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Abstract -  Wireless Sensor Networks (WSN) consist of miniature sensor nodes that communicate among themselves via wireless 

channels, often in an unfriendly environment, and nodes can be carried and defeated. Thus, an enemy may also attack the clones 

by copying the nodes taken and broadening the breaching areas with the help of clones. Hence, to reduce the losses of clone 

nodes to the WSNs, it is crucial to detect them as soon as possible. Other types of clone detection systems have been proposed 

in the recent past for WSNs, bearing in mind the dissimilar types of network structures, such as deployment strategies and types 

of devices. The Deep Learning (DL) techniques, however, are used to identify and clone nodes in WSN. A Hybrid Optimization-

Based Feature Learning is presented in this paper regarding Clone Detection Using Ensemble Learning Models (HOFLCD-

ELM). The project seeks to create and assess an effective clone detection technique in wireless sensor networks to improve 

network security and integrity.  The initial phase of data preprocessing is the min-max normalization approach, which 

transforms raw data into a usable format for modeling. In the feature subset selection procedure, the proposed HOFLCD-ELM 

model develops a hybrid optimization process in the form of Lyrebat Algorithm (LYBA) that integrates Lyrebird Optimization 

Algorithm (LOA) and Bat Algorithm (BA) in order to find the optimal features within a dataset. Subsequently, the system of Deep 

Belief Network (DBN) model, Convolutional Variational Autoencoder (CVAE) method, and Graph Convolutional Network 

(GCN) has been implemented to identify and classify clone attacks. Lastly, the optimization process of the Spider Wasp (SWO) 

model is used to acquire the parameter tuning process in enhancing the classification of the ensemble classifier. The 

experimental analysis of the HOFLCD-ELM model is done through a benchmark and a dataset. The results of the empirical 

study showed that the performance of the HOFLCD-ELM method was improved more than that of the current methods. 

Keywords - Clone detection, Wireless Sensor Networks, Spider Wasp Optimization, Hybrid model, Ensemble deep learning.  

1. Introduction  
The Wireless Sensor Networks (WSNs) and, in particular, 

their security issues, have found considerable momentum at 

present both industrially and academically. Since small sensor 

nodes in WSNs have limited capabilities in aspects of 

communication, processing, storage, and power, it is hard to 

enforce appropriate security measures and procedures of the 

WSNs [1]. Specifically, since WSNs are often deployed in 

unfriendly locations, sensor nodes are readily undermined and 

lost by attackers who can intercept confidential information in 

the lost sensor nodes [2]. After such a violation, the clone 

attacks can be launched by imitating the affected nodes and 

distributing them in the networks, such that the attacker can 

grow the struck areas through the use of the clones. 

Confidential information, such as encryption keys, stolen from 

the nodes that were attacked and stored in the clones, can 

authorize the attacker to retrieve the communication 

architecture in WSNs [3]. As an example, in a key 

management protocol of WSNs, the clones can be checked as 

important nodes in more than one area, such as disrupting data 

aggregation, sending wrong data, and discarding the packets 

as they choose. Hence, it is important to detect clone nodes in 

order to restrict their damage to WSNs [4]. Figure 1 is the 

overall organization of WSNs. 

When such clones are not identified, the network becomes 

vulnerable to attackers and thus very vulnerable. As a result, 

clone attacks are very harmful. There is a need to have precise 

and practical clone attack detection formulations in order to 

mitigate their effects [5]. The primary challenge appears due 

to the fact that the duplicates also have all the authentication 
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information (ID, keys, codes, etc.) of the initial compromised 

node [6]. Therefore, they can sign out all checks and not be 

known to be counterfeit. Besides, an intelligent clone could be 

trying to evade identification by any means. In addition, 

clones can also collaborate to deceive the network manager 

into believing that they are actual [1]. Research findings 

indicate that a sensor node is prone to various risks, i.e., clone 

node attacks or node replication, by virtue of its nature, which 

includes the lack of non-tamper-responsive hardware, limited 

computing power, energy, and memory [7]. Many centralized, 

distributed, and network-based detection approaches were 

developed to prevent clone node attacks.   Wireless Sensor 

Networks (WSN) clone nodes are identified using ML and DL 

[8]. These paradigms can examine network traffic, behaviour, 

and other characteristics of the nodes in order to detect clones. 

As it is further investigated and developed, such models will 

enhance the security and reliability of WSNs [9].  

 
Fig. 1 General structure of Wireless Sensor Networks 

A Hybrid Optimization-Based Feature Learning to Clone 

Detection is constructed in this paper via Ensemble Learning 

Models and referred to as HOFLCD-ELM. The key 

contributions of this paper are as illustrated below: 

 An HOFLCD-ELM is a novel approach proposed to 

support and test an effective clone detection model within 

WSN in order to achieve network security and integrity.  

 Normalization in the min-max approach is first applied in 

the data preprocessing stage. 

 In the process of selecting a feature subset, the proposed 

HOFLCD-ELM model develops a hybrid optimization 

algorithm called Lyrebat Algorithm (LYBA) that was 

developed by combining Lyrebird Optimization 

Algorithm (LOA) and Bat Algorithm (BA). 

 The Deep Belief Network (DBN) model, the 

Convolutional Variational Autoencoder (CVAE) method, 

and the Graph Convolutional Network (GCN) system 

have been implemented.  

