
SSRG International Journal of Electronics and Communication Engineering Volume 12 Issue 12, 164-176, December 2025

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12I12P114 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Framework For The Detection And Mitigation Of Web

Vulnerabilities Using Deep Learning

Godwin Ponsam J1, Chin Shiuh Shieh2, V Senthil Murugan3

1Department of Networking and Communications, Faculty of Engineering and Technology, SRM Institute of Science and

Technology, SRM Nagar, Kattankulathur, India.
2Electronic Engineering, National Kaohsiung University of Science and Technology, Taiwan.

3 School of Computing, Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Chennai,

Tamil Nadu, India.

1Corresponding Author : godwinj@srmist.edu.in

Received: 14 October 2025 Revised: 16 November 2025 Accepted: 15 December 2025 Published: 27 December 2025

Abstract - Web vulnerability faces significant challenges, including data breaches, privacy violations, and financial losses.

Comparing it with traditional conventional methods, it proves inadequate for identifying attack patterns and complex semantic

structures in the temporal evolution of web page changes. This study primarily focuses on the IBERT-GRU model. To improve

the detection and resolution of web vulnerabilities, the Integrated Bidirectional Encoder Representations from Transformers

with Gated Recurrent Unit (IBERT-GRU) is enfolded. The IBERT model should incorporate the intricate semantic

relationships and contextual information derived from diverse internet sources, including source code, network requests, and

system logs. This method is considered an effective method for detecting patterns and revealing the weaknesses of the

sequences. The proposed methodology is found to be more accurate (99.9%) and has a higher recall (97.2%) than

benchmarked algorithms. The proposed method, in addition, has a better F1 score of 99.85%. The performance parameters

indicate that the proposed IBERT-GRU architecture is a strong and scalable technique to keep track of vulnerabilities in real

time in complicated online systems.

Keywords - Web Vulnerability Detection, Deep Learning, IBERT-GRU, Transformer Models, Gated Recurrent Unit (GRU),

Cybersecurity, Semantic Analysis.

1. Introduction
Web applications, which are integral to nearly all digital

services today, are increasingly characterized by heightened

interactivity and complexity, rendering them vulnerable to a

wide array of significant security threats [1]. Several

examples of the modern-day vulnerabilities include SQL

Injection (SQLi), Cross-Site Scripting (XSS), Remote Code

Execution (RCE), and Command Injection. Even if secure

coding standards and static analysis tools are used to protect

the web stack, attackers often get beyond normal security

levels by leveraging obfuscation, polymorphic payloads, or

innovative encoding methods [2, 3]. Because of this,

methods for detecting and preventing web-based assaults in

real-time that are adaptive and context-aware are required.

Traditional rule-based Intrusion Detection Systems (IDS)

and Static Vulnerability Scanners (such as Snort and Nikto)

use predetermined signatures or syntactic heuristics. Low

recall rates, false positives, and the inability to generalize

across unexpected assault patterns are some of the problems

these systems face. To overcome these limitations, the

current study focused on the deep learning algorithm, which

helps automate the feature extraction and also detects the

sequential and semantic patterns through web payloads [4].

The goal is to learn about high-dimensional representations,

which are followed by input strings such as HTTP requests,

code snippets, or API logs. These have proven to be

promising approaches, as demonstrated by models like CNN,

LSTM, and Bi-GRU [27]. In identifying attacks in payloads,

which are characterized by specific traffic behaviors,

Conventional RNN-based models encounter several

challenges, including dependencies between learning and

input sequences [5, 10].

Following the responses noted as issues, the proposed

model IBERT-GRU helps detect web vulnerabilities [7]. Pre-

trained, this proposed model, embedded with deep contextual

information, is kept as the raw text input. This also combines

these types of embeddings with GRU to predict the temporal

and syntactic patterns among the various sequences [6].

Adding BERT to the model enhances its ability to distinguish

between safe and hazardous patterns, even in the presence of

noise, encoding trickery, or malicious changes [8].

http://creativecommons.org/licenses/by-nc-nd/4.0/

Godwin Ponsam J et al. / IJECE, 12(12), 164-176, 2025

165

We tested and proved our strategy using a publicly

available Kaggle vulnerability dataset with tagged web

payloads. A group of studies compares the proposed IBERT-

GRU against baseline models like CNN, LSTM, and Bi-

GRU in terms of accuracy, precision, recall, and F1 score.

The results show that the proposed model greatly reduces

false negatives, making sure that important attacks are not

missed, and it significantly improves overall detection

performance. This study adds a scalable, end-to-end deep

learning framework for finding and fixing online security

holes. It does this by getting beyond the limitations of earlier

models and boosting sequence understanding using

transformer-based embeddings. It immediately applies to

Web Application Firewalls (WAFs), DevSecOps pipelines,

and real-time cybersecurity monitoring solutions [9].

1.1. Key Contribution

 Improvised BERT embeddings are combined with Gated

Recurrent Units (GRU) to identify contextual semantics

and sequential dependencies efficiently.

 An optimized framework is developed to effectively

mitigate various suspicious attacks, including SQL

injection (SQLi), Cross-Site Scripting (XSS), and

Command injection. This process of identification is

achieved by utilizing context-aware deep representations

and surpassing traditional rule-based models.

 The False Negative (FN) rate of the proposed model is

reduced evidently by the utilization of advanced

language representation, hence ensuring high sensitivity

in the detection of malicious requests. This feature is

predominantly required in applications on web firewalls

and secure APIs.

 The proposed architecture is characterized by its

lightweight design, scalability, and adaptability, making

it practical for integration into Web Application

Firewalls (WAFs) and DevSecOps pipelines.

The research report covers the following areas: Chapter I

describes the Introduction to the detection and mitigation of

web vulnerabilities using Deep Learning. This also covers

the main contribution of this research. Chapter II describes

the literature review, in which the previous work based on

this type of research is also explained. Chapter III describes

the proposed methodology, which also includes the overall

architecture, proposed architecture diagram, Model

evaluation of the IBERT-GRU framework, and proposed

Algorithm.

Chapter IV describes about Results and Discussion

section in this also included the dataset description,

comparison of metric analysis for proposed and existing

models, to compared the training and testing accuracy of

proposed model, Evaluation metric analysis followed by

experiment setup, Performance metric comparison of various

models and also discussed the performance comparison of

attack detection time in multiple models, limitation and

advantages of proposed model. Chapter V describes the

conclusion and future work, and also explains the main key

findings of the research work.

2. Literature Review
DL is a type of ML that uses several nonlinear hidden

layers to extract features, change them, analyze patterns, and

sort them into groups [10]. DL-based solution methods are

used in a wide range of fields, such as robotics, computer

vision, predictive maintenance, finance, text processing, and

classification challenges [29]. DL approaches have worked

quite well for processing a lot of different kinds of data, like

text, audio, and video. DL has computational models with

several layers of processing that let data be shown at various

levels of abstraction [30]. The deep neural network we used

consisted of perceptions, activation functions, cost functions,

and fully connected layers, which are detailed further in this

subsection [31].

Web-based attacks pose a significant threat to Industry

5.0 infrastructure, primarily due to their role in the loss of

sensitive data, disruption of operations, and financial loss.

