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Abstract - Signature is a vital behavioral biometric trait. It has been used for secure authentication for centuries. An innovative
framework that converts dynamic online signature data from the SVC 2004 database into offline grayscale images has been
proposed here. And finally, offline signature verification is done using a pre-trained lightweight CNN, SqueezeNet. Essential
signer-specific patterns are preserved in the process of online-to-offline conversion. Before feeding the SqueezeNet input, the
signature images undergo a preprocessing step that includes grayscale-to-RGB conversion and resizing. Subsequently,
transfer learning is used to distinguish between genuine and forged signatures. By adopting this strategy, the model can be
efficiently deployed in resource-constrained environments without sacrificing accuracy. It uniquely integrates online and
offline signature verification. It also provides extensive threshold-based evaluation using various fundamental classification
metrics, biometric-specific performance metrics, and ROC curve analysis. User-specific and Global Youden Thresholds, User-
specific and global EER threshold, Equal Error Rate (EER), and analysis of False Acceptance Rate (FAR) and False Rejection
Rate (FRR) versus threshold are included in this study. Global ROC provides a Global Youden Threshold. And the average
FAR and FRR curves vs threshold gives the global EER threshold. Offline signature verification under raw threshold, user-
specific Youden threshold, and user-specific EER thresholds is performed here. Excellent accuracy, flexibility, and robustness
are seen here. The idea of offline signature verification derived from online data, when combined with compact CNN
architectures, SqueezeNet, can bridge the gap between online and offline signature verification systems. This work contributes
toward scalable, cross-domain biometric verification solutions and opens up ways towards unified signature recognition
systems. This first-of-its-kind, cross-domain framework delivers a scalable, accurate, and resilient signature verification
solution for both random and skilled forgeries. The proposed Offline Signature Verification system using online signature
database achieves the best average testing accuracy of 99.81% (With User Specific Youden Thresholding) for random forgeries
and 94.81% (With User Specific Youden Thresholding) for skilled forgeries across all 40 users. Here, the testing accuracy of
random forgeries ranges from (92.50-100.00) %, and skilled forgeries ranges from (72.50-100.00) %. Hence, the proposed
system yielded very good accuracy in comparison to existing state-of-the-art results, offering a practical solution to real-world
applications.
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1. Introduction

Biometric authentication has emerged as a critical
technology for ensuring secure access to digital and physical
systems, with handwritten signature verification remaining
one of the most socially accepted and legally recognized
methods [1]. Traditional signature verification is categorized
into two primary modes: online and offline verification.
Online verification uses dynamic features such as writing
speed, pen pressure, and stroke order, whereas offline
verification relies only on static images of signatures [2, 3].
Offline Signature Verification has significant challenges due

to the absence of temporal information, making systems
susceptible to intra-class variability and skilled forgeries [4].

Recent advancements in deep learning and transfer
learning have substantially enhanced the accuracy of Offline
Signature Verification systems. Pre-trained Convolutional
Neural Networks (CNNs), particularly lightweight
architectures such as SqueezeNet, offer compact models that
can be efficiently fine-tuned for binary signature verification
tasks [5]. SqueezeNet has demonstrated remarkable
performance in recent studies, achieving identification
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accuracies above 99.79% on multiple datasets, including
BHSig260-Bengali, BHSig260-Hindi, CEDAR, and UTSig,
with training times under 3 minutes per dataset [6]. However,
a major challenge that remains underexplored is bridging the
gap between online and offline verification domains for
cross-domain biometric verification.

Existing Offline Signature Verification methods
predominantly focus on static signature datasets without
integrating the rich dynamic cues present in online data [7,
8]. Research done by Cairang et al. [9] has shown that cross-
domain verification using Siamese networks with Triplet loss
and Cross Entropy loss can improve model generalization
across different domains. So, closing this gap opens the door
for building unified verification systems. Regardless of how
the signatures were originally acquired, these systems can
authenticate signatures. As the latest techniques for cross-
layer weakly supervised data augmentation demonstrated this
[10].

Offline signature verification is done using SqueezeNet
after the online signature data has been converted into offline
signature images. This novel technique facilitates cross-
domain verification as online data has been used in offline
models. It is seen that it improves flexibility, robustness, and
scalability across real-world scenarios. As a result, it can be
a promising research direction to develop an integrated,
scalable, and highly precise signature verification solution.

Evaluation of advanced metrics such as Youden's J
statistic for threshold determination, Equal Error Rate (EER),
False Acceptance Rate (FAR), and False Rejection Rate
(FRR) has been done. Performance evaluation is done
through FAR and FRR vs. threshold curves, average ROC
curves, and global Youden thresholds derived from global
ROC curves. To analyze verification performance, we have
done verification using raw thresholding, user-specific
Youden thresholds, and EER thresholds, with global EER
assessment through average FAR/FRR curves. Performance
metrics such as Accuracy, Precision, Recall, and F1-Scores
are comprehensively evaluated for analysis [11-16].

2. Literature Review

Generally, handwritten signature verification can be
classified into online and offline modes, each having distinct
data acquisition and processing techniques used. In online
signature verification, temporal dynamics are captured using
devices like tablets or styluses, whereas offline signature
verification relies on static images scanned from paper
documents [17]. Usually, Online Signature Verification gives
higher accuracy than Offline Signature Verification due to its
rich temporal data. But it is seen that Offline Signature
Verification is more commonly used in practical applications
where only scanned or photographed signatures are available
for verification [18, 19].
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Major challenges that an Offline Signature Verification
system has to go through are Signature forgeries. Forgeries
are generally classified into three types as shown below [7,
20]:
e Random Forgeries — Signer produces the signatures
without any prior knowledge of the genuine signature, so
the signatures produced differ significantly in
appearance.

Simple Forgeries — Imitators produce signatures who
know the signer's name but have not seen the genuine
signature.

Skilled Forgeries — An Imposter produces highly
deceptive signatures after observing or practicing the
genuine signature multiple times. This is the most
challenging category for Offline Signature Verification
systems.

Hand-crafted features such as Histogram of Oriented
Gradients (HOG), Local Binary Patterns (LBP), or
Geometric Descriptors [18, 21, 22] are used in conventional
Offline Signature Verification techniques. Deep learning has
transformed the field by automatically learning
discriminative features from raw signature images. Various
CNN architectures in Offline Signature Verification tasks
have shown superior performance when done with transfer
learning [23, 24].