 Finally, the parameter tuning process is achieved using 

the Spider Wasp Optimization (SWO) model.  

 

2. Literature Review 
Nashaat et al. [10] introduced CloneXformer, a novel 

method to detect code clones. This method implements a 

collaborative methodology that employs several Large 

Language Models (LLMs) to understand code. This method 

utilizes a primary phase for preprocessing the input code, 

which assists the model in understanding and representing the 

code effectively. Later, these techniques are fine-tuned to 

recognize code clones with explainable outcomes, which 

clarify the types of clones. Dora et al. [11] presented an 

Intelligent Clone Detection and classification through Cat 

Swarm Optimizer alongside a DL approach for WSN. This 

approach’s motive is to identify and classify clone nodes 

within the network accurately. Swilam et al. [12] introduced 

an improved AST, optimized by the presence of Condition-

Type Edges that efficiently model logical connections in 

control structures. This new addition provides an in-depth 

semantic understanding of the code's decision-making, 

overcoming the flaws of traditional ASTs, which focus on 

syntactic relations. By incorporating this improved AST with 

Graph Neural Networks (GNNs), this methodology acquires 

strong feature representations that extract structural and 

semantic differences across programming languages. 

A Novel Adaptive Sea-Horse Optimized Light Gradient 

Boosting Machine (ASHO-LGBM) technology by Bhaskar et 

al. [13] protected the network against node identity duplicates.  

ASHO-LGBM uses ASHO to improve LGBM feature 

accuracy. The node Intrusion Detection (ID) duplications are 

utilized in the selection of the most dependable 

communication way. In [14], a process known as Stacked 

Ensemble Learning-Clone Attack Detection (SEL-CND) has 

been proposed as a procedure for detecting clone attacks. This 

identifies the clone nodes of the Mobile WSN. The sensor 

network is segmented into groups. Clusters have a central 

node and an arbitrary number of sensor nodes.  The Entropy 

Dove Swarm Optimizer (EDSO) selects the Cluster Head to 

enhance network performance. The EDSO model uses dove 

foraging.  WSN clone nodes are identified via the SEL-CND 

module. 

Vatambeti et al. [15] proposed an ML-based CND 

algorithm on WSN clone node detection. The objective is to 

detect clones to avert clone attacks accurately. The Optimized 

Extreme Learning Machine (OELM) and ELM kernels were 

utilized, optimized by the Horse Herd Metaheuristic 

Optimizer (HHO) approach. Bhuvana et al. proposed an 

upgraded transfer learning model using NFI-SSFS. [16], aims 

to ensure Cooperative Secure Optimal Link Stability Routing 

Allocation (CS-OLSR) and is contingent upon the detection of 
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clone attacks. The logs of communications are amalgamated 

in order to use the level of variance feature of the rates of 

packet discrepancy with the reliance on the memory and 

transmission errors, which focuses on the Time Stamp 

Communication Behavior Rate (TSCBR), and the False 

Injection Impact Rate (FIIR). Second, the CS-OLSR is applied 

to ensure secure routing in the area of clone attack. 

3. Proposed System 
The objective of the paper is to derive and analyze an 

effective clone detection model in the WSNs to increase the 

network security and integrity. To achieve that, the HOFLCD-

ELM system has normalization of min-max, selection of 

features, an ensemble model, and parameter optimization. The 

total action of the HOFLCD-ELM system is shown in Figure  

2. 

 
Fig. 2 Overall procedure of HOFLCD-ELM system 

3.1. Data Preprocessing Model 

Min-max normalization is the first data preparation 

approach used to prepare raw data for modeling. The Min-

Max Normalization is a prominent preprocessing process that 

is used to normalize numerical data within a specific interval, 

which in most cases is [0,1] or the range [-1,1]. The model will 

ensure every feature plays a fair role during the training of a 

model, and not focus on features that are big [17]. Deep 

Learning (DL) techniques can generate better detection results 

and be trained on patterns by normalizing the database better. 

A general expression of Min-Max Normalization is as follows, 

given by Equation  (1): 

𝑋′ =
𝑋−𝑋min

𝑋
max−𝑋min

(𝑛𝑒𝑤−max − 𝑛𝑒𝑤−min) + 𝑛𝑒𝑤−min     (1)               

Whereas 𝑋 denotes a new data point, 𝑋min and 𝑋max 

represent minimal and maximal values of the feature, 

𝑛𝑒𝑤_𝑚𝑖𝑛 and 𝑛𝑒𝑤_𝑚𝑎𝑥 describe the preferred normalization 

range, 𝑋′ Means normalized value. In the case where data 

comprises either positive or negative values, this model is 

changed to scale inside a range of [-1,1] as presented in 

Equation (2): 

𝑋′ = 2 ×
𝑋−𝑋min

𝑋
max−𝑋min

− 1                                                           (2)    

This conversion ensures that the values remain around 

zero, which is also beneficial to DL methods because it 

stabilizes weight changes during training. It not only 

accelerates convergence but also improves the accuracy. 

3.2. Feature Selection using Hybrid Optimization Method 

When using the feature subset selection process, the 

suggested HOFLCD-ELM model develops a Hybrid 

Optimization Algorithm named LYBA. By adding BA's 

velocity module to LOA's hiding phase, the LYBA 

hybridization strikes a balance between exploration and 

exploitation [18].   