DDoS attacks, SQL injection, and cross-site scripting attacks

[11, 32]. To discuss the various consequences related to

botnets, such as Mirai, and their impact on the Internet of

Things. The author discussed the various types of

consequences of attacks, such as denial of services, within

the framework of IoT devices, which typically analyze the

key components of the Industry 5.0 System that are hacked

and exploited in DDoS attacks [12]. It provides an overview

of Machine Learning algorithms that help detect software

bugs and web attacks through SQL injection and cross-site

scripting [34]. To identify several types of machine learning

methods, including decision trees, SVM, and clustering

algorithms. The goal is to demonstrate and provide promises

for identifying known attack patterns [35]. It is also

discussed how these methods are less effective and fail to

deal with increasingly complex and advanced attacks [13,

36].

Various methods are used to detect SQL injection

attacks, including regular expressions that should be matched

through ML-based models, such as Support Vector Machine

(SVM), Naïve Bayes, Random Forest, and Decision Tree

[14]. Many people use regular expression matching because

it is very accurate and quick to find [37]. OWASP ranks SQL

injection attacks as the greatest threat to network

applications, and this vulnerability has been the subject of

continuous study in the field of network security [15, 25]. In

recent years, numerous approaches to SQL injection

detection have been suggested, each focusing on a different

sort of danger, attack, or mechanism of attack [16, 26]. One

typical preprocessing method is standardizing SQL query

statements, which standardize the values of query

parameters, SQL keywords, and symbols [17].

Godwin Ponsam J et al. / IJECE, 12(12), 164-176, 2025

166

According to the authors, Kim et al., a BERT approach

is used to detect software attacks. Based on this result, we

need to determine the most effective method for enabling the

model to compare syntactic and semantic features with the

code [18]. Here, the number model F1 score is also shown as

95% with an excellent accuracy value. It is also discussed

that the model is noted as a false positive and negative

compared to previous models. It demonstrates that the BERT

model is a highly effective method for identifying software

flaws [19].

Followed by the existing method to detect fake news in

the longest way, which means a DL model is ideal for the job

in terms of speed, accuracy, and ease of understanding

concepts [20]. Most of the researchers used various models

such as Long Short-Term Memory (LSTM), Gated Recurrent

Unit (GRU), and Bidirectional Encoder Representations from

Transformers (BERT). Most of the researchers compared

these designs using the same data set, followed by the

evaluation approach [21]. Based on the earlier research, the

model was analyzed for practical implementation. This study

primarily investigated the efficiency of DL models, including

LSTM, GRU, and BERT. These are used to detect web

vulnerabilities [22]. To use as a balanced dataset from

Kaggle, this study mainly evaluates each model to determine

whether it predicts performance based on computational

efficiency and explainability. It is for employees with the

EAI technique, which is used as Local Interpretable Model

Agnostic Explanations (LIME) and Shapley Addictive

Explanations [23].

3. Proposed Methodology
3.1. Overall Architecture

The architecture in Figure 1 represents a Deep Learning

Model platform that utilizes various source codes to detect

and fix security holes on the internet. To initiate this process,

obtain the input as raw source code after executing the pre-

processing module. These tasks should be performed in

various stages, including preparing the input for analysis,

which involves creating a balanced dataset, removing

duplicates, filtering noise, and cleaning the code structure.

After removing the cleaned data, the next step is to go

through a feature extraction stage, which, for IBERT, should

generate the contextual semantic embeddings, showing how

the code should be written and structured. The classification

stage should utilize the GRU, which contains the sequential

relationship between the embedded vectors. The GRU

classifier returns a binary or multi-class option for whether

the input is vulnerable. If a vulnerability is detected, the final

step in vulnerability reporting is to determine both the type

of vulnerability (e.g., XSS, SQL Injection) and the specific

vulnerable code portions. The result provides developers

with valuable information to address the identified problems.

Fig. 1 Overall architecture

Data Flow Diagram - IBERT-GRU

Web Vulnerability Detection and Mitigation Framework

Level - 1

Web Application/

request

External

Feature

Extraction
Raw web Cleaned

request

Data Preprocessing

Embeddings

 Score

Vulnerability
Classification

Decision
Label

Embeddings

Vulnerability
Knowledgebase

(KB)

Training model

IBERT - GRU

Mitigation

Engine

Training Model

Repository

Fix suggestion

Implit/Lookup Vulnerability status

Vulnerability type

Suggested mitigation

Output Report

Access/Lookup

Godwin Ponsam J et al. / IJECE, 12(12), 164-176, 2025

167

3.2. Proposed Architecture Diagram

Fig. 2 Architecture for proposed model

The proposed architecture, Figure 2 shows the Hybrid

Deep Learning strategy for web vulnerability identification,

which also combines IBERT and RoBERTa with GRU-based

sequence modeling. The process begins with raw input, such

as site code or log data, which is standardized and tokenized

to make it suitable for transformer models. This data is

transmitted to a BERT module after being preprocessed.

There, it is embedded using special tokens like [CLS] and

[SEP] and positional and token embeddings. An intermediate

IBERT model is utilized to make the output embeddings

from BERT even better. This makes contextual feature

vectors that are great for jobs that involve finding

vulnerabilities. The RoBERTa module processes these

contextual embeddings sequentially, utilizing the advanced

self-attention mechanisms to highlight the semantic

relationships within the input. The resultant features are then

enhanced and rendered, thereby preparing them for sequence

modeling. Further, these extracted features are passed as

input to a GRU-based time series module, including multiple

Gated Recurrent Units (GRU1, GRU2, GRU3). These

multiple gated recurrent units are designed to learn temporal

data variations and behavioral patterns among the inputs.

This portion contains a fully linked layer as well as a data

standardization step that produces final prediction outputs.

Finally, the system produces a classification output reflecting

the vulnerability status of the input, such as whether the input

data poses a security risk or is regarded as safe. This end-to-

end architecture efficiently blends static feature extraction

and dynamic sequence modeling, using the best parts of

BERT-based transformers and Recurrent Neural Networks to

find web vulnerabilities quickly and accurately.

[CLS] Tok 1 Tok 1 Tok 1 Tok 1

1 2 3 N-1 N

EA EA

EA

EA

EA

Embedding code gadgets

[CLS] [CLS] [CLS] [CLS] [CLS]

Fine-tunning BERT

h(CLS) h(CLS) H(Tok2) H(Tokn2) H(sep)

C T1 TN T(SEP

)
T1 TM

RoBERTa

E(CLS) E1 E1 E(SEP) EN EM

TOK1 SEP TOKN TOK1 (CLS) TOKM

data decentralization

Fully connected layer

Y1 Y2 YM

GRU-1 GRU-2 GRU-n

X1 X2 Xn

Original AQI data for time series

prediction

In
p
u
t

la
y
er

H

id
d
e
n
 l

a
y
er

O

u
tp

u
t

la
y
er

Vulnerability

status

Input

Data

preprocessing

Feature

extraction

Class label

IBERT

Proposed Model-IBERT-GRU

Godwin Ponsam J et al. / IJECE, 12(12), 164-176, 2025

168

3.3. Model Evaluation of IBERT (BERT + ROBERTA)

Framework

The BERT model in the proposed approach has more

than one task, which is necessary for classification. During

this time, we noted the first token of input as fixed with the

special classification label. The output layer of 𝑐𝜖𝑅𝐻 The

sequence of representation should be used for classification.

