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Abstract - Web vulnerability faces significant challenges, including data breaches, privacy violations, and financial losses. 

Comparing it with traditional conventional methods, it proves inadequate for identifying attack patterns and complex semantic 

structures in the temporal evolution of web page changes. This study primarily focuses on the IBERT-GRU model. To improve 

the detection and resolution of web vulnerabilities, the Integrated Bidirectional Encoder Representations from Transformers 

with Gated Recurrent Unit (IBERT-GRU) is enfolded. The IBERT model should incorporate the intricate semantic 

relationships and contextual information derived from diverse internet sources, including source code, network requests, and 

system logs. This method is considered an effective method for detecting patterns and revealing the weaknesses of the 

sequences. The proposed methodology is found to be more accurate (99.9%) and has a higher recall (97.2%) than 

benchmarked algorithms. The proposed method, in addition, has a better F1 score of 99.85%. The performance parameters 

indicate that the proposed IBERT-GRU architecture is a strong and scalable technique to keep track of vulnerabilities in real 

time in complicated online systems. 

Keywords - Web Vulnerability Detection, Deep Learning, IBERT-GRU, Transformer Models, Gated Recurrent Unit (GRU), 

Cybersecurity, Semantic Analysis. 

1. Introduction  
Web applications, which are integral to nearly all digital 

services today, are increasingly characterized by heightened 

interactivity and complexity, rendering them vulnerable to a 

wide array of significant security threats [1]. Several 

examples of the modern-day vulnerabilities include SQL 

Injection (SQLi), Cross-Site Scripting (XSS), Remote Code 

Execution (RCE), and Command Injection. Even if secure 

coding standards and static analysis tools are used to protect 

the web stack, attackers often get beyond normal security 

levels by leveraging obfuscation, polymorphic payloads, or 

innovative encoding methods [2, 3].  Because of this, 

methods for detecting and preventing web-based assaults in 

real-time that are adaptive and context-aware are required. 

Traditional rule-based Intrusion Detection Systems (IDS) 

and Static Vulnerability Scanners (such as Snort and Nikto) 

use predetermined signatures or syntactic heuristics. Low 

recall rates, false positives, and the inability to generalize 

across unexpected assault patterns are some of the problems 

these systems face. To overcome these limitations, the 

current study focused on the deep learning algorithm, which 

helps automate the feature extraction and also detects the 

sequential and semantic patterns through web payloads [4]. 

The goal is to learn about high-dimensional representations, 

which are followed by input strings such as HTTP requests, 

code snippets, or API logs. These have proven to be 

promising approaches, as demonstrated by models like CNN, 

LSTM, and Bi-GRU [27]. In identifying attacks in payloads, 

which are characterized by specific traffic behaviors, 

Conventional RNN-based models encounter several 

challenges, including dependencies between learning and 

input sequences [5, 10].  

 

Following the responses noted as issues, the proposed 

model IBERT-GRU helps detect web vulnerabilities [7]. Pre-

trained, this proposed model, embedded with deep contextual 

information, is kept as the raw text input. This also combines 

these types of embeddings with GRU to predict the temporal 

and syntactic patterns among the various sequences [6].  

Adding BERT to the model enhances its ability to distinguish 

between safe and hazardous patterns, even in the presence of 

noise, encoding trickery, or malicious changes [8]. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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We tested and proved our strategy using a publicly 

available Kaggle vulnerability dataset with tagged web 

payloads. A group of studies compares the proposed IBERT-

GRU against baseline models like CNN, LSTM, and Bi-

GRU in terms of accuracy, precision, recall, and F1 score. 

The results show that the proposed model greatly reduces 

false negatives, making sure that important attacks are not 

missed, and it significantly improves overall detection 

performance. This study adds a scalable, end-to-end deep 

learning framework for finding and fixing online security 

holes. It does this by getting beyond the limitations of earlier 

models and boosting sequence understanding using 

transformer-based embeddings. It immediately applies to 

Web Application Firewalls (WAFs), DevSecOps pipelines, 

and real-time cybersecurity monitoring solutions [9]. 

 

1.1. Key Contribution 

 Improvised BERT embeddings are combined with Gated 

Recurrent Units (GRU) to identify contextual semantics 

and sequential dependencies efficiently.  

 An optimized framework is developed to effectively 

mitigate various suspicious attacks, including SQL 

injection (SQLi), Cross-Site Scripting (XSS), and 

Command injection. This process of identification is 

achieved by utilizing context-aware deep representations 

and surpassing traditional rule-based models.  

