SSRG International Journal of Electronics and Communication Engineering
ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12112P114

Volume 12 Issue 12, 164-176, December 2025
© 2025 Seventh Sense Research Group®

Original Article

Framework For The Detection And Mitigation Of Web
Vulnerabilities Using Deep Learning

Godwin Ponsam J*, Chin Shiuh Shieh?, V Senthil Murugan®

!Department of Networking and Communications, Faculty of Engineering and Technology, SRM Institute of Science and
Technology, SRM Nagar, Kattankulathur, India.
2Electronic Engineering, National Kaohsiung University of Science and Technology, Taiwan.
3School of Computing, Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Chennai,
Tamil Nadu, India.

!Corresponding Author : godwinj@srmist.edu.in

Received: 14 October 2025 Revised: 16 November 2025 Accepted: 15 December 2025 Published: 27 December 2025

Abstract - Web vulnerability faces significant challenges, including data breaches, privacy violations, and financial losses.
Comparing it with traditional conventional methods, it proves inadequate for identifying attack patterns and complex semantic
structures in the temporal evolution of web page changes. This study primarily focuses on the IBERT-GRU model. To improve
the detection and resolution of web vulnerabilities, the Integrated Bidirectional Encoder Representations from Transformers
with Gated Recurrent Unit (IBERT-GRU) is enfolded. The IBERT model should incorporate the intricate semantic
relationships and contextual information derived from diverse internet sources, including source code, network requests, and
system logs. This method is considered an effective method for detecting patterns and revealing the weaknesses of the
sequences. The proposed methodology is found to be more accurate (99.9%) and has a higher recall (97.2%) than
benchmarked algorithms. The proposed method, in addition, has a better F1 score of 99.85%. The performance parameters
indicate that the proposed IBERT-GRU architecture is a strong and scalable technique to keep track of vulnerabilities in real

time in complicated online systems.

Keywords - Web Vulnerability Detection, Deep Learning, IBERT-GRU, Transformer Models, Gated Recurrent Unit (GRU),

Cybersecurity, Semantic Analysis.

1. Introduction

Web applications, which are integral to nearly all digital
services today, are increasingly characterized by heightened
interactivity and complexity, rendering them vulnerable to a
wide array of significant security threats [1]. Several
examples of the modern-day vulnerabilities include SQL
Injection (SQL.i), Cross-Site Scripting (XSS), Remote Code
Execution (RCE), and Command Injection. Even if secure
coding standards and static analysis tools are used to protect
the web stack, attackers often get beyond normal security
levels by leveraging obfuscation, polymorphic payloads, or
innovative encoding methods [2, 3]. Because of this,
methods for detecting and preventing web-based assaults in
real-time that are adaptive and context-aware are required.
Traditional rule-based Intrusion Detection Systems (IDS)
and Static Vulnerability Scanners (such as Snort and Nikto)
use predetermined signatures or syntactic heuristics. Low
recall rates, false positives, and the inability to generalize
across unexpected assault patterns are some of the problems
these systems face. To overcome these limitations, the
current study focused on the deep learning algorithm, which

OSOE)

helps automate the feature extraction and also detects the
sequential and semantic patterns through web payloads [4].
The goal is to learn about high-dimensional representations,
which are followed by input strings such as HTTP requests,
code snippets, or APl logs. These have proven to be
promising approaches, as demonstrated by models like CNN,
LSTM, and Bi-GRU [27]. In identifying attacks in payloads,
which are characterized by specific traffic behaviors,
Conventional RNN-based models encounter several
challenges, including dependencies between learning and
input sequences [5, 10].

Following the responses noted as issues, the proposed
model IBERT-GRU helps detect web vulnerabilities [7]. Pre-
trained, this proposed model, embedded with deep contextual
information, is kept as the raw text input. This also combines
these types of embeddings with GRU to predict the temporal
and syntactic patterns among the various sequences [6].
Adding BERT to the model enhances its ability to distinguish
between safe and hazardous patterns, even in the presence of
noise, encoding trickery, or malicious changes [8].

ZEERT This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

http://creativecommons.org/licenses/by-nc-nd/4.0/

Godwin Ponsam J et al. / 1JECE, 12(12), 164-176, 2025

We tested and proved our strategy using a publicly
available Kaggle vulnerability dataset with tagged web
payloads. A group of studies compares the proposed IBERT-
GRU against baseline models like CNN, LSTM, and Bi-
GRU in terms of accuracy, precision, recall, and F1 score.
The results show that the proposed model greatly reduces
false negatives, making sure that important attacks are not
missed, and it significantly improves overall detection
performance. This study adds a scalable, end-to-end deep
learning framework for finding and fixing online security
holes. It does this by getting beyond the limitations of earlier
models and boosting sequence understanding using
transformer-based embeddings. It immediately applies to
Web Application Firewalls (WAFs), DevSecOps pipelines,
and real-time cybersecurity monitoring solutions [9].

1.1. Key Contribution

Improvised BERT embeddings are combined with Gated
Recurrent Units (GRU) to identify contextual semantics
and sequential dependencies efficiently.

An optimized framework is developed to effectively
mitigate various suspicious attacks, including SQL
injection (SQLi), Cross-Site Scripting (XSS), and
Command injection. This process of identification is
achieved by utilizing context-aware deep representations
and surpassing traditional rule-based models.

The False Negative (FN) rate of the proposed model is
reduced evidently by the utilization of advanced
language representation, hence ensuring high sensitivity
in the detection of malicious requests. This feature is
predominantly required in applications on web firewalls
and secure APIs.

The proposed architecture is characterized by its
lightweight design, scalability, and adaptability, making
it practical for integration into Web Application
Firewalls (WAFs) and DevSecOps pipelines.

The research report covers the following areas: Chapter |
describes the Introduction to the detection and mitigation of
web vulnerabilities using Deep Learning. This also covers
the main contribution of this research. Chapter Il describes
the literature review, in which the previous work based on
this type of research is also explained. Chapter Il describes
the proposed methodology, which also includes the overall
architecture, proposed architecture diagram, Model
evaluation of the IBERT-GRU framework, and proposed
Algorithm.

Chapter IV describes about Results and Discussion
section in this also included the dataset description,
comparison of metric analysis for proposed and existing
models, to compared the training and testing accuracy of
proposed model, Evaluation metric analysis followed by
experiment setup, Performance metric comparison of various
models and also discussed the performance comparison of
attack detection time in multiple models, limitation and

165

advantages of proposed model. Chapter V describes the
conclusion and future work, and also explains the main key
findings of the research work.

2. Literature Review

DL is a type of ML that uses several nonlinear hidden
layers to extract features, change them, analyze patterns, and
sort them into groups [10]. DL-based solution methods are
used in a wide range of fields, such as robotics, computer
vision, predictive maintenance, finance, text processing, and
classification challenges [29]. DL approaches have worked
quite well for processing a lot of different kinds of data, like
text, audio, and video. DL has computational models with
several layers of processing that let data be shown at various
levels of abstraction [30]. The deep neural network we used
consisted of perceptions, activation functions, cost functions,
and fully connected layers, which are detailed further in this
subsection [31].