The decision parameter values in the LYBA are 

determined by each participating lyrebird and are contingent 

upon the location inside the problem-solving area. A vector is 

a defined variable, and every lyrebird is a vector in 

mathematics. Equation (3) represents the model population as 

LYBA members.  LOA members are randomly placed in the 

problem-solving domain using Equation (4). 

𝑋 =

[
 
 
 
 
𝑋1

⋮
𝑋𝑖

⋮
𝑋𝑁]

 
 
 
 

𝑁×𝑚

=

[
 
 
 
 
𝑥1,1 ⋯ 𝑥1,𝑑 ⋯ 𝑥1,𝑚

⋮ ⋱ ⋮ ⋱ ⋮
𝑥𝑖,1 ⋯ 𝑥𝑖,𝑑 ⋯ 𝑥𝑖,𝑚

⋮ ⋱ ⋮ ⋱ ⋮
𝑥𝑁,1 ⋯ 𝑥𝑁,𝑑 ⋯ 𝑥𝑁,𝑚]

 
 
 
 

𝑁×𝑚

         (3)         

𝑥𝑖,𝑑 = 𝑙𝑏𝑑 + 𝑟 ∙ (𝑢𝑏𝑑 − 𝑙𝑏𝑑)                                                  (4)    

     

In this context, 𝑚 represents the count of decision 

parameters, 𝑁 indicates the total counts of lyrebirds, 𝑟 is a 

random variable within the interval [0,1], and the upper and 

lower bounds of the decision variable are denoted by 𝑢𝑏𝑑  and 

𝑙𝑏𝑑 , respectively.  The LOA population matrix is represented 

by the symbol 𝑋, the 𝑖𝑡ℎ member of LYBA (promising 

solution) by 𝑋𝑖, and the 𝑑𝑡ℎ dimension in the search region by 

𝑥𝑖,𝑑. Equation (5) presents the vector representation of the 

evaluated values of the problem's objective function. 

𝐹 =

[
 
 
 
 
𝐹1

⋮
𝐹𝑖

⋮
𝐹𝑁]

 
 
 
 

𝑁×1

=

[
 
 
 
 
𝐹(𝑋1)

⋮
𝐹(𝑋𝑖)

⋮
𝐹(𝑋𝑁)]

 
 
 
 

𝑁×1

                                                 (5)  

        

Each objective function value is represented by a vector 

𝐹, where 𝐹𝑖 is the 𝑖𝑡ℎ LYBA member. The option with the 

higher goal function value is best; the option with a lower 

objective function value is suboptimal. An exponential factor 
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is engaged in enhancing the lyrebird's updated stage position.  

This sample of the lyrebird indicates that the population 

update process consists of two phases: (i) concealment and (ii) 

evasion.  When the lyrebird must choose between concealing 

itself and fleeing from peril, Equation (6) in the LYBA model 

simulates its cognitive deliberation.  The placement of each 

LYBA member is altered in every iteration just for the 

execution of the first or second 

stage.

𝑈𝑝𝑑𝑎𝑡𝑒𝑑 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑓𝑜𝑟 𝑋𝑖: {
𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑃ℎ𝑎𝑠𝑒 1, 𝑟𝑝 ≤ 0.5

𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑃ℎ𝑎𝑠𝑒 2, 𝑒𝑙𝑠𝑒
 (6)      

In such a case, 𝑟𝑝 Refers to a random number in the 

interval of [0,1]. 

3.2.1. Stage 1: Exploration (Escaping Strategy) 

The LYBA stage makes use of a model based on the 

movement of the flight of a lyrebird to increase the density of 

population members within the search space. When LYBA is 

relocated to a more secure setting, it may demonstrate its 

capacity to execute a comprehensive global search and 

exploration process. It leads to substantial alterations in roles 

and the exploration of alternate locations within the realm of 

problem-solving.  

The LYBA describes a safer area as a relative position of 

the most subjective member of the population that has the 

highest values of the objective function. Equation (7) has been 

used to find a list of safer areas for all the members of LOA. 

𝑆𝐴𝑖 = {𝑋𝑘 , 𝐹𝑘 < 𝐹𝑖 & 𝑘 ∈ {1,2,3, … , 𝑁}} , 𝑖 = 1,2, … , 𝑁  (7)       

The objective function value (𝐹𝑘) of the kth row of the 𝑋 

matrix (𝑋𝑘) is greater than the ith LYBA element (𝐹𝑘 < 𝐹𝑖).  

𝑆𝐴𝑖 represents the safe areas for the 𝑖𝑡ℎ Lyrebird. The use of 

modeling by the lyrebird movement ended on this step. The 

new position of every LYBA member is calculated using 

Equation (8). The technique adapts its escape strategy to prey 

velocities using velocity factors. The model's flexibility lets it 

intelligently adjust to environmental or prey changes. 

Equation (9) states that the member associated with the 

objective will be moved if its value increases. 

