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Abstract - Conventional vibration monitoring techniques for cantilever beams suffer from several limitations, including physical 

contact requirements, installation complexity, degradation over time, and susceptibility to environmental noise. Photodiodes, 

while commonly used in optical sensing, are typically assumed to exhibit uniform responsivity. Additionally, traditional 

approaches offer limited scalability for real-time, non-invasive, and predictive maintenance solutions. This paper presents a 

novel vibration analysis technique that exploits the non-uniform spectral responsivity of photodiodes to detect beam oscillations 

without physical contact. When a vibrating cantilever beam reflects a laser spot across the photodiode surface, spatial variations 

in light incidence produce voltage fluctuations that are recorded using a digital storage oscilloscope. Experiments conducted 

on different cantilever beams reveal that the proposed method accurately determines natural frequencies. To enhance diagnostic 

accuracy, the voltage signals are processed using a Deep Learning Model, Sentiment Cross-Fusion Network (SCFN), optimized 

with the Improvised Arctic Fox Algorithm (IAFA). Among competing models, the sentiment cross-fusion network achieved the 

highest classification accuracy of 0.90%. The improvised arctic fox algorithm further improved prediction performance, 

achieving 92.1% accuracy, with the lowest error values of root mean square error (0.10) and mean absolute error (0.07). The 

proposed framework demonstrates excellent potential for real-time, scalable, and accurate structural health monitoring in civil 

and industrial applications, although considerations like photodiode alignment and active area limitations must be addressed 

for broader deployment.       

 

Keywords - Vibration Analysis, Cantilever Beam, Photodiode Non-Uniformity, Deep Learning, Optimization. 

 

1. Introduction  
Beams form the backbone of many structural and 

mechanical systems, serving as critical elements in load 

distribution, stability, and dynamic performance. From 

bridges, buildings, and cranes to aircraft wings and precision 

instruments, the role in resisting bending and vibrational 

forces is indispensable. In particular, cantilever beams, fixed 

at one end and free at the other, are frequently employed in 

engineering structures such as balconies, overhangs, robotic 

arms, and biomedical equipment due to the ability to support 

extended spans without intermediate support. Monitoring the 

vibrational behaviour of cantilever beams is vital for ensuring 

structural integrity, especially under dynamic loading.  

 

Vibration analysis of beams   [1-4] enables early detection 

of defects such as cracks, material fatigue, and stiffness 

degradation, making it a cornerstone of predictive 

maintenance strategies in both civil and industrial domains. 

Classical beam theories, such as the Euler-Bernoulli, 

Timoshenko, and Rayleigh models, provide valuable insight 

into beam dynamics under various boundary and material 

conditions. However, discrepancies often arise between 

theoretical predictions and experimental observations due to 

damping, non-linearities [5, 6], and real-world imperfections 

[7-9]. Traditional vibration sensing techniques often rely on 

contact-based methods, including piezoelectric sensors and 

accelerometers [10-12]. While effective, these systems may 

suffer from drawbacks such as signal distortion due to 

physical contact, sensitivity to environmental noise, and 

limitations in measuring out-of-plane motion.  

 

To overcome these challenges, non-contact optical 

sensing techniques [13] have gained popularity due to high 

sensitivity, immunity to electromagnetic interference, and 

capacity for remote monitoring. Most of the optical methods 

of vibration measurement include a photodiode, which is 

intended only for light detection.    In this research, a novel 

optical sensing method is presented for vibration analysis of 

cantilever beams by exploiting the inherent non-uniformity in 

the spectral responsivity of photodiodes. The advantage of the 

method is that the Photodiode itself acts as a vibration sensor, 

thereby reducing the number of optical components required 
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in existing optical approaches. Unlike conventional 

photodiode-based systems that assume uniform sensitivity 

across the active area, this research harnesses the natural 

spatial non-uniformity in the device response. When a 

vibrating cantilever beam reflects a laser beam onto the 

photodiode surface, the changing position of incidence due to 

beam deflection results in corresponding voltage variations. 

These voltage signals are recorded in real-time and analysed 

to extract natural frequencies of the beam under free vibration. 

The proposed technique is validated through experimental 

research on cantilever beams of different materials (stainless 

steel, aluminium, and galvanized iron), with comparisons 

drawn against analytical calculations, simulation results from 

ANSYS, and experimentation with an accelerometer. By 

utilizing a minimalistic and cost-effective setup, this approach 

offers a scalable and accurate non-contact solution for 

monitoring structural vibrations, paving the way for improved 

safety, diagnostics, and reliability in structural health 

monitoring systems. 