Here, also noted as H, is the hidden stage. Here, fine-tuning

the BERT algorithm in the proposed model, 𝑊 ∈ 𝑅𝐾∗𝐻

Which is added, and k is the number of three CVE-coded

vulnerabilities detected in the model. Here, we calculate the

exit probabilities for each K class as

𝑝 =
𝑒𝑐𝑤𝑡

∑ 𝐶. 𝑤𝑡
𝑘

 (1)

Describes the various probabilities among the

classification model labels, in the BERT model, which has

pre-trained parameters followed by uncased model

parameters. These are used as a classification to fine-tune

and maximize the probability of correctly identifying

vulnerabilities. Here, an optimization algorithm is used to

help determine the adaptive learning method for the input

parameters. The Proposed approach of IBERT should be

mentioned as Equations (2) and (3).

𝑟𝑡 = 𝛽1𝑟𝑡−1 + (1 − 𝛽1)𝑔𝑡 (2)

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (3)

From the above Equations (2) and (3), rt and vt are noted

as the estimation of variance, delay rate as 𝛽1 − 𝛽2. Here, the

error rate is 𝑟𝑡 and 𝑣𝑡.

𝑟𝑡 =
𝑟𝑡

1 − 𝛽1
𝑡 (4)

𝑣𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡 (5)

From the above Equations (4) and (5), rt and vt are used

to obtain the values of W shown in Equation (6)

𝑊𝑡+1 = 𝑊𝑡 −
𝜂

√𝑣𝑡+∈
 𝑟𝑡 (6)

From the above Equation (6) 𝜂 should represent the

learning rate and ∈ as smoothing.

3.3.1. Roberta Modeling

A Robust Optimized BERT approach involves

modifying the BERT model, which is undertrained based on

evaluation results, by adjusting its hyperparameters and

dataset size. Here are some modifications that help improve

the performance of the BERT model. In this process, the

various steps include training older models, such as BERT

and RoBERTa, which are based on pretrained models. The

training of these models should capture data, thereby

improving accuracy. Removing the prediction involves

removing the objective models, which in turn helps increase

the downstream performance of the task. BERT model

requires a training section among the various steps, and the

ROBERTA model should be trained on a variety of

sequences. In the BERT architecture, only the preprocessing

stage is done to produce the static values. The ROBERTA

model used to eliminate duplicates differed from the training

time epochs.

Figure 2 shows how the ROBERTA model is built and

how it works, as explained in the next section. The

ROBERTA model can take sentences that have been changed

or encoded into tokens, which makes them viable input. The

ROBERTA model can take input_ids, which are numbers

that stand for each token. At the beginning of each token

sequence, there is the [CLS] token, and at the end, there is

the [SEP] token. Then, the model receives the attention mask

input, which is a binary value indicating whether the token is

padding. There will be padding added to the token sequence

if its length is shorter than the most extended sequence. This

padding is set to match the maximum number of tokens that

the ROBERTA model can handle, which is 512 tokens.

Token_type_ids is a field that provides a binary

representation, indicating whether two sentences are sentence

pairs. In the question-answering task that takes sentence pairs

as input, these token_type_ids are frequently needed. The

input is then passed via the 12-layer ROBERTA encoder,

which converts it into a vector embedding format that

includes embedding tokens, segment embeddings, and

position embeddings. The last_hidden_state output layer will

be built next. This is where all the embedding vector words

will be kept. These word vectors will learn how to recognize

English, and then the model will be tweaked so that it can do

NLP tasks.

3.3.2. Gated Recurrent Unit

The GRU Framework Model should be performed as the

gating mechanism within an RNN. The GRU (Figure 3)

contains a modified level of unit type, which includes the

hidden state for combining the input gate and forget gate into

the update gate. The activation of a hidden unit consists of a

time step as follows,

Fig. 3 Working principle of gated recurrent unit

+ +

+
+

T T
tanh

ht

ht

gt

Ht-1
gt

zt
ht

Godwin Ponsam J et al. / IJECE, 12(12), 164-176, 2025

169

The activation of a hidden unit based on the time step is

processed as,

𝑟𝑡 = 𝜎(𝑊𝑟ℎ𝑡−1 + 𝑈𝑟𝑥𝑡) (7)

From the above Eqn 𝑟𝑡 Calculated, 𝜎 should represent

the logistic sigmoid function and 𝑊𝑟 𝑎𝑛𝑑 𝑈𝑟 Defined as the

weight matrices. Here to calculate ℎ𝑡 and 𝑟𝑡 Used as tanh

tanh-type layer.

ℎ𝑡 = tanh (𝑊(𝑟𝑡 ∗ ℎ𝑡−1) + 𝑈𝑥𝑡
) (8)

In GRU, 𝑧𝑡 Should be replaced as a gate along with the

forget gate in LSTM, to calculate 𝑧𝑡

𝑧𝑡 = 𝜎(𝑤𝑧ℎ𝑡−1) + 𝑈𝑥𝑡
 (9)

Here are mentioned the hidden state values as

ℎ𝑡 = (1 − 𝑧𝑡)(ℎ𝑡−1) + (𝑧𝑡)(ℎ𝑡) (10)

Fig. 4 Proposed algorithm architecture

Input

Input

source code

Program source

code as input

Computing

program slices

Related code
slices!

Transforming
program slices

into code gadgets

(labeled)

Code gadgets

Removing

ambiguous

code gadgets

Code gadget without

ambiguous code

gadget

Input

 Train data Test data

[CLS]

1

EA

Tok 1

2

EA

Tok 2

3

EA

Tok N-2

N-1

EA

[SEP]

N

EA

Embedding code gadgets

[CLS] [CLS] [CLS] [CLS] [CLS]

Fine-tunning BERT

h(CLS) H(Tok1) H(Tokn2) H(Tok2) H(sep)

Data set

Token

embedding

Position

embedding

Segment

embedding

CVE type

24-Layer

512 – hidden

16-head

Godwin Ponsam J et al. / IJECE, 12(12), 164-176, 2025

170

3.4. Proposed Algorithm Architecture
The proposed technique (Figure 4) employed the

upgraded BERT model to scan the source code of web apps

for vulnerabilities and find CVE-coded problems that had

already been reported. The BERT approach is a novel

language representation model that uses a bidirectional

transducer network to pre-train the language model on a

corpus before fine-tuning it for other tasks. The problem-

specific BERT design can be expressed sequentially by a

single line of code or a block of code. To make the input

representation, you need to gather token, segment, and

position code fragment embeddings that match a specific

code. Simultaneously, vulnerability prediction in the BERT

model is bidirectional, meaning it works both left and right.

Figure 4 depicts the development architecture of the model.

