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Abstract - Conventional vibration monitoring techniques for cantilever beams suffer from several limitations, including physical
contact requirements, installation complexity, degradation over time, and susceptibility to environmental noise. Photodiodes,
while commonly used in optical sensing, are typically assumed to exhibit uniform responsivity. Additionally, traditional
approaches offer limited scalability for real-time, non-invasive, and predictive maintenance solutions. This paper presents a
novel vibration analysis technique that exploits the non-uniform spectral responsivity of photodiodes to detect beam oscillations
without physical contact. When a vibrating cantilever beam reflects a laser spot across the photodiode surface, spatial variations
in light incidence produce voltage fluctuations that are recorded using a digital storage oscilloscope. Experiments conducted
on different cantilever beams reveal that the proposed method accurately determines natural frequencies. To enhance diagnostic
accuracy, the voltage signals are processed using a Deep Learning Model, Sentiment Cross-Fusion Network (SCFN), optimized
with the Improvised Arctic Fox Algorithm (IAFA). Among competing models, the sentiment cross-fusion network achieved the
highest classification accuracy of 0.90%. The improvised arctic fox algorithm further improved prediction performance,
achieving 92.1% accuracy, with the lowest error values of root mean square error (0.10) and mean absolute error (0.07). The
proposed framework demonstrates excellent potential for real-time, scalable, and accurate structural health monitoring in civil
and industrial applications, although considerations like photodiode alignment and active area limitations must be addressed
for broader deployment.

Keywords - Vibration Analysis, Cantilever Beam, Photodiode Non-Uniformity, Deep Learning, Optimization.

1. Introduction

Beams form the backbone of many structural and
mechanical systems, serving as critical elements in load
distribution, stability, and dynamic performance. From
bridges, buildings, and cranes to aircraft wings and precision
instruments, the role in resisting bending and vibrational
forces is indispensable. In particular, cantilever beams, fixed
at one end and free at the other, are frequently employed in
engineering structures such as balconies, overhangs, robotic
arms, and biomedical equipment due to the ability to support
extended spans without intermediate support. Monitoring the
vibrational behaviour of cantilever beams is vital for ensuring
structural integrity, especially under dynamic loading.

Vibration analysis of beams [1-4] enables early detection
of defects such as cracks, material fatigue, and stiffness
degradation, making it a cornerstone of predictive
maintenance strategies in both civil and industrial domains.
Classical beam theories, such as the Euler-Bernoulli,
Timoshenko, and Rayleigh models, provide valuable insight
into beam dynamics under various boundary and material

OSOE)

conditions. However, discrepancies often arise between
theoretical predictions and experimental observations due to
damping, non-linearities [5, 6], and real-world imperfections
[7-9]. Traditional vibration sensing techniques often rely on
contact-based methods, including piezoelectric sensors and
accelerometers [10-12]. While effective, these systems may
suffer from drawbacks such as signal distortion due to
physical contact, sensitivity to environmental noise, and
limitations in measuring out-of-plane motion.

To overcome these challenges, non-contact optical
sensing techniques [13] have gained popularity due to high
sensitivity, immunity to electromagnetic interference, and
capacity for remote monitoring. Most of the optical methods
of vibration measurement include a photodiode, which is
intended only for light detection.  In this research, a novel
optical sensing method is presented for vibration analysis of
cantilever beams by exploiting the inherent non-uniformity in
the spectral responsivity of photodiodes. The advantage of the
method is that the Photodiode itself acts as a vibration sensor,
thereby reducing the number of optical components required
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in existing optical approaches. Unlike conventional
photodiode-based systems that assume uniform sensitivity
across the active area, this research harnesses the natural
spatial non-uniformity in the device response. When a
vibrating cantilever beam reflects a laser beam onto the
photodiode surface, the changing position of incidence due to
beam deflection results in corresponding voltage variations.
These voltage signals are recorded in real-time and analysed
to extract natural frequencies of the beam under free vibration.
The proposed technique is validated through experimental
research on cantilever beams of different materials (stainless
steel, aluminium, and galvanized iron), with comparisons
drawn against analytical calculations, simulation results from
ANSYS, and experimentation with an accelerometer. By
utilizing a minimalistic and cost-effective setup, this approach
offers a scalable and accurate non-contact solution for
monitoring structural vibrations, paving the way for improved

safety, diagnostics, and reliability in structural health
monitoring systems.
2. Literature Review

