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Abstract - Signature is a vital behavioral biometric trait. It has been used for secure authentication for centuries. An innovative 

framework that converts dynamic online signature data from the SVC 2004 database into offline grayscale images has been 

proposed here. And finally, offline signature verification is done using a pre-trained lightweight CNN, SqueezeNet. Essential 

signer-specific patterns are preserved in the process of online-to-offline conversion. Before feeding the SqueezeNet input, the 

signature images undergo a preprocessing step that includes grayscale-to-RGB conversion and resizing. Subsequently, 

transfer learning is used to distinguish between genuine and forged signatures. By adopting this strategy, the model can be 
efficiently deployed in resource-constrained environments without sacrificing accuracy. It uniquely integrates online and 

offline signature verification. It also provides extensive threshold-based evaluation using various fundamental classification 

metrics, biometric-specific performance metrics, and ROC curve analysis. User-specific and Global Youden Thresholds, User-

specific and global EER threshold, Equal Error Rate (EER), and analysis of False Acceptance Rate (FAR) and False Rejection 

Rate (FRR) versus threshold are included in this study. Global ROC provides a Global Youden Threshold. And the average 

FAR and FRR curves vs threshold gives the global EER threshold. Offline signature verification under raw threshold, user-

specific Youden threshold, and user-specific EER thresholds is performed here. Excellent accuracy, flexibility, and robustness 

are seen here. The idea of offline signature verification derived from online data, when combined with compact CNN 

architectures, SqueezeNet, can bridge the gap between online and offline signature verification systems. This work contributes 

toward scalable, cross-domain biometric verification solutions and opens up ways towards unified signature recognition 

systems. This first-of-its-kind, cross-domain framework delivers a scalable, accurate, and resilient signature verification 
solution for both random and skilled forgeries. The proposed Offline Signature Verification system using online signature 

database achieves the best average testing accuracy of 99.81% (With User Specific Youden Thresholding) for random forgeries 

and 94.81% (With User Specific Youden Thresholding) for skilled forgeries across all 40 users. Here, the testing accuracy of 

random forgeries ranges from (92.50-100.00) %, and skilled forgeries ranges from (72.50-100.00) %. Hence, the proposed 

system yielded very good accuracy in comparison to existing state-of-the-art results, offering a practical solution to real-world 

applications. 

Keywords - Behavioral Biometric, CNN, Offline Signature Verification, SqueezeNet, SVC 2004 Database.  

1. Introduction 
Biometric authentication has emerged as a critical 

technology for ensuring secure access to digital and physical 

systems, with handwritten signature verification remaining 

one of the most socially accepted and legally recognized 

methods [1]. Traditional signature verification is categorized 

into two primary modes: online and offline verification. 

Online verification uses dynamic features such as writing 

speed, pen pressure, and stroke order, whereas offline 

verification relies only on static images of signatures [2, 3]. 

Offline Signature Verification has significant challenges due 

to the absence of temporal information, making systems 

susceptible to intra-class variability and skilled forgeries [4]. 

Recent advancements in deep learning and transfer 

learning have substantially enhanced the accuracy of Offline 
Signature Verification systems. Pre-trained Convolutional 

Neural Networks (CNNs), particularly lightweight 

architectures such as SqueezeNet, offer compact models that 

can be efficiently fine-tuned for binary signature verification 

tasks [5]. SqueezeNet has demonstrated remarkable 

performance in recent studies, achieving identification 
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accuracies above 99.79% on multiple datasets, including 

BHSig260-Bengali, BHSig260-Hindi, CEDAR, and UTSig, 

with training times under 3 minutes per dataset [6]. However, 

a major challenge that remains underexplored is bridging the 

gap between online and offline verification domains for 

cross-domain biometric verification. 

Existing Offline Signature Verification methods 

predominantly focus on static signature datasets without 

integrating the rich dynamic cues present in online data [7, 

8]. Research done by Cairang et al. [9] has shown that cross-

domain verification using Siamese networks with Triplet loss 

and Cross Entropy loss can improve model generalization 

across different domains. So, closing this gap opens the door 

for building unified verification systems. Regardless of how 

the signatures were originally acquired, these systems can 

authenticate signatures. As the latest techniques for cross-

layer weakly supervised data augmentation demonstrated this 

[10]. 

Offline signature verification is done using SqueezeNet 

after the online signature data has been converted into offline 

signature images. This novel technique facilitates cross-

domain verification as online data has been used in offline 

models. It is seen that it improves flexibility, robustness, and 

scalability across real-world scenarios. As a result, it can be 

a promising research direction to develop an integrated, 

scalable, and highly precise signature verification solution. 

Evaluation of advanced metrics such as Youden's J 

statistic for threshold determination, Equal Error Rate (EER), 
False Acceptance Rate (FAR), and False Rejection Rate 

(FRR) has been done. Performance evaluation is done 

through FAR and FRR vs. threshold curves, average ROC 

curves, and global Youden thresholds derived from global 

ROC curves. To analyze verification performance, we have 

done verification using raw thresholding, user-specific 

Youden thresholds, and EER thresholds, with global EER 

assessment through average FAR/FRR curves. Performance 

metrics such as Accuracy, Precision, Recall, and F1-Scores 

are comprehensively evaluated for analysis [11-16]. 

 

2. Literature Review 
Generally, handwritten signature verification can be 

classified into online and offline modes, each having distinct 

data acquisition and processing techniques used. In online 

signature verification, temporal dynamics are captured using 

devices like tablets or styluses, whereas offline signature 

verification relies on static images scanned from paper 

documents [17]. Usually, Online Signature Verification gives 

higher accuracy than Offline Signature Verification due to its 

rich temporal data. But it is seen that Offline Signature 
Verification is more commonly used in practical applications 

where only scanned or photographed signatures are available 

for verification [18, 19]. 

Major challenges that an Offline Signature Verification 

system has to go through are Signature forgeries. Forgeries 

are generally classified into three types as shown below [7, 

20]: 

 Random Forgeries – Signer produces the signatures 
without any prior knowledge of the genuine signature, so 

the signatures produced differ significantly in 

appearance. 