Figure 4 shows a complete pipeline for automatically

classifying vulnerabilities using a finely-tuned BERT model

on structured representations of source code. The approach

starts with raw program source code, which usually includes

function definitions that can include security holes. From this

code, relevant program slices are calculated to separate logic-

specific parts that can show possible weaknesses. Then, these

slices are turned into structured representations called code

gadgets. These gadgets contain semantic and syntactic

information that is useful for Deep Learning Analysis. To

improve data quality, unclear or noisy code gadgets are

deleted methodically, leaving a clean set of labeled gadgets

ready for model training.

Each code gadget is converted into tokens and

embedded using token, position, and segment embeddings.

This process forms the input representation necessary for the

BERT model, ensuring that both the semantic meaning and

structural order of the code tokens are preserved. The

embedded representations are then processed through a

meticulously configured BERT model, featuring 24 layers,

512 hidden units, and 16 attention heads. Through this

process, BERT captures crucial contextual details and long-

range dependencies within the code. Ultimately, the output

hidden states, particularly those from special tokens like

[CLS] and [SEP], are utilized to classify the code gadgets

into specific Common Vulnerabilities and Exposures (CVE)

types. This enables the framework to identify and accurately

categorize vulnerabilities, such as SQL injection, XSS, and

others. Overall, the architecture demonstrates a robust and

language-aware approach to secure code analysis, facilitating

the automatic, large-scale, and context-sensitive detection of

vulnerabilities.

3.4.1. Proposed Algorithm (IBERT-GRU)

begin

Step: 1 Initialization

load IBERT tokenizer T

Initialize IBERT model

Initialize GRU + fully connected classifier

set loss function → Binary cross Entropy

Set optimizer → Adam (GRU + FC parameters, Ir

= 0.001)

load vulnerability knowledge base KB

step: 2 Input stage

receive raw web input R = {r1, r2 … … … … … … , rn}

step: 3 Preprocessing stage

for each request ri in R do

clean ri

Tokenize using IBERT tokenizer T with Special tokens

step: 4 Fetaure Extraction stage

Ei → IBERT (ri)

step: 5 classification stage

Training phase (within classification)

for epoch in range (1, epochs + 1);

shuffle training data

for each batch (x − batch, y − batch)do

E − batch → IBERT(x − batch)

H − batch → GRU (E − batch)

p − batch → Fully connected (H − batch)

p − batch → Sigmoid (p − batch)

loss → Binary Cross Entropy (P − batch, y − batch)

Optimizer. zero − grad ()

loss. backward ()

optimizer. step ()

Print("Epoch:", epoch, "Loss:", Loss)

Save trained GRU Model

Step: 5 Inference using Trained GRU

hi → GRU (Ei)

Pi → Fully Connected (hi)

pi → Sigmoid (pi)

step: 6 Vulnerability Detection State

if Pi > θ then

Label → "Vulnerable"

Step: 7 Vulnerability Mitigation Strategy Statge

Important Tokens → AttentionWeights (hi)

type → Match (Important Tokens, KB)

fix → Suggestmitigation (type, KB)

Report → {status:vulnerable, type: type, Suggestion: fix}

else

label → safe

Report → {status: " safe "}

end if

output Report

done

end

Godwin Ponsam J et al. / IJECE, 12(12), 164-176, 2025

171

4. Results and Discussion
4.1. Dataset Description

The IBERT-GRU approach uses Improved BERT's

ability to grasp context and GRU's ability to learn in a

sequence to find and classify web vulnerabilities based on

the OWASP Top 10 categories. The model creates deep

semantic embeddings of code snippets and payloads using

IBERT, capturing subtle syntax and meaning variations,

using the OWASP dataset. There are labeled examples of

SQL Injection, Cross-Site Scripting, and Security

Misconfiguration in this dataset. These embeddings are next

examined by the GRU layer, which replicates the temporal

and logical flow of operations to detect intricate, multi-line

vulnerabilities. The final step of this method is to have the

learned representation of the right OWASP categories based

on accuracy, precision, recall, and F1 Score. Considering the

confusion matrix, along with various performance metrics

related to vulnerability detection, helps create a strong and

secure solution for developing an automated threat

assessment.

This study primarily utilized the Kaggle dataset,

supplemented by web vulnerability detection, to evaluate the

effectiveness of a Deep Learning architecture for integrating

IBERT and GRU. These types of datasets include annotated

HTTP payloads, enabling the combination of vulnerable and

secure scenarios. To overcome the real-world scenario,

followed by SQL injection and cross-site scripting, along

with PHP and JavaScript. Followed by this preprocessing

and tokenization, IBERT is used to extract the deep

contextual embeddings, which are subsequently determined

by a GRU-based classifier to identify the vulnerability status.

Based on the attention mechanism, which helps identify the

vulnerability status.

The attention mechanism of the gradient boost algorithm

helps identify problematic code, which is then mitigated by a

danger rule-based module. These types of methods should

exhibit the model adaptability utilized for detecting and

mitigating the online vulnerabilities in various types of

information, for the CSIC 2010 HTTP dataset created by the

Spanish National Research Council, which is widely used as

a benchmark for identifying internet attacks. It is also

comprised of more than 36000 categorized requests,

including both legitimate and malicious activity.

This also contains the realistic e-commerce interaction

among the various types of web threats, such as SQL

injection, XSS, command injection, and buffer overflow.

This makes it suitable for OWASP-based classifications.

Each request is labeled and structured, making it simple for

models like IBERT-GRU to tokenize and embed it. The

dataset was used in this study to train the IBERT module on

contextual patterns in HTTP payloads, as well as to enable

the GRU layer to record sequential attack behavior, which

helps detect and mitigate online vulnerabilities.

4.2. Computational Metric Analysis for Proposed vs.

Existing Model

To mention the clear ideas about the computation

concept demanded by each model, we report the estimated

values for training and inference time, along with parameter

count and epoch values. All training, development, testing,

and inference operations are performed by the platform on

the Kaggle dataset.

Table 1. Computation metric analysis for proposed vs. Existing model

Model
Training

Time

Inference

Time
Epochs

BERT 1.05 hours 524 ms 9

GRU 8 mins 154 ms 7

LSTM 13 mins 255 ms 7

IBERT-GRU

(Proposed)
6 mins 150 ms 7

Fig. 5 Performance model comparison of training Vs Inference time

100

150

200

250

300

350

400

450

500

550

600

0

10

20

30

40

50

60

70

BERT GRU LSTM [7] IBERT-GRU

(Proposed)

In
fe

re
n
ce

 T
im

e
(m

s)

T
ra

in
in

g
 T

im
e

(m
in

)

Model

Model Comparison: Training Vs Inference Time

Godwin Ponsam J et al. / IJECE, 12(12), 164-176, 2025

172

Fig. 6 Training and testing accuracy of proposed model (IBERT-GRU)

To interpret Table 1 and Figure 5, which describe the

training and inference efficiency of Deep Learning Models

like BERT, GRU, and LSTM, and the suggested IBERT-

GRU reveals significant differences. Among the models

tested, BERT had the longest training time at around 63

minutes and the slowest inference time at 524 milliseconds,

suggesting its computational intensity. GRU and LSTM took

8 and 13 minutes to train, respectively, and 154 and 255

milliseconds to make decisions. But the proposed IBERT-

GRU model did the best job in both areas, using only 6

minutes to train and 150 milliseconds to make predictions.