Web-based attacks pose a significant threat to Industry
5.0 infrastructure, primarily due to their role in the loss of
sensitive data, disruption of operations, and financial loss.
DDosS attacks, SQL injection, and cross-site scripting attacks
[11, 32]. To discuss the various consequences related to
botnets, such as Mirai, and their impact on the Internet of
Things. The author discussed the various types of
consequences of attacks, such as denial of services, within
the framework of 10T devices, which typically analyze the
key components of the Industry 5.0 System that are hacked
and exploited in DDoS attacks [12]. It provides an overview
of Machine Learning algorithms that help detect software
bugs and web attacks through SQL injection and cross-site
scripting [34]. To identify several types of machine learning
methods, including decision trees, SVM, and clustering
algorithms. The goal is to demonstrate and provide promises
for identifying known attack patterns [35]. It is also
discussed how these methods are less effective and fail to
deal with increasingly complex and advanced attacks [13,
36].

Various methods are used to detect SQL injection
attacks, including regular expressions that should be matched
through ML-based models, such as Support Vector Machine
(SVM), Naive Bayes, Random Forest, and Decision Tree
[14]. Many people use regular expression matching because
it is very accurate and quick to find [37]. OWASP ranks SQL
injection attacks as the greatest threat to network
applications, and this vulnerability has been the subject of
continuous study in the field of network security [15, 25]. In
recent years, numerous approaches to SQL injection
detection have been suggested, each focusing on a different
sort of danger, attack, or mechanism of attack [16, 26]. One
typical preprocessing method is standardizing SQL query
statements, which standardize the values of query
parameters, SQL keywords, and symbols [17].

Godwin Ponsam J et al. / 1JECE, 12(12), 164-176, 2025

According to the authors, Kim et al., a BERT approach
is used to detect software attacks. Based on this result, we
need to determine the most effective method for enabling the
model to compare syntactic and semantic features with the
code [18]. Here, the number model F1 score is also shown as
95% with an excellent accuracy value. It is also discussed
that the model is noted as a false positive and negative
compared to previous models. It demonstrates that the BERT
model is a highly effective method for identifying software
flaws [19].

Followed by the existing method to detect fake news in
the longest way, which means a DL model is ideal for the job
in terms of speed, accuracy, and ease of understanding
concepts [20]. Most of the researchers used various models
such as Long Short-Term Memory (LSTM), Gated Recurrent
Unit (GRU), and Bidirectional Encoder Representations from
Transformers (BERT). Most of the researchers compared
these designs using the same data set, followed by the
evaluation approach [21]. Based on the earlier research, the
model was analyzed for practical implementation. This study
primarily investigated the efficiency of DL models, including
LSTM, GRU, and BERT. These are used to detect web
vulnerabilities [22]. To use as a balanced dataset from
Kaggle, this study mainly evaluates each model to determine
whether it predicts performance based on computational
efficiency and explainability. It is for employees with the

EAI technique, which is used as Local Interpretable Model
Agnostic Explanations (LIME) and Shapley Addictive
Explanations [23].

3. Proposed Methodology
3.1. Overall Architecture

The architecture in Figure 1 represents a Deep Learning
Model platform that utilizes various source codes to detect
and fix security holes on the internet. To initiate this process,
obtain the input as raw source code after executing the pre-
processing module. These tasks should be performed in
various stages, including preparing the input for analysis,
which involves creating a balanced dataset, removing
duplicates, filtering noise, and cleaning the code structure.
After removing the cleaned data, the next step is to go
through a feature extraction stage, which, for IBERT, should
generate the contextual semantic embeddings, showing how
the code should be written and structured. The classification
stage should utilize the GRU, which contains the sequential
relationship between the embedded vectors. The GRU
classifier returns a binary or multi-class option for whether
the input is vulnerable. If a vulnerability is detected, the final
step in vulnerability reporting is to determine both the type
of vulnerability (e.g., XSS, SQL Injection) and the specific
vulnerable code portions. The result provides developers
with valuable information to address the identified problems.

Data Flow Diagram - IBERT-GRU
Web Vulnerability Detection and Mitigation Framework

Level -1

External

Feature
Extraction

Web Application/ Raw web

request

v

Data Preprocessina

C) Embeddings

=

Vulnerability
Classification

Cleaned
request

Embeddings

Decision
Label

Access/Lookup N

< p| Vulnerability Trainina model

A 4 Knowledgebase
(KB) IBERT - GRU

Mitigation
Engine
* Fix suggestion
Output Report
Training Model
Repository Implit/Lookup Vulnerability status
Vulnerability type

Suggested mitigation

Fig. 1 Overall architecture

166

Godwin Ponsam J et al. / 1JECE, 12(12), 164-176, 2025

3.2. Proposed Architecture Diagram

= f

[CLS] || Tok 1 I I Tok 1 I

I Tok 1 I I Tok 1 I

]2 Jls] [w

Data

preprocessing

I | N

Embedding code gadgets

_

J

Fine-tunning BERT

data decentralization

Fully connected layer

Ih(CLS)I h(CLS) IH(TokZ)I IH(Toan)I I H(sep) I |
Class label 5
IBERT 2
Slory] [GRU-2] [GRU
2 » | Vulnerability
ICIITl I"'I TNIIT(SEP”Tll'"ITMI i status
Feature ‘%
extraction ROBERTa S JC
Original AQI data for time series
T prediction

E | | Eser)
(c Ls)| 7o K1 TOKN P

Proposed Model-IBERT-GRU
Fig. 2 Architecture for proposed model

The proposed architecture, Figure 2 shows the Hybrid
Deep Learning strategy for web vulnerability identification,
which also combines IBERT and RoOBERTa with GRU-based
sequence modeling. The process begins with raw input, such
as site code or log data, which is standardized and tokenized
to make it suitable for transformer models. This data is
transmitted to a BERT module after being preprocessed.
There, it is embedded using special tokens like [CLS] and
[SEP] and positional and token embeddings. An intermediate
IBERT model is utilized to make the output embeddings
from BERT even better. This makes contextual feature
vectors that are great for jobs that involve finding
vulnerabilities. The RoBERTa module processes these
contextual embeddings sequentially, utilizing the advanced
self-attention mechanisms to highlight the semantic
relationships within the input. The resultant features are then

167

enhanced and rendered, thereby preparing them for sequence
modeling. Further, these extracted features are passed as
input to a GRU-based time series module, including multiple
Gated Recurrent Units (GRU1, GRU2, GRUS3). These
multiple gated recurrent units are designed to learn temporal
data variations and behavioral patterns among the inputs.
This portion contains a fully linked layer as well as a data
standardization step that produces final prediction outputs.
Finally, the system produces a classification output reflecting
the vulnerability status of the input, such as whether the input
data poses a security risk or is regarded as safe. This end-to-
end architecture efficiently blends static feature extraction
and dynamic sequence modeling, using the best parts of
BERT-based transformers and Recurrent Neural Networks to
find web vulnerabilities quickly and accurately.