𝑥𝑖,𝑗
𝑃1 = 𝑥𝑖,𝑗 + 𝜈𝑖

𝑡 . 𝑟𝑖,𝑗 . (𝑆𝑆𝐴𝑖,𝑗 − 𝐼𝑖,𝑗 . 𝑥𝑖,𝑗)                                (8) 

    

𝑣𝑖
𝑡 = 𝜈𝑖

𝑡−1 + (𝑥𝑖,𝑗 − 𝑥𝑖,𝑗
𝑏𝑒𝑠𝑡)𝐹𝑖                                                  (9)    

𝑋𝑖 = {
𝑋𝑖

𝑃1, 𝐹𝑖
𝑃1 ≤ 𝐹𝑖

𝑋𝑖 , 𝑒𝑙𝑠𝑒
                                                               (10)     

 

Whereas 𝑥𝑖,𝑗
𝑏𝑒𝑠𝑡 specifies the best choice and 𝑣𝑖

𝑡  Refers to 

the velocity of the prey. In this case, 𝑆𝑆𝐴𝑖 characterizes the 𝑖𝑡ℎ 

safer place of the lyrebird; 𝑆𝑆𝐴𝑖,𝑗; specifies its 𝑗𝑡ℎ size; the 

upgraded location is computed according to the recommended 

escaping tactic of LYBA, utilizing Equation (10); 𝐹𝑖
𝑃1  

represents the objective function 𝑋𝑖
𝑃1; 𝑟𝑖,𝑗  represents random 

values from [0,1]; 𝐼𝑖,𝑗 Represents randomly picked 1 or 2 

numbers. 

3.2.2. Stage 2: Exploitation (Hiding Strategy) 

The positioning of people in the search range at this 

LYBA level is similar to the strategy of the lyrebird to retreat 

to a surrounding and safer nest. This is the tactic used by the 

lyrebird, which gradually changes its location as it carefully 

explores its immediate environment and walks around seeking 

shelter.  

This demarcates LYBA's application in local search tasks. 

The original place of each member is ascertained by LYBA 

mimicking that of the lyrebird in flying to a favourite hiding 

place in the neighbourhood, as described in Equation (11). If 

Equation (12) is met, the associated member's objective 

function is substituted with the new location if it expands. 

𝑥𝑖,𝑗
𝑃2 = 𝑥𝑖,𝑗 + (1 − 2𝑟𝑖,𝑗).

𝑢𝑏𝑗−𝑙𝑏𝑗

𝑡
                                      (11)    

𝑋𝑖 = {
𝑋𝑖

𝑃2, 𝐹𝑖
𝑃2 ≤ 𝐹𝑖

𝑋𝑖 , 𝑒𝑙𝑠𝑒
                                                         (12)    

The iteration number in this sample is t, and the random 

integers are denoted as follows. 𝑟𝑖,𝑗 are drawn from the interval 

[0,1], 𝑥𝑖,𝑗
𝑃2  represents the 𝑗𝑡ℎ dimension, 𝐹𝑖

𝑃2 denotes the 

objective function value, and the new position of the 𝑖𝑡ℎ 

Lyrebird is determined using the proposed LYBA’s 

concealing method. The Area of Fitness Measure (FF) 

concerning the classification accuracy and the desired number 

of features is measured. It reduces the set size of attributes and 

enhances the classifier's precision. The subsequent FF 

calculates individual solutions as shown in Equation (13): 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼 ∗  𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 + (1 − 𝛼) ∗
#𝑆𝐹

#𝐴𝑙𝑙_𝐹
          (13) 

In this instance, 𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 is the rate of error when 

using the labeled features for classification. 𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 

pertains to the wrong (i.e., erroneous) percentage assigned to 

the classification counts made, and is defined as the product 

of (0,1) and SF is counts of features picked in the new 

database, F represents the total number of characteristics in the 

new database, whereas an is employed to govern the 

importance of quality and size of subgroups within the 

classifications.  

3.3. Ensemble Classification Process 

Then, the system of the DBN model, CVAE technique, 

and GCN system has been implemented to detect and classify 

clone attacks.  
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3.3.1. DBN Model 

In order to effectively recognize the complex and 

dynamic patterns within raw data, without any extra structure, 

consider a DBN structure [19]. Based on the outstanding 

research of DBNs, it has acquired significance regarding its 

ability to discover composite, hierarchical representations of 

unlabeled data. DBNs can be used to model higher-

dimensional distributions, and thus are largely applicable to 

the nonlinear and nonstationary character of data by stacking 

many layers of Restricted Boltzmann Machines (RBMs).  

Provided the raw data matrix 𝑋 ∈ ℝ𝑛×𝑑 (while 𝑛 denotes 

sample counts and 𝑑 refers to feature counts), It converts this 

data into a novel data area 𝐻 over numerous layers. Every 

DBN layer 𝑙, with parameters 𝜃𝑙  Uses a nonlinear 

transformation: 𝐻(𝑙) = 𝑓𝜃𝑙
(𝐻(𝑙−1)), while 𝐻(0) = 𝑋 and 𝑓𝜃𝑙

 

Characterizes the transformation by every RBM. An RBM 

models the combined distribution among the observed vector 

𝑣 and the Hidden Layer (HL) ℎ utilizing a bipartite graph: 

𝑃(𝑣, ℎ; 𝜃) =
1

𝑍(𝜃)
exp(−𝐸(𝑣, ℎ; 𝜃)                                    (14) 

Whereas 𝐸(𝑣, ℎ; 𝜃) refers to configuration energy (𝑣, ℎ): 

𝐸(𝑣, ℎ; 𝜃) = −∑𝑣𝑖

𝑖,𝑗

𝑤𝑖𝑗ℎ𝑗 − ∑𝑏𝑖

𝑖

𝑣𝑖 − ∑𝑐𝑗
𝑗

ℎ𝑗          (15) 

With hidden biases 𝑐𝑗, weights 𝑤𝑖𝑗, visible biases 𝑏𝑖, and 

the partition function 𝑍(𝜃) that standardizes the distribution. 