This large improvement demonstrates the model's ability to

leverage IBERT's contextual strength and GRU's sequential

processing speed. The IBERT-GRU framework is extremely

effective and useful for real-time web vulnerability detection,

especially when paired with OWASP-based threat

classification systems in latency-sensitive situations.

4.3. Training and Testing Accuracy of Proposed Model

(IBERT - GRU)

Figure 6 shows how the accuracy of the IBERT-GRU

(Proposed) model changed throughout 7 epochs in a

simulation. This shows how well it was trained and how well

it worked. The model shows impressive speed and minimal

overhead with a training time of approximately 6 minutes

and an inference time of 150 milliseconds. Training and

testing accuracy are both going up all the time. By the end of

the last epoch, training accuracy had gone from 85.2% to

99.6% and testing accuracy had gone from 84.7% to 99.9%.

The model is stable and converging well over time, as shown

by this steady improvement. It is important to note that the

little divergence between the training and testing curves

indicates that the model generalizes successfully and does

not overfit excessively. The model finds key patterns of

vulnerability in the first few epochs and gets better than 93%

accurate by epoch 3. At the end of the training cycle, it can

almost flawlessly sort items, which shows that it can be

trusted to detect online security holes in real time. Overall,

the IBERT-GRU model demonstrates learning dynamics that

are fast, steady, and accurate. It takes a unique approach to

secure data through a pipeline procedure, achieving both

accuracy and speed.

4.4. Evaluation Metric Analysis

4.4.1. Experimental Setup

Table 2. Experiment environmental setup

Hardware Configuration

Component Specification

Processor (CPU) Intel Core i9-12900K

Graphics Card

(GPU)
NVIDIA RTX 3090

RAM 64 GB DDR5

Storage 2TB NVMe SSD

Software Configuration

Operating System Windows 11 Pro 64-bit

Python 3.9.13

Transformers 4.35.0

Hyper Parameters

Batch Size 32

75

80

85

90

95

100

105

1 2 3 4 5 6 7

A
cc

u
ra

cy
 (

%
)

Epochs

Simulated Accuracy Progression of IBERT-GRU (Proposed) Model Training Time: 6 mins |

Inference Time: 150 ms | Epochs: 7

Training Accuracy Testing Accuracy

Godwin Ponsam J et al. / IJECE, 12(12), 164-176, 2025

173

Optimizer Adam

Learning Rate 2.00E-05

Epochs 7

Loss Function Categorical Cross-Entropy

Model Configuration

IBERT Module

Pre-trained weights, fine-tuning

in training on the vulnerability

dataset

GRU Layer Sequential learning

Classifier OWASP categories

Based on the above Table, 2 represents the combined

structure of software and hardware components with a fine-

tuned Deep Learning Architecture, which allows for the

analysis of rapid training and evaluation of the proposed

model IBERT-GRU for web vulnerability detection. An Intel

Core i9-12900K CPU, 64 GB of DDR5 RAM, and an

NVIDIA RTX 3090 GPU, followed by a powered system.

This gave it the processing capability it needed for

transformer-based modeling. It ran on Windows 11 Pro 64-

bit with Python 3.9.13 and Transformers 4.35.0.

We used a batch size of 32, the Adam optimizer, a

learning rate of 2e-5, and categorical cross-entropy as the

loss function to find the best hyperparameters for the model

over 7 epochs. The IBERT module, which was initially

trained using pre-trained weights, was fine-tuned throughout

training to capture semantic trends in OWASP-labeled data.

The GRU layer received these contextual embeddings. This

layer supported lightweight sequential learning, which

helped the model spot complicated vulnerability processes.

A softmax-activated classifier linked these attributes to

the OWASP Top 10 vulnerability groups. This architecture

provided a fair trade-off between high classification accuracy

and low computing overhead, as evidenced by the training

and inference efficiency metrics, making it ideal for real-time

and scalable security applications.

To evaluate the deep learning model performance,

various types of evaluation metrics are used to build the

models. Here, we derived some metrics such as Accuracy,

precision, Recall, and F1 Score.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
 (11)

The above Equation (11) should be used to determine

the percentage of accurate prediction of models.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (12)

The above Equation (12) represents the true positive

among the rate of prediction, which is proportional to the

accurate range of real positives.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (13)

The above Equation (13) represents the proportion

among the positive examples as accurately measured by the

recall.

𝐹1 = 2𝑋
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (14)

4.4.2. Performance Metric Comparison of Various Models
Table 3. Performance metric comparison of various models

Model Accuracy Precision Recall
F1

Score

CNN 99.5 98.98 1 99.49

LSTM 98.69 99.85 95.69 97.82

Two-layer RNN 35.99 33 36 30

Two Layer Bi-

GRU
88.33 89 88 88

IBERT-GRU

(Proposed)
99.9 99.90 97.2 99.85

Figure 7 compares five Deep Learning Models CNN,

LSTM, Two-layer RNN, Two-layer Bi-GRU, and IBERT-

GRU (Proposed) for web vulnerability detection across four

performance metrics: accuracy, precision, recall, and F1

Score. The IBERT-GRU (Proposed) model exceeds all

others, with near-perfect scores of 99.9% accuracy, 99.99%

precision, 97.2% recall, and 99.85% F1 score, demonstrating

its strong capacity to identify complex vulnerability patterns.

Both the CNN and LSTM models outperform the

suggested model by more than 97 percent; however, they

aren't quite as good when it comes to recall and F1 scores.

The Two Layer Bi-GRU model does okay, with balanced

metrics around 88%. This shows that it is good at modeling

sequences but not very good at understanding the context

deeply.

In comparison, the Two-layer RNN performs much

worse across all measures, with scores ranging from 30 to

36%, showing its inadequacies in capturing the semantic and

temporal aspects of online vulnerabilities. Overall, the chart

shows that combining IBERT's contextual embeddings with

GRU's temporal modeling in the suggested architecture

results in higher performance, making it the most effective

model for secure and accurate vulnerability classification.

Godwin Ponsam J et al. / IJECE, 12(12), 164-176, 2025

174

Fig. 7 Performance comparison of the model on web vulnerability detection

4.4.3. Performance Comparison of Attack Detection Times In

Various Models
Table 4. Performance comparison of attack detection times in various

models

Studies
Detection

Time

Web attack detection via autoencoder [24] 5.1

Text analysis-based SQLI attack detection [27] 0.89

NLP Technique [10] 0.4

Proposed Model 0.45

Table 4 presents various studies with respect to detection

time. In existing studies, web attack detection using an

autoencoder takes 5.1 seconds, Text analysis-based SQLI

attack detection takes 0.89 seconds, and the NLP technique

takes 0.4 seconds. The proposed model should be considered

for a detection time of 0.45, given its high-level accuracy,

and compared to the previous model's detection time of 5.1,

based on accuracy.

4.5. Limitations of the Proposed Model

The proposed model possesses strong contextual

learning capabilities; however, it also has several limitations.

Deep learning Models suffer from limited interpretability;

they face various challenges related to security analysis,

which is necessary to justify the model's decisions. With a

detection time of 0.45, the proposed model surpasses the

previous model in detection time, aiming to achieve a higher

level of accuracy.