 Simple Forgeries – Imitators produce signatures who 

know the signer's name but have not seen the genuine 

signature. 

 Skilled Forgeries – An Imposter produces highly 

deceptive signatures after observing or practicing the 

genuine signature multiple times. This is the most 

challenging category for Offline Signature Verification 

systems. 
 

Hand-crafted features such as Histogram of Oriented 

Gradients (HOG), Local Binary Patterns (LBP), or 

Geometric Descriptors [18, 21, 22] are used in conventional 

Offline Signature Verification techniques. Deep learning has 

transformed the field by automatically learning 

discriminative features from raw signature images. Various 

CNN architectures in Offline Signature Verification tasks 

have shown superior performance when done with transfer 

learning [23, 24]. 

Çiftçi and Tekin [25] compared five different deep 

learning methods: GoogLeNet, MobileNet-V3 Large, 
Inception-V3, ResNet50, and EfficientNet-B0, where 

GoogLeNet and Inception-V3 achieved an accuracy of 

98.77%. 

SqueezeNet is a lightweight CNN architecture. It has the 

advantage of remarkably reduced model size without 

compromising accuracy [5]. It is highly suitable for resource-

constrained biometric applications because of its efficiency. 

Purbanugraha et al. [6] developed an optimized SqueezeNet 

with ADAM backpropagation, demonstrating good results 

across multiple datasets with identification accuracies above 

99.79% and training times under 3 minutes per dataset. 

Siamese networks have become a powerful architecture 

for signature verification tasks. Tehsin et al. [26] developed 

a Triplet Loss Siamese Similarity Network (tSSN) while 

combining with Manhattan distance measures, which gives 

better performance. The approach was evaluated on several 

datasets, including 4NSigComp2012, SigComp2011, 

4NSigComp2010, and BHSig260, showing enhanced 

verification accuracy in scenarios with close signature 

similarity. Cross-domain verification is still an 

underexplored area. However, lots of research has been done 

to improve Offline Signature Verification and Online 

Signature Verification separately. Cairang et al. [9] proposed 
a novel approach for learning generalizable representations 

using Siamese networks combined with Triplet loss and 
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Cross Entropy loss. Their method has given better 

performance in cross-domain than single-domain 

applications using Instance Normalization and a module 

called Inference Layer Normalization Neck (ILNNeck) to 

improve model generalization across various domains. 

As per recent research, transforming online signature 

data into offline signature images can enhance Offline 

Signature Verification, allowing models to learn from both 

static and dynamic characteristics [27, 28]. However, few 

methods have systematically integrated online datasets with 

compact CNNs for unified verification. Our research 

addresses this gap by introducing a SqueezeNet-based 

framework that uses online signature data in offline 

verification, providing enhanced robustness and scalability. 

To ensure comprehensive performance assessment, 

modern signature verification systems employ multiple 

threshold-based and curve-based metrics [11-16] below: 

 Youden Threshold: Determined by maximizing 

Youden's J statistic (TPR - FPR), providing an optimal 

trade-off between sensitivity and specificity. 

 Equal Error Rate (EER): The point at which FAR 

matches FRR, representing balanced system 

performance. 

 FAR and FRR vs. Threshold: Graphical representation 

to evaluate trade-offs at different thresholds, also used to 

determine global EER and its corresponding threshold. 

 Average ROC Curves: Averaged True Positive Rate 

(TPR) across users for common FPR values to evaluate 
overall discriminative ability. 

 Global Youden Threshold from Global ROC: A single 

threshold derived from all scores for cross-user 

performance optimization. 

 Average FAR and FRR vs. Threshold: Used to calculate 

global EER and global EER threshold, showing system 

behavior under collective evaluation. 

Current state of research in offline signature verification 

is the integration of cross-domain capabilities, lightweight 

architectures like SqueezeNet, and thorough evaluation of 

frameworks addressing both theoretical advances and 
practical deployment requirements in real-world biometric 

systems. 

This research is the first to unify online and offline 

signature verification in a single framework using 

SqueezeNet. By converting online signatures into offline 

representations and integrating user-specific and global 

thresholding (Youden and EER) with comprehensive ROC 

and FAR/FRR analysis, our system achieves scalable, cross-

domain verification. Unlike prior works, it simultaneously 

provides raw, user-specific, and global evaluations, offering 

robust, flexible, and practical solutions for real-world 
biometric applications using raw thresholding, user-specific 

Youden and EER thresholds, and global EER evaluation 

through average FAR/FRR curves. 

3. Proposed Model  

Fig. 1 Block diagram for offline signature verification using an online 

signature database and deep learning pretrained squeezenet network 

The block diagram in Figure 1 shows how a pretrained 

SqueezeNet model can be used for offline signature 
verification using an online signature database. The process 

has multiple steps, from loading the Pretrained SqueezeNet 

Network to final verification. Below is the description of the 

blocks: 

3.1. Block Diagram Description 

The following steps outline how a pretrained 

SqueezeNet model can be used for offline signature 

verification: 

Step 1: About the Database 

We have used the SVC2004 Task 1 dynamic signature 

dataset, as referenced in [29], which includes signature data 

collected from 40 individual users. Each user contributed a 
total of 40 signature samples, stored in text files named using 

the format “UxSy.txt”, where ‘x’ represents the user ID and 

‘y’ denotes the specific signature instance as given in 

Equation (1) below. 

x Є {1,2,3,…..40}, y Є {1,2,3,…..40}                            (1)          

The first 20 signatures (i.e., y = 1 to 20) in each user’s 

folder are genuine, while the remaining 20 samples (i.e., y = 

21 to 40) are skilled forgeries, created by other individuals 

attempting to replicate the genuine signatures. In total, the 

Online Signature Database (SVC 2004 Task1) 

Conversion of Online Signature Database into Grayscale 

Image Representation (Offline Signature Database) 

Signature Image Pre-Processing  

Load Pre-Trained SqueezeNet Model for Training and 

Testing  

Fine Tuning the Model 

Output 
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dataset contains 1600 signature files (40 users x 40 samples 

each), as cited in [30]. In every file, the signature is described 

by a sequence of points. Each signature file begins with a 

single number indicating the total number of points in the 

signature sequence. 