 

2. Literature Review  
Vibration-based structural monitoring is a well-

established method in the field of engineering. Li et al. [14] 
and Nguyen et al. [15] elucidated the essential function of 

vibration analysis in the evaluation of the condition of civil 

and mechanical structures. The cracks change the 

characteristics of the beam. Chinka et al. [16] and Pathak, D 

et al. [17] explicated the vibration behaviour of cracked beams 

simulated in ANSYS, explaining that crack dimensions 

substantially influence the natural frequencies.   Khatir, A et 

al. [18] explained a hybrid PSO-YUKI algorithm integrated 

with radial basis functions for locating double cracks in CFRP 

beams using experimental and FEM-based vibrational data. 

The remarkable accuracy and computational efficiency in 

crack depth detection are demonstrated in this paper. Machine 

learning based damage detection of beams has gained traction 

due to its ability to enhance accuracy and efficiency in 

structural health monitoring. Feng, H et al. [19] and Afandi et 

al. [20] demonstrated various methodologies leveraging Deep 

Learning, Data Augmentation, and Hybrid Algorithms to 

address the challenges of traditional inspection methods. 

 

Siva et al. [21] proposed two methodologies for crack 

detection: one utilizing digital image processing and the other 

employing deep learning with Convolutional Neural 

Networks (CNNs) for detection and ResNet for classification, 

demonstrating superior accuracy over existing techniques on 

publicly available datasets. Harikumar, V et al. [22] explained 

a digital twin framework for beams using support vector 

machines, incorporating stiffness degradation and damage 

evolution over dual time scales. Zhang, X et al. [23] 

introduced a Fourier Transformation-based Physics-Informed 

Neural Network (FT-PINN) to accurately predict the dynamic 

responses of cantilever beams under complex excitations. 

Katam, R et al. [24] combined vibration-based analysis with 

support vector machines to improve damage detection in 

cantilever beams, addressing the limitations of frequency-

based methods. The approach achieved 85% accuracy in 

identifying damage across varying locations and severities, 

demonstrating improved robustness over traditional 

techniques. The literature survey shows that the integration of 

artificial intelligence into the traditional approaches will 

enhance the accuracy of any measurement. In this paper, a 

novel, deep learning enhanced photodiode non-uniform based 

optical method is presented for vibration analysis of cantilever 

beams. 

 
2.1. Problem Statement  

Traditional contact-based sensor-based vibration 

monitoring systems for cantilever beams are limited by 

complex installation, vulnerability to environmental noise, 

and degradation over time. These limitations demand non-

invasive solutions and lead to the wide use of non-contact 

optical-based approaches. Photodiodes are an integral part of 

almost all optical-based vibration monitoring systems. 

Furthermore, while conventional photodiodes are used in 

optical sensing applications, the assumed uniform 

responsivity across the surface fails to exploit the full potential 

for vibration detection. The lack of intelligent, real-time fault 

identification further delays maintenance responses. 

Therefore, there is a critical need for a novel, accurate, non-

contact vibration sensing method that leverages photodiode 

non-uniformity and integrates advanced deep learning models 

to enable predictive maintenance, early fault detection, and 

continuous monitoring of cantilever beam structures. This 

research introduces a novel non-contact vibration monitoring 

technique that leverages the non-uniform responsivity of 

photodiodes, transforming an optical irregularity into a 

sensing advantage. It integrates a Deep Learning Model-

SCFN, optimized by the IAFA for real-time structural fault 

detection. The method is experimentally validated on different 

cantilever beams and cross-verified with analytical, 

simulation, and accelerometer data. The materials and 

methods will be presented in Section 3, the results with 

analysis in Section 4, and the conclusion in Section 5. 

3. Methodology  
The spectral responsivity of the Photodiode reveals its 

inherent non-uniformity, wherein the output voltage varies 

based on the exact point of light incidence on its active region. 

While most photodiode applications assume uniform 

responsivity, especially in light intensity measurements, this 

research focuses on exploiting the nonlinear, spatially varying 

response. A novel, non-contact, photodiode-based optical 

vibration measurement technique is developed for cantilever 

beams. The natural frequencies of cantilever beams made of 

various materials, such as stainless steel SS304, Aluminium, 

and galvanized iron, are determined using this approach. Free 

vibrations through a small displacement are induced into the 

beams, and real-time photodiode signals are captured via a 
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Digital Storage Oscilloscope (DSO). The results are validated 

analytically, using modal analysis using ANSYS  and using an 

ADXL335 accelerometer interfaced with an Arduino UNO. 

The consistency across all methods confirms the accuracy and 

reliability of the proposed technique. 