4.6. Advantages of the Proposed Model

The proposed model is expected to offer several

advantages in the domain of web vulnerability detection. It is

the powerful and contextual ideas about IBERT that

accurately capture the semantic relationship among the

patterns with complex types of web requests. It is also

enabled to detect attacks of SQL injection, cross-site

scripting, and command injection. Adding a GRU-based

classifier enhances sequential pattern recognition by

preserving long-term dependencies and the temporal

relationship between input tokens. This helps look at multi-

step attacks. This framework also talked about how

automated detection with low values could be a very

effective way to keep online environments safe. The

proposed model, IBERT-GRU, should be able to grow, learn,

and utilize language to address web security issues.

5. Conclusion and Future Work
Web vulnerabilities tend to be a significant threat to

digital infrastructures, resulting in data breaches, financial

losses, and violations of privacy. Traditional detection lags in

addressing the evolving nature of attacks and the complex

architectures of modern and evolving web systems. The

proposed deep learning-based IBERT-GRU model could be

more efficient in detecting online vulnerabilities. IBERT

offers deep contextual embedding from online inputs,

making it optimal for GRU to capture sequential

dependencies, while providing examination of syntax, web

traffic, and code structure behavior.

While testing the developed model using datasets from

OWASP, Kaggle, and CSIC-2010, the model achieved an

accuracy of 99.9%, a Precision of 97.2%, and a recall of

99.85%. The F1 score of the model was 99.85%, which

outperformed the traditional deep learning models, CNN and

LSTM. The proposed model exhibits a significantly

improved computational speed compared to baseline models,

with a 6-minute reduction in inference time to 150

milliseconds.

0

20

40

60

80

100

120

CNN LSTM Two layer RNN Two Layer Bi-GRU IBERT-GRU(Proposed)

S
co

re
 (

%
)

Model

Performance Comparison of Models on Web Vulnerability Detection

Accuracy Precision Recall F1 Score

Metric

Godwin Ponsam J et al. / IJECE, 12(12), 164-176, 2025

175

Deep learning Models remain a "black box," critical in

high-stakes security situations. Adding proven models like

SHAP and LIME helps explain decisions to cybersecurity

experts. The performance of the model is enhanced by

incorporating multilingual and cross-platform vulnerability

databases, making the model more adaptable to the online

ecosystem. False negative of the model is reduced by training

the model in real-time traffic and with different network

conditions. The proposed work could be further enhanced by

adding reinforcement learning or GNN for an adaptive

mitigation engine that learns new attack techniques. Finally,

lightweight deployment with edge computing enables

framework analysis in low-resource settings, such as IoT

applications.

References
[1] Subhadeep Chell et al., “Real-Time Threat Detection and Mitigation in Web API Development,” 2024 International Conference on

Electrical Electronics and Computing Technologies (ICEECT), Greater Noida, India, pp. 1-9, 2024. [CrossRef] [Google Scholar]

[Publisher Link]

[2] Qui Cao et al., “BERT-Enhanced DGA Botnet Detection: A Comparative Analysis of Machine Learning and Deep Learning Models,”

2024 13th International Conference on Control, Automation and Information Sciences (ICCAIS), Ho Chi Minh City, Vietnam, pp. 1-6,

2024. [CrossRef] [Google Scholar] [Publisher Link]

[3] Shalini Verma, and Harish Kapoor, “Machine Learning for Predictive Maintenance: A Cloud Computing Architecture and Lessons for

a Healthcare Context,” International Academic Journal of Science and Engineering, vol. 8, no. 2, pp. 1-5, 2021. [Publisher Link]

[4] Rania Zaimi et al., “An Enhanced Mechanism for Malicious URL Detection using Deep Learning and DistilBERT-based Feature

Extraction,” The Journal of Supercomputing, vol. 81, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[5] Sofonias Yitagesu et al., “Systematic Literature Review on Software Security Vulnerability Information Extraction,” ACM Transactions

on Software Engineering and Methodology, pp. 1-51, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[6] Ihsan Ullah et al., “Unveiling the Power of Deep Learning: A Comparative Study of LSTM, BERT, and GRU for Disaster Tweet

Classification,” IEIE Transactions on Smart Processing & Computing, vol. 12, no. 6, pp. 526-534, 2023. [CrossRef] [Google Scholar]

[Publisher Link]

[7] Abba Suganda Girsang, and Stanley, “Hybrid LSTM and GRU for Cryptocurrency Price Forecasting Based on Social Network

Sentiment Analysis Using FinBERT,” IEEE Access, vol. 11, pp. 120530-120540, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[8] Sarbast H. Ali et al., “Web Vulnerabilities Detection Using a Hybrid Model of CNN, GRU and Attention Mechanism,” Science Journal

of University of Zakho, vol. 13, no. 1, pp. 58-64, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[9] Vahid Babaey, and Hamid Reza Faragardi, “Detecting Zero-Day Web Attacks with an Ensemble of LSTM, GRU, and Stacked

Autoencoders,” Computers, vol. 14, no. 6, pp. 1-29, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[10] Yunus Emre Seyyar, Ali Gökhan Yavuz, and Halil Murat Ünver, “An Attack Detection Framework based on BERT and Deep

Learning,” IEEE Access, vol. 10, pp. 68633-68644, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[11] Abdu Salam et al., “Deep Learning Techniques for Web-Based Attack Detection in Industry 5.0: A Novel

Approach,” Technologies, vol. 11, no. 4, pp. 1-18, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[12] Prabhuta Chaudhary, Ayush Verma, and Manju Khari, Harnessing Language Models and Machine Learning for Rancorous URL

Classification, 1st ed., Cybersecurity and Data Science Innovations for Sustainable Development of HEICC, pp. 273-288, 2025. [Google

Scholar] [Publisher Link]

[13] Sidwendluian Romaric Nana et al., “Deep Learning and Web Applications Vulnerabilities Detection: An Approach based on Large

Language Models,” International Journal of Advanced Computer Science & Applications, vol. 15, no. 7, pp. 1-9, 2024. [CrossRef]

[Google Scholar] [Publisher Link]

[14] Refat Othman, Bruno Rossi, and Barbara Russo, “A Comparison of Vulnerability Feature Extraction Methods from Textual Attack

Patterns,” 2024 50th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Paris, France, pp. 419-422,

2024. [CrossRef] [Google Scholar] [Publisher Link]

[15] Ioana Branescu, Octavian Grigorescu, and Mihai Dascalu, “Automated Mapping of Common Vulnerabilities and Exposures to MITRE

ATT&CK Tactics,” Information, vol. 15, no. 4, pp. 1-19, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[16] Jianing Liu et al., “Enhancing Vulnerability Detection Efficiency: An Exploration of Light-Weight LLMs with Hybrid Code

Features,” Journal of Information Security and Applications, vol. 88, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[17] Jaydeep R. Tadhani et al., “Securing Web Applications against XSS and SQLi Attacks using a Novel Deep Learning

Approach,” Scientific Reports, vol. 14, pp. 1-17, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[18] Remzi Gürfidan, “VULREM: Fine-Tuned BERT-Based Source-Code Potential Vulnerability Scanning System to Mitigate Attacks in

