SSRG International Journal of Electronics and Communication Engineering
ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12112P113

Volume 12 Issue 12, 154-163, December 2025
© 2025 Seventh Sense Research Group®

Original Article

Enhancing Brain Tumor Segmentation with Generative
Adversarial Networks and Post-Processing Technigues

Bashir Sheikh Abdullahi Jama'*, Mehmet Hacibeyoglu!
!Department of Computer Engineering, Necmettin Erbakan University, Konya, Turkiye.

*Corresponding Author : bashiir204@gmail.com

Received: 13 October 2025 Revised: 15 November 2025  Accepted: 14 December 2025 Published: 27 December 2025

Abstract - Accurately and reliably segmenting brain tumors from Magnetic Resonance Imaging (MRI) poses a key challenge
in medical image analysis because of the variability in shape, size, and intensity distributions of tumors. The present study
introduces a hybrid segmentation framework that combines Generative Adversarial Networks (GANs) with a U-Net backbone
and post-processing methods to improve tumor segmentation. The model was trained and evaluated on 500 heterogeneous
MRI images preprocessed to a resolution of 512 x 512, and split into training (70%), validation (15%), and test (15%) sets.
The model training occurred over 50 epochs, with a batch size of 16, and the Adam optimizer was used for training. The model
was augmented with data augmentation strategies (e.g., flipping, cropping, scaling, contrast enhancement, etc.), and early
stopping was applied to prevent overfitting. The generator employs both cross-entropy and adversarial loss, while the
discriminator uses binary cross-entropy loss in its optimization. The experimental results reinforce the usefulness of the
proposed framework, with a Dice Similarity Coefficient value of 0.89 + 0.03, Intersection over Union value of 0.95 + 0.04,
recall value of 0.92 + 0.03, and specificity value of 0.97 = 0.02. Furthermore, the comparative evaluation with state-of-the-art
methods confirms the superiority of the proposed method, resulting in a precision result of 99.12%, a recall result of 94.24%,

an F-score result of 93.36%, and an loU result of 94.87%, outpacing state-of-the-art models.
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1. Introduction

Medical image analysis, specifically the segmentation of
brain tumors, plays a critical role in clinical diagnosis,
treatment planning, and prognosis. However, segmenting
brain tumors accurately is a complex problem because brain
tumors are complicated and heterogeneous in size, shape,
location, and intensity across patients. While traditional
Machine Learning and Deep Learning approaches (e.g.,
Convolutional Neural Networks (CNNs), or U-Net
variations) have had some success, there are also many
caveats (e.g., a model that does not generalize well to a
heterogeneous dataset, or that provides an inaccurate
boundary while segmenting the tumor, or that is sensitive to
noise and MR artifacts) that would warrant the use/study of
more robust and flexible models.

Before 2014, generative models were applied to model
complex data distributions, primarily based on the use of
Variational Autoencoders, Markov Chain Monte Carlo
methods, and Restricted Boltzmann Machines. However,
these approaches were unable to produce realistic and high-
quality data. A breakthrough came in 2014 when lan
Goodfellow and his collaborators proposed Generative
Adversarial Networks (GANS) in which the data generation
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was treated like a min-max game between a generator and a
discriminator [1]. This took generative modeling into a new
direction with an idea that produced high-quality data and
rich representations of the data [2].

Since 2014, different versions of GANs have been
developed to improve the stability and performance of
GANSs. The Least Squares GAN, LSGAN, in 2015, improved
the stability of GANs while training. Second, Deep
Convolutional GANs (DCGANS) were introduced in 2016,
utilizing convolutional architectures to further the
development of high-quality image generation and
representation learning [3].

Conditional GANs (cGANSs) established an expanded
framework for supervised tasks, including image-to-image
translation, in 2017, and Wasserstein GANs (WGANSs)
reduced mode collapse issues. Additionally, Progressive
GANs (ProGAN) further advanced image resolution quality
in 2018, and StyleGAN encouraged a finer-grained control
over image traits [4]. These processes help advance the field
of GANs and machine learning; however, GAN applications
in medical imaging domains, like brain tumor segmentation,
remain under-explored, and these domains are severely
challenged.
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Most GAN-based segmentation studies suffer from
instability in the training process, blur the boundaries of
segmentation masks, or lack completeness of tumor region
detection. Additionally, only a small fraction of the studies
have also considered integrating GAN-based architectures
with  effective  post-processing to better enhance
segmentation masks and correct blurring of boundaries.