The layers of DBN are trained using the contrastive 

divergence, gradually enhancing the feature representation as 

the states that are close to seizure appear, as compared to 

different ones. The DBN compresses lower-level data or 

higher-level trends, enhancing adaptability to new trends due 

to concept drift by showing the tourism industry data at 

various levels of abstraction. The success of the DBN in this 

model lies in its label-free nature, as it is an unsupervised 

algorithm that learns hierarchical feature representations 

directly from the data. The DBN leverages graphics and 

identifies motifs in the information dispersion, recognizing 

changes in the data distribution by modeling the joint 

likelihood distribution of concealed and visible units, without 

labeling samples.  

3.3.2. CVAE Technique 

Neural networks can be trained unsupervised to duplicate 

their input [20]. The AE's basic diagram has output and input. 

Commonly used for data compression.   Autoencoders 

translate input data into feature space 𝑧 using encoders. 

Feature space is the latent encoder space. This decoding 

challenge derives latent data representations and predicts the 

data for the input region. 

Nevertheless, a single-layered autoencoder would be 

unable to eradicate the descriptive characteristics of raw data. 

It requires a sophisticated AE. This process was further 

complicated by obligating the latent representation to comply 

with some distributions, like Gaussian, Variational 

Autoencoders (VAEs). It resulted in the latent variable z 

shifting to a latent space that has a probability distribution and 

constant statistical measures.  

This is utilized to get the variance, o, and mean, m, of the 

latent variable z, which entails encoding to extract the 

decoding inputs, employing the specified latent variable 

distribution, z. The VAE encoder will transform an input 

picture point into a distribution throughout the latent space. 

Nevertheless, rather than the mean value, sometimes this 

model can reconstitute the input signals. Hence, CVAEs are 

applied because they have an improved capacity in applying 

the encoding/decoding through using layers of Fully 

Connected (FC)-based and in the ability to source the time and 

locality relationship that occurs in the data. 

The loss function of the CVAE is founded on two 

components. The initial component focuses on reducing the 

discrepancy between the input and output. In contrast, the 

subsequent component assesses the extent to which the latent 

space distribution deviates from the designated distribution. In 

this work, Mean Squared Error (MSE) is used to measure the 

dissimilarity between the reconstructed data and the input data 

to measure them. However, alternative tasks (such as the role 

of binary crossentropy) are also calculated, as shown: 

MSE =
1

𝑛
∑ (𝑛

𝑖=1 𝐼𝑖 − 𝐼𝑖̅)2                                                      (16)    

 

Whereas𝐼A̅nd 𝐼 represents reconstructed input and input, 

and 𝑛 means data dimensionality. However, to compute the 

amount, the latent variable z approaches particular 

distributions; in such a case, a typical standard distribution, the 

divergence of the Kullback‐Leibler (KL) 𝐷𝐾𝐿  It is applied that 

estimates the divergence among dual distributions and serves 

as a term of regularizer: 
 

𝐷𝐾 = ∫𝑝 (𝑥)log (
𝑝(𝑥)

𝑞(𝑥)
) 𝑑𝑥                                                    (17)   

  

Whereas 𝑝(𝑥) and 𝑞(𝑥) are dual distributions. Therefore, 

the loss function 𝐿𝐶𝑉𝐴𝐸  should be subject to MSE and 𝐷𝐾𝐿  and 

described as shown: 

𝐿𝐶𝑉𝐴𝐸 = 𝑘 × 𝑀𝑆𝐸 + 𝐸(𝐷𝐾𝐿)                                               (18)    

Here, 𝑘 means scaling factor, and 𝐸 refers to expected 

value. 

3.3.3. GCN System 

Graph-Based Neural Networks (NNs) are also DL 

algorithms that have recently attracted particular interest in 

modeling linked data in the form of composite networks [21]. 

As opposed to regular NNs, GNNs take relational data as input 
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in the form of nodes and edges, not in the form of 1D strings. 

GCNs refer to NNs having tighter patterns compared to 

GNNs. GCNs are a method using a convolution operation on 

the input graph data in the form of arbitrarily defined filters, 

and subsequently involve a collection of operations to produce 

results. The best quality of GCNs relative to other graph-based 

methods is that they present a better insight into the spatial 

attributes based on the data in the graph architecture. During 

GCN techniques, a graph is described as 𝐺 = (𝑉, 𝐸). During 

the graph description, 𝑉 is described as the collection of nodes, 

and 𝐸 ⊆ 𝑉𝑥𝑉 is well-defined as the collection of edges.  

To work on the graph, node features are frequently stated 

by the feature matrix 𝑋 ∈ ℝ𝑁𝑥𝐹 . Whereas 𝑁 denotes node 

counts and 𝐹 denotes feature dimensions of every node. The 

edge information is characterized by the matrix of adjacency 

𝐴 ∈ 𝑅𝑁𝑥𝑁. The graph convolution process disseminates 

neighbourhood information through nodes by incorporating 

node features. Figure 3 illustrates the framework of the GCN 

system. 

