent space.
Nevertheless, rather than the mean value, sometimes this
model can reconstitute the input signals. Hence, CVAESs are
applied because they have an improved capacity in applying
the encoding/decoding through using layers of Fully
Connected (FC)-based and in the ability to source the time and
locality relationship that occurs in the data.

The loss function of the CVAE is founded on two
components. The initial component focuses on reducing the
discrepancy between the input and output. In contrast, the
subsequent component assesses the extent to which the latent
space distribution deviates from the designated distribution. In
this work, Mean Squared Error (MSE) is used to measure the
dissimilarity between the reconstructed data and the input data
to measure them. However, alternative tasks (such as the role
of binary crossentropy) are also calculated, as shown:

MSE = —3%, (1! — T')? (16)

WhereasIAnd I represents reconstructed input and input,
and n means data dimensionality. However, to compute the
amount, the latent variable z approaches particular
distributions; in such a case, a typical standard distribution, the
divergence of the Kullback-Leibler (KL) Dy, It is applied that
estimates the divergence among dual distributions and serves
as a term of regularizer:

Dy = [p (x)log (p(x)) dx (17)

)

Whereas p(x) and g(x) are dual distributions. Therefore,
the loss function Ly 4z should be subject to MSE and Dy, and
described as shown:

LCVAE = k X MSE + E(DKL) (18)

Here, k means scaling factor, and E refers to expected
value.

3.3.3. GCN System

Graph-Based Neural Networks (NNs) are also DL
algorithms that have recently attracted particular interest in
modeling linked data in the form of composite networks [21].
As opposed to regular NNs, GNNs take relational data as input



P. Kalvikkarasi & K. Selvakumar / IJECE, 12(12), 134-146, 2025

in the form of nodes and edges, not in the form of 1D strings.
GCNs refer to NNs having tighter patterns compared to
GNNs. GCNs are a method using a convolution operation on
the input graph data in the form of arbitrarily defined filters,
and subsequently involve a collection of operations to produce
results. The best quality of GCNSs relative to other graph-based
methods is that they present a better insight into the spatial
attributes based on the data in the graph architecture. During
GCN techniques, a graph is described as ¢ = (V, E). During
the graph description, V is described as the collection of nodes,
and E < VxV is well-defined as the collection of edges.

To work on the graph, node features are frequently stated
by the feature matrix X € RN*F. Whereas N denotes node
counts and F denotes feature dimensions of every node. The
edge information is characterized by the matrix of adjacency
A € R¥*N_ The graph convolution process disseminates
neighbourhood information through nodes by incorporating
node features. Figure 3 illustrates the framework of the GCN
system.

HWY = g(AHVW®) (19)

Whereas H® refers to node features in the Ith layer, A
Denote the normalized adjacency matrix and W® Denote
learnable weights. The normalized adjacency matrix A
Balance the result of node neighbourhoods, which offers
mathematical stability, and is stated as shown.

A=D"Y24D"1/? (20)

Here, A = A + I denotes that self-connections of nodes

are comprised by adding the unit matrix. D specifies the

degree matrix of A. Therefore, for the graph-level
classification, node features are pooled and then classified:

z = Pool(HW), 9 = softmax(z) 21
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When running this updated rule, the features of each node

139

are updated using a weighted average of the features of
neighbouring nodes and a learnable weighted matrix. Degree
normalization ensures the nodes that have many neighbours
have fewer influences on the procedure that is updated.
Similarly, the model learns to balance, and nodes that have
many neighbours do not get over-taken.

3.4. SWO-based Parameter Tuning Model

Lastly, the parameter tuning process is realized by the
SWO model towards enhancing the classification
performance of ensemble classifiers. The optimizer strategy is
the SWO; this strategy resembles the behavior of spider wasps
[22]. They are recognized for seeking out spiders, injecting
them with venom, and transporting them to their nests for their
offspring to consume. The spider wasp present in the search
area is a characteristic common to all candidates. It employs
spiders and wasps as agents to mimic this method. In this
given paper, parameter tuning has been solved by using SWO.
Every person in this model defines an attractive solution in
order to make the difficulty better. This model uses the Fitness
Function (FF), which successively augments these solutions,
which will be used to search for the best selections of features
that can accurately predict. The optimization of the parameter
gets carried out using the stages such as the initiation,
evaluation of fitness, exploitation, exploration, and
termination. Specific processes of this model are described as
illustrated.