Godwin Ponsam J et al. / 1JECE, 12(12), 164-176, 2025

3.3. Model Evaluation of IBERT (BERT + ROBERTA)
Framework

The BERT model in the proposed approach has more
than one task, which is necessary for classification. During
this time, we noted the first token of input as fixed with the
special classification label. The output layer of ceRf The
sequence of representation should be used for classification.
Here, also noted as H, is the hidden stage. Here, fine-tuning
the BERT algorithm in the proposed model, W € RX*H
Which is added, and k is the number of three CVE-coded
vulnerabilities detected in the model. Here, we calculate the
exit probabilities for each K class as

e‘wt
= 1
PEsCwt €Y
Describes the various probabilities among the

classification model labels, in the BERT model, which has
pre-trained parameters followed by uncased model
parameters. These are used as a classification to fine-tune
and maximize the probability of correctly identifying
vulnerabilities. Here, an optimization algorithm is used to
help determine the adaptive learning method for the input
parameters. The Proposed approach of IBERT should be
mentioned as Equations (2) and (3).

=P + (1= Bge (2)
Ve =Pove g + (11— ﬁz)gtz 3)

From the above Equations (2) and (3), r: and v; are noted
as the estimation of variance, delay rate as 8, — 3,. Here, the

error rate is r, and v,.
Tt

Tt= 1_3{ (4)
_ Y 5
Ut—l_—ﬁzt %)

From the above Equations (4) and (5), r: and v; are used
to obtain the values of W shown in Equation (6)

N

6
From the above Equation (6) n should represent the
learning rate and € as smoothing.

Wipr =W —

Tt

3.3.1. Roberta Modeling

A Robust Optimized BERT approach involves
modifying the BERT model, which is undertrained based on
evaluation results, by adjusting its hyperparameters and
dataset size. Here are some modifications that help improve
the performance of the BERT model. In this process, the
various steps include training older models, such as BERT
and RoBERTa, which are based on pretrained models. The
training of these models should capture data, thereby
improving accuracy. Removing the prediction involves
removing the objective models, which in turn helps increase

168

the downstream performance of the task. BERT model
requires a training section among the various steps, and the
ROBERTA model should be trained on a variety of
sequences. In the BERT architecture, only the preprocessing
stage is done to produce the static values. The ROBERTA
model used to eliminate duplicates differed from the training
time epochs.

Figure 2 shows how the ROBERTA model is built and
how it works, as explained in the next section. The
ROBERTA model can take sentences that have been changed
or encoded into tokens, which makes them viable input. The
ROBERTA model can take input_ids, which are numbers
that stand for each token. At the beginning of each token
sequence, there is the [CLS] token, and at the end, there is
the [SEP] token. Then, the model receives the attention mask
input, which is a binary value indicating whether the token is
padding. There will be padding added to the token sequence
if its length is shorter than the most extended sequence. This
padding is set to match the maximum number of tokens that
the ROBERTA model can handle, which is 512 tokens.
Token_type ids is a field that provides a binary
representation, indicating whether two sentences are sentence
pairs. In the question-answering task that takes sentence pairs
as input, these token_type_ids are frequently needed. The
input is then passed via the 12-layer ROBERTA encoder,
which converts it into a vector embedding format that
includes embedding tokens, segment embeddings, and
position embeddings. The last_hidden_state output layer will
be built next. This is where all the embedding vector words
will be kept. These word vectors will learn how to recognize
English, and then the model will be tweaked so that it can do
NLP tasks.

3.3.2. Gated Recurrent Unit

The GRU Framework Model should be performed as the
gating mechanism within an RNN. The GRU (Figure 3)
contains a modified level of unit type, which includes the
hidden state for combining the input gate and forget gate into
the update gate. The activation of a hidden unit consists of a
time step as follows,

>@_.@A_,
e
et) r-j
B ' T)

Fig. 3 Working principle of gated recurrent unit

The activation of a hidden unit based on the time step is

processed as,

1. =o(Whey + Upxy)

Godwin Ponsam J et al. / 1JECE, 12(12), 164-176, 2025

forget gate in LSTM, to calculate z,

(M

From the above Egn r, Calculated, o should represent

the logistic sigmoid function and W, and U, Defined as the

weight matrices. Here to calculate h, and r, Used as tanh

tanh-type layer.

h, = tanh(W (1, * he_qy + Uy,)

Program source
code as input

Input

)

he = (A = z)(he—q) + (2)(he)

In GRU, z, Should be replaced as a gate along with the

Zy = O-(tht—l) + Uxt (9)

-

4)

Computing
program slices

\. J

Related code
slices!

K_Iﬁ

Transforming
program slices
into code gadgets
(labeled)

B

Code gadgets

:

Input
source code

N

Removing
ambiguous
code gadgets

Train data

-

Test data

~

Data set

J

-

[CLS] Tok 1

Tok 2

- Tok N-2

Here are mentioned the hidden state values as

(10)

[SEP]

Token
embedding

Position
embedding

Ea
Ea

Ea

——-| Ea

o

Ea

Segment
embedding

Embedding code gadgets

)

Code gad'get without
ambiguous code

gadoet

.

Input

Y

Fine-tunning BERT
h(CLS) H(Tok1) H(Tok2) H(Tokn2) H(sep)
CVE type

169

Fig. 4 Proposed algorithm architecture

24-Layer

512 — hidden

16-head

Godwin Ponsam J et al. / 1JECE, 12(12), 164-176, 2025

3.4. Proposed Algorithm Architecture Initialize GRU + fully connected classifier
T:ed gg’g_?_sed thIChnique ﬁFigUfe 4) dempfloyet()j the set loss function — Binary cross Entropy

upgrade model to scan the source code of web apps o

for vulnerabilities and find CVE-coded problems that had Set optimizer - /idgrgo(f)RU + FC parameters, |,

already been reported. The BERT approach is a novel o

language representation model that uses a bidirectional ~ 10ad vulnerability knowledge base KB

transducer network to pre-train the language model on a step:2 Input stage

corpus before fine-tuning it for other tasks. The problem- receive raw web input R = {r;,ry .. cee ee cev v oo, Ty}

specific BERT design can be expressed sequentially by @ step: 3 Preprocessing stage

single Ime_of code or a block of code. To make the input for each request r; in R do

representation, you need to gather token, segment, and

position code fragment embeddings that match a specific ~ CleanTi

code. Simultaneously, vulnerability prediction in the BERT ~ Tokenize using IBERT tokenizer T with Special tokens

model is bidirectional, meaning it works both left and right. step: 4 Fetaure Extraction stage

Figure 4 depicts the development architecture of the model. E; - IBERT (r;

step: 5 classification stage

Figure 4 shows a complete pipeline for automatically Training phase (within classification)

classifying vulnerabilities using a finely-tuned BERT model
on structured representations of source code. The approach ~ for epoch inrange (1, epochs + 1);
starts with raw program source code, which usually includes ~ shuffle training data

function definitions that can include security holes. From this for each batch (x — batch, y — batch)do
code, relevant program slices are calculated to separate logic- g _ hatch — IBERT(x — batch)

sp_ecmc parts that can show possible weakne§ses. Then, these batch — GRU (E — batch)

slices are turned into structured representations called code
gadgets. These gadgets contain semantic and syntactic P — batch — Fully connected (H —batch)
information that is useful for Deep Learning Analysis. To P — batch — Sigmoid (p — batch)

improve data quality, unclear or noisy code gadgets are loss — Binary Cross Entropy (P — batch, y — batch)
deleted methodically, leaving a clean set of labeled gadgets Optimizer. zero — grad ()

ready for model training. loss. backward ()

optimizer. step ()