Following this, each line represents a data point 

comprising four features, namely, X-coordinate, Y-

coordinate, Time stamp, and Button status (indicating 

whether the pen is pressed or lifted) as shown in Figure 2. 

Here, we have converted all the 1600 signature files into 

offline signature images to perform offline signature 

verification using an online signature database. The shape of 

the offline converted signature images from the online 

Signature database is shown in Figure 3. 
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Fig. 2 First genuine signature instance of User1 of the SVC2004 Task1 

online signature database in text file format 

User 
Genuine 

Signatures 
Skill Forgery Signatures 

1 

  

2 

  

3 

  

4 

 

  

5 

  

Fig. 3 Some sample offline converted signatures of the SVC 2004 task 1 

online signature database 

Step 2: Conversion of the Online Signature Database into an 
Offline Database. 

In every file, the signature here in the SVC 2004 online 

signature database is described by a sequence of points. Each 

line represents a data point comprising four features, namely, 

X-coordinate, Y-coordinate, Time stamp, and Button status 

(indicating whether the pen is pressed or lifted) as shown in 

Figure 2. Here we have converted the entire 1600 signature 

files, i.e., the entire database, into offline signature images 

without any background using MATLAB programming to 

perform offline signature verification. The shape of the 

offline converted signature images from the online/dynamic 

signature database is shown in Figure 3. 

Step 3: Signature Image Pre-processing  

The initial step in utilizing SqueezeNet for offline 

signature verification involves preprocessing the signature 

images and resizing them to align with SqueezeNet’s input 

requirements. Specifically, all images in the dataset were 

resized to a consistent dimension of 227x227 pixels prior to 

being fed into the network’s input layer. The converted 

signature images, originally sourced from the SVC 2004 

database, were in grayscale JPG format. To ensure 

compatibility with SqueezeNet’s input specifications, these 

grayscale images were converted to RGB format. Once 
converted, the images were processed through SqueezeNet to 

extract feature maps from its intermediate layers. These 

extracted features effectively capture critical characteristics 

of a signature, such as stroke dynamics, shape structures, and 

other distinctive signature traits [31]. 

Step 4: Pretrained Model (SqueezeNet) 

SqueezeNet is a lightweight Convolutional Neural 

Network (CNN) architecture that is well-suited for 

applications with limited computational resources. It offers 

performance comparable to larger models such as ResNet and 

VGG, but with significantly fewer parameters. Numerous 
pretrained versions of SqueezeNet are available in popular 

Deep Learning frameworks and can be fine-tuned for specific 

tasks, including signature verification [32]. Designed to 

maintain a balance between model size and accuracy, 
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SqueezeNet proves beneficial in scenarios where 

computational efficiency and rapid inference are crucial, 

making it an optimal choice for offline signature verification 

systems, particularly in resource-constrained environments. 

Key Features of SqueezeNet: 

 Compact Structure: SqueezeNet delivers a small model 

size while maintaining accuracy comparable to larger 

CNN architectures like VGG and ResNet, using 

considerably fewer parameters. 

 Fire Modules: The architecture introduces Fire Modules, 

each composed of a squeeze layer with 1x1 convolutions 

succeeded by an expansion layer that includes both 1x1 

and 3x3 convolutions. This structure helps reduce the 

number of parameters while preserving performance. 

 Pre-trained Weights: Like many CNNs, SqueezeNet 

supports fine-tuning through pretrained weights on 
large-scale datasets such as ImageNet. This allows for 

adaptation to more specific tasks, including offline 

signature verification. 

 

Using a pretrained SqueezeNet model for offline 

signature verification is particularly effective in scenarios 

where a fast, lightweight solution is necessary. By using 

transfer learning, SqueezeNet, a deep CNN, can be adapted 

to distinguish between genuine and forged signatures by 

identifying key distinguishing features [33]. Transfer 

learning in this context refers to the process of starting with a 

model pretrained on a large dataset (such as ImageNet) and 
then fine-tuning it using a domain-specific dataset, like one 

for offline signature verification.  

Signatures exhibit unique characteristics such as stroke 

patterns, curvature, and writing speed, which require the 

model to adjust from recognizing general visual features to 

more specific handwriting traits [34]. 

Once features are extracted from the input signature, the 

next step involves comparing them with features from known 

genuine signatures. This comparison is performed using 

similarity measures like Euclidean distance or cosine 

similarity.  

Based on the similarity score, a classification mechanism 

such as thresholding or a SoftMax classifier is then used to 

determine whether the signature is genuine or forged [35]. 

Step 5: Fine-Tuning the Model 

Fine-tuning plays a crucial role in effectively adapting 

the pretrained model to the signature dataset. This process 

typically involves freezing the initial layers of the network 

because these layers represent basic visual features such as 

edges and textures, which are generally transferable across 

tasks. The later layers of the model are then retrained using 

the signature dataset, allowing the network to learn high-

level, signature-specific features. Through this approach, the 

model is able to leverage existing low-level representations 

while adapting to the unique patterns and characteristics 

found in signature data, such as lines and textures, which are 

often influenced by biases that make signature verification a 
complex task [36]. SqueezeNet pre-trained network has a 

total of 68 layers, having 1.2M total learnables. 

3.2. Verification 

3.2.1. Training 

Here, training is done with randomly selected 60% 

offline converted signature images for every 40 users of the 

SVC 2004 online signature database, once with random 

forgery and subsequently with skill forgery. Combined 

Training Confusion Matrix for all Users using random 

forgery and using skill forgery are shown in Figures 4 and  5, 

respectively. Training accuracy and training time elapsed for 

each user using random forgery and skill forgery are 
displayed in Tables 1 and 3, respectively. Further average 

training accuracy and average training time elapsed are 

calculated for all 40 signers in both cases and displayed in 

Tables 1 and 3. 