  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig. 1 Proposed methodology for vibration analysis 

 

 Figure 1 illustrates the complete flow of the proposed 

vibration analysis system for cantilever beams using 

photodiode non-uniformity enhanced by Deep Learning. The 

process begins with a cantilever beam (made of SS304, 

Aluminium, or Galvanized iron) that is set into free vibration 

by a slight displacement. A small mirror is attached to the 

vibrating beam, and a laser beam is directed towards the 

mirror. The reflected beam is detected by a photodiode. As the 

beam vibrates, the incident position of the beam on the surface 

of the Photodiode varies. The non-uniform characteristics of 

the Photodiode thus generate a changing voltage that depends 

on the vibrational frequency of the beam. These voltage 

fluctuations are observed in real time using a DSO. These raw 

vibration data are then fed into an SCFN, which analyses the 

vibrational data to identify the faulty structural behaviour. 

Applying a metaheuristic optimizer incorporating chaotic 

mapping, Householder reflection, and tangent flight strategies, 

the performance of SCFN is further enhanced by the IAFA. 

The final output of this integrated system makes it a robust 

tool for predictive maintenance and structural health 

monitoring. 

The specifications as well as the properties of three 

Cantilever Beams under research are given in Tables 1 and 2. 

Table 1. Specifications of cantilever beams 

Length of beam, L 900mm 

Breadth, b 40mm 

Thickness of beam, h 1mm 
             

Photodiode: Non-uniform spectral 

Responsivity:                                                             

 
 

A light beam is reflected from the 

vibrating beam to the photodiode.     A 

voltage is generated based on the light 

incident location 

            

 

Voltage changes                                                           

 
 

A non-uniform voltage is generated 

based on the light incident location 

and this generates real time raw 

signals 

            

 

                                                           

 
Digital Storage Oscilloscope:    

 Real- time signal acquisition 

and signal visualization 

            

 

                                         
     Sentiment Cross Fusion Network                Improved Arctic Fox       

                                                       Algorithm  

(SCFN): Deep learning                                   Metaheuristic optimizer 

Architecture is designed to analyze                enhances SCFN performance. 

Time –sequenced   vibration signals.               Features: Chaotic mapping,                                                       

Learns normal Vs faulty   patterns.                Household reflection, tangent 

                                                                                           flight for hyper parameter    

  

 

 
Vibration analysis report               

Detects vibration frequency 

and potential anomalies. 

Provides early warnings of 

fatigue and cracks 

 

 

 

 
Cantilever beam:  

The core component under test 

(SS 304, Aluminum and 

Galvanized Iron) 
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Table 2. Material properties of beams 

Material of the Beam 

Modulus of 

Elasticity, 

GPa 

Density 

kg/m3 

Aluminium 70 2700 

Stainless steel 200 8000 

Galvanized iron 210 7870 

           
3.1. Photodiode Non-Uniformity Analysis 

To explore the non-uniform spectral responsivity of the 

Photodiode, a laser source of 635 nm is utilized. The setup, as 

shown in Figure 2, includes the laser module and the 

Photodiode used for the experiment. The laser is powered with 

a constant voltage of 7V to ensure stable beam output during 

the scanning process. The laser beam is directed at the active 

surface of the Photodiode, and its spatial responsivity is 

characterized by moving the beam gradually across the 

detector’s surface, specifically through its central region from 

one end to the other. At each scanned position, the resulting 

output voltage is measured using a digital multimeter to 

capture the variations in responsivity due to non-uniform light 

sensitivity across the surface. This scanning procedure is 

repeated multiple times to ensure repeatability, and the 

observed variations in voltage confirm the inherent non-

uniformity of the Photodiode. The characteristic output 

responses obtained from this scanning process are depicted in 

Figure  3. 

 
Fig. 2 Photodiode and laser used for the experiment 

 

 
Fig. 3 Spectral responsivity of photodiode 

3.2. Determination of Natural Frequency  Analytically 

The natural frequency of a free-vibrated beam is purely 

dependent on the system parameters of mass and stiffness. A 

few assumptions, like lumped mass at the free end, undamped 

vibrations, etc., have been made when a real-time system is 

approximated to a simple beam. 

A cantilever beam subjected to free vibrations, as 

described based on Euler-Bernoulli’s Beam Theory, is given 

by Equation (1).  

𝑑2

𝑑𝑥2 { 𝐸𝐼
𝑑2𝑌(𝑥)

𝑑𝑥2 } =  𝜔𝑛𝑚(𝑥)𝑌(𝑥)                                  (1)      

Where E represents the rigidity modulus of the beam, I 

represents the moment of inertia, Y(x) represents 

displacement in the y direction, ωn represents the circular 

natural frequency, and m represents the mass per unit length. 

Analytically, Euler-Bernoulli Beam Theory is applied to 

deduce natural frequencies of cantilever beams under various 

modes. The frequency of a beam for an nth mode is given by 

Equation (2). 

ω𝑛 =  √
𝑘

𝑚
      ( 𝑖𝑛 𝑟𝑎𝑑/sec )                                     (2)                                  

Where m represents the modal mass, and k represents the 

stiffness. 