Each code gadget is converted into tokens and . ; .\ .
Print("Epoch:", epoch, "Loss:", Loss)

embedded using token, position, and segment embeddings.
This process forms the input representation necessary for the ~ Save trained GRU Model

BERT model, ensuring that both the semantic meaning and Step: 5 Inference using Trained GRU

structural order of the code tokens are preserved. The h; = GRU (E))

empedded represgntatlons are then processgd through a P, - Fully Connected (h;)

meticulously configured BERT model, featuring 24 layers, S id (p,)

512 hidden units, and 16 attention heads. Through this Pi lsmot p‘_])

process, BERT captures crucial contextual details and long- Step: 6 Vulnerability Detection State

range dependencies within the code. Ultimately, the output if F; > 6 then

hidden states, particularly those from special tokens like Label — "Vulnerable"

[CLS] and [SEP], are utilized to classify the code gadgets Step: 7 Vulnerability Mitigation Strategy Statge
into speu_flc Common Vulnerabllltles_and _Exposures (CVE) Important Tokens — AttentionWeights (h;)
types. This enables the framework to identify and accurately

categorize vulnerabilities, such as SQL injection, XSS, and t_ype — Match (Fnl1po.rtant Tokens, KB)
others. Overall, the architecture demonstrates a robust and ~ fiX = Suggestmitigation (type, KB)

language-aware approach to secure code analysis, facilitating ~ Report — {status:vulnerable, type: type, Suggestion: fix}
the automatic, large-scale, and context-sensitive detection of else

vulnerabilities. label = safe

. R t tatus: " safe "
3.4.1. Proposed Algorithm (IBERT-GRU) eport — {status: " safe "}

begin end if
Step: 1 Initialization output Report
done

load IBERT tokenizer T

Initialize IBERT model end

170

Godwin Ponsam J et al. / 1JECE, 12(12), 164-176, 2025

4. Results and Discussion
4.1. Dataset Description

The IBERT-GRU approach uses Improved BERT's
ability to grasp context and GRU's ability to learn in a
sequence to find and classify web vulnerabilities based on
the OWASP Top 10 categories. The model creates deep
semantic embeddings of code snippets and payloads using
IBERT, capturing subtle syntax and meaning variations,
using the OWASP dataset. There are labeled examples of
SQL Injection, Cross-Site Scripting, and Security
Misconfiguration in this dataset. These embeddings are next
examined by the GRU layer, which replicates the temporal
and logical flow of operations to detect intricate, multi-line
vulnerabilities. The final step of this method is to have the
learned representation of the right OWASP categories based
on accuracy, precision, recall, and F1 Score. Considering the
confusion matrix, along with various performance metrics
related to vulnerability detection, helps create a strong and
secure solution for developing an automated threat
assessment.

This study primarily utilized the Kaggle dataset,
supplemented by web vulnerability detection, to evaluate the
effectiveness of a Deep Learning architecture for integrating
IBERT and GRU. These types of datasets include annotated
HTTP payloads, enabling the combination of vulnerable and
secure scenarios. To overcome the real-world scenario,
followed by SQL injection and cross-site scripting, along
with PHP and JavaScript. Followed by this preprocessing
and tokenization, IBERT is used to extract the deep

danger rule-based module. These types of methods should
exhibit the model adaptability utilized for detecting and
mitigating the online vulnerabilities in various types of
information, for the CSIC 2010 HTTP dataset created by the
Spanish National Research Council, which is widely used as
a benchmark for identifying internet attacks. It is also
comprised of more than 36000 categorized requests,
including both legitimate and malicious activity.

This also contains the realistic e-commerce interaction
among the various types of web threats, such as SQL
injection, XSS, command injection, and buffer overflow.
This makes it suitable for OWASP-based classifications.
Each request is labeled and structured, making it simple for
models like IBERT-GRU to tokenize and embed it. The
dataset was used in this study to train the IBERT module on
contextual patterns in HTTP payloads, as well as to enable
the GRU layer to record sequential attack behavior, which
helps detect and mitigate online vulnerabilities.

4.2. Computational Metric Analysis for Proposed vs.
Existing Model

To mention the clear ideas about the computation
concept demanded by each model, we report the estimated
values for training and inference time, along with parameter
count and epoch values. All training, development, testing,
and inference operations are performed by the platform on
the Kaggle dataset.

Table 1. Computation metric analysis for proposed vs. Existing model

contextual embeddings, which are subsequently determined Model Training | Inference Epochs
by a GRU-based classifier to identify the vulnerability status. Time Time
Based on the attention mechanism, which helps identify the BERT 105 hours | 524 ms 9
vulnerability status. GRU 8 mins 154 ms 7
LSTM 13 mins 255 ms 7
The attention mechanism of the gradient boost algorithm IBERT-GRU 6 mins 150 ms 7
helps identify problematic code, which is then mitigated by a (Proposed)
Model Comparison: Training Vs Inference Time
70 600
550
500 &»
450 E
= 400 £
£ 350
“E-’ 300 %
= 250 $
? 200 £
= 150
= 100
BERT GRU LSTM [7] IBERT-GRU
Model (Proposed)

Fig. 5 Performance model comparison of training Vs Inference time

171

Godwin Ponsam J et al. / 1JECE, 12(12), 164-176, 2025

Simulated Accuracy Progression of IBERT-GRU (Proposed) Model Training Time: 6 mins |
Inference Time: 150 ms | Epochs: 7
=¢—Training Accuracy =ill=Testing Accuracy
105
100
= 95
S
>
8 90
>
3
< 85
80
75 T T T T T T 1
1 2 3 4 5 6 7
Epochs

Fig. 6 Training and testing accuracy of proposed model (IBERT-GRU)

To interpret Table 1 and Figure 5, which describe the
training and inference efficiency of Deep Learning Models
like BERT, GRU, and LSTM, and the suggested IBERT-
GRU reveals significant differences. Among the models
tested, BERT had the longest training time at around 63
minutes and the slowest inference time at 524 milliseconds,
suggesting its computational intensity. GRU and LSTM took
8 and 13 minutes to train, respectively, and 154 and 255
milliseconds to make decisions. But the proposed IBERT-
GRU model did the best job in both areas, using only 6
minutes to train and 150 milliseconds to make predictions.
This large improvement demonstrates the model's ability to
leverage IBERT's contextual strength and GRU's sequential
processing speed. The IBERT-GRU framework is extremely
effective and useful for real-time web vulnerability detection,
especially when paired with OWASP-based threat
classification systems in latency-sensitive situations.