 
Fig. 4 Combined training confusion matrix using random forgery 

 
Fig. 5 Combined training confusion matrix using skilled forgery 

3.2.2. Testing 

Here, testing was done with all the 100% signatures data 

because of limited resources twice, as follows, once with 

offline converted skill forgery data given in the SVC 2004 

online signature database. And subsequently, with the offline 

converted random forgery created using various users' 

signature images. Here, it is pertinent to mention that testing 

was done on Raw Thresholding, Best User-specific/ 
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Individual EER Thresholding, and Best User-specific/ 

Individual Youden Thresholding for both the Random 

Forgery and Skill Forgery. Each User Testing Accuracy at 

different thresholds and other parameters, such as best 

individual EER Threshold, Youden threshold, AUC, and 
Equal Error Rate are shown in Table 1 and Table 3. 

Combined Testing Confusion Matrix of Raw, Individual EER 

thresholded, and Youden thresholded using Random forgery 

are shown in Figures 6, 7, and 8, respectively. Similarly, for 

skill forgery, it is shown in Figures 9, 10, and 11, 

respectively. Moreover, the average, highest, and lowest 

testing accuracy are calculated and shown in Table1 and 

Table 3 for both cases. Here we have also found out the 

Precision, Recall, and F1-Score for each user at the Youden 

threshold for both random and skill forgery, and are noted in 

Table 2 and Table 4, respectively. 

 
Fig. 6 Combined testing confusion matrix raw thresholded using 

random forgery 

 
Fig. 7 Combined testing confusion matrix individual EER thresholded 

using random forgery 

 
Fig. 8 Combined testing confusion matrix individual youden 

thresholded using random forgery 

 
Fig. 9 Combined testing confusion matrix raw thresholded using 

skilled forgery 

 
Fig. 10 Combined testing confusion matrix individual EER thresholded 

using skilled forgery 

 

 
Fig. 11 Combined testing confusion matrix individual youden 

thresholded using skilled forgery 

4. Verification Results and Performance 

Evaluation 
The performance evaluation of offline signature 

verification systems is based on the confusion matrix 

components: True Positives (TP), True Negatives (TN), False 

Positives (FP), and False Negatives (FN), representing 

correctly/incorrectly classified genuine and forged 

signatures, respectively [11]. 

Fundamental Classification Metrics are given in [11] as 

follows: 

Accuracy: It measures overall system correctness. The 

formula for it is given in Equation (2) below: 
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Accuracy =
(TP + TN)

(TP + TN + FP + FN)
                            (2) 

 
Precision: It quantifies the proportion of correctly 

identified genuine signatures among all accepted signatures. 

The formula for it is given in Equation (3) below: 

Precision =
TP

(TP + FP)
                            (3) 

 
Recall (Sensitivity): It measures the proportion of 

genuine signatures correctly identified. The formula for it is 

given in Equation (4) below: 

Recall =
TP

(TP + FN)
                            (4) 

 
F1-Score: It provides the harmonic mean of precision 

and recall. The formula for it is given in Equation (5) below: 

F1 − Score = 2 ×
(Precision × Recall)

(Precision + Recall)
                 (5) 

 

Biometric-Specific Performance Metrics are given in 

[12] as follows: 

False Acceptance Rate (FAR): It represents the 

probability of incorrectly accepting a forged signature. The 

formula for it is given in Equation (6) below: 

FAR =
FP

(FP + TN)
                            (6) 

 
False Rejection Rate (FRR): It indicates the probability 

of incorrectly rejecting a genuine signature. The formula for 

it is given in Equation (7) below: 

FRR =
FN

(FN + TP)
                            (7) 

Equal Error Rate (EER): It represents the operating point 

where FAR equals FRR. It is depicted in Equation (8) below: 

EER = FAR = FRR (at optimal threshold  EER) (8) 

 
EER provides a threshold-independent performance 

measure, with lower values indicating superior 

discrimination capability. 

ROC curve analysis is given in [13, 14] as follows: 

Receiver Operating Characteristic (ROC) curves: It is 

the plot of True Positive Rate against False Positive Rate 

across different threshold values, and their formula are given 

in Equations (9) and (10):  

TPR() =
TP()

(TP() + FN())
                            (9) 

FPR() =
FP()

(FP() + TN())
                            (10) 

 
Area Under the ROC Curve (AUC): It provides a 

threshold-independent performance measure as given in 

Equation (11) below: 

AUC = ∫ TPR(FPR−1
1

0

(x))dx                            (11) 

Global ROC curves: It gives the aggregate performance 

across all test samples as represented in Equations (12) and  

(13) below: 

TPRglobal =
∑ TPii

∑ (TPi + FNi)i

                            (12) 

FPRglobal =
∑ FPii

∑ (FPi + TNi)i

                             (13) 

 
Average ROC curves: It computes the mean 

performance across individual user ROC curves as given in 

Equations (14) and (15) below: 

TPRavg() =
∑ TPRi()N

i=1

N
                            (14) 

 

FPRavg() =
∑ FPRi()N

i=1

N
                            (15) 

 
Threshold Selection Methods, as given in [15, 16], are as 

follows: 

Youden Index: It maximizes the sum of sensitivity and 

specificity. It is given by the formula in Equation (16) below: 

J = Sensitivity + Specificity − 1 = TPR − FPR    (16) 
The optimal threshold maximizes the Youden Index and 

is given by Equation (17) below: 

Youden = argmax [TPR() − FPR()]           (17) 
 
EER Threshold: It minimizes the difference between 

FAR and FRR, providing a balanced security-usability trade-

off. It is given by the formula in Equation (18) below: 

EER = argmin|FAR() − FRR()|             (18) 
 
In offline signature verification, accuracy is a commonly 

used metric to assess the effectiveness of a system. The 

formula presented in Equation (2) was employed by the 

authors to measure the accuracy of the offline signature 

verification system, emphasizing its significance alongside 
complementary metrics such as False Acceptance Rate 
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(FAR) and False Rejection Rate (FRR) in assessing overall 

system performance [35-37]. Similarly, the same formula 

was utilized in the study by [31] to evaluate the performance 

of offline signature verification using discrete wavelet 

transforms and other machine learning approaches. Here, 
training accuracy, testing accuracy (at Raw, Youden User 