To determine the natural frequencies of three beams 

analytically, the modal mass and stiffness are needed. These 

parameters are calculated first from the specifications and 

material properties of the beam. Equations (3) and (4)  are used 

for this purpose. 

𝑘 =  
3𝐸𝐼

𝐿3                                      (3) 

𝐼 =  
bℎ3

12
                                      (4) 

Then, the natural frequency of vibrations of three 

Cantilever Beams under research is determined analytically 

using Equation (2). 

3.3. Determination of the Natural Frequency of Beam Using 

ANSYS software 

The Cantilever Beams under research are analysed using 

the modal analysis software, and the natural frequency of the 

beams is obtained. The three-dimensional finite element 

models of Cantilever Beams are constructed, and 

Computational Modal analysis on ANSYS-17 is then 

performed to generate various mode shapes. The natural 

frequency is thus observed. Modal analysis of a beam made of 

SS304 is presented in Figures 4 and 5. Similarly, the 

Cantilever Beams of Aluminium and Galvanized Iron are 

modelled, and the natural frequencies are calculated. 
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Fig. 4 Model of stainless-steel cantilever beam in ANSYS 

 
Fig. 5 Modal analysis of stainless-steel cantilever beam in ANSYS 

 
3.4. Cantilever Beam Vibration Measurement Using 

ADXL335 Accelerometer 

The ADXL335 accelerometer is a widely used sensor for 

vibration measurement due to its compact design, low power 

consumption, and three-axis sensing capabilities [25]. The 

ADXL335 outputs voltages proportional to acceleration in the 

X, Y, and Z axes. It is known for its high sensitivity and low 

cross-axis sensitivity, making it suitable for precise vibration 

measurements. The sensor operates on a voltage of 3.3 V or 5 

V and has a typical current consumption of 300 μA. The 

frequency of vibration of the cantilever under research is 

measured using ADXL335 integrated with Arduino UNO. 

Since the vibration of the beam is in the Z direction, the z-axis 

reading of ADXL335 is required. The five pins of ADXL335 

are Vcc, GND, X, Y, and Z. ADXL335 is connected to 

Arduino UNO, and the pin connections are shown in Table 3. 

As ADXL335 is an analog accelerometer, the Z pin of the 

device is connected to A0 of the Arduino UNO. The vibrating 

pattern of the beam is observed in real time using a serial 

plotter on Arduino. The same vibrations are captured by DSO. 

Figure 6 shows the experimental setup for the ADXL335 

accelerometer. 

Table 3. Pin connections of ADXL335 and Arduino 

ADXL335 Pin Arduino Pin 

Vcc 3.3V 

GND GND 

Z A0 

 
Fig. 6 Vibrating beam with ADXL335 connected  to Arduino UNO and 

DSO 

3.4.1. Waveforms Observed during Measurement using 

ADXL335 Accelerometer 

An ADXL335 accelerometer is attached to the Cantilever 

Beam, and the beam is allowed to vibrate at its natural 

frequency. When the beam vibrates, the accelerometer 

experiences the same vibrations in the Z-axis. This periodic 

movement of the Z-axis is transferred to Arduino UNO via 

analog pin A0. The same vibrations are observed in the DSO, 

which is connected to the accelerometer. Thus, the frequency 

of vibrations is measured and recorded.  

The vibrations of the beam are plotted using a serial 

plotter on Arduino. The experiment is performed for SS, 

Aluminium, and GI cantilever beams for beam lengths of 

300mm, 400mm, and 500mm.  

Figure 7 shows the vibrations obtained using ADXL335 

along with Arduino for an Aluminium beam for a beam length 

of 300mm. When the beam is displaced to induce vibrations, 

the amplitude of vibration is high. Gradually, the amplitude of 

vibrations decays and reaches a steady state where the beams 

vibrate with natural frequency. 

 
Fig. 7 Aluminium beam vibrations observed in serial plotter for a beam 

length of 300mm 
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3.5. Cantilever Beam Vibration Measurement Using 

Photodiode 

In this section, the non-uniformity of the Photodiode is 

used to monitor the vibration of Cantilever Beams. The 

experiment is performed with three Cantilever Beams of 

Aluminium, Stainless steel, and Galvanized Iron. The 

arrangement of the components of vibration measurement is 

shown in Figure 8. A small mirror is attached to the cantilever 

beam. A laser beam from the laser source is allowed to fall on 

the mirror and is reflected towards the Photodiode. When the 

Cantilever Beam vibrates, the reflected laser beam from the 

mirror falls on various positions in the active region of the 

Photodiode. Due to non-uniformity, different voltages are 

generated in the Photodiode. i.e., The vibration of the beam 

modulates the incident position of light on the Photodiode and 

generates output voltage accordingly. Thus, the non-

uniformity of the Photodiode is effectively applied to detect 

the frequency of vibration of the beam. 