𝐻(𝑙+1) = 𝜎(𝐴̂𝐻(𝑙)𝑊(𝑙))                                                         (19)  

   

Whereas 𝐻(𝑙) refers to node features in the 𝑙𝑡ℎ layer, 𝐴̂ 

Denote the normalized adjacency matrix and 𝑊(𝑙) Denote 

learnable weights. The normalized adjacency matrix 𝐴̂ 

Balance the result of node neighbourhoods, which offers 

mathematical stability, and is stated as shown. 

𝐴̂ = 𝐷̃−1 2⁄ 𝐴̃𝐷̃−1 2⁄                                                                    (20)  

   

Here, 𝐴̃ = 𝐴 + 𝐼 denotes that self‐connections of nodes 

are comprised by adding the unit matrix. 𝐷̃ specifies the 

degree matrix of 𝐴̃. Therefore, for the graph‐level 

classification, node features are pooled and then classified: 

𝑧 = 𝑃𝑜𝑜𝑙(𝐻(𝐿)), 𝑦̂ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)                                    (21)    

 
Fig. 3 Framework of GCN system 

 

When running this updated rule, the features of each node 

are updated using a weighted average of the features of 

neighbouring nodes and a learnable weighted matrix. Degree 

normalization ensures the nodes that have many neighbours 

have fewer influences on the procedure that is updated. 

Similarly, the model learns to balance, and nodes that have 

many neighbours do not get over-taken. 

 

3.4. SWO-based Parameter Tuning Model 

Lastly, the parameter tuning process is realized by the 

SWO model towards enhancing the classification 

performance of ensemble classifiers. The optimizer strategy is 

the SWO; this strategy resembles the behavior of spider wasps 

[22]. They are recognized for seeking out spiders, injecting 

them with venom, and transporting them to their nests for their 

offspring to consume. The spider wasp present in the search 

area is a characteristic common to all candidates. It employs 

spiders and wasps as agents to mimic this method. In this 

given paper, parameter tuning has been solved by using SWO. 

Every person in this model defines an attractive solution in 

order to make the difficulty better. This model uses the Fitness 

Function (FF), which successively augments these solutions, 

which will be used to search for the best selections of features 

that can accurately predict. The optimization of the parameter 

gets carried out using the stages such as the initiation, 

evaluation of fitness, exploitation, exploration, and 

termination. Specific processes of this model are described as 

illustrated. 
 

3.4.1. Initialization 

In this case, the parameter population is arbitrarily 

determined. The optimization controls, including the number 

of people to use, the maximum iteration count to employ, the 

parameters of the SWO, etc., are further initialized to begin 

the optimizer process.  
 

𝜅𝑖𝑗 = 𝐿𝑏𝑗 + 𝑟𝑎𝑛𝑑. (𝑈𝑏𝑗 − 𝐿𝑏𝑗)                                            (22) 

Whereas 𝜅𝑖𝑗 specifies the population, 𝑈𝑏𝑗 and 𝐿𝑏𝑗 

Describes upper and lower search regions. 

3.4.2. Fitness Evaluation 

Accordingly, the fitness solution was projected for all 

sequences of parameters according to its goal function. During 

the presented setting, the primary goal of the SWO is to lower 

the loss function, as described in Equation (23). 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = min (𝐿𝑜𝑠𝑠𝐹 =
1

𝑡𝑚
∑ (𝑡𝑚

𝑖=1 𝐴𝑝 − 𝑃𝑝)2)   (23)  

The more the loss is received through the method, the 

greater the corresponding fitness of the particular set of 

parameters. 

3.4.3. Exploration and Exploitation 

Here, the model discovers the complete searching region 

and upgrades the values of parameters to fix its best range. 
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Now, the parameters such as the time constant ((𝜏′))Weights 

(W) and threshold potentials (𝜙) parameters are adjusted in 

the model to improve the detailed investigation. At first, 

characterize each wasp utilizing Equation (24). 
 

𝑃 = (𝑊, 𝜏′, 𝜑)                                                                        (24)  

 

Formerly, compute the excellence of all wasps utilizing 

FF for assessing the prediction precision and complexity. 

Furthermore, the FF starts with the initialization procedure of 

every feature as 𝑓1, 𝑓2Formerly, the exploitation and 

exploration process was used at the location, all wasp utilizing 

Equation (25). 

𝑃𝑖 = 𝑃𝑖(𝑡) + 𝑟′. (𝐵𝐿𝑜𝑐𝑎𝐼𝑃𝑖(𝑡)) + 𝜂. 𝑅𝑒                                (25)  
 

Whereas, 𝐵𝑙𝑜𝑐𝑎𝑙  It is characterized as a top local solution; 

the rate of learning is discovered as 𝑟′, 𝜂 means performance 

measure, and 𝑅𝑖𝑠 random selection parameter process. 

3.4.4. Termination 

After the parameter improvement, the innovative solution 

was supported with the fitness solution. When the new tested 

fitness is increased, the new model chooses the better 

sequence of parameters to be used in training.   The entire 

process of updating the parameters will advance until the 

highest iteration limit. This would mean that it gives the best 

value to the module in every iteration. The SWO model results 

in a feature function to increase classification efficacy.   It 

describes a complex measure to assess the increased 

functionality of the possible corrections.  The FF is the 

decrease of the error rate in the classification described in the 

following Equation (26): 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 

=
𝑛𝑜 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100                     (26) 

4. Validation and Results 
The validation of the HOFLCD-ELM system is 

experimentally confirmed in the database of WSN-DS [23]. 