Vibration-based structural monitoring is a well-

established method in the field of engineering. Li et al. [14]
and Nguyen et al. [15] elucidated the essential function of
vibration analysis in the evaluation of the condition of civil
and mechanical structures. The cracks change the
characteristics of the beam. Chinka et al. [16] and Pathak, D
etal. [17] explicated the vibration behaviour of cracked beams
simulated in ANSYS, explaining that crack dimensions
substantially influence the natural frequencies. Khatir, A et
al. [18] explained a hybrid PSO-YUKI algorithm integrated
with radial basis functions for locating double cracks in CFRP
beams using experimental and FEM-based vibrational data.
The remarkable accuracy and computational efficiency in
crack depth detection are demonstrated in this paper. Machine
learning based damage detection of beams has gained traction
due to its ability to enhance accuracy and efficiency in
structural health monitoring. Feng, H et al. [19] and Afandi et
al. [20] demonstrated various methodologies leveraging Deep
Learning, Data Augmentation, and Hybrid Algorithms to
address the challenges of traditional inspection methods.

Siva et al. [21] proposed two methodologies for crack
detection: one utilizing digital image processing and the other
employing deep learning with Convolutional Neural
Networks (CNNSs) for detection and ResNet for classification,
demonstrating superior accuracy over existing techniques on
publicly available datasets. Harikumar, V et al. [22] explained
a digital twin framework for beams using support vector
machines, incorporating stiffness degradation and damage
evolution over dual time scales. Zhang, X et al. [23]
introduced a Fourier Transformation-based Physics-Informed
Neural Network (FT-PINN) to accurately predict the dynamic
responses of cantilever beams under complex excitations.
Katam, R et al. [24] combined vibration-based analysis with
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support vector machines to improve damage detection in
cantilever beams, addressing the limitations of frequency-
based methods. The approach achieved 85% accuracy in
identifying damage across varying locations and severities,
demonstrating improved robustness over traditional
techniques. The literature survey shows that the integration of
artificial intelligence into the traditional approaches will
enhance the accuracy of any measurement. In this paper, a
novel, deep learning enhanced photodiode non-uniform based
optical method is presented for vibration analysis of cantilever
beams.

2.1. Problem Statement

Traditional  contact-based  sensor-based  vibration
monitoring systems for cantilever beams are limited by
complex installation, vulnerability to environmental noise,
and degradation over time. These limitations demand non-
invasive solutions and lead to the wide use of non-contact
optical-based approaches. Photodiodes are an integral part of
almost all optical-based vibration monitoring systems.
Furthermore, while conventional photodiodes are used in
optical sensing applications, the assumed uniform
responsivity across the surface fails to exploit the full potential
for vibration detection. The lack of intelligent, real-time fault
identification  further delays maintenance responses.
Therefore, there is a critical need for a novel, accurate, non-
contact vibration sensing method that leverages photodiode
non-uniformity and integrates advanced deep learning models
to enable predictive maintenance, early fault detection, and
continuous monitoring of cantilever beam structures. This
research introduces a novel non-contact vibration monitoring
technique that leverages the non-uniform responsivity of
photodiodes, transforming an optical irregularity into a
sensing advantage. It integrates a Deep Learning Model-
SCFN, optimized by the IAFA for real-time structural fault
detection. The method is experimentally validated on different
cantilever beams and cross-verified with analytical,
simulation, and accelerometer data. The materials and
methods will be presented in Section 3, the results with
analysis in Section 4, and the conclusion in Section 5.

3. Methodology

The spectral responsivity of the Photodiode reveals its
inherent non-uniformity, wherein the output voltage varies
based on the exact point of light incidence on its active region.
While most photodiode applications assume uniform
responsivity, especially in light intensity measurements, this
research focuses on exploiting the nonlinear, spatially varying
response. A novel, non-contact, photodiode-based optical
vibration measurement technique is developed for cantilever
beams. The natural frequencies of cantilever beams made of
various materials, such as stainless steel SS304, Aluminium,
and galvanized iron, are determined using this approach. Free
vibrations through a small displacement are induced into the
beams, and real-time photodiode signals are captured via a
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Digital Storage Oscilloscope (DSO). The results are validated
analytically, using modal analysis using ANSY'S and using an
ADXL335 accelerometer interfaced with an Arduino UNO.