 

 
Fig. 8 Experimental setup of the proposed vibration measurement 

technique 

 

When the beam is given a small displacement, it starts to 

vibrate. Initially, it vibrates with a higher amplitude, but the 

inherent damping of the system decays the amplitude of free 

vibration. The natural frequency of the beam is measured 

when a stable condition is observed. When the cantilever beam 

vibrates, it follows a periodic, to-and-fro motion, and so the 

vibration-modulated laser beam received by the Photodiode 

follows the same pattern.  

 

As a result, the waveforms observed in the DSO during 

vibration measurement using a photodiode are sinusoidal 

signals. Since the natural frequency of free vibration is in the 

range of very few Hz, there is a chance of distortion as 

observed in the waveforms. The natural frequency of the 

beams is noted directly from the DSO. The waveforms 

obtained from DSO for a stainless steel beam of length 

300mm, 400mm, and 500mm. 

 
3.5.1. Waveforms Observed During Measurement using 

Photodiode 

When the beam is given a small displacement, it starts to 

vibrate. Initially, it vibrates with a higher amplitude, but the 

inherent damping of the system decays the amplitude of free 

vibration. The natural frequency of the beam is measured 

when a stable condition is observed. The vibration-modulated 

laser beam is received by the Photodiode, which follows the 

periodic movement of the beam pattern. As a result, the 

waveforms observed in the DSO during vibration 
measurement using a photodiode are sinusoidal signals.  

 

Since the natural frequency of free vibration is in the 

range of very few Hz, there is a chance of distortion as 

observed in the waveforms. The natural frequency of the 

beams is noted directly from the DSO. Figure  9 presents the 

waveforms captured via DSO for a stainless steel cantilever 

beam of length 300mm. As presented in the Figure, the 

corresponding natural frequencies are observed to be 

8.591 Hz. Similarly, Figures 10 and 11 show the waveforms 

captured via DSO for Aluminium and GI  cantilever beams of 

beam lengths  500mm. 

 

 
Fig. 9 Waveform for stainless steel beam of beam length 300mm 

 

These results confirm the inverse relationship to beam 

length and vibration frequency, demonstrating that longer 

beams exhibit lower natural frequencies due to reduced 

stiffness and increased mass distribution. The consistency of 

waveform patterns validates the reliability of the proposed 

photodiode-based vibration sensing method for frequency 

extraction.  

 

 
Fig. 10  Waveform for aluminium beam of beam length  500mm 
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Fig. 11 Waveform for galvanized iron beam of beam length 500mm 

 

4. Sentiment Cross-Fusion Network (SCFN) 
The sentiment cross-fusion network is a Deep Learning 

Framework designed to learn time-dependent vibration 

patterns from photodiode voltage signals. It combines multi-

scale temporal features and cross-path attention to enhance 

fault detection accuracy. SCFN effectively distinguishes 

subtle variations in vibration data caused by structural 

anomalies. This enables reliable, real-time predictive 

maintenance of cantilever beams. 

       

     𝑋 = {𝑥1, 𝑥2, … … . 𝑥𝑇},   𝑥1Є𝑅𝑑                       (5) 

 

Where X represents a sequence of vibration input signals 

from the Photodiode, xt represents the input signal (voltage),  

T denotes the total number of time steps, and d represents the 

dimensionality of each input vector. 

 

ℎ1 = 𝑅𝑒𝐿𝑈(We xt + be)                       (6) 

 

Where, ht represents the encoded feature vector at time 

step t,  We represents the weight matrix of the encoder layer 
Rd’Xd,   be represents the bias vector, ReLU represents the 

rectified linear unit, and d’ represents the dimension. 

 

    𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥[(
𝑄𝐾𝑇

√𝑑𝑘
)V                       (7) 

 

Where, Q=HWQ, K=HWK, V=HWV  represents the query, 

key, and value matrices, H represents matrix of hidden states 

[h1,h2…..hT]T
, WQ, WK, WV represents the learnable projection 

matrices, dk represents the dimension of keys, softmax 

represents the activation function to normalise attention 

weights, attention () represents the output of attention layer 

capturing temporal dependencies. 

 

𝑍 =  𝜆1 . 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛1 + 𝜆2 . 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛2                     (8) 

 

Where Z represents the final fused representation 

combining multiple attention heads, Attention1 and Attention2 

represent the attention outputs from different pathways, and λ1 

and λ2 represent the fusion weights. 

𝑦̂ = {
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊0 𝑍 + 𝑏0)       𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑊0 𝑍 + 𝑏0                        𝑓𝑜𝑟 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛
     (9) 

 

Where, 𝑦̂ Represents the output prediction, Wo represents 

the output weight matrix, and bo represents the output bias 

term. 