 The False Negative (FN) rate of the proposed model is 

reduced evidently by the utilization of advanced 

language representation, hence ensuring high sensitivity 

in the detection of malicious requests. This feature is 

predominantly required in applications on web firewalls 

and secure APIs. 

 The proposed architecture is characterized by its 

lightweight design, scalability, and adaptability, making 

it practical for integration into Web Application 

Firewalls (WAFs) and DevSecOps pipelines. 

The research report covers the following areas: Chapter I 

describes the Introduction to the detection and mitigation of 

web vulnerabilities using Deep Learning. This also covers 

the main contribution of this research. Chapter II describes 

the literature review, in which the previous work based on 

this type of research is also explained. Chapter III describes 

the proposed methodology, which also includes the overall 

architecture, proposed architecture diagram, Model 

evaluation of the IBERT-GRU framework, and proposed 

Algorithm.  

 

Chapter IV describes about Results and Discussion 

section in this also included the dataset description, 

comparison of metric analysis for proposed and existing 

models, to compared the training and testing accuracy of 

proposed model, Evaluation metric analysis followed by 

experiment setup, Performance metric comparison of various 

models and also discussed the performance comparison of 

attack detection time in multiple models, limitation and 

advantages of proposed model. Chapter V describes the 

conclusion and future work, and also explains the main key 

findings of the research work. 

 

2. Literature Review 
DL is a type of ML that uses several nonlinear hidden 

layers to extract features, change them, analyze patterns, and 

sort them into groups [10]. DL-based solution methods are 

used in a wide range of fields, such as robotics, computer 

vision, predictive maintenance, finance, text processing, and 

classification challenges [29]. DL approaches have worked 

quite well for processing a lot of different kinds of data, like 

text, audio, and video. DL has computational models with 

several layers of processing that let data be shown at various 

levels of abstraction [30]. The deep neural network we used 

consisted of perceptions, activation functions, cost functions, 

and fully connected layers, which are detailed further in this 

subsection [31]. 

 

Web-based attacks pose a significant threat to Industry 

5.0 infrastructure, primarily due to their role in the loss of 

sensitive data, disruption of operations, and financial loss. 

DDoS attacks, SQL injection, and cross-site scripting attacks 

[11, 32]. To discuss the various consequences related to 

botnets, such as Mirai, and their impact on the Internet of 

Things. The author discussed the various types of 

consequences of attacks, such as denial of services, within 

the framework of IoT devices, which typically analyze the 

key components of the Industry 5.0 System that are hacked 

and exploited in DDoS attacks [12]. It provides an overview 

of Machine Learning algorithms that help detect software 

bugs and web attacks through SQL injection and cross-site 

scripting [34]. To identify several types of machine learning 

methods, including decision trees, SVM, and clustering 

algorithms. The goal is to demonstrate and provide promises 

for identifying known attack patterns [35]. It is also 

discussed how these methods are less effective and fail to 

deal with increasingly complex and advanced attacks [13, 

36]. 

 

Various methods are used to detect SQL injection 

attacks, including regular expressions that should be matched 

through ML-based models, such as Support Vector Machine 

(SVM), Naïve Bayes, Random Forest, and Decision Tree 

[14]. Many people use regular expression matching because 

it is very accurate and quick to find [37]. OWASP ranks SQL 

injection attacks as the greatest threat to network 

applications, and this vulnerability has been the subject of 

continuous study in the field of network security [15, 25]. In 

recent years, numerous approaches to SQL injection 

detection have been suggested, each focusing on a different 

sort of danger, attack, or mechanism of attack [16, 26]. One 

typical preprocessing method is standardizing SQL query 

statements, which standardize the values of query 

parameters, SQL keywords, and symbols [17]. 
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According to the authors, Kim et al., a BERT approach 

is used to detect software attacks. Based on this result, we 

need to determine the most effective method for enabling the 

model to compare syntactic and semantic features with the 

code [18]. Here, the number model F1 score is also shown as 

95% with an excellent accuracy value. It is also discussed 

that the model is noted as a false positive and negative 

compared to previous models. It demonstrates that the BERT 

model is a highly effective method for identifying software 

flaws [19]. 