Specific Threshold, EER User Specific Threshold), EER, 

AUC, and training time for all 40 individual Users are 

recorded in Table 1 for random forgery and in Table 3 for 

skill forgery. Precision, Recall, and F1-Score while Testing 

Using Random Forgery for all 40 Users at Youden Threshold 

is shown below in Table 2, and similarly, while testing using 

Skill Forgery is shown in Table 4. Although we have done 

testing/verification using raw threshold, individual/user-

specific Youden threshold, and individual/user-specific EER 

threshold. But we have also determined the Global ROC 

Curve using Random Forgery with Youden Threshold as 
shown in Figure 12 and the Global ROC Curve using skilled 

Forgery with Youden Threshold as shown in Figure 15. It is 

the plot of False positive rate vs. True positive rate which 

gives the overall/ global Youden point threshold of 0.5389 

and 0.4926 in case of random forgery and skill forgery, 

respectively. Average FAR and FRR Curves vs Threshold for 

Random Forgery and Average FAR and FRR Curves vs 

Threshold for Skilled Forgery, which determine Global EER 

and Threshold, are shown in Figure 13 and Figure 16, 

respectively. This gives Global EER=0.75%, 

threshold=0.543 in case of random forgery, and Global 
EER=11.25%, threshold=0.508 in case of skilled forgery. 

The average ROC Curve across all 40 Users is shown in 

Figures 13 and 17, respectively, for random forgery and 

skilled forgery. Our Pretrained SqueezeNet model is trained 

and tested on the offline converted Signature images from 

SVC 2004 Task 1 online signature database for all forty users 

yielding excellent average testing accuracy of (99.25% for 

raw thresholding, 99.81% for Youden user specific 

thresholding and 99.75% for EER user specific thresholding) 

using Random Forgeries as shown in Table 1 and average 
testing accuracy of (88.50% for raw thresholding, 94.81% for 

youden specific thresholding and 93.13% for EER user 

specific thresholding) using Skilled Forgeries as shown in 

Table 3. From the results, it can be seen that this type of 

offline signature verification using an online signature 

database has shown excellent results; therefore, it can bridge 

the gap between offline and online signature verification 

systems, leading to an excellent cross-domain biometric 

verification solution. For random forgeries, testing accuracy 

ranges from (90%-100%) for all forty users; similarly, for 

skilled forgeries, testing accuracy ranges from (47.50%-

100%). Average training time elapsed is observed to be 14.98 
sec, with a highest of 18.92 sec and a lowest of 13.66 sec in 

the case of random forgery. Similarly, the average training 

time elapsed for skill forgery is 15.32 sec, with a highest of 

22.02 sec and a lowest of 13.81 sec. The highest training 

accuracy for random as well as skill forgery is 100%. The 

lowest testing accuracy is 90 % and 47.50 % respectively, for 

random forgery and skill forgery. Use of a pretrained 

SqueezeNet Deep Learning Model for offline signature 

verification is seen to be an effective methodology, 

particularly when there is a necessity for a lightweight model 

that can deliver strong performance in resource-constrained 
environments with limited signature data. It can be seen that 

testing accuracy with random forgery is consistently higher 

than testing accuracy with skill forgery. Moreover, the 

training time elapsed for random forgery is lower than that of 

skill forgery.

 

Table 1. Training and verification results using random forgery (training 60% randomly and testing with all 100%) 
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User1 100.00 100.00 100.00 100.00 18.92 0.9998 0.0553 0 1 

User2 100.00 92.50 100.00 100.00 13.90 0.2157 0.0251 0 1 

User3 100.00 100.00 100.00 100.00 13.66 0.8818 0.0050 0 1 

User4 100.00 100.00 100.00 100.00 14.25 0.9592 0.3116 0 1 

User5 100.00 100.00 100.00 100.00 14.19 0.5465 0.2563 0 1 

User6 100.00 100.00 100.00 100.00 13.81 0.9990 0.0050 0 1 
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User7 95.83 92.50 92.50 90.00 13.86 0.5781 0.5628 10 0.955 