Web Applications,” Applied Sciences, vol. 14, no. 21, pp. 1-14, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[19] Soolin Kim et al., “Vuldebert: A Vulnerability Detection System using Bert,” 2022 IEEE International Symposium on Software

Reliability Engineering Workshops (ISSREW), Charlotte, NC, USA, pp. 69-74, 2022. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/ICEECT61758.2024.10739333
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Real-time+threat+detection+and+mitigation+in+web+api+development&btnG=
https://ieeexplore.ieee.org/abstract/document/10739333
https://doi.org/10.1109/ICCAIS63750.2024.10814364
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=BERT-Enhanced+DGA+Botnet+Detection%3A+A+Comparative+Analysis+of+Machine+Learning+and+Deep+Learning+Models&btnG=
https://ieeexplore.ieee.org/abstract/document/10814364
https://iaiest.com/iaj/index.php/IAJSE/article/view/IAJSE0808
https://doi.org/10.1007/s11227-024-06908-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+enhanced+mechanism+for+malicious+URL+detection+using+deep+learning+and+DistilBERT-based+feature+extraction&btnG=
https://link.springer.com/article/10.1007/s11227-024-06908-x
https://doi.org/10.1145/3745026
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Systematic+Literature+Review+on+Software+Security+Vulnerability+Information+Extraction&btnG=
https://dl.acm.org/doi/abs/10.1145/3745026
https://doi.org/10.5573/IEIESPC.2023.12.6.526
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Unveiling+the+power+of+deep+learning%3A+A+comparative+study+of+lstm%2C+bert%2C+and+gru+for+disaster+tweet+classification&btnG=
https://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE11646191
https://doi.org/10.1109/ACCESS.2023.3324535
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hybrid+LSTM+and+GRU+for+Cryptocurrency+Price+Forecasting+Based+on+Social+Network+Sentiment+Analysis+Using+FinBERT&btnG=
https://ieeexplore.ieee.org/abstract/document/10285111
https://doi.org/10.25271/sjuoz.2025.13.1.1404
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=WEB+VULNERABILITIES+DETECTION+USING+A+HYBRID+MODEL+OF+CNN%2C+GRU+AND+ATTENTION+MECHANISM&btnG=
https://sjuoz.uoz.edu.krd/index.php/sjuoz/article/view/1404
https://doi.org/10.3390/computers14060205
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detecting+Zero-Day+Web+Attacks+with+an+Ensemble+of+LSTM%2C+GRU%2C+and+Stacked+Autoencoders&btnG=
https://www.mdpi.com/2073-431X/14/6/205
https://doi.org/10.1109/ACCESS.2022.3185748
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+attack+detection+framework+based+on+BERT+and+deep+learning&btnG=
https://ieeexplore.ieee.org/abstract/document/9804700
https://doi.org/10.3390/technologies11040107
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A.+Salam%2C+Deep+Learning+Techniques+for+Web-Based+Attack+Detection+in+Industry+5.0%3A+A+Novel+Approach&btnG=
https://www.mdpi.com/2227-7080/11/4/107
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Harnessing+Language+Models+and+Machine+Learning+for+Rancorous+URL+Classification&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Harnessing+Language+Models+and+Machine+Learning+for+Rancorous+URL+Classification&btnG=
https://www.taylorfrancis.com/chapters/edit/10.1201/9781032711300-19/harnessing-language-models-machine-learning-rancorous-url-classification-prabhuta-chaudhary-ayush-verma-manju-khari
https://dx.doi.org/10.14569/IJACSA.2024.01507135
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+learning+and+web+applications+vulnerabilities+detection%3A+An+approach+based+on+large+language+models&btnG=
https://thesai.org/Publications/ViewPaper?Volume=15&Issue=7&Code=IJACSA&SerialNo=135
https://doi.org/10.1109/SEAA64295.2024.00070
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Comparison+of+Vulnerability+Feature+Extraction+Methods+from+Textual+Attack+Patterns&btnG=
https://ieeexplore.ieee.org/abstract/document/10803510
https://doi.org/10.3390/info15040214
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automated+mapping+of+common+vulnerabilities+and+exposures+to+mitre+att%26ck+tactics&btnG=
https://www.mdpi.com/2078-2489/15/4/214
https://doi.org/10.1016/j.jisa.2024.103925
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+vulnerability+detection+efficiency%3A+An+exploration+of+light-weight+LLMs+with+hybrid+code+features&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2214212624002278
https://doi.org/10.1038/s41598-023-48845-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Securing+web+applications+against+XSS+and+SQLi+attacks+using+a+novel+deep+learning+approach&btnG=
https://www.nature.com/articles/s41598-023-48845-4
https://doi.org/10.3390/app14219697
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=VULREM%3A+Fine-Tuned+BERT-Based+Source-Code+Potential+Vulnerability+Scanning+System+to+Mitigate+Attacks+in+Web+Applications&btnG=
https://www.mdpi.com/2076-3417/14/21/9697
https://doi.org/10.1109/ISSREW55968.2022.00042
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Vuldebert%3A+A+vulnerability+detection+system+using+bert&btnG=
https://ieeexplore.ieee.org/abstract/document/9985089

Godwin Ponsam J et al. / IJECE, 12(12), 164-176, 2025

176

[20] Mudassor Ahmed Chowdhury, Mushfiqur Rahman, and Sifatnur Rahman, “Detecting Vulnerabilities in Website using Multiscale

Approaches: Based on Case Study,” International Journal of Electrical & Computer Engineering, vol. 14, no. 3, pp. 2814-2821, 2024.

[CrossRef] [Google Scholar] [Publisher Link]

[21] Sachin Kumar Sharma et al., Web Security Vulnerabilities: Identification, Exploitation, and Mitigation, 1st ed., Cybersecurity CRC

Press, pp. 183-218, 2021. [Google Scholar] [Publisher Link]

[22] Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta, “Detection, Assessment and Mitigation of Vulnerabilities in Open Source

Dependencies,” Empirical Software Engineering, vol. 25, pp. 3175-3215, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[23] Cho Xuan Do, Nguyen Trong Luu, and Phuong Thi Lan Nguyen, “Optimizing Software Vulnerability Detection using RoBERTa and

Machine Learning,” Automated Software Engineering, vol. 31, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[24] Jiancong Li et al., “Web Application Attack Detection Based on Attention and Gated Convolution Networks,” IEEE Access, vol. 8, pp.