 

Followed by the existing method to detect fake news in 

the longest way, which means a DL model is ideal for the job 

in terms of speed, accuracy, and ease of understanding 

concepts [20]. Most of the researchers used various models 

such as Long Short-Term Memory (LSTM), Gated Recurrent 

Unit (GRU), and Bidirectional Encoder Representations from 

Transformers (BERT). Most of the researchers compared 

these designs using the same data set, followed by the 

evaluation approach [21]. Based on the earlier research, the 

model was analyzed for practical implementation. This study 

primarily investigated the efficiency of DL models, including 

LSTM, GRU, and BERT. These are used to detect web 

vulnerabilities [22]. To use as a balanced dataset from 

Kaggle, this study mainly evaluates each model to determine 

whether it predicts performance based on computational 

efficiency and explainability. It is for employees with the 

EAI technique, which is used as Local Interpretable Model 

Agnostic Explanations (LIME) and Shapley Addictive 

Explanations [23]. 

 

3. Proposed Methodology 
3.1. Overall Architecture 

The architecture in Figure 1 represents a Deep Learning 

Model platform that utilizes various source codes to detect 

and fix security holes on the internet. To initiate this process, 

obtain the input as raw source code after executing the pre-

processing module. These tasks should be performed in 

various stages, including preparing the input for analysis, 

which involves creating a balanced dataset, removing 

duplicates, filtering noise, and cleaning the code structure. 

After removing the cleaned data, the next step is to go 

through a feature extraction stage, which, for IBERT, should 

generate the contextual semantic embeddings, showing how 

the code should be written and structured. The classification 

stage should utilize the GRU, which contains the sequential 

relationship between the embedded vectors. The GRU 

classifier returns a binary or multi-class option for whether 

the input is vulnerable. If a vulnerability is detected, the final 

step in vulnerability reporting is to determine both the type 

of vulnerability (e.g., XSS, SQL Injection) and the specific 

vulnerable code portions. The result provides developers 

with valuable information to address the identified problems.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Overall architecture 
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3.2. Proposed Architecture Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
Fig. 2 Architecture for proposed model 

 
The proposed architecture, Figure  2 shows the Hybrid 

Deep Learning strategy for web vulnerability identification, 

which also combines IBERT and RoBERTa with GRU-based 

sequence modeling. The process begins with raw input, such 

as site code or log data, which is standardized and tokenized 

to make it suitable for transformer models. This data is 

transmitted to a BERT module after being preprocessed. 

There, it is embedded using special tokens like [CLS] and 

[SEP] and positional and token embeddings. An intermediate 

IBERT model is utilized to make the output embeddings 

from BERT even better. This makes contextual feature 

vectors that are great for jobs that involve finding 

vulnerabilities. The RoBERTa module processes these 

contextual embeddings sequentially, utilizing the advanced 

self-attention mechanisms to highlight the semantic 

relationships within the input. The resultant features are then 

enhanced and rendered, thereby preparing them for sequence 

modeling. Further, these extracted features are passed as 

input to a GRU-based time series module, including multiple 

Gated Recurrent Units (GRU1, GRU2, GRU3). These 

multiple gated recurrent units are designed to learn temporal 

data variations and behavioral patterns among the inputs. 

This portion contains a fully linked layer as well as a data 

standardization step that produces final prediction outputs. 

Finally, the system produces a classification output reflecting 

the vulnerability status of the input, such as whether the input 

data poses a security risk or is regarded as safe. This end-to-

end architecture efficiently blends static feature extraction 

and dynamic sequence modeling, using the best parts of 

BERT-based transformers and Recurrent Neural Networks to 

find web vulnerabilities quickly and accurately. 
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3.3. Model Evaluation of IBERT (BERT + ROBERTA) 

Framework 

The BERT model in the proposed approach has more 

than one task, which is necessary for classification. During 

this time, we noted the first token of input as fixed with the 

special classification label. The output layer of 𝑐𝜖𝑅𝐻 The 

sequence of representation should be used for classification. 

Here, also noted as H, is the hidden stage. Here, fine-tuning 

the BERT algorithm in the proposed model, 𝑊 ∈ 𝑅𝐾∗𝐻 

Which is added, and k is the number of three CVE-coded 

vulnerabilities detected in the model. Here, we calculate the 

exit probabilities for each K class as  
 

𝑝 =
𝑒𝑐𝑤𝑡

∑ 𝐶. 𝑤𝑡
𝑘

                                     (1) 

 

Describes the various probabilities among the 

classification model labels, in the BERT model, which has 

pre-trained parameters followed by uncased model 

parameters. These are used as a classification to fine-tune 

and maximize the probability of correctly identifying 

vulnerabilities. Here, an optimization algorithm is used to 

help determine the adaptive learning method for the input 

parameters. The Proposed approach of IBERT should be 

mentioned as Equations (2) and (3). 
 