Ciftci and Tekin [25] compared five different deep
learning methods: GooglLeNet, MobileNet-V3 Large,
Inception-V3, ResNet50, and EfficientNet-B0O, where
GoogLeNet and Inception-V3 achieved an accuracy of
98.77%.

SqueezeNet is a lightweight CNN architecture. It has the
advantage of remarkably reduced model size without
compromising accuracy [5]. It is highly suitable for resource-
constrained biometric applications because of its efficiency.
Purbanugraha et al. [6] developed an optimized SqueezeNet
with ADAM backpropagation, demonstrating good results
across multiple datasets with identification accuracies above
99.79% and training times under 3 minutes per dataset.

Siamese networks have become a powerful architecture
for signature verification tasks. Tehsin et al. [26] developed
a Triplet Loss Siamese Similarity Network (tSSN) while
combining with Manhattan distance measures, which gives
better performance. The approach was evaluated on several
datasets, including 4NSigComp2012, SigComp2011,
4NSigComp2010, and BHSig260, showing enhanced
verification accuracy in scenarios with close signature
similarity.  Cross-domain  verification is still an
underexplored area. However, lots of research has been done
to improve Offline Signature Verification and Online
Signature Verification separately. Cairang et al. [9] proposed
a novel approach for learning generalizable representations
using Siamese networks combined with Triplet loss and



Bhimraj Prasai Chetry et al. / IJECE, 12(12), 201-217, 2025

Cross Entropy loss. Their method has given better
performance in  cross-domain  than  single-domain
applications using Instance Normalization and a module
called Inference Layer Normalization Neck (ILNNeck) to
improve model generalization across various domains.

As per recent research, transforming online signature
data into offline signature images can enhance Offline
Signature Verification, allowing models to learn from both
static and dynamic characteristics [27, 28]. However, few
methods have systematically integrated online datasets with
compact CNNs for unified verification. Our research
addresses this gap by introducing a SqueezeNet-based
framework that uses online signature data in offline
verification, providing enhanced robustness and scalability.

To ensure comprehensive performance assessment,
modern signature verification systems employ multiple
threshold-based and curve-based metrics [11-16] below:
Youden Threshold: Determined by maximizing
Youden's J statistic (TPR - FPR), providing an optimal
trade-off between sensitivity and specificity.

Equal Error Rate (EER): The point at which FAR
matches FRR, representing balanced  system
performance.

FAR and FRR vs. Threshold: Graphical representation
to evaluate trade-offs at different thresholds, also used to
determine global EER and its corresponding threshold.
Average ROC Curves: Averaged True Positive Rate
(TPR) across users for common FPR values to evaluate
overall discriminative ability.

Global Youden Threshold from Global ROC: A single
threshold derived from all scores for cross-user
performance optimization.

Average FAR and FRR vs. Threshold: Used to calculate
global EER and global EER threshold, showing system
behavior under collective evaluation.

Current state of research in offline signature verification
is the integration of cross-domain capabilities, lightweight
architectures like SqueezeNet, and thorough evaluation of
frameworks addressing both theoretical advances and
practical deployment requirements in real-world biometric
systems.

This research is the first to unify online and offline
signature verification in a single framework using
SqueezeNet. By converting online signatures into offline
representations and integrating user-specific and global
thresholding (Youden and EER) with comprehensive ROC
and FAR/FRR analysis, our system achieves scalable, cross-
domain verification. Unlike prior works, it simultaneously
provides raw, user-specific, and global evaluations, offering
robust, flexible, and practical solutions for real-world
biometric applications using raw thresholding, user-specific
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Youden and EER thresholds, and global EER evaluation
through average FAR/FRR curves.

3. Proposed Model

Online Signature Database (SVC 2004 Task1)
v

Conversion of Online Signature Database into Grayscale
Image Representation (Offline Signature Database)

v
Signature Image Pre-Processing

7

Load Pre-Trained SqueezeNet Model for Training and
Testing

L7

Fine Tuning the Model
v

Output

Fig. 1 Block diagram for offline signature verification using an online
signature database and deep learning pretrained squeezenet network

The block diagram in Figure 1 shows how a pretrained
SqueezeNet model can be used for offline signature
verification using an online signature database. The process
has multiple steps, from loading the Pretrained SqueezeNet
Network to final verification. Below is the description of the
blocks:

3.1. Block Diagram Description

The following steps outline how a pretrained
SqueezeNet model can be used for offline signature
verification:

Step 1: About the Database
We have used the SVC2004 Task 1 dynamic signature
dataset, as referenced in [29], which includes signature data
collected from 40 individual users. Each user contributed a
total of 40 signature samples, stored in text files named using
the format “UxSy.txt”, where ‘X’ represents the user ID and
‘y’ denotes the specific signature instance as given in
Equation (1) below.
X € {1,2.3,....40}, y € {1,2,3,.....40} 1)
The first 20 signatures (i.e., y = 1 to 20) in each user’s
folder are genuine, while the remaining 20 samples (i.e., y =
21 to 40) are skilled forgeries, created by other individuals
attempting to replicate the genuine signatures. In total, the
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dataset contains 1600 signature files (40 users x 40 samples
each), as cited in [30]. In every file, the signature is described
by a sequence of points. Each signature file begins with a
single number indicating the total number of points in the
signature sequence.

Following this, each line represents a data point
comprising four features, namely, X-coordinate, Y-
coordinate, Time stamp, and Button status (indicating
whether the pen is pressed or lifted) as shown in Figure 2.
Here, we have converted all the 1600 signature files into
offline signature images to perform offline signature
verification using an online signature database. The shape of
the offline converted signature images from the online
Signature database is shown in Figure 3.

X- Y- Time Button
Coordinate | Coordinate Stamp Status
148
635 5541 31077710 0
618 5431 31077720 1
600 5443 31077730 1
575 5515 31077740 1
575 5515 31077750 1
608 5515 31077760 1

Fig. 2 First genuine signature instance of Userl of the SVC2004 Taskl
online signature database in text file format

Genuine . ]

User Signatures Skill Forgery Signatures
1
2
3
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Fig. 3 Some sample offline converted signatures of the SVC 2004 task 1
online signature database

Step 2: Conversion of the Online Signature Database into an
Offline Database.