Cantilever beam:
The core component under test

(SS 304, Aluminum and
Galvanized Iron)
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Real- time signal acquisition
and signal visualization
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The consistency across all methods confirms the accuracy and
reliability of the proposed technique.
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incident location
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signals
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Fig. 1 Proposed methodology for vibration analysis

Figure 1 illustrates the complete flow of the proposed
vibration analysis system for cantilever beams using
photodiode non-uniformity enhanced by Deep Learning. The
process begins with a cantilever beam (made of SS304,
Aluminium, or Galvanized iron) that is set into free vibration
by a slight displacement. A small mirror is attached to the
vibrating beam, and a laser beam is directed towards the
mirror. The reflected beam is detected by a photodiode. As the
beam vibrates, the incident position of the beam on the surface
of the Photodiode varies. The non-uniform characteristics of
the Photodiode thus generate a changing voltage that depends
on the vibrational frequency of the beam. These voltage
fluctuations are observed in real time using a DSO. These raw
vibration data are then fed into an SCFN, which analyses the
vibrational data to identify the faulty structural behaviour.
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Applying a metaheuristic optimizer incorporating chaotic
mapping, Householder reflection, and tangent flight strategies,
the performance of SCFN is further enhanced by the IAFA.
The final output of this integrated system makes it a robust
tool for predictive maintenance and structural health
monitoring.

The specifications as well as the properties of three
Cantilever Beams under research are given in Tables 1 and 2.

Table 1. Specifications of cantilever beams

Length of beam, L 900mm
Breadth, b 40mm
Thickness of beam, h 1mm
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Table 2. Material properties of beams

Modulus of Densit
Material of the Beam Elasticity, Y
kg/m3
GPa
Aluminium 70 2700
Stainless steel 200 8000
Galvanized iron 210 7870

3.1. Photodiode Non-Uniformity Analysis

To explore the non-uniform spectral responsivity of the
Photodiode, a laser source of 635 nm is utilized. The setup, as
shown in Figure 2, includes the laser module and the
Photodiode used for the experiment. The laser is powered with
a constant voltage of 7V to ensure stable beam output during
the scanning process. The laser beam is directed at the active
surface of the Photodiode, and its spatial responsivity is
characterized by moving the beam gradually across the
detector’s surface, specifically through its central region from
one end to the other. At each scanned position, the resulting
output voltage is measured using a digital multimeter to
capture the variations in responsivity due to non-uniform light
sensitivity across the surface. This scanning procedure is
repeated multiple times to ensure repeatability, and the
observed variations in voltage confirm the inherent non-
uniformity of the Photodiode. The characteristic output
responses obtained from this scanning process are depicted in
Figure 3.

F-ig. 2 Photodiode and laser used for the experiment

—e— Experiment 1 ~—&— Experiment 2 Experiment 3

Output Voltage (mV)

2 3 4 5 6
Displacement (mm)
Fig. 3 Spectral responsivity of photodiode
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3.2. Determination of Natural Frequency Analytically

The natural frequency of a free-vibrated beam is purely
dependent on the system parameters of mass and stiffness. A
few assumptions, like lumped mass at the free end, undamped
vibrations, etc., have been made when a real-time system is
approximated to a simple beam.

A cantilever beam subjected to free vibrations, as
described based on Euler-Bernoulli’s Beam Theory, is given
by Equation (1).

{EI

Where E represents the rigidity modulus of the beam, |
represents the moment of inertia, Y(X) represents
displacement in the y direction, w, represents the circular
natural frequency, and m represents the mass per unit length.

d?

dx?

a2y (x)
dx?

} = 0amGY () )

Analytically, Euler-Bernoulli Beam Theory is applied to
deduce natural frequencies of cantilever beams under various
modes. The frequency of a beam for an nth mode is given by
Equation (2).

0. = k
nTo\m

Where m represents the modal mass, and k represents the
stiffness.

(inrad/sec)

@

To determine the natural frequencies of three beams
analytically, the modal mass and stiffness are needed. These
parameters are calculated first from the specifications and
material properties of the beam. Equations (3) and (4) are used
for this purpose.

3EI
3

k= 3)

bh3
= —
12

(4)

Then, the natural frequency of vibrations of three
Cantilever Beams under research is determined analytically
using Equation (2).