There are 374661 instances of five types of attacks in this 

database, as indicated in Table 1.  The TDM types are referred 

to as Time Division Multiple Access attack. It has a total of 18 

features, but 13 have been selected. 

Table 1. Details of the database 

Attack Type No. of Instances 

“Normal” “340066” 

“Grayhole” “14596” 

“Blackhole” “10049” 

“TDM” “6638” 

“Flooding” “3312” 

Total Instances 374661 

 
Fig. 4 80:20 of (a, b) Confusion Matrices and, (c, d) Curves of PR and 

ROC. 

Figure 4 will explain the results of the HOFLCD-ELM 

method, which are of an 80:20 ratio.  Figures  4(a), and 4(b) 

show the confusion matrix, as all the categories are detected 

and classified accurately. Figure 4(c) indicates that PR 

inspection is best in all classes. The ROC analysis is lastly 

presented in Figure  4(d), which demonstrates the achievement 

of success with better ROC values for each class. 

Table 2. Clone attack detection of the HOFLCD-ELM model under 

80:20 

Class  

A
cc
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cy
 

P
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l 

F
-M

ea
su
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G
-M
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n

s 

TRPHE (80%) 

Normal 98.24 98.75 99.31 99.03 99.03 

Grayhole 99.37 93.02 90.72 91.85 91.86 

Blackhole 99.54 90.82 92.24 91.52 91.53 

TDM 99.26 83.71 72.30 77.59 77.80 

Flooding 99.50 78.49 59.52 67.70 68.35 

Average 99.18 88.96 82.82 85.54 85.71 

TSPHE (20%) 

Normal 98.26 98.77 99.32 99.04 99.05 

Grayhole 99.36 92.88 90.51 91.68 91.69 

Blackhole 99.60 92.09 93.40 92.74 92.74 

TDM 99.24 83.50 71.23 76.88 77.12 

Flooding 99.50 77.33 61.14 68.29 68.76 

Average 99.19 88.91 83.12 85.73 85.87 
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HOFLCD-ELM system clone attack detection at 80:20 is 

shown in Table 2 and Figure 5. Under 80% TRPHE, the 

HOFLCD-ELM model averages 𝑎𝑐𝑐𝑢𝑦 of 99.18%, 𝑝𝑟𝑒𝑐𝑛 of 

88.96%, 𝑟𝑒𝑐𝑎𝑙 of 82.82%, 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒  of 85.54%, and 𝐺𝑀𝑒𝑎𝑛𝑠Of 

85.71%. Likewise, at 20% TSPHE, the proposed HOFLCD-

ELM model gets average 𝑎𝑐𝑐𝑢𝑦 of 99.19%, 𝑝𝑟𝑒𝑐𝑛 of 88.91%, 

𝑟𝑒𝑐𝑎𝑙 of 83.12%, 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒  of 85.73%, and 𝐺𝑀𝑒𝑎𝑛𝑠Of 85.87%. 

 

 
Fig. 5 Average values of the HOFLCD-ELM model under 80:20 

Fig. 6 𝑨𝒄𝒄𝒖𝒚 curve of HOFLCD-ELM model under 80:20 

 
Fig. 7 Loss curve of HOFLCD-ELM model under 80:20 

Figure 6 illustrates the Training (TRAIN) Accuracy 

(𝑎𝑐𝑐𝑢𝑦) and Validation (VALID) Accuracy (𝑎𝑐𝑐𝑢𝑦) of the 

HOFLCD-ELM approach using an 80:20 split over 25 epochs. 

Initially, both TRAIN and VALID accuracy exhibit rapid 

improvement, indicating that the data effectively captures 

patterns. This point in time demonstrates that successful 

generalization without overfitting, but only slightly above the 

training accuracy, shows that the VALID accuracy has been 

achieved. It shows maximum performance and minimal 

difference in performance between TRAIN and VALID with 

increasing training. This is regularized and generalized 

successfully when the two curves come close to each other in 

the process of training. This illustrates that the method has the 

best ability to identify and preserve positive attributes in 

visible and invisible data. 

Figure  7 depicts the training and validation losses of the 

HOFLCD-ELM model, which was trained with an 80:20 split 

across 25 epochs. The model's initial input is constrained due 

to elevated TRAIN and VALID losses. The two losses 

progressively decrease with enhanced training, signifying that 

the model is successfully learning and refining its parameters.   

The model has not been overfitted and continues to generalize 

efficiently to fresh data, evidenced by the near-parallelism of 

the TRAIN and VALID loss curves during training. 

Figure  8 shows the outcome of the classifier at 70:30 of 

the HOFLCD-ELM method. The Figures 8(a), and 8(b) show 

the confusion with the correct detection and classification of 

every class. The PR inspection, which provides the highest 

performance in each class, is provided in Figure 8(c).  Finally, 
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the analysis of ROC is described in Figure 8(d), and effective 

outcomes were noted when the ROC values are higher, in the 

case of different classes. 

 
Fig. 8 70:30 of (a, b) Confusion matrices and, (c, d) Curves of PR and 

ROC. 