In every file, the signature here in the SVC 2004 online
signature database is described by a sequence of points. Each
line represents a data point comprising four features, namely,
X-coordinate, Y-coordinate, Time stamp, and Button status
(indicating whether the pen is pressed or lifted) as shown in
Figure 2. Here we have converted the entire 1600 signature
files, i.e., the entire database, into offline signature images
without any background using MATLAB programming to
perform offline signature verification. The shape of the
offline converted signature images from the online/dynamic
signature database is shown in Figure 3.

Step 3: Signature Image Pre-processing

The initial step in utilizing SqueezeNet for offline
signature verification involves preprocessing the signature
images and resizing them to align with SqueezeNet’s input
requirements. Specifically, all images in the dataset were
resized to a consistent dimension of 227x227 pixels prior to
being fed into the network’s input layer. The converted
signature images, originally sourced from the SVC 2004
database, were in grayscale JPG format. To ensure
compatibility with SqueezeNet’s input specifications, these
grayscale images were converted to RGB format. Once
converted, the images were processed through SqueezeNet to
extract feature maps from its intermediate layers. These
extracted features effectively capture critical characteristics
of a signature, such as stroke dynamics, shape structures, and
other distinctive signature traits [31].

Step 4: Pretrained Model (SqueezeNet)

SqueezeNet is a lightweight Convolutional Neural
Network (CNN) architecture that is well-suited for
applications with limited computational resources. It offers
performance comparable to larger models such as ResNet and
VGG, but with significantly fewer parameters. Numerous
pretrained versions of SqueezeNet are available in popular
Deep Learning frameworks and can be fine-tuned for specific
tasks, including signature verification [32]. Designed to
maintain a balance between model size and accuracy,
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SqueezeNet proves beneficial in scenarios where
computational efficiency and rapid inference are crucial,
making it an optimal choice for offline signature verification
systems, particularly in resource-constrained environments.

Key Features of SqueezeNet:

Compact Structure: SqueezeNet delivers a small model
size while maintaining accuracy comparable to larger
CNN architectures like VGG and ResNet, using
considerably fewer parameters.

Fire Modules: The architecture introduces Fire Modules,
each composed of a squeeze layer with 1x1 convolutions
succeeded by an expansion layer that includes both 1x1
and 3x3 convolutions. This structure helps reduce the
number of parameters while preserving performance.
Pre-trained Weights: Like many CNNs, SqueezeNet
supports fine-tuning through pretrained weights on
large-scale datasets such as ImageNet. This allows for
adaptation to more specific tasks, including offline
signature verification.

Using a pretrained SqueezeNet model for offline
signature verification is particularly effective in scenarios
where a fast, lightweight solution is necessary. By using
transfer learning, SqueezeNet, a deep CNN, can be adapted
to distinguish between genuine and forged signatures by
identifying key distinguishing features [33]. Transfer
learning in this context refers to the process of starting with a
model pretrained on a large dataset (such as ImageNet) and
then fine-tuning it using a domain-specific dataset, like one
for offline signature verification.

Signatures exhibit unique characteristics such as stroke
patterns, curvature, and writing speed, which require the
model to adjust from recognizing general visual features to
more specific handwriting traits [34].

Once features are extracted from the input signature, the
next step involves comparing them with features from known
genuine signatures. This comparison is performed using
similarity measures like Euclidean distance or cosine
similarity.

Based on the similarity score, a classification mechanism
such as thresholding or a SoftMax classifier is then used to
determine whether the signature is genuine or forged [35].

Step 5: Fine-Tuning the Model

Fine-tuning plays a crucial role in effectively adapting
the pretrained model to the signature dataset. This process
typically involves freezing the initial layers of the network
because these layers represent basic visual features such as
edges and textures, which are generally transferable across
tasks. The later layers of the model are then retrained using
the signature dataset, allowing the network to learn high-
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level, signature-specific features. Through this approach, the
model is able to leverage existing low-level representations
while adapting to the unique patterns and characteristics
found in signature data, such as lines and textures, which are
often influenced by biases that make signature verification a
complex task [36]. SqueezeNet pre-trained network has a
total of 68 layers, having 1.2M total learnables.

3.2. Verification
3.2.1. Training

Here, training is done with randomly selected 60%
offline converted signature images for every 40 users of the
SVC 2004 online signature database, once with random
forgery and subsequently with skill forgery. Combined
Training Confusion Matrix for all Users using random
forgery and using skill forgery are shown in Figures 4 and 5,
respectively. Training accuracy and training time elapsed for
each user using random forgery and skill forgery are
displayed in Tables 1 and 3, respectively. Further average
training accuracy and average training time elapsed are
calculated for all 40 signers in both cases and displayed in
Tables 1 and 3.

Combined Training Confusion Matrix Using Random Forgery

forged

True Class

genuine

forged genuine

Predicted Class
Fig. 4 Combined training confusion matrix using random forgery

Combined Training Confusion Matrix Using Skilled Forgery

forged

True Class

genuine

forged

genuine
Predicted Class
Fig. 5 Combined training confusion matrix using skilled forgery

3.2.2. Testing

Here, testing was done with all the 100% signatures data
because of limited resources twice, as follows, once with
offline converted skill forgery data given in the SVC 2004
online signature database. And subsequently, with the offline
converted random forgery created using various users'
signature images. Here, it is pertinent to mention that testing
was done on Raw Thresholding, Best User-specific/
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Individual EER Thresholding, and Best User-specific/
Individual Youden Thresholding for both the Random
Forgery and Skill Forgery. Each User Testing Accuracy at
different thresholds and other parameters, such as best
individual EER Threshold, Youden threshold, AUC, and
Equal Error Rate are shown in Table 1 and Table 3.
Combined Testing Confusion Matrix of Raw, Individual EER
thresholded, and Youden thresholded using Random forgery
are shown in Figures 6, 7, and 8, respectively. Similarly, for
skill forgery, it is shown in Figures 9, 10, and 11,
respectively. Moreover, the average, highest, and lowest
testing accuracy are calculated and shown in Tablel and
Table 3 for both cases. Here we have also found out the
Precision, Recall, and F1-Score for each user at the Youden
threshold for both random and skill forgery, and are noted in
Table 2 and Table 4, respectively.