3.4.1. Initialization

In this case, the parameter population is arbitrarily
determined. The optimization controls, including the number
of people to use, the maximum iteration count to employ, the
parameters of the SWO, etc., are further initialized to begin
the optimizer process.

Kij = Lb; + rand.(Ub; — Lb;) (22)
Whereas k;; specifies the population, Ub; and Lb;
Describes upper and lower search regions.

3.4.2. Fitness Evaluation

Accordingly, the fitness solution was projected for all
sequences of parameters according to its goal function. During
the presented setting, the primary goal of the SWO is to lower
the loss function, as described in Equation (23).

Objectivefunction = min (Loss,.— = i f;"l(Ap - Pp)z) (23)

The more the loss is received through the method, the
greater the corresponding fitness of the particular set of
parameters.

3.4.3. Exploration and Exploitation
Here, the model discovers the complete searching region
and upgrades the values of parameters to fix its best range.
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Now, the parameters such as the time constant ((T’))Weights
(W) and threshold potentials (¢p) parameters are adjusted in
the model to improve the detailed investigation. At first,
characterize each wasp utilizing Equation (24).

P=W,1,¢) (24)

Formerly, compute the excellence of all wasps utilizing
FF for assessing the prediction precision and complexity.
Furthermore, the FF starts with the initialization procedure of
every feature as f;, f,Formerly, the exploitation and
exploration process was used at the location, all wasp utilizing
Equation (25).

Pi = Pi(t) +r,-(BLocaIPi(t)) +77-Re (25)

Whereas, By, It is characterized as a top local solution;
the rate of learning is discovered as r', means performance
measure, and Ris random selection parameter process.

3.4.4. Termination

After the parameter improvement, the innovative solution
was supported with the fitness solution. When the new tested
fitness is increased, the new model chooses the better
sequence of parameters to be used in training. The entire
process of updating the parameters will advance until the
highest iteration limit. This would mean that it gives the best
value to the module in every iteration. The SWO model results
in a feature function to increase classification efficacy. It
describes a complex measure to assess the increased
functionality of the possible corrections. The FF is the
decrease of the error rate in the classification described in the
following Equation (26):

fitness(x;) = ClassifierErrorRate(x;)

no of misclassified samples

%100 (26)

Total no of samples

4. Validation and Results

The validation of the HOFLCD-ELM system is
experimentally confirmed in the database of WSN-DS [23].
There are 374661 instances of five types of attacks in this
database, as indicated in Table 1. The TDM types are referred
to as Time Division Multiple Access attack. It has a total of 18
features, but 13 have been selected.

Table 1. Details of the database

Attack Type No. of Instances
“Normal” “340066”
“Grayhole” “14596”
“Blackhole” “10049”
“TDM” “6638”
“Flooding” “3312”
Total Instances 374661
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Figure 4 will explain the results of the HOFLCD-ELM
method, which are of an 80:20 ratio. Figures 4(a), and 4(b)
show the confusion matrix, as all the categories are detected
and classified accurately. Figure 4(c) indicates that PR
inspection is best in all classes. The ROC analysis is lastly
presented in Figure 4(d), which demonstrates the achievement
of success with better ROC values for each class.

Table 2. Clone attack detection of the HOFLCD-ELM model under

80:20
> < s 2
Class & 2 — ) §
g |8 |§ |3 >
< o o L Q)
TRPHE (80%b)
Normal 98.24 |98.75 |99.31 |99.03 | 99.03
Grayhole | 99.37 |93.02 |90.72 |91.85 | 91.86
Blackhole | 99.54 | 90.82 | 92.24 | 9152 | 91.53
TDM 99.26 |83.71 |7230 |7759 | 77.80
Flooding | 99.50 | 78.49 |59.52 | 67.70 | 68.35
Average | 99.18 | 8896 | 8282 |8554 |8571
TSPHE (20%)
Normal 98.26 | 98.77 |99.32 | 99.04 | 99.05
Grayhole | 99.36 | 92.88 | 90.51 | 91.68 | 91.69
Blackhole | 99.60 | 92.09 | 93.40 | 92.74 | 92.74
TDM 99.24 | 8350 |71.23 |76.88 | 77.12
Flooding | 99.50 | 77.33 |61.14 | 68.29 | 68.76
Average | 99.19 |88.91 | 8312 | 8573 | 85.87
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HOFLCD-ELM system clone attack detection at 80:20 is
shown in Table 2 and Figure 5. Under 80% TRPHE, the
HOFLCD-ELM model averages accu,, of 99.18%, prec, of
88.96%, reca; of 82.82%, Fyeqsure OF 85.54%, and Geqns OF