This study addresses the lack of research into the
combined use of GAN-based architectures and post-
processing. A GAN-based architecture framework will be
utilized with accompanying post-processing methods to
improve overall performance in brain tumor segmentation.
This study aims to leverage the generative power of the GAN
architecture  to  capture tumor  variability  while
simultaneously improving segmentation outputs through
post-processing to ultimately achieve more accuracy in
clinical applications of neural segmentation processes.

2. Literature Review

This section discusses the principles that underlie image
segmentation and its contributions to the medical field (brain
tumor segmentation presented as a case study), highlighting
recent trends in machine learning (training Generative
Adversarial Networks (GANSs)) for segmentation problems
dealing with images. The section commences with discussing
the importance of image segmentation to solving problems in
medical diagnosis; transitioning into how brain tumor
segmentation emerged, grew in importance, and represents a
subset of MRI image segmentation problems; and lastly
describing the use of GANs to segmentation problems.

2.1. The Importance of Image Segmentation Related to
Medical Diagnostics

Image segmentation is a method for partitioning a digital
image into meaningful collections of pixels, or regions,
known as image segments [5]. This technique makes it easier
to study or analyze sub-regions of the complete image by
labeling each pixel, allowing for the differentiation of the
object, the person, or other critical features of interest. Image
segmentation is frequently used as an early-stage approach to
object detection, where regions of interest are identified in
the original image before moving forward with analyzing the
whole image [6].

In medicine, image segmentation plays a critical role in
the early detection of disease processes by identifying
features of abnormal morphology in clinical images or
diagnostic imaging studies, such as X-rays, CT scans, and
MRIs [7, 8]. Image segmentation is proper for preoperative
surgical planning because accurate visualizations of patients'
anatomy are created in detail, including the three-
dimensional aspects of a patient's anatomy, reducing the risk
of surgical intervention and making it a helpful application of
multislice imaging and MRI in minimally invasive surgery
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[9]. Segmentation plays an important role in the monitoring
of treatment response, distribution systems for drugs, and
quantitative analysis of medical images. These methods help
in personalizing treatment plans, optimizing workflows in
clinical settings, and advancing clinical research. Among the
categories of cancer, brain tumors represent a sizeable health
risk and accurate detection, and segmentation is crucial for
accurate diagnosis, treatment planning, and management in
patients with brain tumors [10].

2.2. Evolution of Brain Tumor Segmentation in MRI

Magnetic Resonance Imaging (MRI) has emerged as the
predominant diagnostic and monitoring technique for brain
cancer patients, thanks to its ability to quickly produce
detailed imaging without an invasive procedure. The
application of segmentation methods to MRI creates new
possibilities, and it brings automatic and accurate detection
of tumor regions in the body [11]. These advancements have
marked progress in the areas of diagnosis, treatment
planning, and perhaps patient outcomes [12-15].

Over the years, several Machine Learning (ML) and
Deep Learning methods have been developed for brain tumor
segmentation. Traditional methods would use clustering
algorithms such as K-means and Fuzzy C-means [16],
morphological reconstruction [17], and level set methods
[18] to predict and delineate tumors. With the introduction of
Deep Learning Methods, Convolutional Neural Networks
(CNNs) were discovered to be extremely helpful for
segmentation because they could present and learn local and
global contextual information [19]. Variants like VSA-
GCNN [12], DIFF-CFFBNet [20], and WRN-PPNet [21]
were created for an improved segmentation performance.

Approaches, including 3D CNNs, have been developed
to preserve volumetric data for improved localization of
tumors [22]. Researchers have proposed hybrid methods that
combine Fully-Convolutional Networks (FCNNs) with
Conditional Random Fields (CRFs), which have further
enhanced segmentation accuracy [22]. These techniques
include hybrid approaches that incorporate Fully-
Convolutional Networks (FCNNs) with Conditional Random
Fields (CRFs) to increase segmentation accuracy [23].

In a series of comparative studies, classifiers like
Decision Trees, Random Forests, and K-Nearest Neighbors
have been investigated with brain tumor images [24]. All
these works demonstrate the advancement of brain tumor
segmentation methodology from image processing to
advanced techniques and methodologies provided through
deep learning.