Combined Testing Confusion Matrix (Raw) Using Random Forgery

forged

True Class

genuine

genuine

forged
Predicted Class
Fig. 6 Combined testing confusion matrix raw thresholded using
random forgery

hold _I)

Combined Testing Confusion Matrix (Individual EER Thr

forged

True Class

genuine

genuine

forged
Predicted Class
Fig. 7 Combined testing confusion matrix individual EER thresholded
using random forgery

Combined Testing Confusion Matrix (Individual Youden Thresholded)

forged

True Class

genuine

genuine

forged
Predicted Class
Fig. 8 Combined testing confusion matrix individual youden
thresholded using random forgery
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Combined Testing Confusion Matrix (Raw) Using Skilled Forgery

forged

True Class

genuine

genuine

forged
Predicted Class
Fig. 9 Combined testing confusion matrix raw thresholded using
skilled forgery

Combined Testing Confusion Matrix (Individual EER Thresholded)

forged

True Class

genuine

forged genuine
Predicted Class
Fig. 10 Combined testing confusion matrix individual EER thresholded

using skilled forgery

Combined Testing Confusion Matrix (Individual Youden Thresholded)

forged

True Class

genuine

genuine

forged
Predicted Class
Fig. 11 Combined testing confusion matrix individual youden
thresholded using skilled forgery

4. \Verification Results and Performance

Evaluation

The performance evaluation of offline signature
verification systems is based on the confusion matrix
components: True Positives (TP), True Negatives (TN), False
Positives (FP), and False Negatives (FN), representing
correctly/incorrectly  classified genuine and forged
signatures, respectively [11].

Fundamental Classification Metrics are given in [11] as
follows:

Accuracy: It measures overall system correctness. The
formula for it is given in Equation (2) below:
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(TP + TN)
(TP + TN + FP + FN)

Accuracy =

(2)

Precision: It quantifies the proportion of correctly
identified genuine signatures among all accepted signatures.
The formula for it is given in Equation (3) below:

TP

Precision = m

3)

Recall (Sensitivity): It measures the proportion of
genuine signatures correctly identified. The formula for it is
given in Equation (4) below:

TP

Recall = —————
el = TP + FN)

“4)

F1-Score: It provides the harmonic mean of precision
and recall. The formula for it is given in Equation (5) below:

(Precision X Recall)
F1 — Score = 2 X

)

(Precision + Recall)

Biometric-Specific Performance Metrics are given in
[12] as follows:

False Acceptance Rate (FAR): It represents the
probability of incorrectly accepting a forged signature. The
formula for it is given in Equation (6) below:

FP

FAR = Fp Ty

6)

False Rejection Rate (FRR): It indicates the probability
of incorrectly rejecting a genuine signature. The formula for
it is given in Equation (7) below:

FRR

FN

~ (FN +TP) @)
Equal Error Rate (EER): It represents the operating point
where FAR equals FRR. It is depicted in Equation (8) below:

EER = FAR = FRR (at optimal threshold t EER) (8)

EER provides a threshold-independent performance
measure, with lower values indicating superior
discrimination capability.

ROC curve analysis is given in [13, 14] as follows:

Receiver Operating Characteristic (ROC) curves: It is
the plot of True Positive Rate against False Positive Rate
across different threshold values, and their formula are given
in Equations (9) and (10):
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TPR(7) = TPE) 9

© =T + N )
FP(7)

FPR(7) = (10)

(FP(1) + TN(D))

Area Under the ROC Curve (AUC): It provides a
threshold-independent performance measure as given in
Equation (11) below:

an

Global ROC curves: It gives the aggregate performance
across all test samples as represented in Equations (12) and
(13) below:

1
AUC = f TPR(FPR™! (x))dx
0

TPR = ﬂ (12)
global = 3i(TP; + FN))
FPR = ﬂ (13)
global = 3(FP + TN))
Average ROC curves: It computes the mean

performance across individual user ROC curves as given in
Equations (14) and (15) below:

N TPR;(t)

TPRygr) = ———— N (19
YR, FPR;(v)

FPR,yg) = ”T‘ (15)

Threshold Selection Methods, as given in [15, 16], are as
follows:

Youden Index: It maximizes the sum of sensitivity and
specificity. Itis given by the formula in Equation (16) below:

] = Sensitivity + Specificity — 1 = TPR — FPR (16)
The optimal threshold maximizes the Youden Index and

is given by Equation (17) below:

t_Youden = argmax, [TPR(t) — FPR(7)] 17

EER Threshold: It minimizes the difference between
FAR and FRR, providing a balanced security-usability trade-
off. It is given by the formula in Equation (18) below:
Tggr = argmin, |[FAR(t) — FRR(7)| (18)
In offline signature verification, accuracy is a commonly
used metric to assess the effectiveness of a system. The
formula presented in Equation (2) was employed by the
authors to measure the accuracy of the offline signature

verification system, emphasizing its significance alongside
complementary metrics such as False Acceptance Rate
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(FAR) and False Rejection Rate (FRR) in assessing overall
system performance [35-37]. Similarly, the same formula
was utilized in the study by [31] to evaluate the performance
of offline signature verification using discrete wavelet
transforms and other machine learning approaches. Here,
training accuracy, testing accuracy (at Raw, Youden User
Specific Threshold, EER User Specific Threshold), EER,
AUC, and training time for all 40 individual Users are
recorded in Table 1 for random forgery and in Table 3 for
skill forgery. Precision, Recall, and F1-Score while Testing
Using Random Forgery for all 40 Users at Youden Threshold
is shown below in Table 2, and similarly, while testing using
Skill Forgery is shown in Table 4. Although we have done
testing/verification using raw threshold, individual/user-
specific Youden threshold, and individual/user-specific EER
threshold. But we have also determined the Global ROC
Curve using Random Forgery with Youden Threshold as
shown in Figure 12 and the Global ROC Curve using skilled
Forgery with Youden Threshold as shown in Figure 15. It is
the plot of False positive rate vs. True positive rate which
gives the overall/ global Youden point threshold of 0.5389
and 0.4926 in case of random forgery and skill forgery,
respectively. Average FAR and FRR Curves vs Threshold for
Random Forgery and Average FAR and FRR Curves vs
Threshold for Skilled Forgery, which determine Global EER
and Threshold, are shown in Figure 13 and Figure 16,
respectively. This gives Global EER=0.75%,
threshold=0.543 in case of random forgery, and Global
EER=11.25%, threshold=0.508 in case of skilled forgery.
The average ROC Curve across all 40 Users is shown in
Figures 13 and 17, respectively, for random forgery and
skilled forgery. Our Pretrained SqueezeNet model is trained
and tested on the offline converted Signature images from