85.71%. Likewise, at 20% TSPHE, the proposed HOFLCD-
ELM model gets average accu,, of 99.19%, prec, of 88.91%,
reca; 0f 83.12%, Fyoqsure OF 85.73%, and G eqns Of 85.87%.

@ Training Phase (80%) @ Testing Phase (20%)
igé Accuracy, 99.19
[
98 Accuracy, 99.18
=~ 96
S
g g
>
3 Precision, 88.91
> 90
S 88 [ ] F-Measure, 85.54 s R
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84 Recall, 83.12 G-Means, 85.87
Recall, 82.82 (] F-Measure, 85.73
82 T T T T T 1
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Fig. 5 Average values of the HOFLCD-ELM model under 80:20
‘ Training and Validation Accuracy (80:20) Figure 6 illustrates the Training (TRAIN) Accuracy
098 = Training (accuy) and Validation (VALID) Accuracy (accu,,) of the
| s Validation
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Fig. 6 Accu,, curve of HOFLCD-ELM model under 80:20
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Fig. 7 Loss curve of HOFLCD-ELM model under 80:20
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HOFLCD-ELM approach using an 80:20 split over 25 epochs.
Initially, both TRAIN and VALID accuracy exhibit rapid
improvement, indicating that the data effectively captures
patterns. This point in time demonstrates that successful
generalization without overfitting, but only slightly above the
training accuracy, shows that the VALID accuracy has been
achieved. It shows maximum performance and minimal
difference in performance between TRAIN and VALID with
increasing training. This is regularized and generalized
successfully when the two curves come close to each other in
the process of training. This illustrates that the method has the
best ability to identify and preserve positive attributes in
visible and invisible data.

Figure 7 depicts the training and validation losses of the
HOFLCD-ELM model, which was trained with an 80:20 split
across 25 epochs. The model's initial input is constrained due
to elevated TRAIN and VALID losses. The two losses
progressively decrease with enhanced training, signifying that
the model is successfully learning and refining its parameters.
The model has not been overfitted and continues to generalize
efficiently to fresh data, evidenced by the near-parallelism of
the TRAIN and VVALID loss curves during training.

Figure 8 shows the outcome of the classifier at 70:30 of
the HOFLCD-ELM method. The Figures 8(a), and 8(b) show
the confusion with the correct detection and classification of
every class. The PR inspection, which provides the highest
performance in each class, is provided in Figure 8(c). Finally,
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the analysis of ROC is described in Figure 8(d), and effective
outcomes were noted when the ROC values are higher, in the
case of different classes.
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Fig. 8 70:30 of (a, b) Confusion matrices and, (c, d) Curves of PR and
ROC.

Table 3 and Figure 9 show the HOFLCD-ELM system's
clone attack detection at 70:30. Under 70% TRPHE, the
proposed HOFLCD-ELM model gets an average accu, of
98.97%, prec, of 83.33%, reca; of 74.64%, Fyeqsure OF
77.80%, and G poqns OF 78.38%. Similarly, at 30% TSPHE, the
proposed HOFLCD-ELM model obtains average accu,, of
98.93%, prec, of 83.10%, reca; of 74.17%, Fuyeqsure OF
77.29%, and GpyeqnsOF 77.94%.