3.3. Determination of the Natural Frequency of Beam Using
ANSYS software

The Cantilever Beams under research are analysed using
the modal analysis software, and the natural frequency of the
beams is obtained. The three-dimensional finite element
models of Cantilever Beams are constructed, and
Computational Modal analysis on ANSYS-17 is then
performed to generate various mode shapes. The natural
frequency is thus observed. Modal analysis of a beam made of
SS304 is presented in Figures 4 and 5. Similarly, the
Cantilever Beams of Aluminium and Galvanized Iron are
modelled, and the natural frequencies are calculated.
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Fig. 4 Model of stainless-steel cantilever beam in ANSYS

3

Fig. 5 Modal analysis of stainless-steel cantilever beam in ANSYS
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3.4. Cantilever Beam Vibration Measurement Using
ADXL335 Accelerometer

The ADXL335 accelerometer is a widely used sensor for
vibration measurement due to its compact design, low power
consumption, and three-axis sensing capabilities [25]. The
ADXL335 outputs voltages proportional to acceleration in the
X, Y, and Z axes. It is known for its high sensitivity and low
cross-axis sensitivity, making it suitable for precise vibration
measurements. The sensor operates on a voltage of 3.3V or 5
V and has a typical current consumption of 300 pA. The
frequency of vibration of the cantilever under research is
measured using ADXL335 integrated with Arduino UNO.
Since the vibration of the beam is in the Z direction, the z-axis
reading of ADXL335 is required. The five pins of ADXL335
are Vcc, GND, X, Y, and Z. ADXL335 is connected to
Arduino UNO, and the pin connections are shown in Table 3.
As ADXL335 is an analog accelerometer, the Z pin of the
device is connected to AO of the Arduino UNO. The vibrating
pattern of the beam is observed in real time using a serial
plotter on Arduino. The same vibrations are captured by DSO.
Figure 6 shows the experimental setup for the ADXL335
accelerometer.

Table 3. Pin connections of ADXL335 and Arduino

ADXL335 Pin Arduino Pin
Vce 3.3V
GND GND

Z A0
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Fig. 6 Vibrating beam with ADXL335 connected to Arduino UNO and
DSO

3.4.1. Waveforms Observed during Measurement using
ADXL335 Accelerometer

An ADXL335 accelerometer is attached to the Cantilever
Beam, and the beam is allowed to vibrate at its natural
frequency. When the beam vibrates, the accelerometer
experiences the same vibrations in the Z-axis. This periodic
movement of the Z-axis is transferred to Arduino UNO via
analog pin AO. The same vibrations are observed in the DSO,
which is connected to the accelerometer. Thus, the frequency
of vibrations is measured and recorded.

The vibrations of the beam are plotted using a serial
plotter on Arduino. The experiment is performed for SS,
Aluminium, and GI cantilever beams for beam lengths of
300mm, 400mm, and 500mm.

Figure 7 shows the vibrations obtained using ADXL335
along with Arduino for an Aluminium beam for a beam length
of 300mm. When the beam is displaced to induce vibrations,
the amplitude of vibration is high. Gradually, the amplitude of
vibrations decays and reaches a steady state where the beams
vibrate with natural frequency.

600.0

450.01

300.0+ [t

150.01

0.0’ &
551900 552200
9600 boud | Send
Fig. 7 Aluminium beam vibrations observed in serial plotter for a beam
length of 300mm

552000 552100
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3.5. Cantilever Beam Vibration Measurement Using
Photodiode

In this section, the non-uniformity of the Photodiode is
used to monitor the vibration of Cantilever Beams. The
experiment is performed with three Cantilever Beams of
Aluminium, Stainless steel, and Galvanized Iron. The
arrangement of the components of vibration measurement is
shown in Figure 8. A small mirror is attached to the cantilever
beam. A laser beam from the laser source is allowed to fall on
the mirror and is reflected towards the Photodiode. When the
Cantilever Beam vibrates, the reflected laser beam from the
mirror falls on various positions in the active region of the
Photodiode. Due to non-uniformity, different voltages are
generated in the Photodiode. i.e., The vibration of the beam
modulates the incident position of light on the Photodiode and
generates output voltage accordingly. Thus, the non-
uniformity of the Photodiode is effectively applied to detect
the frequency of vibration of the beam.