SVC 2004 Task 1 online signature database for all forty users
yielding excellent average testing accuracy of (99.25% for
raw thresholding, 99.81% for Youden user specific
thresholding and 99.75% for EER user specific thresholding)
using Random Forgeries as shown in Table 1 and average
testing accuracy of (88.50% for raw thresholding, 94.81% for
youden specific thresholding and 93.13% for EER user
specific thresholding) using Skilled Forgeries as shown in
Table 3. From the results, it can be seen that this type of
offline signature verification using an online signature
database has shown excellent results; therefore, it can bridge
the gap between offline and online signature verification
systems, leading to an excellent cross-domain biometric
verification solution. For random forgeries, testing accuracy
ranges from (90%-100%) for all forty users; similarly, for
skilled forgeries, testing accuracy ranges from (47.50%-
100%). Average training time elapsed is observed to be 14.98
sec, with a highest of 18.92 sec and a lowest of 13.66 sec in
the case of random forgery. Similarly, the average training
time elapsed for skill forgery is 15.32 sec, with a highest of
22.02 sec and a lowest of 13.81 sec. The highest training
accuracy for random as well as skill forgery is 100%. The
lowest testing accuracy is 90 % and 47.50 % respectively, for
random forgery and skill forgery. Use of a pretrained
SqueezeNet Deep Learning Model for offline signature
verification is seen to be an effective methodology,
particularly when there is a necessity for a lightweight model
that can deliver strong performance in resource-constrained
environments with limited signature data. It can be seen that
testing accuracy with random forgery is consistently higher
than testing accuracy with skill forgery. Moreover, the
training time elapsed for random forgery is lower than that of
skill forgery.

Table 1. Training and verification results using random forgery (training 60% randomly and testing with all 100%0)
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5 ) = = ) ©

— o = +— [«6)
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= o< g 3 8T |W~=| 3¢ x? | 8 8
= o) o003 o0 28 o =) W o = c ~
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Userl 100.00 100.00 100.00 100.00 18.92 | 0.9998 0.0553 0 1