User8 100.00 100.00 100.00 100.00 14.05 0.8846 0.0302 0 1 

User9 100.00 100.00 100.00 100.00 14.16 0.9971 0.2513 0 1 

User10 100.00 100.00 100.00 100.00 14.18 0.7439 0.0653 0 1 

User11 100.00 100.00 100.00 100.00 14.24 0.8997 0.0050 0 1 

User12 100.00 100.00 100.00 100.00 14.55 0.9961 0.0050 0 1 

User13 100.00 100.00 100.00 100.00 14.94 0.9996 0.1759 0 1 

User14 100.00 100.00 100.00 100.00 15.39 0.8215 0.0201 0 1 

User15 100.00 97.50 100.00 100.00 15.41 0.8502 0.5528 0 1 

User16 100.00 100.00 100.00 100.00 15.13 0.9857 0.0553 0 1 

User17 100.00 100.00 100.00 100.00 15.41 0.8463 0.1206 0 1 

User18 100.00 97.50 100.00 100.00 15.15 0.9904 0.6131 0 1 

User19 100.00 100.00 100.00 100.00 15.21 0.7837 0.3618 0 1 

User20 100.00 100.00 100.00 100.00 15.17 0.7566 0.2161 0 1 

User21 100.00 100.00 100.00 100.00 14.87 0.9513 0.0151 0 1 

User22 100.00 100.00 100.00 100.00 15.05 0.9993 0.0050 0 1 

User23 100.00 100.00 100.00 100.00 15.10 0.9231 0.0201 0 1 

User24 100.00 100.00 100.00 100.00 15.01 0.9975 0.1608 0 1 

User25 100.00 100.00 100.00 100.00 14.91 0.5751 0.4422 0 1 

User26 100.00 100.00 100.00 100.00 15.22 0.9334 0.1608 0 1 

User27 100.00 100.00 100.00 100.00 15.53 0.8620 0.2915 0 1 

User28 100.00 97.50 100.00 100.00 15.04 0.3806 0.0201 0 1 

User29 100.00 95.00 100.00 100.00 15.17 0.7461 0.6382 0 1 

User30 100.00 100.00 100.00 100.00 14.93 0.9924 0.0050 0 1 

User31 100.00 100.00 100.00 100.00 15.44 0.9776 0.2613 0 1 

User32 100.00 100.00 100.00 100.00 15.19 0.9858 0.2111 0 1 

User33 100.00 100.00 100.00 100.00 15.10 0.8880 0.1256 0 1 

User34 100.00 100.00 100.00 100.00 15.76 0.9667 0.0050 0 1 

User35 100.00 100.00 100.00 100.00 15.30 0.9878 0.2563 0 1 

User36 100.00 100.00 100.00 100.00 15.06 0.7923 0.3668 0 1 

User37 100.00 97.50 100.00 100.00 14.95 0.8481 0.5176 0 1 

User38 100.00 100.00 100.00 100.00 15.20 0.6589 0.1156 0 1 

User39 100.00 100.00 100.00 100.00 16.02 0.9780 0.0101 0 1 

User40 100.00 100.00 100.00 100.00 14.92 0.9500 0.1256 0 1 

Average 99.90 99.25 99.81 99.75 14.98 0.8532 0.1862 0.25 0.999 

Highest 100.00 100 100 100 18.92 0.9998 0.6382 10 1 

Lowest 95.83 
92.50 

 
92.50 90.00 13.66 0.2157 0.0050 0 0.955 

 
Table 2. Precision, Recall, and F1-Score while testing using random forgery for all 40 users at youden threshold 

User 
Using Random Forgeries (At Youden’s Threshold) 

TP TN FP FN Precision(%) Recall(%) F1-Score(%) 

User1 20 20 0 0 100.00 100.00 100.00 

User2 20 20 0 0 100.00 100.00 100.00 

User3 20 20 0 0 100.00 100.00 100.00 

User4 20 20 0 0 100.00 100.00 100.00 

User5 20 20 0 0 100.00 100.00 100.00 

User6 20 20 0 0 100.00 100.00 100.00 

User7 18 19 1 2 94.74 90.00 92.31 

User8 20 20 0 0 100.00 100.00 100.00 

User9 20 20 0 0 100.00 100.00 100.00 

User10 20 20 0 0 100.00 100.00 100.00 
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User11 20 20 0 0 100.00 100.00 100.00 

User12 20 20 0 0 100.00 100.00 100.00 

User13 20 20 0 0 100.00 100.00 100.00 

User14 20 20 0 0 100.00 100.00 100.00 

User15 20 20 0 0 100.00 100.00 100.00 

User16 20 20 0 0 100.00 100.00 100.00 

User17 20 20 0 0 100.00 100.00 100.00 

User18 20 20 0 0 100.00 100.00 100.00 

User19 20 20 0 0 100.00 100.00 100.00 

User20 20 20 0 0 100.00 100.00 100.00 

User21 20 20 0 0 100.00 100.00 100.00 

User22 20 20 0 0 100.00 100.00 100.00 

User23 20 20 0 0 100.00 100.00 100.00 

User24 20 20 0 0 100.00 100.00 100.00 

User25 20 20 0 0 100.00 100.00 100.00 

User26 20 20 0 0 100.00 100.00 100.00 

User27 20 20 0 0 100.00 100.00 100.00 

User28 20 20 0 0 100.00 100.00 100.00 

User29 20 20 0 0 100.00 100.00 100.00 

User30 20 20 0 0 100.00 100.00 100.00 

User31 20 20 0 0 100.00 100.00 100.00 

User32 20 20 0 0 100.00 100.00 100.00 

User33 20 20 0 0 100.00 100.00 100.00 

User34 20 20 0 0 100.00 100.00 100.00 

User35 20 20 0 0 100.00 100.00 100.00 

User36 20 20 0 0 100.00 100.00 100.00 

User37 20 20 0 0 100.00 100.00 100.00 

User38 20 20 0 0 100.00 100.00 100.00 

User39 20 20 0 0 100.00 100.00 100.00 

User40 20 20 0 0 100.00 100.00 100.00 

Average 99.87 99.75 99.81 

Highest 100 100 100 

Lowest 94.74 90.00 92.31 
 

 
Fig. 12 Global ROC curve using random forgery with youden threshold 



Bhimraj Prasai Chetry et al. / IJECE, 12(12), 201-217, 2025 
 

211 

 
Fig. 13 Average FAR and FRR Curves vs Threshold for random forgery 

 
Fig. 14 Average ROC curve across all 40 users for random forgery 

Table 3. Training and verification results using skilled forgery (training 60% randomly and testing with all 100%) 
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Accuracy 

(Raw) 

(%) 

Testing 

Accuracy 

(Youden 

User Specific 

Thresholded) 

(%) 

Testing 

Accuracy 

(EER User 

Specific 

Thresholded) 

(%) 

User1 100.00 92.50 95.00 95.00 16.70 0.4744 0.5276 5.00 0.98 

User2 100.00 85.00 90.00 87.50 22.02 0.4293 0.4171 12.50 0.9425 

User3 100.00 95.00 95.00 95.00 17.06 0.5084 0.4975 5.00 0.965 

User4 95.83 87.50 92.50 90.00 13.81 0.6897 0.6382 10.00 0.95 

User5 50.00 47.50 72.50 72.50 14.17 0.4926 0.4925 27.50 0.695 

User6 100.00 100.00 100.00 100.00 14.41 0.6335 0.0503 0.00 1 

User7 70.83 62.50 87.50 87.50 14.43 0.4762 0.4724 12.50 0.9225 

User8 95.83 92.50 95.00 95.00 14.17 0.5346 0.4925 5.00 0.9725 

User9 95.83 90.00 92.50 90.00 14.69 0.4914 0.3467 10.00 0.9525 

User10 100.00 87.50 92.50 90.00 14.80 0.2466 0.2513 10.00 0.9725 
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User11 95.83 87.50 92.50 90.00 14.81 0.5644 0.5678 10.00 0.955 