Fig. 8 Experimental setup of the proposed vibration measurement
technique

When the beam is given a small displacement, it starts to
vibrate. Initially, it vibrates with a higher amplitude, but the
inherent damping of the system decays the amplitude of free
vibration. The natural frequency of the beam is measured
when a stable condition is observed. When the cantilever beam
vibrates, it follows a periodic, to-and-fro motion, and so the
vibration-modulated laser beam received by the Photodiode
follows the same pattern.

As a result, the waveforms observed in the DSO during
vibration measurement using a photodiode are sinusoidal
signals. Since the natural frequency of free vibration is in the
range of very few Hz, there is a chance of distortion as
observed in the waveforms. The natural frequency of the
beams is noted directly from the DSO. The waveforms
obtained from DSO for a stainless steel beam of length
300mm, 400mm, and 500mm.

3.5.1. Waveforms Observed During Measurement using
Photodiode

When the beam is given a small displacement, it starts to
vibrate. Initially, it vibrates with a higher amplitude, but the
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inherent damping of the system decays the amplitude of free
vibration. The natural frequency of the beam is measured
when a stable condition is observed. The vibration-modulated
laser beam is received by the Photodiode, which follows the
periodic movement of the beam pattern. As a result, the
waveforms observed in the DSO during vibration
measurement using a photodiode are sinusoidal signals.

Since the natural frequency of free vibration is in the
range of very few Hz, there is a chance of distortion as
observed in the waveforms. The natural frequency of the
beams is noted directly from the DSO. Figure 9 presents the
waveforms captured via DSO for a stainless steel cantilever
beam of length 300mm. As presented in the Figure, the
corresponding natural frequencies are observed to be
8.591 Hz. Similarly, Figures 10 and 11 show the waveforms
captured via DSO for Aluminium and GI cantilever beams of
beam lengths 500mm.

| Gm-Sony  @2ows  OCHL EDGE SDC
Fig. 9 Waveform for stainless steel beam of beam length 300mm

These results confirm the inverse relationship to beam
length and vibration frequency, demonstrating that longer
beams exhibit lower natural frequencies due to reduced
stiffness and increased mass distribution. The consistency of
waveform patterns validates the reliability of the proposed
photodiode-based vibration sensing method for frequency
extraction.

@ 250ms row.  @WCHI EDGE FDC
v

s 55010 “ila¥
Fig. 10 Waveform for aluminium beam of beam length 500mm
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ron beam of beam length 500mm

Fig. 11 Waveform for galvanized i

4. Sentiment Cross-Fusion Network (SCFN)

The sentiment cross-fusion network is a Deep Learning
Framework designed to learn time-dependent vibration
patterns from photodiode voltage signals. It combines multi-
scale temporal features and cross-path attention to enhance
fault detection accuracy. SCFN effectively distinguishes
subtle variations in vibration data caused by structural
anomalies. This enables reliable, real-time predictive
maintenance of cantilever beams.

X = {x, %5, e ... X7}, %,€ER? (5)

Where X represents a sequence of vibration input signals
from the Photodiode, x; represents the input signal (voltage),
T denotes the total number of time steps, and d represents the
dimensionality of each input vector.

hy = ReLU(We Xx; + be) (6)

Where, h; represents the encoded feature vector at time
step t, W, represents the weight matrix of the encoder layer
RYXd " b represents the bias vector, ReLU represents the
rectified linear unit, and d’ represents the dimension.

. kT

Attention(Q,K,V) = softmax[(\/d_k)v (M)

Where, Q=HWq, K=HW(x, V=HW\, represents the query,
key, and value matrices, H represents matrix of hidden states
[h1,h.....h7]" Wa, Wk, Wy represents the learnable projection
matrices, dx represents the dimension of keys, softmax
represents the activation function to normalise attention
weights, attention () represents the output of attention layer
capturing temporal dependencies.

Z = A, .Attention, + 1, . Attention, (8)

Where Z represents the final fused representation
combining multiple attention heads, Attention; and Attention;
represent the attention outputs from different pathways, and A,
and A, represent the fusion weights.
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for classification

N {softmax(W0 Z + by)
- for regression

Where, § Represents the output prediction, W, represents
the output weight matrix, and b, represents the output bias
term.