4.3. Training and Testing Accuracy of Proposed Model
(IBERT - GRU)

Figure 6 shows how the accuracy of the IBERT-GRU
(Proposed) model changed throughout 7 epochs in a
simulation. This shows how well it was trained and how well
it worked. The model shows impressive speed and minimal
overhead with a training time of approximately 6 minutes
and an inference time of 150 milliseconds. Training and
testing accuracy are both going up all the time. By the end of
the last epoch, training accuracy had gone from 85.2% to
99.6% and testing accuracy had gone from 84.7% to 99.9%.
The model is stable and converging well over time, as shown
by this steady improvement. It is important to note that the
little divergence between the training and testing curves

172

indicates that the model generalizes successfully and does
not overfit excessively. The model finds key patterns of
vulnerability in the first few epochs and gets better than 93%
accurate by epoch 3. At the end of the training cycle, it can
almost flawlessly sort items, which shows that it can be
trusted to detect online security holes in real time. Overall,
the IBERT-GRU model demonstrates learning dynamics that
are fast, steady, and accurate. It takes a unique approach to
secure data through a pipeline procedure, achieving both
accuracy and speed.

4.4. Evaluation Metric Analysis
4.4.1. Experimental Setup

Table 2. Experiment environmental setup
Hardware Configuration

Component

Processor (CPU)
Graphics Card

Specification
Intel Core i19-12900K

NVIDIA RTX 3090

(GPU)
RAM 64 GB DDR5
Storage 2TB NVMe SSD

Software Configuration
Operating System Windows 11 Pro 64-bit

Python 3.9.13
Transformers 4.35.0
Hyper Parameters
Batch Size 32

Godwin Ponsam J et al. / 1JECE, 12(12), 164-176, 2025

Optimizer Adam
Learning Rate 2.00E-05
Epochs 7

Loss Function Categorical Cross-Entropy
Model Configuration

Pre-trained weights, fine-tuning

IBERT Module in training on the vulnerability
dataset
GRU Layer Sequential learning
Classifier OWASP categories

Based on the above Table, 2 represents the combined
structure of software and hardware components with a fine-
tuned Deep Learning Architecture, which allows for the
analysis of rapid training and evaluation of the proposed
model IBERT-GRU for web vulnerability detection. An Intel
Core i9-12900K CPU, 64 GB of DDR5 RAM, and an
NVIDIA RTX 3090 GPU, followed by a powered system.
This gave it the processing capability it needed for
transformer-based modeling. It ran on Windows 11 Pro 64-
bit with Python 3.9.13 and Transformers 4.35.0.

We used a batch size of 32, the Adam optimizer, a
learning rate of 2e-5, and categorical cross-entropy as the
loss function to find the best hyperparameters for the model
over 7 epochs. The IBERT module, which was initially
trained using pre-trained weights, was fine-tuned throughout
training to capture semantic trends in OWASP-labeled data.
The GRU layer received these contextual embeddings. This
layer supported lightweight sequential learning, which
helped the model spot complicated vulnerability processes.

A softmax-activated classifier linked these attributes to
the OWASP Top 10 vulnerability groups. This architecture
provided a fair trade-off between high classification accuracy
and low computing overhead, as evidenced by the training
and inference efficiency metrics, making it ideal for real-time
and scalable security applications.

To evaluate the deep learning model performance,
various types of evaluation metrics are used to build the
models. Here, we derived some metrics such as Accuracy,
precision, Recall, and F1 Score.

TP+ TN
TP+TN + FN + FP

Accuracy = (11)

The above Equation (11) should be used to determine
the percentage of accurate prediction of models.

TP

—_— 12
TP + FP 12)

Precision =

The above Equation (12) represents the true positive
among the rate of prediction, which is proportional to the
accurate range of real positives.

TP

TP+ FN
The above Equation (13) represents the proportion

among the positive examples as accurately measured by the
recall.

Recall =

(13)

Precision * Recall
F1=2X

Precision + Recall (14)

4.4.2. Performance Metric Comparison of Various Models
Table 3. Performance metric comparison of various models

Model Accuracy | Precision | Recall F1
Score
CNN 99.5 98.98 1 99.49
LSTM 98.69 99.85 95.69 | 97.82
Two-layer RNN 35.99 33 36 30
Two Layer Bi-
GRU 88.33 89 88 88
IBERT-GRU | g9 99.00 | 97.2 | 99.85
(Proposed)

173

Figure 7 compares five Deep Learning Models CNN,
LSTM, Two-layer RNN, Two-layer Bi-GRU, and IBERT-
GRU (Proposed) for web vulnerability detection across four
performance metrics: accuracy, precision, recall, and F1
Score. The IBERT-GRU (Proposed) model exceeds all
others, with near-perfect scores of 99.9% accuracy, 99.99%
precision, 97.2% recall, and 99.85% F1 score, demonstrating
its strong capacity to identify complex vulnerability patterns.

Both the CNN and LSTM models outperform the
suggested model by more than 97 percent; however, they
aren't quite as good when it comes to recall and F1 scores.
The Two Layer Bi-GRU model does okay, with balanced
metrics around 88%. This shows that it is good at modeling
sequences but not very good at understanding the context
deeply.

In comparison, the Two-layer RNN performs much
worse across all measures, with scores ranging from 30 to
36%, showing its inadequacies in capturing the semantic and
temporal aspects of online vulnerabilities. Overall, the chart
shows that combining IBERT's contextual embeddings with
GRU's temporal modeling in the suggested architecture
results in higher performance, making it the most effective
model for secure and accurate vulnerability classification.

Godwin Ponsam J et al. / 1JECE, 12(12), 164-176, 2025

Performance Comparison of Models on Web Vulnerability Detection

Metric
m Accuracy ® Precision

Recall = F1 Score

120
100

e
o

(2]
o

Score (%)

N
o

N
o

o

CNN

LSTM

Two layer RNN

Model

Two Layer Bi-GRU

IBERT-GRU(Proposed)

Fig. 7 Performance comparison of the model on web vulnerability detection

4.4.3. Performance Comparison of Attack Detection Times In
Various Models
Table 4. Performance comparison of attack detection times in various

models
Studies D%;E?ﬁ;(éon
Web attack detection via autoencoder [24] 5.1
Text analysis-based SQLI attack detection [27] 0.89
NLP Technique [10] 0.4
Proposed Model 0.45

Table 4 presents various studies with respect to detection
time. In existing studies, web attack detection using an
autoencoder takes 5.1 seconds, Text analysis-based SQLI
attack detection takes 0.89 seconds, and the NLP technique
takes 0.4 seconds. The proposed model should be considered
for a detection time of 0.45, given its high-level accuracy,
and compared to the previous model's detection time of 5.1,
based on accuracy.

4.5. Limitations of the Proposed Model

The proposed model possesses strong contextual
learning capabilities; however, it also has several limitations.
Deep learning Models suffer from limited interpretability;
they face various challenges related to security analysis,
which is necessary to justify the model's decisions. With a
detection time of 0.45, the proposed model surpasses the
previous model in detection time, aiming to achieve a higher
level of accuracy.