𝑟𝑡 = 𝛽1𝑟𝑡−1 + (1 − 𝛽1)𝑔𝑡                        (2) 
 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2                        (3) 

 

From the above Equations (2) and (3), rt and vt are noted 

as the estimation of variance, delay rate as 𝛽1 − 𝛽2. Here, the 

error rate is 𝑟𝑡 and 𝑣𝑡. 

𝑟𝑡 =  
𝑟𝑡

1 − 𝛽1
𝑡                         (4) 

 

𝑣𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡                         (5) 

 

From the above Equations (4) and (5), rt and vt are used 

to obtain the values of W shown in Equation (6) 
 

𝑊𝑡+1 = 𝑊𝑡 −
𝜂

√𝑣𝑡+∈
 𝑟𝑡                        (6) 

From the above Equation (6) 𝜂 should represent the 

learning rate and ∈ as smoothing. 
 

3.3.1. Roberta Modeling 

A Robust Optimized BERT approach involves 

modifying the BERT model, which is undertrained based on 

evaluation results, by adjusting its hyperparameters and 

dataset size. Here are some modifications that help improve 

the performance of the BERT model. In this process, the 

various steps include training older models, such as BERT 

and RoBERTa, which are based on pretrained models. The 

training of these models should capture data, thereby 

improving accuracy. Removing the prediction involves 

removing the objective models, which in turn helps increase 

the downstream performance of the task. BERT model 

requires a training section among the various steps, and the 

ROBERTA model should be trained on a variety of 

sequences. In the BERT architecture, only the preprocessing 

stage is done to produce the static values. The ROBERTA 

model used to eliminate duplicates differed from the training 

time epochs. 

 

Figure  2 shows how the ROBERTA model is built and 

how it works, as explained in the next section. The 

ROBERTA model can take sentences that have been changed 

or encoded into tokens, which makes them viable input. The 

ROBERTA model can take input_ids, which are numbers 

that stand for each token. At the beginning of each token 

sequence, there is the [CLS] token, and at the end, there is 

the [SEP] token. Then, the model receives the attention mask 

input, which is a binary value indicating whether the token is 

padding. There will be padding added to the token sequence 

if its length is shorter than the most extended sequence. This 

padding is set to match the maximum number of tokens that 

the ROBERTA model can handle, which is 512 tokens. 

Token_type_ids is a field that provides a binary 

representation, indicating whether two sentences are sentence 

pairs. In the question-answering task that takes sentence pairs 

as input, these token_type_ids are frequently needed. The 

input is then passed via the 12-layer ROBERTA encoder, 

which converts it into a vector embedding format that 

includes embedding tokens, segment embeddings, and 

position embeddings. The last_hidden_state output layer will 

be built next. This is where all the embedding vector words 

will be kept. These word vectors will learn how to recognize 

English, and then the model will be tweaked so that it can do 

NLP tasks. 

 

3.3.2. Gated Recurrent Unit 

The GRU Framework Model should be performed as the 

gating mechanism within an RNN. The GRU (Figure 3) 

contains a modified level of unit type, which includes the 

hidden state for combining the input gate and forget gate into 

the update gate. The activation of a hidden unit consists of a 

time step as follows, 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Working principle of gated recurrent unit 
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The activation of a hidden unit based on the time step is 

processed as, 

𝑟𝑡 = 𝜎(𝑊𝑟ℎ𝑡−1 + 𝑈𝑟𝑥𝑡)                            (7) 
 

From the above Eqn 𝑟𝑡 Calculated, 𝜎 should represent 

the logistic sigmoid function and 𝑊𝑟  𝑎𝑛𝑑 𝑈𝑟   Defined as the 

weight matrices. Here to calculate ℎ𝑡 and 𝑟𝑡 Used as tanh 

tanh-type layer. 