User2 100.00 92.50 100.00 100.00 13.90 | 0.2157 0.0251 0 1

User3 100.00 100.00 100.00 100.00 13.66 | 0.8818 0.0050 0 1

User4 100.00 100.00 100.00 100.00 14.25 | 0.9592 0.3116 0 1

Userb 100.00 100.00 100.00 100.00 14.19 | 0.5465 0.2563 0 1

User6 100.00 100.00 100.00 100.00 13.81 | 0.9990 0.0050 0 1
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User7 95.83 92.50 92.50 90.00 13.86 | 0.5781 0.5628 10 0.955
User8 100.00 100.00 100.00 100.00 14.05 | 0.8846 0.0302 0 1
User9 100.00 100.00 100.00 100.00 1416 | 0.9971 0.2513 0 1
User10 | 100.00 100.00 100.00 100.00 14.18 | 0.7439 0.0653 0 1
Userll | 100.00 100.00 100.00 100.00 14.24 | 0.8997 0.0050 0 1
Userl2 | 100.00 100.00 100.00 100.00 1455 | 0.9961 0.0050 0 1
Userl3 | 100.00 100.00 100.00 100.00 14.94 | 0.9996 0.1759 0 1
Userl4 | 100.00 100.00 100.00 100.00 15.39 | 0.8215 0.0201 0 1
Userl5 | 100.00 97.50 100.00 100.00 1541 | 0.8502 0.5528 0 1
Userl6 | 100.00 100.00 100.00 100.00 15.13 | 0.9857 0.0553 0 1
Userl7 | 100.00 100.00 100.00 100.00 1541 | 0.8463 0.1206 0 1
Userl8 | 100.00 97.50 100.00 100.00 15.15 | 0.9904 0.6131 0 1
Userl9 | 100.00 100.00 100.00 100.00 15.21 | 0.7837 0.3618 0 1
User20 | 100.00 100.00 100.00 100.00 15.17 | 0.7566 0.2161 0 1
User21 | 100.00 100.00 100.00 100.00 14.87 | 0.9513 0.0151 0 1
User22 | 100.00 100.00 100.00 100.00 15.05 | 0.9993 0.0050 0 1
User23 | 100.00 100.00 100.00 100.00 15.10 | 0.9231 0.0201 0 1
User24 | 100.00 100.00 100.00 100.00 15.01 | 0.9975 0.1608 0 1
User25 | 100.00 100.00 100.00 100.00 1491 | 0.5751 0.4422 0 1
User26 | 100.00 100.00 100.00 100.00 15.22 | 0.9334 0.1608 0 1
User27 | 100.00 100.00 100.00 100.00 15.53 | 0.8620 0.2915 0 1
User28 | 100.00 97.50 100.00 100.00 15.04 | 0.3806 0.0201 0 1
User29 | 100.00 95.00 100.00 100.00 15.17 | 0.7461 0.6382 0 1
User30 | 100.00 100.00 100.00 100.00 14.93 | 0.9924 0.0050 0 1
User3l | 100.00 100.00 100.00 100.00 15.44 | 0.9776 0.2613 0 1
User32 | 100.00 100.00 100.00 100.00 15.19 | 0.9858 0.2111 0 1
User33 | 100.00 100.00 100.00 100.00 15.10 | 0.8880 0.1256 0 1
User34 | 100.00 100.00 100.00 100.00 15.76 | 0.9667 0.0050 0 1
User35 | 100.00 100.00 100.00 100.00 15.30 | 0.9878 0.2563 0 1
User36 | 100.00 100.00 100.00 100.00 15.06 | 0.7923 0.3668 0 1
User37 | 100.00 97.50 100.00 100.00 14.95 | 0.8481 0.5176 0 1
User38 | 100.00 100.00 100.00 100.00 15.20 | 0.6589 0.1156 0 1
User39 | 100.00 100.00 100.00 100.00 16.02 | 0.9780 0.0101 0 1
User40 | 100.00 100.00 100.00 100.00 14.92 | 0.9500 0.1256 0 1
Average | 99.90 99.25 99.81 99.75 1498 | 0.8532 0.1862 0.25 | 0.999
Highest | 100.00 100 100 100 18.92 | 0.9998 0.6382 10 1
Lowest | 9583 | 20 92.50 90.00 | 13.66 | 0.2157 | 00050 | O | 0.955
Table 2. Precision, Recall, and F1-Score while testing using random forgery for all 40 users at youden threshold
User Using Random Forgeries (At Youden’s Threshold)
TP TN FP FN Precision(%b) Recall(%0) F1-Score(%)
Userl 20 20 0 0 100.00 100.00 100.00
User2 20 20 0 0 100.00 100.00 100.00
User3 20 20 0 0 100.00 100.00 100.00
User4 20 20 0 0 100.00 100.00 100.00
User5 20 20 0 0 100.00 100.00 100.00
User6 20 20 0 0 100.00 100.00 100.00
User7 18 19 1 2 94.74 90.00 92.31
User8 20 20 0 0 100.00 100.00 100.00
User9 20 20 0 0 100.00 100.00 100.00
User10 20 20 0 0 100.00 100.00 100.00
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Userll 20 20 0 0 100.00 100.00 100.00
User12 20 20 0 0 100.00 100.00 100.00
User13 20 20 0 0 100.00 100.00 100.00
Userl4 20 20 0 0 100.00 100.00 100.00
User15 20 20 0 0 100.00 100.00 100.00
User16 20 20 0 0 100.00 100.00 100.00
Userl7 20 20 0 0 100.00 100.00 100.00
User18 20 20 0 0 100.00 100.00 100.00
User19 20 20 0 0 100.00 100.00 100.00
User20 20 20 0 0 100.00 100.00 100.00
User21 20 20 0 0 100.00 100.00 100.00
User22 20 20 0 0 100.00 100.00 100.00
User23 20 20 0 0 100.00 100.00 100.00
User24 20 20 0 0 100.00 100.00 100.00
User25 20 20 0 0 100.00 100.00 100.00
User26 20 20 0 0 100.00 100.00 100.00
User27 20 20 0 0 100.00 100.00 100.00
User28 20 20 0 0 100.00 100.00 100.00
User29 20 20 0 0 100.00 100.00 100.00
User30 20 20 0 0 100.00 100.00 100.00
User31 20 20 0 0 100.00 100.00 100.00
User32 20 20 0 0 100.00 100.00 100.00
User33 20 20 0 0 100.00 100.00 100.00
User34 20 20 0 0 100.00 100.00 100.00
User35 20 20 0 0 100.00 100.00 100.00
User36 20 20 0 0 100.00 100.00 100.00
User37 20 20 0 0 100.00 100.00 100.00
User38 20 20 0 0 100.00 100.00 100.00
User39 20 20 0 0 100.00 100.00 100.00
User40 20 20 0 0 100.00 100.00 100.00
Average 99.87 99.75 99.81
Highest 100 100 100
Lowest 94.74 90.00 92.31
1 Global ROC Curve with Younden Threshold
09} Youden Point
Thresh = 0.5389
0.8 TPR = 99.50%
FPR =0.75%
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Fig. 12 Global ROC curve using random forgery with youden threshold
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Fig. 13 Average FAR and FRR Curves vs Threshold for random forgery
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Fig. 14 Average ROC curve across all 40 users for random forgery

Table 3. Training and verification results using skilled forgery (training 60% randomly and testing with all 100%)