5. Optimization using the Improvised Arctic Fox

Algorithm (IAFA)

The improvised arctic fox algorithm is a novel
metaheuristic designed to optimize the performance of Deep
Learning Models like SCFN by minimizing prediction error.
It integrates chaotic mapping for exploration, Householder
mirror reflection for efficient learning, and a Tangent Flight
Search strategy to escape local optima. IAFA adaptively
updates model parameters to enhance convergence and
predictive accuracy in vibration pattern recognition. This
makes it well-suited for real-time structural health monitoring
applications.

minL(y, 5 (0)) (10)

Where 6 represents the model parameters of SCFN, y
represents the ground truth vibration frequency/class, 7(0)
represents predicted output from SCFN, L represents the loss
function.

Fitness = - X, (v; — %, 2 (12)
Where N indicates the number, y; indicates true output, ¥,
Indicates predicted output.

. 1 —
Fitness = —¥iL; -, ¥ij log(3; (12)
Where C indicates the number of classes, yj; indicates the
binary indicator, ,, Denotes predicted probability of the class
j for sample i.
XPr =X+ 0. Co (Xfpse — XF) + B.H(XE) +v. TFS( X))  (13)
Where Xt represents the solution of the it fox at iteration
t, X'hest represents the best solution found so far, C; represents
the chaotic coefficient, a, 3,y represent the control parameters
for balance and exploitation, H(XY) represents the householder

mirror reflection learning component, and TFS(X4) represents
the Tangent Flight Search operator for exploration.

1 P
Lyse = ;ZiT=1 0i— %) (14)
Where LMSE represents the mean squared error loss, T
indicates the total number, yt indicates the true (actual)
vibration value, and y”t indicates the predicted vibration value
by SCFN.

LCrossEntropy = - Z?:l yi log( 5)\1 (15)
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Where Lerossentropy represents the cross-entropy loss.

0" = argmin L(0) (16)
0

Where 0 represents the set of SCFN hyperparameters,
L(0)represents the total loss of the SCFN model using
hyperparameters 0,0* represents the optimal hyperparameter
set that minimizes the loss, and argmin represents the operator
that returns the value of 6 for which the loss is minimum.

Table 4. Pseudocode for the improvised arctic fox algorithm
Input

Objective function L(0) based on SCFN loss
Search Space S(parameter change for SCFN)
Max Iterations T

Population size N

Initial Chaotic value Co €(0,1)

Output
Optimized SCFN weights 6*
Steps
1. Initialize fox population, P={ 01, 0o,........ 0 N}
randomly in S
Evaluate fitness in each using L(0;)=MSE or
cross entropy loss from SCFN
0*= argmin{ L(6i): 6; € P
fort=1to T do
Update chaotic coefficient
C_i+l=pu*C_t*(1- C_t) /Mogistic map
For each 6; € P do
Determine search mode: Mode(t) € A
Mode(6i,t, C_t)
Switch Mode(t)
Case Exploration
. 0l new=0i-1mVY L(01)+ o* sin(@*t+y)+p*Z t
/I Z_t israndom vector
case exploitation
Sample Levy flight step:s_t L{c,u)
0i_new=0i+s_t* 6* //step towards best
case Evasion
Generate random noise, dw_1 — N(0,1)
0i_new= Qi+ V2D * dW_t
Apply Householder learning
H(01)- 61 -2*(vT Bi)* v where v is
householder vector
Combine:
0i_new< 0i_new+ H(0i)+ TFS(6i)
0i<-0i_new
If L(61)< L(6*) then
0* < 0i
end if
end if

ok w

No

© @

11.
12.
13.
14.
15.
16.
17.
18.

19.
20.
21,
22,
23.
24,
25.
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26. end for
27. end for
28. Return optimized SCFN weights 6*

Table 4 illustrates the pseudocode of the IAFA designed
to optimize the SCFN by minimizing its loss function.
Initially, a population of SCFN weights is randomly generated
within the search space, and the fitness is evaluated using the
SCFN loss. The best solution is selected, and a logistic chaotic
map updates a dynamic coefficient C; to enhance global search
behavior. Based on C; and iteration count, the algorithm
switches between three search modes: Exploration (gradient-
based update with sinusoidal motion and random noise),
Exploitation (stepwise update using Lévy flight toward the
best solution), and Evasion (random walk using Gaussian
noise). To further enrich the search space, Householder
reflection and Tangent Flight Search are integrated, producing
transformed updates. These transformations are accepted only
if they lie within bounds and offer improved fitness. The
process iterates until convergence, returning the optimized
SCFN weight vector 6* for high-accuracy vibration pattern
classification.