2.3. GANs: From Generation to Enhanced Segmentation
While GANs were first introduced as a means for

generating synthetic data, they have been widely used for

medical image segmentation as well. Their proclivity for
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modelling convoluted distributions helps rectify typical
problems that medical-image data face, such as small
numbers of training samples, class imbalances, and
workflows that complicate the collection of pixel-wise
annotations.

GANSs have been applied in research for generating data
where there is a desire to balance the distribution of semantic
tags for sample-generating methods in segmentation and to
improve semantic segmentation models [25]. GANs have
also been applied to synthetic versus real semantic
segmentation, similar to a recent publication in road
condition monitoring [26]. Framework development has used
GANs to segment MRI scans for brain tumors based on poor
pixel labelling [7].

Furthermore, GANs have been applied to semantic
segmentation tasks [27]; for some studies, this is the first
work to implement Neural Architecture Search (NAS) within
GANSs and develop a novel segmentation framework. This
has implications for both model adaptability and accuracy
when accurately delineating complex tumor boundaries. The
increasing application of GANSs also indicates the potential to
do much more than generate; again, medical segmentation
represents a significant advancement in accuracy and
efficiency.

2.4. The Underexplored Potential of Post-Processing

While most segmentation models are meant to provide
usable outputs, including GANSs, these outputs remain initial
predictions that necessitate additional refining. The purpose
of post-processing is to refine initial predictions in order to
yield a final refined segmentation. Post-processing in
segmentation is important and can embrace many different
domains or techniques [20]. The design and optimization of
particular  post-processing schemes to leverage the
complementary advantages of GAN-based segmentation
models is also an underexplored topic.

2.5. Synthesis and Identification of the Research Gap

A review of the literature clearly shows that the field has
moved from traditional algorithms to various established
Deep Learning models, to the introduction of GANs to
address challenges of data restriction and structural
inconsistencies; yet a gap still exists. While many studies
either focus on improving a primary segmentation model or
apply a standard post-processing method, there are few
studies that develop an all-in-one method that:

Uses GANs for advanced data augmentation in order to
train a strong primary segmentation model in a more
standardized manner.

Uses an adversarial learning framework to improve the
structural plausibility of the original segmentation.
Construct a proprietary optimized post-processing
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module to enhance the output of the adversarially trained
primary segmentation model.

One of the goals of this study is to resolve the gap. It
proposes an entire pipeline that uses GANs for not only data
augmentation and adversarial learning but also a targeted
post-processing strategy to improve the final segmentation
result. This study aims to provide a new level of accuracy
and clinical relevance for automated brain tumor
segmentation by combining these three features: GANSs for
augmentation, adversarial segmentation, and a custom post-
processing module.

3. Materials and Methods
3.1. Generative Adversarial Networks

lan Goodfellow and his collaborators developed GANs
in 2014. Essentially, GAN employs a generative modeling
approach to develop new data instances that mimic the
training data. GANs can also identify, reproduce, and assess
changes in a dataset because they include two primary
components (two neural networks) that compete with one
another.

The content in the segment on components in GANS is
commonly referred to as the Generator and Discriminator.
The generator network takes in a stochastic source (mainly in
the form of noise) to develop instances, for example, images,
text, or sound, that show similarities to the training data it
has seen. The generator network will ultimately provide
samples that are extremely difficult to differentiate from real
data.

The discriminator network is responsible for indicating
whether the data samples it receives are real or were
generated. The discriminator is trained using real samples
from the training dataset and synthetic samples provided by
the generator. The discriminator's job is primarily focused on
categorizing the real data as real and the synthetic data as
generated [3].

In training, there is an adversarial game between the
generator and discriminator. The objective of the
discriminator is to boost the chance of accurately separating
real versus generated data; the generator's goal is to produce
samples that will fool the discriminator. Through adversarial
training, both networks are continually being enhanced.