ℎ𝑡 = tanh (𝑊(𝑟𝑡 ∗ ℎ𝑡−1) + 𝑈𝑥𝑡
)                             (8) 

In GRU, 𝑧𝑡 Should be replaced as a gate along with the 

forget gate in LSTM, to calculate 𝑧𝑡 

 

𝑧𝑡 = 𝜎(𝑤𝑧ℎ𝑡−1) + 𝑈𝑥𝑡
                           (9) 

 

Here are mentioned the hidden state values as  

 

ℎ𝑡 = (1 − 𝑧𝑡)(ℎ𝑡−1) + (𝑧𝑡)(ℎ𝑡)                       (10)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 4 Proposed algorithm architecture
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3.4. Proposed Algorithm Architecture 
The proposed technique (Figure 4) employed the 

upgraded BERT model to scan the source code of web apps 

for vulnerabilities and find CVE-coded problems that had 

already been reported. The BERT approach is a novel 

language representation model that uses a bidirectional 

transducer network to pre-train the language model on a 

corpus before fine-tuning it for other tasks. The problem-

specific BERT design can be expressed sequentially by a 

single line of code or a block of code. To make the input 

representation, you need to gather token, segment, and 

position code fragment embeddings that match a specific 

code. Simultaneously, vulnerability prediction in the BERT 

model is bidirectional, meaning it works both left and right. 

Figure 4 depicts the development architecture of the model.  

 

Figure 4 shows a complete pipeline for automatically 

classifying vulnerabilities using a finely-tuned BERT model 

on structured representations of source code. The approach 

starts with raw program source code, which usually includes 

function definitions that can include security holes. From this 

code, relevant program slices are calculated to separate logic-

specific parts that can show possible weaknesses. Then, these 

slices are turned into structured representations called code 

gadgets. These gadgets contain semantic and syntactic 

information that is useful for Deep Learning Analysis. To 

improve data quality, unclear or noisy code gadgets are 

deleted methodically, leaving a clean set of labeled gadgets 

ready for model training. 

 

Each code gadget is converted into tokens and 

embedded using token, position, and segment embeddings. 

This process forms the input representation necessary for the 

BERT model, ensuring that both the semantic meaning and 

structural order of the code tokens are preserved. The 

embedded representations are then processed through a 

meticulously configured BERT model, featuring 24 layers, 

512 hidden units, and 16 attention heads. Through this 

process, BERT captures crucial contextual details and long-

range dependencies within the code. Ultimately, the output 

hidden states, particularly those from special tokens like 

[CLS] and [SEP], are utilized to classify the code gadgets 

into specific Common Vulnerabilities and Exposures (CVE) 

types. This enables the framework to identify and accurately 

categorize vulnerabilities, such as SQL injection, XSS, and 

others. Overall, the architecture demonstrates a robust and 

language-aware approach to secure code analysis, facilitating 

the automatic, large-scale, and context-sensitive detection of 

vulnerabilities. 

 

3.4.1. Proposed Algorithm (IBERT-GRU) 

begin 

Step: 1 Initialization 

load IBERT tokenizer T 

Initialize IBERT model 

Initialize GRU + fully connected classifier 

set loss function → Binary cross Entropy 

Set optimizer → Adam (GRU + FC parameters, Ir

= 0.001) 

load vulnerability knowledge base KB 

step: 2 Input stage 

receive raw web input R = {r1, r2 … … … … … … , rn} 

step: 3 Preprocessing stage 

for each request ri in R do 

clean ri 

Tokenize using IBERT tokenizer T with Special tokens 

step: 4 Fetaure Extraction stage 

Ei → IBERT (ri) 

step: 5 classification stage 

Training phase (within classification) 

for epoch in range (1, epochs + 1); 

shuffle training data 

for each batch (x − batch, y − batch)do 

E − batch → IBERT(x − batch) 

H − batch → GRU (E − batch) 

p − batch → Fully connected (H − batch) 

p − batch → Sigmoid (p − batch) 

loss → Binary Cross Entropy (P − batch, y − batch) 

Optimizer. zero − grad () 

loss. backward () 

optimizer. step () 

Print("Epoch:", epoch, "Loss:", Loss) 

Save trained GRU Model 

Step: 5 Inference using Trained GRU 

hi → GRU (Ei) 

Pi → Fully Connected (hi) 

pi → Sigmoid (pi) 

step: 6 Vulnerability Detection State 

if Pi > θ then 

Label → "Vulnerable" 

Step: 7 Vulnerability Mitigation Strategy Statge 

Important Tokens → AttentionWeights (hi) 

type → Match (Important Tokens, KB) 

fix → Suggestmitigation (type, KB) 

Report → {status:vulnerable, type: type, Suggestion: fix} 

else 

label → safe 

Report → {status: " safe "} 

end if 

output Report 

done 

end 
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4. Results and Discussion 
4.1. Dataset Description 