 

5. Optimization using the Improvised Arctic Fox 

Algorithm (IAFA) 
The improvised arctic fox algorithm is a novel 

metaheuristic designed to optimize the performance of Deep 

Learning Models like SCFN by minimizing prediction error. 

It integrates chaotic mapping for exploration, Householder 

mirror reflection for efficient learning, and a Tangent Flight 

Search strategy to escape local optima. IAFA adaptively 

updates model parameters to enhance convergence and 

predictive accuracy in vibration pattern recognition. This 

makes it well-suited for real-time structural health monitoring 

applications. 

                                       min
𝜃

𝐿(𝑦, 𝑦̂ (θ))                        (10) 

  

Where θ represents the model parameters of SCFN, y 

represents the ground truth vibration frequency/class, 𝑦̂(θ) 

represents predicted output from SCFN, L represents the loss 

function. 

            𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  
1

𝑁
∑  (𝑦𝑖

𝑁
𝑖=1 −  𝑦𝑖̂ )

2                       (11) 

 

Where N indicates the number, yi indicates true output, 𝑦𝑖̂ 

Indicates predicted output. 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  
1

𝑁
∑ ∑ 𝑦𝑖𝑗

𝐶
𝑗=1

𝑁
𝑖=1  log (𝑦𝑖𝑗̂                        (12) 

              

Where C indicates the number of classes, yij indicates the 

binary indicator, 𝑦𝑖𝑗̂  Denotes predicted probability of the class 

j for sample i. 

 

  𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + α. C1. (𝑋𝑏𝑒𝑠𝑡
𝑡 − 𝑋𝑖

𝑡  ) + β. H(𝑋𝑖
𝑡) + γ. TFS( 𝑋𝑖

𝑡)     (13) 

 

Where Xi
t represents the solution of the ith fox at iteration 

t, Xt
best represents the best solution found so far, Ct represents 

the chaotic coefficient, α, β,γ represent the control parameters 

for balance and exploitation, H(Xt
i) represents the householder 

mirror reflection learning component, and TFS(Xt
i) represents 

the Tangent Flight Search operator for exploration. 

 

               𝐿𝑀𝑆𝐸 =  
1

𝑇
∑  (𝑦𝑖

𝑇
𝑖=1 −  𝑦𝑖̂ )

2                               (14) 

               

Where LMSE represents the mean squared error loss, T 

indicates the total number, yt indicates the true (actual) 

vibration value, and y^t indicates the predicted vibration value 

by SCFN. 

 

     𝐿𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑  𝑦𝑖
𝑇
𝑖=1 log ( 𝑦𝑖̂                             (15)       
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Where LcrossEntropy represents the cross-entropy loss. 

 

                                  Θ∗ = argmin
        𝜃

𝐿( θ)                          (16) 

 

Where θ represents the set of SCFN hyperparameters, 

L(θ)represents the total loss of the SCFN model using 

hyperparameters θ,θ* represents the optimal hyperparameter 

set that minimizes the loss, and argmin represents the operator 

that returns the value of θ for which the loss is minimum. 

 
Table 4. Pseudocode for the improvised arctic fox algorithm 

Input 

 

Objective function L(θ) based on SCFN loss 

Search Space S(parameter change  for SCFN) 

Max Iterations T 

Population size N 

Initial Chaotic value Co Є(0,1) 

 

Output 

Optimized SCFN weights θ* 

 

Steps 

 

1. Initialize fox population, P={ θ1, θ2,…….. θ_N} 

randomly in S 

2. Evaluate  fitness in each using L(θi)=MSE or 

cross entropy loss  from SCFN 

3. θ*= argmin{ L(θi): θi Є  P   

4. for t= 1 to T do 

5. Update chaotic coefficient 

        C_i+1= µ * C_t * (1- C_t)  //logistic map 

6. For each θi Є P do 
7. Determine search mode: Mode(t)     

Mode(θi,t, C_t) 

8. Switch Mode(t) 

9. Case Exploration 

10. θi_new= θi - ἡ *    L(θi) + α* sin(ω*t+ψ)+β*Z_t   

// Z_t     is random vector 

11. case exploitation 

12. Sample Levy flight  step:s_t   L(c,µ) 

13. θi_new= θi + s_t* θ*   //step towards best 

14. case Evasion 

15. Generate random noise, dw_1 – N(0,1) 
16. θi_new= θi+ √2D * dW_t 

17. Apply Householder learning 

18.  H(θi)- θi -2*(vT θi)* v    where v is 

householder vector 

19. Combine: 

20. θi_new θi_new+ H(θi)+ TFS(θi) 

21. θiθi_new 

22. If L(θi)< L(θ*) then 

23. θ* θi 

24.      end if 

25.    end if 

26.  end for 

27. end for 

28. Return optimized SCFN weights θ* 

 

Table 4 illustrates the pseudocode of the IAFA designed 

to optimize the SCFN by minimizing its loss function. 