As training runs, the discriminator is generally better at
discriminating and recognizing real data from generated data,
whereas the generator gets better at producing credible
models. The desired outcome of this system is for the
generator to produce samples of higher quality that the
discriminator has a difficult time telling the difference
between and real data [28].
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Fig. 1 GANs architecture

The generative model is trained to improve the
probability of the discriminator making mistakes,
subsequently precisely addressing the data distribution. Then
again, the discriminator utilizes a model that computes the
probability that the given test came from the training data
rather than the generator. GANSs are structured as a minimax
game, where the discriminator's objective is to reduce its
reward V(D, G). In contrast, the generator's objective is to
maximize its loss by minimizing the discriminator's reward.
[28] . The following formula can be employed to describe it
mathematically:

Ly =

1
Ea~preal(a) [lOg(D (a))]

2
1 1)
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a; , demonstrates data samples which are taken from the
real dataset, k, is the number of data samples taken from the
real dataset, b;, are also data samples taken from the noise
distribution, L is the number of noise samples, D is the
discriminator function, and finally G, is the generator
function.

The central objective of the GAN's generator is to
guarantee the creation of data samples in which the
discriminator can wrongly group as genuine or not falsified.
It is computed using the formula below.

LG = —(1/2)Ez (4)
~ pz(2)[log(D(G(2)))]
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3.2. Data Collection and Preprocessing

The Brain Tumor Segmentation (BraTS) dataset was
utilized in this study. In the domain of medical image
examination, explicitly for the segmentation of brain tumors
utilizing MRI data, this is a generally acknowledged and
applied benchmark. The dataset is made to make it simpler to
naturally create and test calculations for Brain Tumor
segmentation and analysis [29-31].

3.3. Evaluation Metrics for Performance Analysis
Evaluating the performance of the GANs for image
segmentation tasks includes evaluating the nature of the
produced segmentation masks, contrasted with the ground
truth masks. In this study, the confusion matrix, like
accuracy, recall, and F1-score, was utilized as a measurement
to evaluate the efficiency of image segmentation algorithms.

Accuracy is an important metric that indicates the
number of correct predictions versus all predictions from a
model or algorithm. Accuracy is pretty ubiquitous and
natural in its use, as it is a general measure of the model's
capability to predict. However, if the outputs differ from the
classes, it may create inconsistent outputs for a model, and
therefore, it is helpful to have other metrics that are more
precise. The calculation is performed with the following
formula:

TP +TN

TP+TN+FP+FN

Accuracy =

(®)

Recall, which is also referred to as sensitivity or actual
positive rate, describes a model’s overall ability to accurately
identify all of the relevant cases (valid IDs) in a dataset,
without subjectivity, by measuring the valid IDs of interest
from the overall number of positive cases. Recall is
particularly important in certain situations where capturing
positive cases is warranted to address potential adverse
factors. For example, in healthcare, if a positive case is not
identified, it might create adverse situations under diagnosis
or another severe abnormality. The calculation is performed
with the following formula:

TP
TP+ FN

(6)

Recall =

Accuracy seeks to measure the correctness of the
optimistic predictions of the model. The measure computes
the number of true positives over the total amount of positive
evidence projected, and reflects the correctness of optimistic
predictions. Precision is of interest when the consequences of
false positive (Type | error) predictions are costly, as it
reveals how precise the optimistic predictions from the
model are. The following calculations are performed to
determine this:

TP
TP + FP

()

Precision =
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The Fl-score finds a level of convergence between
accuracy and recall. The F1-score considers all false
positives and false negatives and averages their contributions
to the overall performance evaluation. The F-score is
especially valuable when there is a need to find the balance
between precision and recall, and provides a summary on
which to base judgment and decision-making.

Precision * Recall

®)

F1-S =2.
core Precision + Recall

4. Results and Discussion

This section presents the results and outcomes from
applying the proposed methods for segmenting brain Tumor
images.

4.1. Experimental Results

This research provided an innovative hybrid deep
learning architecture for medical image segmentation, which
was extensively developed and validated with the Brain
Tumor Segmentation (BraTS) benchmark dataset. The
dataset consisted of 500 heterogeneous MRI scans, ensuring
the model was exposed to a variety of clinical presentations.
To address hardware limitations for computational power, all
experiments were conducted on a machine with a 16 GB
GPU. In terms of dataset organization, there was a standard
split of the data for usable models. Specifically, a consistent
split of 70%-15%-15% of training/validation/testing was
used. While only a portion of the images were allocated
towards each subset, all images were preprocessed to an
identical 512 x 512 resolution. The proposed framework was
a U-Net-based generator and a GAN-based discriminator
architecture for segmentation. The U-Net convolutional
neural network (CNN) is regarded as one of the best CNNs
for biomedical image analysis and provided the initial
segmentation masks, while the adversarial discriminator
provided a stringent feedback loop that evaluated the
recognized segmentations against ground truth segmentation
data.