The IBERT-GRU approach uses Improved BERT's 

ability to grasp context and GRU's ability to learn in a 

sequence to find and classify web vulnerabilities based on 

the OWASP Top 10 categories. The model creates deep 

semantic embeddings of code snippets and payloads using 

IBERT, capturing subtle syntax and meaning variations, 

using the OWASP dataset. There are labeled examples of 

SQL Injection, Cross-Site Scripting, and Security 

Misconfiguration in this dataset. These embeddings are next 

examined by the GRU layer, which replicates the temporal 

and logical flow of operations to detect intricate, multi-line 

vulnerabilities. The final step of this method is to have the 

learned representation of the right OWASP categories based 

on accuracy, precision, recall, and F1 Score. Considering the 

confusion matrix, along with various performance metrics 

related to vulnerability detection, helps create a strong and 

secure solution for developing an automated threat 

assessment.  

 

This study primarily utilized the Kaggle dataset, 

supplemented by web vulnerability detection, to evaluate the 

effectiveness of a Deep Learning architecture for integrating 

IBERT and GRU. These types of datasets include annotated 

HTTP payloads, enabling the combination of vulnerable and 

secure scenarios. To overcome the real-world scenario, 

followed by SQL injection and cross-site scripting, along 

with PHP and JavaScript. Followed by this preprocessing 

and tokenization, IBERT is used to extract the deep 

contextual embeddings, which are subsequently determined 

by a GRU-based classifier to identify the vulnerability status. 

Based on the attention mechanism, which helps identify the 

vulnerability status.  

 

The attention mechanism of the gradient boost algorithm 

helps identify problematic code, which is then mitigated by a 

danger rule-based module. These types of methods should 

exhibit the model adaptability utilized for detecting and 

mitigating the online vulnerabilities in various types of 

information, for the CSIC 2010 HTTP dataset created by the 

Spanish National Research Council, which is widely used as 

a benchmark for identifying internet attacks. It is also 

comprised of more than 36000 categorized requests, 

including both legitimate and malicious activity.  

 

This also contains the realistic e-commerce interaction 

among the various types of web threats, such as SQL 

injection, XSS, command injection, and buffer overflow. 

This makes it suitable for OWASP-based classifications. 

Each request is labeled and structured, making it simple for 

models like IBERT-GRU to tokenize and embed it. The 

dataset was used in this study to train the IBERT module on 

contextual patterns in HTTP payloads, as well as to enable 

the GRU layer to record sequential attack behavior, which 

helps detect and mitigate online vulnerabilities. 

 

4.2. Computational Metric Analysis for Proposed vs. 

Existing Model 

To mention the clear ideas about the computation 

concept demanded by each model, we report the estimated 

values for training and inference time, along with parameter 

count and epoch values. All training, development, testing, 

and inference operations are performed by the platform on 

the Kaggle dataset. 

 
Table 1. Computation metric analysis for proposed vs. Existing model 

Model 
Training 

Time 

Inference 

Time 
Epochs 

BERT 1.05 hours 524 ms 9 

GRU 8 mins 154 ms 7 

LSTM 13 mins 255 ms 7 

IBERT-GRU 

(Proposed ) 
6 mins 150 ms 7 

   

 
Fig. 5 Performance model comparison of training Vs Inference time 
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Fig. 6 Training and testing accuracy of proposed model (IBERT-GRU) 

 

To interpret Table 1 and Figure 5, which describe the 

training and inference efficiency of Deep Learning Models 

like BERT, GRU, and LSTM, and the suggested IBERT-

GRU reveals significant differences. Among the models 

tested, BERT had the longest training time at around 63 

minutes and the slowest inference time at 524 milliseconds, 

suggesting its computational intensity. GRU and LSTM took 

8 and 13 minutes to train, respectively, and 154 and 255 

milliseconds to make decisions. But the proposed IBERT-

GRU model did the best job in both areas, using only 6 

minutes to train and 150 milliseconds to make predictions. 

This large improvement demonstrates the model's ability to 

leverage IBERT's contextual strength and GRU's sequential 

processing speed. The IBERT-GRU framework is extremely 

effective and useful for real-time web vulnerability detection, 

especially when paired with OWASP-based threat 

classification systems in latency-sensitive situations. 

 

4.3. Training and Testing Accuracy of Proposed Model 

(IBERT - GRU) 

Figure 6 shows how the accuracy of the IBERT-GRU 

(Proposed) model changed throughout 7 epochs in a 

simulation. This shows how well it was trained and how well 

it worked. The model shows impressive speed and minimal 

overhead with a training time of approximately 6 minutes 

and an inference time of 150 milliseconds. Training and 

testing accuracy are both going up all the time. By the end of 

the last epoch, training accuracy had gone from 85.2% to 

99.6% and testing accuracy had gone from 84.7% to 99.9%. 