Table 3. Clone attack detection of HOFLCD-ELM model under 70:30

> c g %
8 ) = 3 ]
Class 3 2 S 5 <
a o o P i
< o W O
TRPHE (70%)

Normal 98.18 | 98.66 | 99.35 | 99.00 | 99.00
Grayhole | 99.42 | 88.80 | 97.30 | 92.86 | 92.95
Blackhole | 98.84 | 83.62 | 70.41 | 76.44 | 76.73

TDM 99.11 | 77.34 | 70.02 | 73.50 | 73.59
Flooding | 99.29 | 68.23 | 36.10 | 47.22 | 49.63
Average | 98.97 | 83.33 | 7464 | 77.80 | 78.38

TSPHE (30%)

Normal 98.14 | 98.62 | 99.34 | 98.98 | 98.98
Grayhole | 99.37 | 88.20 | 96.80 | 92.30 | 92.40
Blackhole | 98.85 | 84.99 | 69.94 | 76.74 | 77.10

TDM 99.05 | 75.04 | 7052 | 7271 | 72.74
Flooding | 99.27 | 68.65 | 34.26 | 45.71 | 48.50
Average | 98.93 | 83.10 | 74.17 | 77.29 | 77.94
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Figure 10 exemplifies the TRAIN accu, and VALID

accu,, Of an HOFLCD-ELM technique across 25 epochs at
70:30. Despite this, at the beginning, the trend is quite clear
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since both TRAIN and VALID accuracy are gaining
momentum. This is a good start, since effective generalization
with no overfitting has occurred, as the validation accuracy is
just a little higher than the training accuracy. It demonstrates
optimal performance in accordance with progression in
training, with minimal disparity in performance between the
TRAIN and Vald performances. The method is well
regularized and generalized, as it can be seen that both curves
are closely similar over the training process. This shows the
extent to which the technique is able to remove and preserve
crucial properties in both familiar and unfamiliar material.

Figure 11 depicts the training and validation loss of the
HOFLCD-ELM model, segmented at 25 epochs at a 70:30
ratio. The increased TRAIN and VALID losses suggest that
the model's understanding of the input is limited. The two
losses gradually diminish with the commencement of training,
signifying that the model is effectively acquiring knowledge
and refining its parameters. The model was not overfitted and
was well generalised to new data by the fact that the TRAIN
and VALID curves of loss were strongly related throughout
training.
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Fig. 12 Comparative analysis of HOFLCD-ELM with existing methods
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Fig. 13 PT outcome of HOFLCD-ELM with recent methods

Figure 12 illustrates the comparative examination of the
HOFLCD-ELM methodology against existing techniques
across multiple parameters [24, 25]. The results emphasized
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that the proposed HOFLCD-ELM model achieved the highest
accuy, precy,, reca;, and Fyqqqre Of 99.19%, 88.91%,
83.12%, and 85.73%, respectively. The present
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methodologies, such as J48, Decision Tree, AdaBoost, The min-max normalization method is first used at the
Gradient Boosting, XGBoost, KNN-AOA, KNN-PSO, ID- preprocessing stage of data to make raw data in order to be
GOPA, and CNN-LSTM, have shown worse performance used in modeling. In this case, in the process of feature subset
under various metrics. selection, the presented HOFLCD-ELM model develops the
hybrid optimization model LYBA, incorporating the use of
In Figure 13, the Processing Time (PT) of the HOFLCD-  LOA and BA to decide on the selection of the optimal features
ELM method with current models is proven. Based on PT, the in a dataset.
HOFLCD-ELM model offers a lower value of 4.88sec while
the J48, Decision Tree, AdaBoost, Gradient Boosting, Subsequently, one DBN model coupled with the CVAE
XGBoost, KNN-AOA, KNN-PSO, ID-GOPA, and CNN-  technique and GCN system to identify and label clone attacks
LSTM methodologies got higher PT of 19.74sec, 8.78sec, has been implemented. Lastly, there is the parameter tuning
10.90sec, 7.79sec, 20.94sec, 15.40sec, 22.24sec, 10.78sec, method, where a better classification performance of

and 13.54sec, respectively. ensemble classifiers is attained using the SWO model. The
experimental analysis of the HOFLCD-ELM model is
5. Conclusion conducted based on a benchmark dataset. The empirical

The study constructs and tests an effective clone detection ~ results showed the increased performance of the HOFLCD-
model in WSNs to improve network security and integrity. ~ ELM method as compared to the current methods.
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