User12 95.83 87.50 100.00 100.00 15.24 0.2000 0.1256 0.00 1 

User13 100.00 100.00 100.00 100.00 15.09 0.9910 0.3166 0.00 1 

User14 100.00 97.50 100.00 100.00 15.04 0.4960 0.4824 0.00 1 

User15 95.83 90.00 95.00 90.00 15.26 0.7620 0.5427 10.00 0.9875 

User16 100.00 97.50 97.50 95.00 15.30 0.5365 0.5377 5.00 0.995 

User17 75.00 72.50 95.00 92.50 14.94 0.5317 0.5226 7.50 0.965 

User18 100.00 100.00 100.00 100.00 15.13 0.7750 0.4724 0.00 1 

User19 83.33 72.50 80.00 77.50 14.95 0.4826 0.4874 22.50 0.8625 

User20 91.67 87.50 92.50 90.00 14.96 0.3975 0.2261 10.00 0.97 

User21 91.67 87.50 87.50 85.00 14.96 0.5674 0.2764 15.00 0.9275 

User22 100.00 95.00 97.50 95.00 15.02 0.6203 0.3618 5.00 0.9975 

User23 95.83 90.00 95.00 90.00 15.11 0.5116 0.5075 10.00 0.9825 

User24 100.00 92.50 97.50 95.00 14.97 0.7067 0.5126 5.00 0.995 

User25 100.00 100.00 100.00 100.00 15.02 0.5740 0.4975 0.00 1 

User26 91.67 85.00 90.00 87.50 15.30 0.5888 0.5377 12.50 0.9625 

User27 87.50 77.50 97.50 92.50 15.26 0.6087 0.5678 7.50 0.98 

User28 87.50 87.50 95.00 90.00 15.06 0.6333 0.5678 10.00 0.9825 

User29 87.50 90.00 90.00 87.50 15.78 0.5266 0.5226 12.50 0.9625 

User30 100.00 100.00 100.00 100.00 15.12 0.7261 0.0905 0.00 1 

User31 100.00 95.00 97.50 95.00 14.99 0.8695 0.4523 5.00 0.995 

User32 100.00 100.00 100.00 100.00 14.85 0.5247 0.4121 0.00 1 

User33 100.00 92.50 100.00 100.00 15.14 0.9579 0.7588 0.00 1 

User34 58.33 57.50 100.00 100.00 16.02 0.6741 0.6533 0.00 1 

User35 100.00 97.50 100.00 100.00 14.94 0.9840 0.5528 0.00 1 

User36 83.33 75.00 87.50 80.00 14.91 0.7525 0.6683 20.00 0.93 

User37 95.83 95.00 100.00 100.00 14.88 0.5947 0.5276 0.00 1 

User38 100.00 95.00 95.00 95.00 17.54 0.5421 0.4824 5.00 0.9775 

User39 100.00 95.00 97.50 95.00 15.98 0.6831 0.4121 5.00 0.9975 

User40 100.00 100.00 100.00 100.00 15.05 0.6247 0.3769 0.00 1 

Average 93.13 88.50 94.81 93.13 15.32 0.5996 0.4552 6.88 0.9694 

Highest 100 100 100 100 22.02 0.9910 0.7588 27.50 1 

Lowest 50 47.50 72.50 72.50 13.81 0.2000 0.0503 0.00 0.695 

 
Table 4. Precision, Recall, and F1-Score while testing using skilled forgery for all 40 users at youden threshold 

User 
Using Skilled Forgeries (At Youden Threshold) 

TP TN FP FN Precision(%) Recall(%) F1-Score(%) 

User1 20 18 2 0 90.91 100.00 95.24 

User2 18 18 2 2 90.00 90.00 90.00 

User3 19 19 1 1 95.00 95.00 95.00 

User4 18 19 1 2 94.74 90.00 92.31 

User5 18 11 9 2 66.67 90.00 76.60 

User6 20 20 0 0 100.00 100.00 100.00 

User7 17 18 2 3 89.47 85.00 87.18 

User8 18 20 0 2 100.00 90.00 94.74 

User9 17 20 0 3 100.00 85.00 91.89 

User10 19 18 2 1 90.48 95.00 92.68 

User11 19 18 2 1 90.48 95.00 92.68 

User12 20 20 0 0 100.00 100.00 100.00 

User13 20 20 0 0 100.00 100.00 100.00 

User14 20 20 0 0 100.00 100.00 100.00 
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User15 18 20 0 2 100.00 90.00 94.74 

User16 20 19 1 0 95.24 100.00 97.56 

User17 18 20 0 2 100.00 90.00 94.74 

User18 20 20 0 0 100.00 100.00 100.00 

User19 17 15 5 3 77.27 85.00 80.95 

User20 18 19 1 2 94.74 90.00 92.31 

User21 15 20 0 5 100.00 75.00 85.71 

User22 19 20 0 1 100.00 95.00 97.44 

User23 18 20 0 2 100.00 90.00 94.74 

User24 19 20 0 1 100.00 95.00 97.44 

User25 20 20 0 0 100.00 100.00 100.00 

User26 17 19 1 3 94.44 85.00 89.47 

User27 19 20 0 1 100.00 95.00 97.44 

User28 18 20 0 2 100.00 90.00 94.74 

User29 18 18 2 2 90.00 90.00 90.00 

User30 20 20 0 0 100.00 100.00 100.00 

User31 19 20 0 1 100.00 95.00 97.44 

User32 20 20 0 0 100.00 100.00 100.00 

User33 20 20 0 0 100.00 100.00 100.00 

User34 20 20 0 0 100.00 100.00 100.00 

User35 20 20 0 0 100.00 100.00 100.00 

User36 15 20 0 5 100.00 75.00 85.71 

User37 20 20 0 0 100.00 100.00 100.00 

User38 19 19 1 1 95.00 95.00 95.00 

User39 19 20 0 1 100.00 95.00 97.44 

User40 20 20 0 0 100.00 100.00 100.00 

Average 96.36 93.63 94.78 

Highest 100 100 100 

Lowest 66.67 75 76.60 

 
Fig. 15 Global ROC curve using skilled forgery with youden threshold 
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Fig. 16 Average FAR and FRR curves vs Threshold for skilled forgery 

 
Fig. 17 Average ROC curve across all 40 users for skilled forgery 

Table 5. Verification report of proposed method 

Performance Parameters 
Results Obtained 

Random Forgery Skilled Forgery 

Average Testing Accuracy(Raw Thresholded) 99.25% 88.50% 

Average Testing Accuracy(Youden Thresholded) 99.81% 94.81% 

Average Testing Accuracy(EER Thresholded) 99.75% 93.13% 

Average Precision(Youden Thresholded) 99.87% 96.36% 

Average Recall(Youden Thresholded) 99.75% 93.63% 

Average F1-Score(Youden Thresholded) 99.81% 94.78% 

Average Best Youden Threshold 0.8532 0.5996 

Average Best EER Threshold 0.1862 0.4552 

Global EER 0.75% 11.25% 

Threshold at Global EER 0.543 0.508 

Global Youden Point Threshold 0.5389 0.4926 
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The performance analysis report of our proposed offline 

signature verification system using the SVC 2004 online 

signature database in terms of Testing Accuracy, Precision, 

Recall, and F1-Score using Random Forgery and Skilled 

Forgery, which performs remarkably well, is shown in Table 

5 above.  