6. Results and Analysis

The results confirm that the photodiode-based method
accurately detects the natural frequencies of cantilever beams,
closely matching analytical, simulation, and accelerometer
data. The SCFN model, when optimized using the 1AFA,
achieves improved prediction accuracy and faster
convergence. This integrated approach proves effective for
scalable, real-time, and non-contact vibration monitoring.
However, limitations like photodiode active area and
sensitivity to alignment must be considered for broader
applications.

9 —e&— Analytical
ANSYS
-~ 81 N\ &~ ADXL 335
N N
= ON Proposed method
7 \
3]
g
Z6
)
=
k= 5
=
=
"
7z
3
2 v v . . .
300 325 350 375 400 425 450 475 500

Beam Length (mm)
Fig. 12 Comparison of different approaches for SS304 beam for various
beam lengths
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Figure 12 compares natural frequencies of SS304
cantilever beams at lengths of 300 mm, 400 mm, and 500 mm
using four different methods. At 300 mm, the analytical
method gives 8.07 Hz, ANSYS simulation shows 9.08 Hz,
ADXL335 measures 8.24 Hz, and the proposed photodiode-
based method gives 8.59 Hz. At 400 mm, the corresponding
frequencies are 3.93 Hz (analytical), 5.09 Hz (ANSYY),
4.71 Hz (ADXL335), and 4.502 Hz (proposed). For 500 mm,
the methods yield 2.24 Hz, 3.25 Hz, 2.94 Hz, and 2.92 Hz,
respectively. The proposed method shows close agreement
with ADXL335 and ANSYS, validating its accuracy as
presented in Table 5.

Table 5. Natural frequency of the cantilever beam made of SS304
obtained by different methods

Natural frequency in Hz
Length
of beam | | g
from Analytica ADXL | Propose
fixed method ANSYS 335 method
end, mm
300 8.07 9.08 8.24 8.59
400 3.93 5.09 4.71 4.502
500 2.24 3.25 2.94 2.92
9. —o— Analytical
o ANSYS
P N\ —e— ADXL 335
N 8- N
E N\ Proposed method
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Fig. 13 Comparison of different approaches for the aluminum beam for
various beam lengths
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Figure 13 shows that the aluminium cantilever beams, the
natural frequency at 300 mm is found to be 8.60 Hz
(analytical), 9.36 Hz (ANSYS), 8.34 Hz (ADXL335), and
8.621 Hz (proposed method). At 400 mm, the frequencies are
4.065 Hz, 5.23 Hz, 4.56 Hz, and 4.016 Hz, respectively. For a
500 mm length, the values recorded are 2.307 Hz (analytical),
3.34Hz (ANSYS), 2.92Hz (ADXL335), and 2.649 Hz
(proposed method). The proposed photodiode-based
technique closely aligns with other established methods,
confirming its reliability, as presented in Table 6.
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Table 6. Natural frequency of the cantilever beam made of aluminium
obtained by different methods

Natural frequency in Hz
Length
of beam
from | Analvti
! ytical ADXL | Proposed
fixed method | ANSYS | 335 method
end,
mm
300 8.60 9.36 8.34 8.621
400 4.065 5.23 4.56 4.016
500 2.307 3.34 2.92 2.649
9. —&— Analytical
ANSYS
o~ ADXL335

Proposed method

s
i

Natural Frequency (Hz)

w

350 375 400 425 450 475 500
Beam Length (mm)

Fig. 14 Comparison of different approaches for GI beam for various
beam lengths

2—
300 325

Figure 14 shows the Gl Cantilever Beams, the natural
frequency at 300 mm is observed as 8.27 Hz (analytical),
9.37Hz (ANSYS), 8.17Hz (ADXL335), and 8.031Hz
(proposed method). At 400 mm length, the respective values
are 4.07 Hz, 5.26 Hz, 4.22 Hz, and 3.784 Hz. For 500 mm, the
frequencies recorded are 2.325Hz (analytical), 3.36 Hz
(ANSYS), 2.54 Hz (ADXL335), and 2.714 Hz (proposed).
The proposed optical method shows close agreement with
standard approaches, validating its accuracy for Gl beam
vibration analysis presented in Table 7.