= Using Skilled ®
& Forgeries b > S B 2
o - . 224 c =2 = x -
. 3 _ Testing Testing (_%-@ 8 2 § 2 § =S | 5o 5
2 < Testing Accuracy Accuracy ch» Py oS5 ao|lwgaol s | B2 )
S =>< | Accuracy (Youden (EER User cE ,>_,' E & a E Pl dw >53<
= (Raw) User Specific Specific s S % oy % | = S
S (%) Thresholded) | Thresholded) = = =3 <
- (%) (%)
Userl | 100.00 92.50 95.00 95.00 16.70 | 0.4744 | 0.5276 5.00 0.98
User2 | 100.00 85.00 90.00 87.50 22.02 | 0.4293 | 0.4171 | 12.50 0.9425
User3 | 100.00 95.00 95.00 95.00 17.06 | 0.5084 | 0.4975 5.00 0.965
User4 95.83 87.50 92.50 90.00 13.81 | 0.6897 | 0.6382 | 10.00 0.95
Userb 50.00 47.50 72.50 72.50 14.17 | 0.4926 | 0.4925 | 27.50 0.695
User6 | 100.00 100.00 100.00 100.00 14.41 | 0.6335 | 0.0503 0.00 1
User7 70.83 62.50 87.50 87.50 1443 | 0.4762 | 0.4724 | 12.50 0.9225
User8 95.83 92.50 95.00 95.00 14.17 | 0.5346 | 0.4925 5.00 0.9725
User9 95.83 90.00 92.50 90.00 14.69 | 0.4914 | 0.3467 | 10.00 0.9525
Userl0 | 100.00 87.50 92.50 90.00 14.80 | 0.2466 | 0.2513 | 10.00 0.9725
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Userll | 95.83 87.50 92.50 90.00 14.81 | 0.5644 | 0.5678 | 10.00 0.955
Userl2 | 95.83 87.50 100.00 100.00 15.24 | 0.2000 | 0.1256 | 0.00
Userl3 | 100.00 100.00 100.00 100.00 15.09 | 0.9910 | 0.3166 | 0.00
Userl4 | 100.00 97.50 100.00 100.00 15.04 | 0.4960 | 0.4824 | 0.00
Userl5 | 95.83 90.00 95.00 90.00 15.26 | 0.7620 | 0.5427 | 10.00 0.9875
Userl6 | 100.00 97.50 97.50 95.00 15.30 | 0.5365 | 0.5377 | 5.00 0.995
Userl7 | 75.00 72.50 95.00 92.50 1494 | 0.5317 | 0.5226 | 7.50 0.965
Userl8 | 100.00 100.00 100.00 100.00 15.13 | 0.7750 | 0.4724 | 0.00
Userl9 | 83.33 72.50 80.00 77.50 14,95 | 0.4826 | 0.4874 | 22.50 0.8625
User20 | 91.67 87.50 92.50 90.00 14,96 | 0.3975 | 0.2261 | 10.00 0.97
User21 | 91.67 87.50 87.50 85.00 1496 | 0.5674 | 0.2764 | 15.00 0.9275
User22 | 100.00 95.00 97.50 95.00 15.02 | 0.6203 | 0.3618 | 5.00 0.9975
User23 | 95.83 90.00 95.00 90.00 15.11 | 0.5116 | 0.5075 | 10.00 0.9825
User24 | 100.00 92.50 97.50 95.00 14.97 | 0.7067 | 0.5126 | 5.00 0.995
User25 | 100.00 100.00 100.00 100.00 15.02 | 0.5740 | 0.4975 | 0.00
User26 | 91.67 85.00 90.00 87.50 15.30 | 0.5888 | 0.5377 | 12.50 0.9625
User27 | 87.50 77.50 97.50 92.50 15.26 | 0.6087 | 0.5678 | 7.50 0.98
User28 | 87.50 87.50 95.00 90.00 15.06 | 0.6333 | 0.5678 | 10.00 0.9825
User29 | 87.50 90.00 90.00 87.50 15.78 | 0.5266 | 0.5226 | 12.50 0.9625
User30 | 100.00 100.00 100.00 100.00 15.12 | 0.7261 | 0.0905 | 0.00
User31 | 100.00 95.00 97.50 95.00 1499 | 0.8695 | 0.4523 | 5.00 0.995
User32 | 100.00 100.00 100.00 100.00 14.85 | 0.5247 | 0.4121 | 0.00
User33 | 100.00 92.50 100.00 100.00 15.14 | 0.9579 | 0.7588 | 0.00
User34 | 58.33 57.50 100.00 100.00 16.02 | 0.6741 | 0.6533 | 0.00
User35 | 100.00 97.50 100.00 100.00 1494 | 0.9840 | 0.5528 | 0.00
User36 | 83.33 75.00 87.50 80.00 1491 | 0.7525 | 0.6683 | 20.00 0.93
User37 | 95.83 95.00 100.00 100.00 14.88 | 0.5947 | 0.5276 | 0.00
User38 | 100.00 95.00 95.00 95.00 17.54 | 0.5421 | 0.4824 | 5.00 0.9775
User39 | 100.00 95.00 97.50 95.00 1598 | 0.6831 | 0.4121 | 5.00 0.9975
User40 | 100.00 100.00 100.00 100.00 15.05 | 0.6247 | 0.3769 | 0.00
Average | 93.13 88.50 94.81 93.13 1532 | 0.5996 | 0.4552 | 6.88 0.9694
Highest 100 100 100 100 22.02 | 0.9910 | 0.7588 | 27.50
Lowest 50 47.50 72.50 72.50 13.81 | 0.2000 | 0.0503 | 0.00 0.695
Table 4. Precision, Recall, and F1-Score while testing using skilled forgery for all 40 users at youden threshold
User Using Skilled Forgeries (At Youden Threshold)
TP TN FP FN Precision(%b6) Recall(%0) F1-Score(%)
Userl 20 18 2 0 90.91 100.00 95.24
User?2 18 18 2 2 90.00 90.00 90.00
User3 19 19 1 1 95.00 95.00 95.00
User4 18 19 1 2 94.74 90.00 92.31
User5 18 11 9 2 66.67 90.00 76.60
User6 20 20 0 0 100.00 100.00 100.00
User7 17 18 2 3 89.47 85.00 87.18
User8 18 20 0 2 100.00 90.00 94.74
User9 17 20 0 3 100.00 85.00 91.89
User10 19 18 2 1 90.48 95.00 92.68
Userll 19 18 2 1 90.48 95.00 92.68
Userl2 20 20 0 0 100.00 100.00 100.00
Userl3 20 20 0 0 100.00 100.00 100.00
Userl4 20 20 0 0 100.00 100.00 100.00
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Userl5 18 20 0 2 100.00 90.00 94.74
Userl6 20 19 1 0 95.24 100.00 97.56
Userl7 18 20 0 2 100.00 90.00 94.74
User18 20 20 0 0 100.00 100.00 100.00
User19 17 15 5 3 77.27 85.00 80.95
User20 18 19 1 2 94.74 90.00 92.31
User21 15 20 0 5 100.00 75.00 85.71
User22 19 20 0 1 100.00 95.00 97.44
User23 18 20 0 2 100.00 90.00 94.74
User24 19 20 0 1 100.00 95.00 97.44
User25 20 20 0 0 100.00 100.00 100.00
User26 17 19 1 3 94.44 85.00 89.47
User27 19 20 0 1 100.00 95.00 97.44
User28 18 20 0 2 100.00 90.00 94.74
User29 18 18 2 2 90.00 90.00 90.00
User30 20 20 0 0 100.00 100.00 100.00
User31 19 20 0 1 100.00 95.00 97.44
User32 20 20 0 0 100.00 100.00 100.00
User33 20 20 0 0 100.00 100.00 100.00
User34 20 20 0 0 100.00 100.00 100.00
User35 20 20 0 0 100.00 100.00 100.00
User36 15 20 0 5 100.00 75.00 85.71
User37 20 20 0 0 100.00 100.00 100.00
User38 19 19 1 1 95.00 95.00 95.00
User39 19 20 0 1 100.00 95.00 97.44
User40 20 20 0 0 100.00 100.00 100.00

Average 96.36 93.63 94.78

Highest 100 100 100

Lowest 66.67 75 76.60

1 Global ROC Curve with Youden Threshold
0.9
Youden Point
0.8 Thresh = 0.4926
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Fig. 15 Global ROC curve using skilled forgery with youden threshold
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Fig. 17 Average ROC curve across all 40 users for skilled forgery