Initially, a population of SCFN weights is randomly generated 

within the search space, and the fitness is evaluated using the 

SCFN loss. The best solution is selected, and a logistic chaotic 

map updates a dynamic coefficient Ct to enhance global search 

behavior. Based on Ct  and iteration count, the algorithm 

switches between three search modes: Exploration (gradient-

based update with sinusoidal motion and random noise), 

Exploitation (stepwise update using Lévy flight toward the 

best solution), and Evasion (random walk using Gaussian 

noise). To further enrich the search space, Householder 

reflection and Tangent Flight Search are integrated, producing 

transformed updates. These transformations are accepted only 

if they lie within bounds and offer improved fitness. The 

process iterates until convergence, returning the optimized 

SCFN weight vector θ* for high-accuracy vibration pattern 

classification. 

 

6. Results and Analysis 
The results confirm that the photodiode-based method 

accurately detects the natural frequencies of cantilever beams, 

closely matching analytical, simulation, and accelerometer 

data. The SCFN model, when optimized using the IAFA, 

achieves improved prediction accuracy and faster 

convergence. This integrated approach proves effective for 

scalable, real-time, and non-contact vibration monitoring. 

However, limitations like photodiode active area and 

sensitivity to alignment must be considered for broader 

applications. 

 

 
Fig. 12 Comparison of different approaches for SS304 beam for various 

beam lengths 
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Figure 12 compares natural frequencies of SS304 

cantilever beams at lengths of 300 mm, 400 mm, and 500 mm 

using four different methods. At 300 mm, the analytical 

method gives 8.07 Hz, ANSYS simulation shows 9.08 Hz, 

ADXL335 measures 8.24 Hz, and the proposed photodiode-

based method gives 8.59 Hz. At 400 mm, the corresponding 

frequencies are 3.93 Hz (analytical), 5.09 Hz (ANSYS), 

4.71 Hz (ADXL335), and 4.502 Hz (proposed). For 500 mm, 

the methods yield 2.24 Hz, 3.25 Hz, 2.94 Hz, and 2.92 Hz, 

respectively. The proposed method shows close agreement 

with ADXL335 and ANSYS, validating its accuracy as 

presented in Table 5. 

 
Table 5. Natural frequency of the cantilever beam made of SS304 

obtained by different methods 

 

Length 

of beam 

from 

fixed 

end, mm 

Natural frequency in Hz 

Analytical 

method 
ANSYS 

ADXL  

335 

Proposed 

method 

300 8.07 9.08 8.24 8.59 

400 3.93 5.09 4.71 4.502 

500 2.24 3.25 2.94 2.92 

 

 
Fig. 13 Comparison of different approaches for the aluminum beam for 

various beam lengths 

 

Figure 13 shows that the aluminium cantilever beams, the 

natural frequency at 300 mm is found to be 8.60 Hz 

(analytical), 9.36 Hz (ANSYS), 8.34 Hz (ADXL335), and 

8.621 Hz (proposed method). At 400 mm, the frequencies are 

4.065 Hz, 5.23 Hz, 4.56 Hz, and 4.016 Hz, respectively. For a 

500 mm length, the values recorded are 2.307 Hz (analytical), 

3.34 Hz (ANSYS), 2.92 Hz (ADXL335), and 2.649 Hz 

(proposed method). The proposed photodiode-based 

technique closely aligns with other established methods, 

confirming its reliability, as presented in Table 6. 

Table 6. Natural frequency of the cantilever beam made of aluminium 

obtained by different methods 

 

Length 

of beam 

from 

fixed 

end, 

mm 

Natural frequency in Hz 

Analytical 

method 
ANSYS 

ADXL 

335 

Proposed 

method 

300 8.60 9.36 8.34 8.621 

400 4.065 5.23 4.56 4.016 

500 2.307 3.34 2.92 2.649 

 

 
Fig. 14 Comparison of different approaches for GI beam for various 

beam lengths 

 

Figure  14 shows the GI Cantilever Beams, the natural 

frequency at 300 mm is observed as 8.27 Hz (analytical), 

9.37 Hz (ANSYS), 8.17 Hz (ADXL335), and 8.031 Hz 

(proposed method). At 400 mm length, the respective values 

are 4.07 Hz, 5.26 Hz, 4.22 Hz, and 3.784 Hz. For 500 mm, the 

frequencies recorded are 2.325 Hz (analytical), 3.36 Hz 

(ANSYS), 2.54 Hz (ADXL335), and 2.714 Hz (proposed). 

The proposed optical method shows close agreement with 

standard approaches, validating its accuracy for GI beam 

vibration analysis presented in Table 7. 