20717-20724, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[25] Hieu Mac et al., “Detecting Attacks on Web Applications Using Autoencoder,” Proceedings of the 9th International Symposium on

Information and Communication Technology, Danang City Viet Nam, pp. 416-421, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[26] Vijaya Arjunan et al., “Deciphering Ancient Tamil Epigraphy: A Deep Learning Approach for Vatteluttu Script Recognition,” Journal

of Internet Services and Information Security, vol. 15, no. 1, pp. 451-467, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[27] Lu Yu, Senlin Luo, and Limin Pan, “Detecting SQL Injection Attacks based on Text Analysis,” 3rd International Conference on

Computer Engineering, Information Science & Application Technology, pp. 95-101, 2019. [CrossRef] [Google Scholar] [Publisher

Link]

[28] Geetha Krishna Venkatesh Maroju, and Sai Nandu Posina, “Comparative Analysis of LSTM, GRU, and BERT Models for Fake News

Detection,” Bachelor Thesis, Blekinge Institute of Technology, pp. 1-72, 2025. [Google Scholar] [Publisher Link]

[29] S. Poornimadarshini et al., “Bibliometric Analysis of IJISS Journal based on Citation and Publication Relevant Metrics,” Indian Journal

of Information Sources and Services, vol. 14, no. 4, pp. 153-158, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[30] Ouissem Ben Fredj et al., “An OWASP Top Ten Driven Survey on Web Application Protection Methods,” Risks and Security of

Internet and Systems: 15th International Conference, CRiSIS 2020, Paris, France, pp. 235-252, 2020. [CrossRef] [Google Scholar]

[Publisher Link]

[31] Maysoon Khazaal Abbas Maaroof, and Med Salim Bouhlel, “Drone Image Localization by Faster R-CNN Algorithm and Detection

Accuracy,” Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, vol. 16, no. 1, pp. 172-189,

2025. [CrossRef] [Google Scholar] [Publisher Link]

[32] Rokia Lamrani Alaoui, and El Habib Nfaoui, “Deep Learning for Vulnerability and Attack Detection on Web Applications: A

Systematic Literature Review,” Future Internet, vol. 14, no. 4, pp. 1-46, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[33] Guanjun Lin et al., “Software Vulnerability Detection using Deep Neural Networks: A Survey,” Proceedings of the IEEE, vol. 108, no.

10, pp. 1825-1848, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[34] Saif ur Rehman et al., “DIDDOS: An Approach for Detection and Identification of Distributed Denial of Service (DDoS) Cyberattacks

using Gated Recurrent Units (GRU),” Future Generation Computer Systems, vol. 118, pp. 453-466, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[35] Muhammad Noman, Muhammad Iqbal, and Amir Manzoor, “A Survey on Detection and Prevention of Web

Vulnerabilities,” International Journal of Advanced Computer Science and Applications, vol. 11, no. 6, pp. 1-20, 2020. [CrossRef]

[Google Scholar] [Publisher Link]

[36] A.M.B. Mohamad et al., “Impact of using Website on Online Learning Behavior,” International Academic Journal of Social

Sciences, vol. 5, no. 2, pp. 76-90. 2018. [CrossRef] [Google Scholar] [Publisher Link]

[37] Nicolás Montes et al., “Web Application Attacks Detection using Deep Learning,” Progress in Pattern Recognition, Image Analysis,

Computer Vision, and Applications, pp. 227-236, 2022. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.11591/ijece.v14i3.pp2814-2821
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detecting+vulnerabilities+in+website+using+multiscale+approaches%3A+based+on+case+study&btnG=
https://ijece.iaescore.com/index.php/IJECE/article/view/34289
https://scholar.google.com/scholar?q=Web+security+vulnerabilities:+Identification,+exploitation,+and+mitigation&hl=en&as_sdt=0,5
https://www.taylorfrancis.com/chapters/edit/10.1201/9781003145042-12/web-security-vulnerabilities-sachin-kumar-sharma-arjun-singh-punit-gupta-vijay-kumar-sharma
https://doi.org/10.1007/s10664-020-09830-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detection%2C+assessment+and+mitigation+of+vulnerabilities+in+open+source+dependencies&btnG=
https://link.springer.com/article/10.1007/s10664-020-09830-x?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst&utm_source=ArticleAuthorOnlineFirst&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorOnlineFirst_20200701&error=cookies_not_supported&code=ed1317ba-caa8-4545-8c47-9edbb332085d
https://doi.org/10.1007/s10515-024-00440-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimizing+software+vulnerability+detection+using+RoBERTa+and+machine+learning&btnG=
https://link.springer.com/article/10.1007/s10515-024-00440-1
https://doi.org/10.1109/ACCESS.2019.2955674
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Web+Application+Attack+Detection+Based+on+Attention+and+Gated+Convolution+Networks&btnG=
https://ieeexplore.ieee.org/abstract/document/8911430
https://doi.org/10.1145/3287921.3287946
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detecting+attacks+on+web+applications+using+autoencoder&btnG=
https://dl.acm.org/doi/abs/10.1145/3287921.3287946
https://doi.org/10.58346/JISIS.2025.I1.030
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deciphering+Ancient+Tamil+Epigraphy%3A+A+Deep+Learning+Approach+for+Vatteluttu+Script+Recognition&btnG=
https://jisis.org/wp-content/uploads/2025/04/2025.I1.030.pdf
https://doi.org/10.2991/iccia-19.2019.14
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detecting+sql+injection+attacks+based+on+text+analysis&btnG=
https://www.atlantis-press.com/proceedings/iccia-19/125913106
https://www.atlantis-press.com/proceedings/iccia-19/125913106
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparative+Analysis+of+LSTM%2C+GRU%2C+and+BERT+Models+for+Fake+News+Detection&btnG=
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1980396&dswid=-3454
https://doi.org/10.51983/ijiss-2024.14.4.24
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bibliometric+Analysis+of+IJISS+Journal+based+on+Citation+and+Publication+Relevant+Metrics&btnG=
https://ojs.trp.org.in/index.php/ijiss/article/view/4642
https://doi.org/10.1007/978-3-030-68887-5_14
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+OWASP+top+ten+driven+survey+on+web+application+protection+methods&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-68887-5_14
https://doi.org/10.58346/JOWUA.2025.I1.010
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Drone+Image+Localization+by+Faster+R-CNN+Algorithm+and+Detection+Accuracy&btnG=
https://jowua.com/wp-content/uploads/2025/04/2025.I1.010.pdf
https://doi.org/10.3390/fi14040118
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+learning+for+vulnerability+and+attack+detection+on+web+applications%3A+A+systematic+literature+review&btnG=
https://www.mdpi.com/1999-5903/14/4/118
https://doi.org/10.1109/JPROC.2020.2993293
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+vulnerability+detection+using+deep+neural+networks%3A+a+survey&btnG=
https://ieeexplore.ieee.org/abstract/document/9108283
https://doi.org/10.1016/j.future.2021.01.022
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DIDDOS%3A+An+approach+for+detection+and+identification+of+Distributed+Denial+of+Service+%28DDoS%29+cyberattacks+using+Gated+Recurrent+Units+%28GRU%29&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167739X21000327
https://dx.doi.org/10.14569/IJACSA.2020.0110665
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+on+detection+and+prevention+of+web+vulnerabilities&btnG=
https://thesai.org/Publications/ViewPaper?Volume=11&Issue=6&Code=IJACSA&SerialNo=65
https://doi.org/10.9756/IAJSS/V5I2/18100028
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Impact+of+Using+Website+on+Online+Learning+Behavior&btnG=
https://iaiest.com/iaj/index.php/IAJSS/article/view/IAJSS1810028
https://doi.org/10.1007/978-3-030-93420-0_22
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Nicol%C3%A1s+Montes%2C+Web+application+attacks+detection+using+deep+learning&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-93420-0_22