The model is stable and converging well over time, as shown 

by this steady improvement. It is important to note that the 

little divergence between the training and testing curves 

indicates that the model generalizes successfully and does 

not overfit excessively. The model finds key patterns of 

vulnerability in the first few epochs and gets better than 93% 

accurate by epoch 3. At the end of the training cycle, it can 

almost flawlessly sort items, which shows that it can be 

trusted to detect online security holes in real time. Overall, 

the IBERT-GRU model demonstrates learning dynamics that 

are fast, steady, and accurate. It takes a unique approach to 

secure data through a pipeline procedure, achieving both 

accuracy and speed. 

 

4.4. Evaluation Metric Analysis  

4.4.1. Experimental Setup 
 

Table 2. Experiment environmental setup 

Hardware Configuration 

Component Specification 

Processor (CPU) Intel Core i9-12900K 

Graphics Card 

(GPU) 
NVIDIA RTX 3090 

RAM 64 GB DDR5 

Storage 2TB NVMe SSD 

Software Configuration 

Operating System Windows 11 Pro 64-bit 

Python 3.9.13 

Transformers 4.35.0 

Hyper Parameters 

Batch Size 32 
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Optimizer Adam 

Learning Rate 2.00E-05 

Epochs 7 

Loss Function Categorical Cross-Entropy 

Model Configuration 

IBERT Module 

Pre-trained weights, fine-tuning 

in training on the vulnerability 

dataset 

GRU Layer Sequential learning 

Classifier OWASP categories 

 

Based on the above Table, 2 represents the combined 

structure of software and hardware components with a fine-

tuned Deep Learning Architecture, which allows for the 

analysis of rapid training and evaluation of the proposed 

model IBERT-GRU for web vulnerability detection. An Intel 

Core i9-12900K CPU, 64 GB of DDR5 RAM, and an 

NVIDIA RTX 3090 GPU, followed by a powered system. 

This gave it the processing capability it needed for 

transformer-based modeling. It ran on Windows 11 Pro 64-

bit with Python 3.9.13 and Transformers 4.35.0.  

 

We used a batch size of 32, the Adam optimizer, a 

learning rate of 2e-5, and categorical cross-entropy as the 

loss function to find the best hyperparameters for the model 

over 7 epochs. The IBERT module, which was initially 

trained using pre-trained weights, was fine-tuned throughout 

training to capture semantic trends in OWASP-labeled data. 

The GRU layer received these contextual embeddings. This 

layer supported lightweight sequential learning, which 

helped the model spot complicated vulnerability processes.  

 

A softmax-activated classifier linked these attributes to 

the OWASP Top 10 vulnerability groups. This architecture 

provided a fair trade-off between high classification accuracy 

and low computing overhead, as evidenced by the training 

and inference efficiency metrics, making it ideal for real-time 

and scalable security applications. 

 

To evaluate the deep learning model performance, 

various types of evaluation metrics are used to build the 

models. Here, we derived some metrics such as Accuracy, 

precision, Recall, and F1 Score. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
                   (11) 

 

The above Equation  (11)  should be used to determine 

the percentage of accurate prediction of models.  

 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                        (12) 

 

The above Equation (12)  represents the true positive 

among the rate of prediction, which is proportional to the 

accurate range of real positives. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                         (13) 

 

The above Equation (13)  represents the proportion 

among the positive examples as accurately measured by the 

recall. 
 

𝐹1 = 2𝑋
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                       (14) 

 

4.4.2. Performance Metric Comparison of Various Models 
Table 3.  Performance metric comparison of various models 

Model Accuracy Precision Recall 
F1 

Score 

CNN 99.5 98.98 1 99.49 

LSTM 98.69 99.85 95.69 97.82 

Two-layer RNN 35.99 33 36 30 

Two Layer Bi-

GRU 
88.33 89 88 88 

IBERT-GRU 

(Proposed) 
99.9 99.90 97.2 99.85 

 

Figure 7 compares five Deep Learning Models CNN, 

LSTM, Two-layer RNN, Two-layer Bi-GRU, and IBERT-

GRU (Proposed) for web vulnerability detection across four 

performance metrics: accuracy, precision, recall, and F1 

Score. The IBERT-GRU (Proposed) model exceeds all 

others, with near-perfect scores of 99.9% accuracy, 99.99% 

precision, 97.2% recall, and 99.85% F1 score, demonstrating 

its strong capacity to identify complex vulnerability patterns.  