Table 3 and Figure  9 show the HOFLCD-ELM system's 

clone attack detection at 70:30. Under 70% TRPHE, the 

proposed HOFLCD-ELM model gets an average 𝑎𝑐𝑐𝑢𝑦 of 

98.97%, 𝑝𝑟𝑒𝑐𝑛 of 83.33%, 𝑟𝑒𝑐𝑎𝑙 of 74.64%, 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒  of 

77.80%, and 𝐺𝑀𝑒𝑎𝑛𝑠Of 78.38%. Similarly, at 30% TSPHE, the 

proposed HOFLCD-ELM model obtains average 𝑎𝑐𝑐𝑢𝑦 of 

98.93%, 𝑝𝑟𝑒𝑐𝑛 of 83.10%, 𝑟𝑒𝑐𝑎𝑙 of 74.17%, 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒  of 

77.29%, and 𝐺𝑀𝑒𝑎𝑛𝑠Of 77.94%.  

Table 3. Clone attack detection of HOFLCD-ELM model under 70:30 

Class 

A
cc

u
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cy
 

P
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ci
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R
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F
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G
-M

ea
n

s 

TRPHE (70%) 

Normal 98.18 98.66 99.35 99.00 99.00 

Grayhole 99.42 88.80 97.30 92.86 92.95 

Blackhole 98.84 83.62 70.41 76.44 76.73 

TDM 99.11 77.34 70.02 73.50 73.59 

Flooding 99.29 68.23 36.10 47.22 49.63 

Average 98.97 83.33 74.64 77.80 78.38 

TSPHE (30%) 

Normal 98.14 98.62 99.34 98.98 98.98 

Grayhole 99.37 88.20 96.80 92.30 92.40 

Blackhole 98.85 84.99 69.94 76.74 77.10 

TDM 99.05 75.04 70.52 72.71 72.74 

Flooding 99.27 68.65 34.26 45.71 48.50 

Average 98.93 83.10 74.17 77.29 77.94 

 
Fig. 9 Average values of the HOFLCD-ELM model under 70:30 

 
Fig. 10 𝑨𝒄𝒄𝒖𝒚 curve of the HOFLCD-ELM model under 70:30 

 
Fig. 11 Loss curve of HOFLCD-ELM model under 70:30 

Figure 10 exemplifies the TRAIN 𝑎𝑐𝑐𝑢𝑦 and VALID 

𝑎𝑐𝑐𝑢𝑦 Of an HOFLCD-ELM technique across 25 epochs at 

70:30. Despite this, at the beginning, the trend is quite clear 
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since both TRAIN and VALID accuracy are gaining 

momentum. This is a good start, since effective generalization 

with no overfitting has occurred, as the validation accuracy is 

just a little higher than the training accuracy. It demonstrates 

optimal performance in accordance with progression in 

training, with minimal disparity in performance between the 

TRAIN and Vald performances. The method is well 

regularized and generalized, as it can be seen that both curves 

are closely similar over the training process. This shows the 

extent to which the technique is able to remove and preserve 

crucial properties in both familiar and unfamiliar material. 

Figure 11 depicts the training and validation loss of the 

HOFLCD-ELM model, segmented at 25 epochs at a 70:30 

ratio. The increased TRAIN and VALID losses suggest that 

the model's understanding of the input is limited. The two 

losses gradually diminish with the commencement of training, 

signifying that the model is effectively acquiring knowledge 

and refining its parameters. The model was not overfitted and 

was well generalised to new data by the fact that the TRAIN 

and VALID curves of loss were strongly related throughout 

training. 
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Fig. 12 Comparative analysis of HOFLCD-ELM with existing methods 

 
Fig. 13 PT outcome of HOFLCD-ELM with recent methods 

Figure  12 illustrates the comparative examination of the 

HOFLCD-ELM methodology against existing techniques 

across multiple parameters [24, 25]. The results emphasized 

that the proposed HOFLCD-ELM model achieved the highest 

𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙 , and 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 of 99.19%, 88.91%, 

83.12%, and 85.73%, respectively. The present 
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methodologies, such as J48, Decision Tree, AdaBoost, 

Gradient Boosting, XGBoost, KNN-AOA, KNN-PSO, ID-

GOPA, and CNN-LSTM, have shown worse performance 

under various metrics.  

In Figure 13, the Processing Time (PT) of the HOFLCD-

ELM method with current models is proven.  Based on PT, the 

HOFLCD-ELM model offers a lower value of 4.88sec while 

the J48, Decision Tree, AdaBoost, Gradient Boosting, 

XGBoost, KNN-AOA, KNN-PSO, ID-GOPA, and CNN-

LSTM methodologies got higher PT of 19.74sec, 8.78sec, 

10.90sec, 7.79sec, 20.94sec, 15.40sec, 22.24sec, 10.78sec, 

and 13.54sec, respectively.  

5. Conclusion 
The study constructs and tests an effective clone detection 

model in WSNs to improve network security and integrity. 

The min-max normalization method is first used at the 

preprocessing stage of data to make raw data in order to be 

used in modeling. In this case, in the process of feature subset 

selection, the presented HOFLCD-ELM model develops the 

hybrid optimization model LYBA, incorporating the use of 

LOA and BA to decide on the selection of the optimal features 

in a dataset.  

Subsequently, one DBN model coupled with the CVAE 

technique and GCN system to identify and label clone attacks 

has been implemented. Lastly, there is the parameter tuning 

method, where a better classification performance of 

ensemble classifiers is attained using the SWO model. The 

experimental analysis of the HOFLCD-ELM model is 

conducted based on a benchmark dataset. The empirical 

results showed the increased performance of the HOFLCD-

ELM method as compared to the current methods.
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