4.6. Advantages of the Proposed Model

The proposed model is expected to offer several
advantages in the domain of web vulnerability detection. It is
the powerful and contextual ideas about IBERT that
accurately capture the semantic relationship among the

174

patterns with complex types of web requests. It is also
enabled to detect attacks of SQL injection, cross-site
scripting, and command injection. Adding a GRU-based
classifier enhances sequential pattern recognition by
preserving long-term dependencies and the temporal
relationship between input tokens. This helps look at multi-
step attacks. This framework also talked about how
automated detection with low values could be a very
effective way to keep online environments safe. The
proposed model, IBERT-GRU, should be able to grow, learn,
and utilize language to address web security issues.

5. Conclusion and Future Work

Web wvulnerabilities tend to be a significant threat to
digital infrastructures, resulting in data breaches, financial
losses, and violations of privacy. Traditional detection lags in
addressing the evolving nature of attacks and the complex
architectures of modern and evolving web systems. The
proposed deep learning-based IBERT-GRU model could be
more efficient in detecting online vulnerabilities. IBERT
offers deep contextual embedding from online inputs,
making it optimal for GRU to capture sequential
dependencies, while providing examination of syntax, web
traffic, and code structure behavior.

While testing the developed model using datasets from
OWASP, Kaggle, and CSIC-2010, the model achieved an
accuracy of 99.9%, a Precision of 97.2%, and a recall of
99.85%. The F1 score of the model was 99.85%, which
outperformed the traditional deep learning models, CNN and
LSTM. The proposed model exhibits a significantly
improved computational speed compared to baseline models,
with a 6-minute reduction in inference time to 150
milliseconds.

Godwin Ponsam J et al. / 1JECE, 12(12), 164-176, 2025

Deep learning Models remain a "black box," critical in ~ the model in real-time traffic and with different network
high-stakes security situations. Adding proven models like conditions. The proposed work could be further enhanced by
SHAP and LIME helps explain decisions to cybersecurity adding reinforcement learning or GNN for an adaptive
experts. The performance of the model is enhanced by mitigation engine that learns new attack techniques. Finally,
incorporating multilingual and cross-platform vulnerability lightweight deployment with edge computing enables
databases, making the model more adaptable to the online framework analysis in low-resource settings, such as loT
ecosystem. False negative of the model is reduced by training ~ applications.

References

[1] Subhadeep Chell et al., “Real-Time Threat Detection and Mitigation in Web API Development,” 2024 International Conference on
Electrical Electronics and Computing Technologies (ICEECT), Greater Noida, India, pp. 1-9, 2024. [CrossRef] [Google Scholar]
[Publisher Link]

[2] Qui Cao et al., “BERT-Enhanced DGA Botnet Detection: A Comparative Analysis of Machine Learning and Deep Learning Models,”
2024 13" International Conference on Control, Automation and Information Sciences (ICCAIS), Ho Chi Minh City, Vietnam, pp. 1-6,
2024. [CrossRef] [Google Scholar] [Publisher Link]

[3] Shalini Verma, and Harish Kapoor, “Machine Learning for Predictive Maintenance: A Cloud Computing Architecture and Lessons for
a Healthcare Context,” International Academic Journal of Science and Engineering, vol. 8, no. 2, pp. 1-5, 2021. [Publisher Link]

[4] Rania Zaimi et al., “An Enhanced Mechanism for Malicious URL Detection using Deep Learning and DistilBERT-based Feature
Extraction,” The Journal of Supercomputing, vol. 81, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[5] Sofonias Yitagesu et al., “Systematic Literature Review on Software Security Vulnerability Information Extraction,” ACM Transactions
on Software Engineering and Methodology, pp. 1-51, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[6] Thsan Ullah et al., “Unveiling the Power of Deep Learning: A Comparative Study of LSTM, BERT, and GRU for Disaster Tweet
Classification,” IEIE Transactions on Smart Processing & Computing, vol. 12, no. 6, pp. 526-534, 2023. [CrossRef] [Google Scholar]
[Publisher Link]

[7] Abba Suganda Girsang, and Stanley, “Hybrid LSTM and GRU for Cryptocurrency Price Forecasting Based on Social Network
Sentiment Analysis Using FinBERT,” IEEE Access, vol. 11, pp. 120530-120540, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[8] Sarbast H. Ali et al., “Web Vulnerabilities Detection Using a Hybrid Model of CNN, GRU and Attention Mechanism,” Science Journal
of University of Zakho, vol. 13, no. 1, pp. 58-64, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[9] Vahid Babaey, and Hamid Reza Faragardi, “Detecting Zero-Day Web Attacks with an Ensemble of LSTM, GRU, and Stacked
Autoencoders,” Computers, vol. 14, no. 6, pp. 1-29, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[10] Yunus Emre Seyyar, Ali Gokhan Yavuz, and Halil Murat Unver, “An Attack Detection Framework based on BERT and Deep
Learning,” IEEE Access, vol. 10, pp. 68633-68644, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[11] Abdu Salam et al., “Deep Learning Techniques for Web-Based Attack Detection in Industry 5.0: A Novel
Approach,” Technologies, vol. 11, no. 4, pp. 1-18, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[12] Prabhuta Chaudhary, Ayush Verma, and Manju Khari, Harnessing Language Models and Machine Learning for Rancorous URL
Classification, 1% ed., Cybersecurity and Data Science Innovations for Sustainable Development of HEICC, pp. 273-288, 2025. [Google
Scholar] [Publisher Link]

[13] Sidwendluian Romaric Nana et al., “Deep Learning and Web Applications Vulnerabilities Detection: An Approach based on Large
Language Models,” International Journal of Advanced Computer Science & Applications, vol. 15, no. 7, pp. 1-9, 2024. [CrossRef]
[Google Scholar] [Publisher Link]

[14] Refat Othman, Bruno Rossi, and Barbara Russo, “A Comparison of Vulnerability Feature Extraction Methods from Textual Attack
Patterns,” 2024 50™ Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Paris, France, pp. 419-422,
2024. [CrossRef] [Google Scholar] [Publisher Link]

[15] Toana Branescu, Octavian Grigorescu, and Mihai Dascalu, “Automated Mapping of Common Vulnerabilities and Exposures to MITRE
ATT&CK Tactics,” Information, vol. 15, no. 4, pp. 1-19, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[16] Jianing Liu et al., “Enhancing Vulnerability Detection Efficiency: An Exploration of Light-Weight LLMs with Hybrid Code
Features,” Journal of Information Security and Applications, vol. 88, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[17] Jaydeep R. Tadhani et al., “Securing Web Applications against XSS and SQLi Attacks using a Novel Deep Learning
Approach,” Scientific Reports, vol. 14, pp. 1-17, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[18] Remzi Giirfidan, “VULREM: Fine-Tuned BERT-Based Source-Code Potential VVulnerability Scanning System to Mitigate Attacks in
Web Applications,” Applied Sciences, vol. 14, no. 21, pp. 1-14, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[19] Soolin Kim et al., “Vuldebert: A Vulnerability Detection System using Bert,” 2022 |IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), Charlotte, NC, USA, pp. 69-74, 2022. [CrossRef] [Google Scholar] [Publisher Link]