5. Results and Conclusion 
5.1. Results and Discussions 

Our Pretrained SqueezeNet is trained and tested on the 

offline converted images of online signature database SVC 

2004 for all forty users, yielding average testing accuracy of 

(99.25% for Raw Thresholding, 99.81% for Youden 
Thresholding and 99.75% for EER Thresholding) using 

Random Forgeries and (88.50% for Raw Thresholding, 

94.81% for Youden Thresholding and 93.13% for EER 

Thresholding) using Skilled Forgeries as shown is Table 1, 

Table 3 and Table 5. For random forgeries, testing accuracy 

ranges from (90%-100%) for all forty users; similarly, for 

skilled forgeries, testing accuracy ranges from (47.50%-

100%). Average training time elapsed is observed to be 14.98 

sec, with a highest 18.92 sec and lowest 13.66 sec in case of 

random forgery similarly average training time elapsed for 

skill forgery is 15.32 sec with highest 22.02 sec and lowest 

13.81 sec.  

The verification report of our proposed model in terms 

of performance parameters is depicted clearly in Table 5. It 

is clear that the model’s performance is best with an average 

testing accuracy of 99.81% for Youden thresholding (Using 

Random Forgery) and 94.81% for Youden thresholding 

(Using Skill Forgery), which indicates great overall 

efficiency. Average precision of 99.87% (Using Random 

Forgery) and 96.36% (Using Skill Forgery) shows that the 

model effectively reduces false positives. With an average 

recall of 99.75% (Using Random Forgery) and 93.63% 

(Using Skill Forgery), the model minimizes false negatives. 
Moreover, a well-balanced tradeoff between recall and 

precision, known as F1-Score, comes out to be 99.81% 

(Using Random Forgery) and 94.78% (Using Skill Forgery).  

All the above findings suggest the model’s dependability, its 

high degree of accuracy, and very careful handling of false 

positives and false negatives.  

Hence, the values of Average Testing Accuracy, 

Average Precision, Average Recall, Average F1-Score, etc. 

from Table 5 indicate that our proposed system performs 

remarkably well in line with the state-of-the-art results 

presented to date. For our proposed model, training accuracy, 
testing accuracy (at Raw, Best Youden User Specific 

Threshold, Best EER User Specific Threshold), EER, AUC, 

and training time for all 40 individual Users are recorded in 

Table 1 for random forgery and in Table 3 for skill forgery. 

Precision, Recall, and F1-Score while Testing Using Random 

Forgery for all 40 Users at Youden Threshold is shown in 

Table 2, and similarly while Testing using Skill Forgery is 

shown in Table 4. We have determined the Global ROC curve 

using Random Forgery with Youden Threshold as shown in 

Figure 12 and the Global ROC curve using Skilled Forgery 

with Youden Threshold as shown in Figure 15. It is the plot 

of False positive rate versus True positive rate which gives a 
global Youden point threshold of 0.5389 and 0.4926 in case 

of random forgery and skill forgery, respectively. Average 

FAR and FRR Curves vs Threshold for Random Forgery and 

Average FAR and FRR Curves vs Threshold for Skilled 

Forgery, which determine Global EER and Threshold, are 

shown in Figures 13 and 16, respectively.  

This gives Global EER=0.75% at threshold=0.543 in 

case of random forgery and Global EER=11.25% at 

threshold=0.508 in case of skilled forgery. The average ROC 

Curve across all 40 Users is shown in Figures 14 and 17, 

respectively, for random forgery and skilled forgery. Use of 

a pretrained SqueezeNet Deep Learning Model for offline 
signature verification is seen to be an effective approach, 

particularly when there is a necessity for a lightweight model 

that can deliver a strong performance in resource-constrained 

environments with limited signature data.  

5.2. Conclusion 

With the introduction of deep learning, offline signature 

verification has advanced significantly. In terms of accuracy 

and resilience, models like CNNs, RNNs, and GANs have 

surpassed conventional methods. However, issues like 

bridging the gap between online and offline signature 

verification have not been addressed to date for cross-domain 

biometric verification solutions.  

This problem is resolved here, where online collected 

signatures can be verified with offline collected signatures 

and offline signatures can be verified with online collected 

signatures in real-time with excellent accuracy, leading to a 

cross-domain biometric verification solution. By altering a 

pretrained SqueezeNet model for offline signature 

verification, we have taken advantage of deep learning's 

power while keeping a lightweight and efficient model 

appropriate for deployment on devices with limited 

computational resources.  

Here in our proposed model, we have obtained the best 
average testing accuracy of 99.81% (With user-specific 

Youden Thresholding) using Random Forgery and 94.81% 

(With user-specific Youden Thresholding) using Skilled 

Forgery, which is excellent and is in line with the state-of-

the-art results. Here, we have also calculated the Global 

Youden Threshold and Global EER Threshold across all forty 

users, but verification using them and their analysis is a 

promising direction for future research.  We often observed 

that, in practical applications, offline signature verification 

systems encounter significant challenges due to various 

distortions, such as stamps, overlapping text, smudges, and 
background noise, factors that lie beyond the scope of the 
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current study. We cannot perform accurate verification and 

authentication of signatures in the presence of these types of 

interferences. Therefore, the development of robust methods 

for the detection, removal, or mitigation of these distortions 

constitutes a promising research direction for the future. 

Progress in this area has the potential to significantly improve 

the reliability and accuracy of automated offline signature 

verification systems. 
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