The model was trained for 50 epochs in a batch size of
16 using the Adam optimizer (B: = 0.9, B2 = 0.999). The
training target was defined by a combined loss function - the
generator was trained with a combination of cross-entropy
loss, for pixel-wise accuracy, and an adversarial loss to
promote structurally plausible semantic outputs; the
discriminator was trained with a classic binary cross-entropy
loss, as is common in GAN training. In addition, extensive
data augmentation was utilized to promote generalization and
robustness to variability in the data. This included random
horizontal flips, cropping, scaling, and randomly adjusting
brightness and contrast. An early stopping protocol,
monitored with the validation loss, was implemented to stop
the training process once the validation performance
plateaus, to prevent overfitting. The primary contribution of
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this work is the new fusion of GANs and U-Net architecture,
as based on this new paradigm, the model was forced to not
only produce accurate pixel-level classification, but also to
produce segmentations that are semantically and structurally

plausible to expert annotations. The results demonstrate
significant improvement in segmentation on this method,
setting a new state-of-the-art accuracy on the difficult task of
brain tumor segmentation on MRI.

Fig. 3 Qualitative segmentation results of the proposed framework, a) Input image, b) Output of the proposed method.

The rationale for the model's effectiveness was
demonstrated by clearly perceptible segmentation results,
which demonstrate the model's ability to identify tumor areas
in the examined brain images correctly. The figure below

provides a visual representation of these segmentation
results.
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The related segmentation masks of the GAN model were
shown on the right side, by demonstrating in a binary format
with the black regions representing non-tumor areas and the
white regions representing discovered tumors. This GAN-
based segmentation performs well in defining cancerous
areas, which makes it a valuable tool for clinical uses like
diagnosis, treatment planning, and monitoring. The above-
shown Figure 3 outlines some examples of the output of
brain tumor segmentation utilizing a GAN model. On the left
side, the original images of the brain tumor are shown,
highlighting the tumor areas as distinct regions with intensity
contrast adjusted to match the surrounding tissue.

The generator and discriminator losses for the current
configuration were shown in Figure 4; the loss of the

generator started relatively high (~ ~0.45 approximately) but
dropped quite consistently within the subsequent few
iterations. After hitting this low mark, the value of the loss
increased slightly, but this raised the potential argument that

the generator was learning to produce more realistic outputs
while

discriminator,
becoming more effective in distinguishing real from fake
outputs. The loss of the discriminator can be stated to have
started at about 0.26 and dropped all along and nearly
became stationary about the fourth iteration (~0.12). This

encountering

increasing  opposition
whose
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implies that the discriminator was effectively learning how to
discriminate between real and fake outputs, but nearing
consistency due to generator improvements. Nonetheless, the
figure suggests here that both the generator and the
discriminator are parameters that are being trained. The
losses are approaching a dynamic equilibrium, suggesting
that the training process is taking place as planned.

4.2. Model Performance

Within the realm of image segmentation, assessing
model performance through visual results proves valuable,
yet it occasionally falls short in providing comprehensive
insights. Thus, the integration of supplementary evaluation
metrics becomes imperative to furnish a quantitative
assessment of the model's effectiveness.

Table 1. Quantitative segmentation performance of the proposed
GAN-based framework

. Value (Mean +
Matric Std)

Dice Similarity Coefficient (DSC) 0.89 + 0.03
Intersection over Union (loU) 0.95+ 0.04
Sensitivity (Recall) 0.92 £ 0.03
Specificity 0.97 £0.02
Precision 0.91+0.04
F1-score 0.92 +0.03

As shown in Table 1, the model achieved higher
accuracy in all four sample images, indicating that its
predictions align with the actual outcomes. Usually, an
accuracy of Table 1 indicates all predictions are correct,
while an accuracy of 0 indicates none are correct. Recall
measures the model's ability to identify all positive instances.
According to the result in Table 1, the recall gives an average
value which indicates that 70% of positive cases were
correctly identified, but still improvement is needed. The
Precision gauges the accuracy of optimistic predictions.
According to the result table above, the precision matrix is
excellent and gives a higher value, which indicates that
almost all predicted positive cases are correct. The F-score
balances precision and recall, with a higher score indicating a

better balance between the two. In our case, the F-score is
satisfactory but requires improvement.