Table 5. Verification report of proposed method

Performance Parameters Results Obtained
Random Forgery Skilled Forgery

Average Testing Accuracy(Raw Thresholded) 99.25% 88.50%
Average Testing Accuracy(Youden Thresholded) 99.81% 94.81%
Average Testing Accuracy(EER Thresholded) 99.75% 93.13%
Average Precision(Youden Thresholded) 99.87% 96.36%
Average Recall(Youden Thresholded) 99.75% 93.63%
Average F1-Score(Youden Thresholded) 99.81% 94.78%
Average Best Youden Threshold 0.8532 0.5996
Average Best EER Threshold 0.1862 0.4552
Global EER 0.75% 11.25%

Threshold at Global EER 0.543 0.508

Global Youden Point Threshold 0.5389 0.4926
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The performance analysis report of our proposed offline
signature verification system using the SVC 2004 online
signature database in terms of Testing Accuracy, Precision,
Recall, and F1-Score using Random Forgery and Skilled
Forgery, which performs remarkably well, is shown in Table
5 above.

5. Results and Conclusion
5.1. Results and Discussions

Our Pretrained SqueezeNet is trained and tested on the
offline converted images of online signature database SVC
2004 for all forty users, yielding average testing accuracy of
(99.25% for Raw Thresholding, 99.81% for Youden
Thresholding and 99.75% for EER Thresholding) using
Random Forgeries and (88.50% for Raw Thresholding,
94.81% for Youden Thresholding and 93.13% for EER
Thresholding) using Skilled Forgeries as shown is Table 1,
Table 3 and Table 5. For random forgeries, testing accuracy
ranges from (90%-100%) for all forty users; similarly, for
skilled forgeries, testing accuracy ranges from (47.50%-
100%). Average training time elapsed is observed to be 14.98
sec, with a highest 18.92 sec and lowest 13.66 sec in case of
random forgery similarly average training time elapsed for
skill forgery is 15.32 sec with highest 22.02 sec and lowest
13.81 sec.

The verification report of our proposed model in terms
of performance parameters is depicted clearly in Table 5. It
is clear that the model’s performance is best with an average
testing accuracy of 99.81% for Youden thresholding (Using
Random Forgery) and 94.81% for Youden thresholding
(Using Skill Forgery), which indicates great overall
efficiency. Average precision of 99.87% (Using Random
Forgery) and 96.36% (Using Skill Forgery) shows that the
model effectively reduces false positives. With an average
recall of 99.75% (Using Random Forgery) and 93.63%
(Using Skill Forgery), the model minimizes false negatives.
Moreover, a well-balanced tradeoff between recall and
precision, known as F1-Score, comes out to be 99.81%
(Using Random Forgery) and 94.78% (Using Skill Forgery).
All the above findings suggest the model’s dependability, its
high degree of accuracy, and very careful handling of false
positives and false negatives.

Hence, the values of Average Testing Accuracy,
Average Precision, Average Recall, Average F1-Score, etc.
from Table 5 indicate that our proposed system performs
remarkably well in line with the state-of-the-art results
presented to date. For our proposed model, training accuracy,
testing accuracy (at Raw, Best Youden User Specific
Threshold, Best EER User Specific Threshold), EER, AUC,
and training time for all 40 individual Users are recorded in
Table 1 for random forgery and in Table 3 for skill forgery.
Precision, Recall, and F1-Score while Testing Using Random
Forgery for all 40 Users at Youden Threshold is shown in
Table 2, and similarly while Testing using Skill Forgery is
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shown in Table 4. We have determined the Global ROC curve
using Random Forgery with Youden Threshold as shown in
Figure 12 and the Global ROC curve using Skilled Forgery
with Youden Threshold as shown in Figure 15. It is the plot
of False positive rate versus True positive rate which gives a
global Youden point threshold of 0.5389 and 0.4926 in case
of random forgery and skill forgery, respectively. Average
FAR and FRR Curves vs Threshold for Random Forgery and
Average FAR and FRR Curves vs Threshold for Skilled
Forgery, which determine Global EER and Threshold, are
shown in Figures 13 and 16, respectively.

This gives Global EER=0.75% at threshold=0.543 in
case of random forgery and Global EER=11.25% at
threshold=0.508 in case of skilled forgery. The average ROC
Curve across all 40 Users is shown in Figures 14 and 17,
respectively, for random forgery and skilled forgery. Use of
a pretrained SqueezeNet Deep Learning Model for offline
signature verification is seen to be an effective approach,
particularly when there is a necessity for a lightweight model
that can deliver a strong performance in resource-constrained
environments with limited signature data.

5.2. Conclusion

With the introduction of deep learning, offline signature
verification has advanced significantly. In terms of accuracy
and resilience, models like CNNs, RNNs, and GANs have
surpassed conventional methods. However, issues like
bridging the gap between online and offline signature
verification have not been addressed to date for cross-domain
biometric verification solutions.

This problem is resolved here, where online collected
signatures can be verified with offline collected signatures
and offline signatures can be verified with online collected
signatures in real-time with excellent accuracy, leading to a
cross-domain biometric verification solution. By altering a
pretrained SqueezeNet model for offline signature
verification, we have taken advantage of deep learning's
power while keeping a lightweight and efficient model
appropriate  for deployment on devices with limited
computational resources.

Here in our proposed model, we have obtained the best
average testing accuracy of 99.81% (With user-specific
Youden Thresholding) using Random Forgery and 94.81%
(With user-specific Youden Thresholding) using Skilled
Forgery, which is excellent and is in line with the state-of-
the-art results. Here, we have also calculated the Global
Youden Threshold and Global EER Threshold across all forty
users, but verification using them and their analysis is a
promising direction for future research. We often observed
that, in practical applications, offline signature verification
systems encounter significant challenges due to various
distortions, such as stamps, overlapping text, smudges, and
background noise, factors that lie beyond the scope of the
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current study. We cannot perform accurate verification and constitutes a promising research direction for the future.
authentication of signatures in the presence of these types of ~ Progress in this area has the potential to significantly improve
interferences. Therefore, the development of robust methods  the reliability and accuracy of automated offline signature
for the detection, removal, or mitigation of these distortions  verification systems.
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