 
Table 7. Natural frequency of the cantilever beam made of Galvanized 

Iron obtained by different methods 

 

Length 

of beam 

from 

fixed 

end, mm 

Natural frequency in Hz 

Analytical 

method 
ANSYS 

ADXL 

335 

Proposed 

method 

300 8.27 9.37 8.17 8.031 

400 4.07 5.26 4.22 3.784 

500 2.325 3.36 2.54 2.714 
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Fig. 15 Classification accuracy comparison of different deep learning 

models for vibration signal analysis 

 

Figure 15 illustrates the classification accuracy of various 

Deep Learning Models applied to vibration data. The CNN 

model achieves an accuracy of 0.82%, LSTM improves this to 

0.85%, and GRU further increases it to 0.86%.  

 

The Bi-LSTM model performs even better with 0.88%, 

while the proposed SCFN attains the highest accuracy of 

0.90%, demonstrating its superior ability to capture structural 

vibration patterns. 

 
Fig. 16 Accuracy comparison of optimization using GA, PSO, AND 

IAFA 

 

Figure 16 illustrates the comparative accuracy of three 

optimization techniques. The Genetic Algorithm (GA) 

achieved an accuracy of approximately 0.840%, Particle 

Swarm Optimization (PSO) improved to around 0.872%, 

while the proposed IAFA attained the highest accuracy of 

about 0.925%. This demonstrates IAFA’s superior 

performance in enhancing prediction precision for vibration 

analysis. 

 

 
Fig. 17 RMSE and MAE error comparison of deep learning models for vibration prediction 

 

Figure 17 compares the Root Mean Square Error (RMSE) 

and MAE of different deep learning models. CNN shows the 

highest errors with RMSE of 0.18 and MAE of 0.12, followed 

by LSTM (0.15, 0.10) and GRU (0.14, 0.09). Bi-LSTM 

achieves lower errors (0.12 RMSE, 0.08 MAE), while the 

proposed SCFN model records the lowest values of RMSE of 

0.10 and Mean Absolute Error (MAE) of 0.07, highlighting its 

superior prediction accuracy. 

Figure 18 illustrates the natural frequency variations for 

SS304, Aluminium, and Galvanized Iron Cantilever Beams of 

lengths 300 mm, 400 mm, and 500 mm. For SS304 at 300 mm, 

the experimental frequency is 8.8 Hz and predicted is 8.5 Hz; 

at 400 mm, 4.5 Hz and 4.2 Hz; at 500 mm, 2.7 Hz. Similar 

close agreement is observed for Aluminium (e.g., 8.3 Hz at 

300 mm) and Galvanized Iron (8.0 Hz at 300 mm), confirming 

the accuracy of the photodiode-based predictive model. 
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Fig. 18 Comparison of experimental and predicted natural frequencies 

for SS304, Aluminium, and galvanized iron beams 

 

7. Conclusion 
This research successfully demonstrated a novel, non-

contact vibration sensing methodology that exploits the 

inherent non-uniform spectral responsivity of photodiodes for 

structural monitoring of cantilever beams. Unlike 

conventional systems that depend on physical contact or 

assume uniform photodiode sensitivity, the proposed method 

transforms spatial non-uniformity into a sensing advantage, 

enabling accurate detection of natural frequencies through 

optical voltage variations. The advantage of the proposed 

method over the existing optical-based approaches is that it 

reduces the number of optical components required for the 

vibration measurement and ensures the accuracy of the 

Measurement. Since the Photodiode serves both as the sensor 

and detector in this approach, there is no need for other 

vibration sensors like interferometers, fibre Bragg gratings, 

which form an integral part of optical-based vibration 

measurements in addition to a photodetector. Experimental 

investigations on SS304, Aluminium, and Galvanized Iron 

Beams of varying lengths showed that the proposed 

photodiode-based system provides natural frequency 

measurements within a 5% deviation from analytical, 

ANSYS, and ADXL335 accelerometer data, confirming its 

reliability and precision.  

 

To augment fault detection and enable predictive 

maintenance, the voltage signals are processed using a Deep 

Learning model, SCFN, optimized by the IAFA. The SCFN 

achieved a classification accuracy of 0.90%, outperforming 

conventional models like CNN (0.82%), LSTM (0.85%), and 

Bi-LSTM (0.88%), while IAFA delivered the highest 

prediction accuracy of 92.1% with the lowest error metrics 

(RMSE = 0.10, MAE = 0.07). Overall, this integrated 

Photodiode–Deep Learning framework presents a scalable, 

intelligent, and real-time solution for structural health 

monitoring of Cantilever systems. However, practical 

challenges such as photodiode alignment precision and limited 

active area must be addressed to facilitate broader adoption in 

large-scale industrial or civil infrastructures. Future research 

may focus on extending this approach to multi-degree-of-

freedom structures and incorporating advanced optical 

components for higher spatial resolution. 
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