4.3. Discussion

The application of Generative Adversarial Networks
(GANS) alongside conservation techniques has shown a
remarkable improvement in brain tumor segmentation. The
qualitative results in Figure 3 indicate that the suggested
framework can clearly identify tumor areas that have clear
delimitations, less noise, and morphological consistency
between patients. The visual results support the quantitative
results (Table 1), demonstrating the performance of the
proposed model across multiple assessment metrics, where
the final data had high performance results of Dice Similarity
Coefficient (DSC) of 0.89 + 0.03, loU of 0.95 + 0.04, and an
F1-score of 0.92 + 0.03. These values demonstrate how well
the framework can locate a tumor while keeping false
positive findings low, which is particularly valuable for
clinical decision-making.

The efficacy of the framework is further reaffirmed
through comparative analyses with existing segmentation
models (shown in Table 2). The proposed method
outperformed SA-LuT-Nets [32], a Multilayer stacked PBN-
based framework [33], and Improved Mask R-CNN [34] on
every metric. In particular, the framework achieved a
precision of 99.12%, a recall of 94.24%, and an F-score of
93.36%, all of which were superior to the baseline Improved
Mask R-CNN, which had an F-score of 91.85%. Although
the overall performance of the proposed method was best
reflected in terms of loU (94.87%), the improvement above
prior state-of-the-art models (F-score of 91.85% after ten
iterations for 1000 synthetic images enhanced with GAN-
based adversarial training) emphasizes the advantages of
spatial consistency and tumor identification relative to
segmentation models. These benefits added to the proposed
framework improved the accuracy of the captured tumors.
They provided lower rates of false positives and missed
detections to enhance the clinical validity of the output
models.

Table 2. Comparison of performance metrics with previous studies

Models Precision (%) Recall(%) F-score(%o) MoU(%)
SA-LuT-Nets [32] 87.92 88.79 86.94 87.02
Multilayer stacked PBN-based [33] 88.51 88.26 87.53 88.28
Improved mask RCNN [34] 90.72 91.68 91.85 94.56
Proposed 99.12 94.24 93.36 94.87

The proposed framework offers numerous benefits.
First, a GAN-based architecture introduced accuracy in
boundary refinement and realism in structure, which are
often not part of conventional CNN-based architectures. The
adversarial training aspect also reaffirms that the predicted
masks are sampling from the identical distributions as
defined by the ground truth, ultimately resulting in sharper
segmentations. Second, a post-processing step is included,

which removes extraneous predictions and ensures that any
topology for the predicted masks remains intact, while also
producing tidy binary masks that facilitate downstream use
in tasks such as tumor volume assessment or surgical
planning. Finally, the strong relative performance to existing
approaches reaffirms the robustness, generalization, and
clinical utility of the framework.
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Nonetheless, there are still several limitations to this
work as currently employed. The current framework is
focused on binary segmentation, which is defined as
separating the tumor from the non-neoplastic tissue, and does
not have the ability to define relevant tumor subregions (i.e.,
necrotic core, enhancing tumor, edema), which would mostly
limit its ability to be applied directly to clinical workflows.
Although the evaluation dataset provides strong findings, it
does not capture all of the variability relevant to clinical
imaging across institutions and MRI protocols. The
smoothing incurred during post-processing, while improving
noise reduction, appears to mask subtle tumor characteristics.
Finally, as a type of GAN-based training, the framework
employed the wuse of generative models that are
computationally expensive to train and are not commonly
utilized in lower-resource healthcare settings.

Future work will address these deficiencies. Expanding
the current framework to multi-class rather than binary
segmentation would display improved clinical utility by
segmenting tumor subregions. In the same way, domain
adaptation and transfer learning methods applied to simply
lower amounts of resolution should also be incorporated to
increase the robustness of the framework across data
heterogeneity and imaging protocols relating to clinical
imaging. Exploring three-dimensional modalities of GAN
(generative adversarial network) architectures, for example,
would describe the radiological shape and form of tumors,

establish segmentation continuity through slices, and
establish  volumetric analysis. Finally, consider the
advantages of having uncertainty estimation when

identifying tumors, as this would support clinicians in
identifying areas of confidence in predictions and when
trusting automated products. Overall, increasing density in an
efficient computational form, using either light models or
knowledge distillation, would further strengthen the
framework for real-time use in resource-constrained clinical
situations.
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