 

Both the CNN and LSTM models outperform the 

suggested model by more than 97 percent; however, they 

aren't quite as good when it comes to recall and F1 scores. 

The Two Layer Bi-GRU model does okay, with balanced 

metrics around 88%. This shows that it is good at modeling 

sequences but not very good at understanding the context 

deeply.  

 

In comparison, the Two-layer RNN performs much 

worse across all measures, with scores ranging from 30 to 

36%, showing its inadequacies in capturing the semantic and 

temporal aspects of online vulnerabilities. Overall, the chart 

shows that combining IBERT's contextual embeddings with 

GRU's temporal modeling in the suggested architecture 

results in higher performance, making it the most effective 

model for secure and accurate vulnerability classification. 
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Fig. 7 Performance comparison of the model on web vulnerability detection 

 

4.4.3. Performance Comparison of Attack Detection Times In 

Various Models 
Table 4. Performance comparison of attack detection times in various 

models 

Studies 
Detection 

Time 

Web attack detection via autoencoder [24] 5.1 

Text analysis-based SQLI attack detection [27] 0.89 

NLP Technique [10] 0.4 

Proposed Model 0.45 

 
Table 4 presents various studies with respect to detection 

time. In existing studies, web attack detection using an 

autoencoder takes 5.1 seconds, Text analysis-based SQLI 

attack detection takes 0.89 seconds, and the NLP technique 

takes 0.4 seconds. The proposed model should be considered 

for a detection time of 0.45, given its high-level accuracy, 

and compared to the previous model's detection time of 5.1, 

based on accuracy.  

 

4.5. Limitations of the Proposed Model 

The proposed model possesses strong contextual 

learning capabilities; however, it also has several limitations. 

Deep learning Models suffer from limited interpretability; 

they face various challenges related to security analysis, 

which is necessary to justify the model's decisions. With a 

detection time of 0.45, the proposed model surpasses the 

previous model in detection time, aiming to achieve a higher 

level of accuracy. 

 

4.6. Advantages of the Proposed Model 

The proposed model is expected to offer several 

advantages in the domain of web vulnerability detection. It is 

the powerful and contextual ideas about IBERT that 

accurately capture the semantic relationship among the 

patterns with complex types of web requests. It is also 

enabled to detect attacks of SQL injection, cross-site 

scripting, and command injection. Adding a GRU-based 

classifier enhances sequential pattern recognition by 

preserving long-term dependencies and the temporal 

relationship between input tokens. This helps look at multi-

step attacks. This framework also talked about how 

automated detection with low values could be a very 

effective way to keep online environments safe. The 

proposed model, IBERT-GRU, should be able to grow, learn, 

and utilize language to address web security issues. 

 

5. Conclusion and Future Work 
Web vulnerabilities tend to be a significant threat to 

digital infrastructures, resulting in data breaches, financial 

losses, and violations of privacy. Traditional detection lags in 

addressing the evolving nature of attacks and the complex 

architectures of modern and evolving web systems. The 

proposed deep learning-based IBERT-GRU model could be 

more efficient in detecting online vulnerabilities. IBERT 

offers deep contextual embedding from online inputs, 

making it optimal for GRU to capture sequential 

dependencies, while providing examination of syntax, web 

traffic, and code structure behavior.  

 

While testing the developed model using datasets from 

OWASP, Kaggle, and CSIC-2010, the model achieved an 

accuracy of 99.9%, a Precision of 97.2%, and a recall of 

99.85%. The F1 score of the model was 99.85%, which 

outperformed the traditional deep learning models, CNN and 

LSTM. The proposed model exhibits a significantly 

improved computational speed compared to baseline models, 

with a 6-minute reduction in inference time to 150 

milliseconds.  
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Deep learning Models remain a "black box," critical in 

high-stakes security situations. Adding proven models like 

SHAP and LIME helps explain decisions to cybersecurity 

experts. The performance of the model is enhanced by 

incorporating multilingual and cross-platform vulnerability 

databases, making the model more adaptable to the online 

ecosystem. False negative of the model is reduced by training 

the model in real-time traffic and with different network 

conditions. The proposed work could be further enhanced by 

adding reinforcement learning or GNN for an adaptive 

mitigation engine that learns new attack techniques. Finally, 

lightweight deployment with edge computing enables 

framework analysis in low-resource settings, such as IoT 

applications. 
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