Table 7. Natural frequency of the cantilever beam made of Galvanized
Iron obtained by different methods

Natural frequency in Hz
Length
ofbeam | nalytical ADXL | Proposed
from nalytica ropose
fixed method ANSYS 335 method
end, mm
300 8.27 9.37 8.17 8.031
400 4.07 5.26 4.22 3.784
500 2.325 3.36 2.54 2.714
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Fig. 15 Classification accuracy comparison of different deep learning

models for vibration signal analysis

Figure 15 illustrates the classification accuracy of various
Deep Learning Models applied to vibration data. The CNN
model achieves an accuracy of 0.82%, LSTM improves this to
0.85%, and GRU further increases it to 0.86%.

The Bi-LSTM model performs even better with 0.88%,
while the proposed SCFN attains the highest accuracy of
0.90%, demonstrating its superior ability to capture structural
vibration patterns.
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Fig. 17 RMSE and MAE error comparison of deep learning models for vibration prediction

Figure 17 compares the Root Mean Square Error (RMSE)
and MAE of different deep learning models. CNN shows the
highest errors with RMSE of 0.18 and MAE of 0.12, followed
by LSTM (0.15, 0.10) and GRU (0.14, 0.09). Bi-LSTM
achieves lower errors (0.12 RMSE, 0.08 MAE), while the
proposed SCFN model records the lowest values of RMSE of
0.10 and Mean Absolute Error (MAE) of 0.07, highlighting its
superior prediction accuracy.
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Fig. 16 Accuracy comparison of optimization using GA, PSO, AND
IAFA

Figure 16 illustrates the comparative accuracy of three
optimization techniques. The Genetic Algorithm (GA)
achieved an accuracy of approximately 0.840%, Particle
Swarm Optimization (PSO) improved to around 0.872%,
while the proposed IAFA attained the highest accuracy of
about 0.925%. This demonstrates IAFA’s superior
performance in enhancing prediction precision for vibration
analysis.
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Figure 18 illustrates the natural frequency variations for
SS304, Aluminium, and Galvanized Iron Cantilever Beams of
lengths 300 mm, 400 mm, and 500 mm. For SS304 at 300 mm,
the experimental frequency is 8.8 Hz and predicted is 8.5 Hz;
at 400 mm, 4.5 Hz and 4.2 Hz; at 500 mm, 2.7 Hz. Similar
close agreement is observed for Aluminium (e.g., 8.3 Hz at
300 mm) and Galvanized Iron (8.0 Hz at 300 mm), confirming
the accuracy of the photodiode-based predictive model.
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Fig. 18 Comparison of experimental and predicted natural frequencies
for SS304, Aluminium, and galvanized iron beams

7. Conclusion

This research successfully demonstrated a novel, non-
contact vibration sensing methodology that exploits the
inherent non-uniform spectral responsivity of photodiodes for
structural monitoring of cantilever beams. Unlike
conventional systems that depend on physical contact or
assume uniform photodiode sensitivity, the proposed method
transforms spatial non-uniformity into a sensing advantage,
enabling accurate detection of natural frequencies through
optical voltage variations. The advantage of the proposed
method over the existing optical-based approaches is that it
reduces the number of optical components required for the

vibration measurement and ensures the accuracy of the
Measurement. Since the Photodiode serves both as the sensor
and detector in this approach, there is no need for other
vibration sensors like interferometers, fibre Bragg gratings,
which form an integral part of optical-based vibration
measurements in addition to a photodetector. Experimental
investigations on SS304, Aluminium, and Galvanized Iron
Beams of varying lengths showed that the proposed
photodiode-based system provides natural frequency
measurements within a 5% deviation from analytical,
ANSYS, and ADXL335 accelerometer data, confirming its
reliability and precision.

To augment fault detection and enable predictive
maintenance, the voltage signals are processed using a Deep
Learning model, SCFN, optimized by the IAFA. The SCFN
achieved a classification accuracy of 0.90%, outperforming
conventional models like CNN (0.82%), LSTM (0.85%), and
Bi-LSTM (0.88%), while IAFA delivered the highest
prediction accuracy of 92.1% with the lowest error metrics
(RMSE = 0.10, MAE = 0.07). Overall, this integrated
Photodiode-Deep Learning framework presents a scalable,
intelligent, and real-time solution for structural health
monitoring of Cantilever systems. However, practical
challenges such as photodiode alignment precision and limited
active area must be addressed to facilitate broader adoption in
large-scale industrial or civil infrastructures. Future research
may focus on extending this approach to multi-degree-of-
freedom structures and incorporating advanced optical
components for higher spatial resolution.
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