175

https://doi.org/10.1109/ICEECT61758.2024.10739333
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Real-time+threat+detection+and+mitigation+in+web+api+development&btnG=
https://ieeexplore.ieee.org/abstract/document/10739333
https://doi.org/10.1109/ICCAIS63750.2024.10814364
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=BERT-Enhanced+DGA+Botnet+Detection%3A+A+Comparative+Analysis+of+Machine+Learning+and+Deep+Learning+Models&btnG=
https://ieeexplore.ieee.org/abstract/document/10814364
https://iaiest.com/iaj/index.php/IAJSE/article/view/IAJSE0808
https://doi.org/10.1007/s11227-024-06908-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+enhanced+mechanism+for+malicious+URL+detection+using+deep+learning+and+DistilBERT-based+feature+extraction&btnG=
https://link.springer.com/article/10.1007/s11227-024-06908-x
https://doi.org/10.1145/3745026
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Systematic+Literature+Review+on+Software+Security+Vulnerability+Information+Extraction&btnG=
https://dl.acm.org/doi/abs/10.1145/3745026
https://doi.org/10.5573/IEIESPC.2023.12.6.526
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Unveiling+the+power+of+deep+learning%3A+A+comparative+study+of+lstm%2C+bert%2C+and+gru+for+disaster+tweet+classification&btnG=
https://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE11646191
https://doi.org/10.1109/ACCESS.2023.3324535
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hybrid+LSTM+and+GRU+for+Cryptocurrency+Price+Forecasting+Based+on+Social+Network+Sentiment+Analysis+Using+FinBERT&btnG=
https://ieeexplore.ieee.org/abstract/document/10285111
https://doi.org/10.25271/sjuoz.2025.13.1.1404
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=WEB+VULNERABILITIES+DETECTION+USING+A+HYBRID+MODEL+OF+CNN%2C+GRU+AND+ATTENTION+MECHANISM&btnG=
https://sjuoz.uoz.edu.krd/index.php/sjuoz/article/view/1404
https://doi.org/10.3390/computers14060205
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detecting+Zero-Day+Web+Attacks+with+an+Ensemble+of+LSTM%2C+GRU%2C+and+Stacked+Autoencoders&btnG=
https://www.mdpi.com/2073-431X/14/6/205
https://doi.org/10.1109/ACCESS.2022.3185748
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+attack+detection+framework+based+on+BERT+and+deep+learning&btnG=
https://ieeexplore.ieee.org/abstract/document/9804700
https://doi.org/10.3390/technologies11040107
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A.+Salam%2C+Deep+Learning+Techniques+for+Web-Based+Attack+Detection+in+Industry+5.0%3A+A+Novel+Approach&btnG=
https://www.mdpi.com/2227-7080/11/4/107
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Harnessing+Language+Models+and+Machine+Learning+for+Rancorous+URL+Classification&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Harnessing+Language+Models+and+Machine+Learning+for+Rancorous+URL+Classification&btnG=
https://www.taylorfrancis.com/chapters/edit/10.1201/9781032711300-19/harnessing-language-models-machine-learning-rancorous-url-classification-prabhuta-chaudhary-ayush-verma-manju-khari
https://dx.doi.org/10.14569/IJACSA.2024.01507135
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+learning+and+web+applications+vulnerabilities+detection%3A+An+approach+based+on+large+language+models&btnG=
https://thesai.org/Publications/ViewPaper?Volume=15&Issue=7&Code=IJACSA&SerialNo=135
https://doi.org/10.1109/SEAA64295.2024.00070
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Comparison+of+Vulnerability+Feature+Extraction+Methods+from+Textual+Attack+Patterns&btnG=
https://ieeexplore.ieee.org/abstract/document/10803510
https://doi.org/10.3390/info15040214
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automated+mapping+of+common+vulnerabilities+and+exposures+to+mitre+att%26ck+tactics&btnG=
https://www.mdpi.com/2078-2489/15/4/214
https://doi.org/10.1016/j.jisa.2024.103925
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+vulnerability+detection+efficiency%3A+An+exploration+of+light-weight+LLMs+with+hybrid+code+features&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2214212624002278
https://doi.org/10.1038/s41598-023-48845-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Securing+web+applications+against+XSS+and+SQLi+attacks+using+a+novel+deep+learning+approach&btnG=
https://www.nature.com/articles/s41598-023-48845-4
https://doi.org/10.3390/app14219697
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=VULREM%3A+Fine-Tuned+BERT-Based+Source-Code+Potential+Vulnerability+Scanning+System+to+Mitigate+Attacks+in+Web+Applications&btnG=
https://www.mdpi.com/2076-3417/14/21/9697
https://doi.org/10.1109/ISSREW55968.2022.00042
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Vuldebert%3A+A+vulnerability+detection+system+using+bert&btnG=
https://ieeexplore.ieee.org/abstract/document/9985089

Godwin Ponsam J et al. / 1JECE, 12(12), 164-176, 2025

[20] Mudassor Ahmed Chowdhury, Mushfiqur Rahman, and Sifatnur Rahman, “Detecting Vulnerabilities in Website using Multiscale
Approaches: Based on Case Study,” International Journal of Electrical & Computer Engineering, vol. 14, no. 3, pp. 2814-2821, 2024.
[CrossRef] [Google Scholar] [Publisher Link]

[21] Sachin Kumar Sharma et al., Web Security Vulnerabilities: Identification, Exploitation, and Mitigation, 1% ed., Cybersecurity CRC
Press, pp. 183-218, 2021. [Google Scholar] [Publisher Link]

[22] Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta, “Detection, Assessment and Mitigation of Vulnerabilities in Open Source
Dependencies,” Empirical Software Engineering, vol. 25, pp. 3175-3215, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[23] Cho Xuan Do, Nguyen Trong Luu, and Phuong Thi Lan Nguyen, “Optimizing Software Vulnerability Detection using RoBERTa and
Machine Learning,” Automated Software Engineering, vol. 31, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[24] Jiancong Li et al., “Web Application Attack Detection Based on Attention and Gated Convolution Networks,” IEEE Access, vol. 8, pp.
20717-20724, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[25] Hieu Mac et al., “Detecting Attacks on Web Applications Using Autoencoder,” Proceedings of the 9" International Symposium on
Information and Communication Technology, Danang City Viet Nam, pp. 416-421, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[26] Vijaya Arjunan et al., “Deciphering Ancient Tamil Epigraphy: A Deep Learning Approach for Vatteluttu Script Recognition,” Journal
of Internet Services and Information Security, vol. 15, no. 1, pp. 451-467, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[27] Lu Yu, Senlin Luo, and Limin Pan, “Detecting SQL Injection Attacks based on Text Analysis,” 3 International Conference on
Computer Engineering, Information Science & Application Technology, pp. 95-101, 2019. [CrossRef] [Google Scholar] [Publisher
Link]

[28] Geetha Krishna Venkatesh Maroju, and Sai Nandu Posina, “Comparative Analysis of LSTM, GRU, and BERT Models for Fake News
Detection,” Bachelor Thesis, Blekinge Institute of Technology, pp. 1-72, 2025. [Google Scholar] [Publisher Link]

[29] S. Poornimadarshini et al., “Bibliometric Analysis of IJISS Journal based on Citation and Publication Relevant Metrics,” Indian Journal
of Information Sources and Services, vol. 14, no. 4, pp. 153-158, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[30] Ouissem Ben Fredj et al., “An OWASP Top Ten Driven Survey on Web Application Protection Methods,” Risks and Security of
Internet and Systems: 15" International Conference, CRiSIS 2020, Paris, France, pp. 235-252, 2020. [CrossRef] [Google Scholar]
[Publisher Link]

[31] Maysoon Khazaal Abbas Maaroof, and Med Salim Bouhlel, “Drone Image Localization by Faster R-CNN Algorithm and Detection
Accuracy,” Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, vol. 16, no. 1, pp. 172-189,
2025. [CrossRef] [Google Scholar] [Publisher Link]

[32] Rokia Lamrani Alaoui, and El Habib Nfaoui, “Deep Learning for Vulnerability and Attack Detection on Web Applications: A
Systematic Literature Review,” Future Internet, vol. 14, no. 4, pp. 1-46, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[33] Guanjun Lin et al., “Software Vulnerability Detection using Deep Neural Networks: A Survey,” Proceedings of the IEEE, vol. 108, no.
10, pp. 1825-1848, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[34] Saif ur Rehman et al., “DIDDOS: An Approach for Detection and Identification of Distributed Denial of Service (DDoS) Cyberattacks
using Gated Recurrent Units (GRU),” Future Generation Computer Systems, vol. 118, pp. 453-466, 2021. [CrossRef] [Google Scholar]
[Publisher Link]

[35] Muhammad Noman, Muhammad Igbal, and Amir Manzoor, “A Survey on Detection and Prevention of Web
Vulnerabilities,” International Journal of Advanced Computer Science and Applications, vol. 11, no. 6, pp. 1-20, 2020. [CrossRef]
[Google Scholar] [Publisher Link]

[36] AAM.B. Mohamad et al., “Impact of using Website on Online Learning Behavior,” International Academic Journal of Social
Sciences, vol. 5, no. 2, pp. 76-90. 2018. [CrossRef] [Google Scholar] [Publisher Link]

[37] Nicolds Montes et al., “Web Application Attacks Detection using Deep Learning,” Progress in Pattern Recognition, Image Analysis,
Computer Vision, and Applications, pp. 227-236, 2022. [CrossRef] [Google Scholar] [Publisher Link]

176

https://doi.org/10.11591/ijece.v14i3.pp2814-2821
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detecting+vulnerabilities+in+website+using+multiscale+approaches%3A+based+on+case+study&btnG=
https://ijece.iaescore.com/index.php/IJECE/article/view/34289
https://scholar.google.com/scholar?q=Web+security+vulnerabilities:+Identification,+exploitation,+and+mitigation&hl=en&as_sdt=0,5
https://www.taylorfrancis.com/chapters/edit/10.1201/9781003145042-12/web-security-vulnerabilities-sachin-kumar-sharma-arjun-singh-punit-gupta-vijay-kumar-sharma
https://doi.org/10.1007/s10664-020-09830-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detection%2C+assessment+and+mitigation+of+vulnerabilities+in+open+source+dependencies&btnG=
https://link.springer.com/article/10.1007/s10664-020-09830-x?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst&utm_source=ArticleAuthorOnlineFirst&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorOnlineFirst_20200701&error=cookies_not_supported&code=ed1317ba-caa8-4545-8c47-9edbb332085d
https://doi.org/10.1007/s10515-024-00440-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimizing+software+vulnerability+detection+using+RoBERTa+and+machine+learning&btnG=
https://link.springer.com/article/10.1007/s10515-024-00440-1
https://doi.org/10.1109/ACCESS.2019.2955674
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Web+Application+Attack+Detection+Based+on+Attention+and+Gated+Convolution+Networks&btnG=
https://ieeexplore.ieee.org/abstract/document/8911430
https://doi.org/10.1145/3287921.3287946
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detecting+attacks+on+web+applications+using+autoencoder&btnG=
https://dl.acm.org/doi/abs/10.1145/3287921.3287946
https://doi.org/10.58346/JISIS.2025.I1.030
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deciphering+Ancient+Tamil+Epigraphy%3A+A+Deep+Learning+Approach+for+Vatteluttu+Script+Recognition&btnG=
https://jisis.org/wp-content/uploads/2025/04/2025.I1.030.pdf
https://doi.org/10.2991/iccia-19.2019.14
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detecting+sql+injection+attacks+based+on+text+analysis&btnG=
https://www.atlantis-press.com/proceedings/iccia-19/125913106
https://www.atlantis-press.com/proceedings/iccia-19/125913106
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparative+Analysis+of+LSTM%2C+GRU%2C+and+BERT+Models+for+Fake+News+Detection&btnG=
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1980396&dswid=-3454
https://doi.org/10.51983/ijiss-2024.14.4.24
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bibliometric+Analysis+of+IJISS+Journal+based+on+Citation+and+Publication+Relevant+Metrics&btnG=
https://ojs.trp.org.in/index.php/ijiss/article/view/4642
https://doi.org/10.1007/978-3-030-68887-5_14
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+OWASP+top+ten+driven+survey+on+web+application+protection+methods&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-68887-5_14
https://doi.org/10.58346/JOWUA.2025.I1.010
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Drone+Image+Localization+by+Faster+R-CNN+Algorithm+and+Detection+Accuracy&btnG=
https://jowua.com/wp-content/uploads/2025/04/2025.I1.010.pdf
https://doi.org/10.3390/fi14040118
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+learning+for+vulnerability+and+attack+detection+on+web+applications%3A+A+systematic+literature+review&btnG=
https://www.mdpi.com/1999-5903/14/4/118
https://doi.org/10.1109/JPROC.2020.2993293
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+vulnerability+detection+using+deep+neural+networks%3A+a+survey&btnG=
https://ieeexplore.ieee.org/abstract/document/9108283
https://doi.org/10.1016/j.future.2021.01.022
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DIDDOS%3A+An+approach+for+detection+and+identification+of+Distributed+Denial+of+Service+%28DDoS%29+cyberattacks+using+Gated+Recurrent+Units+%28GRU%29&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167739X21000327
https://dx.doi.org/10.14569/IJACSA.2020.0110665
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+on+detection+and+prevention+of+web+vulnerabilities&btnG=
https://thesai.org/Publications/ViewPaper?Volume=11&Issue=6&Code=IJACSA&SerialNo=65
https://doi.org/10.9756/IAJSS/V5I2/18100028
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Impact+of+Using+Website+on+Online+Learning+Behavior&btnG=
https://iaiest.com/iaj/index.php/IAJSS/article/view/IAJSS1810028
https://doi.org/10.1007/978-3-030-93420-0_22
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Nicol%C3%A1s+Montes%2C+Web+application+attacks+detection+using+deep+learning&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-93420-0_22

