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Abstract - The uncontrolled rate of expansion of healthcare data and storing it in the clouds requires the hardy measures of
safety to maintain the privacy of patients and their data security. This paper introduces a safe healthcare monitoring system,
which utilizes the Modified Elliptic Curve Diffie-Hellman (M-ECDH) cryptosystem. M-ECDH amplifies the conventional ECC
by streamlining the key exchange, encryption, and decryption mechanisms, and this minimizes the computational complexity. It
is an architecture that serves cloud-integrated healthcare apps, which allows the secure transfer of patient data gathered by
devices enabled with 10T. According to the findings of the experiments, it was shown that the encryption, decryption, and key
generation durations could be improved by 10-20% as compared to the use of traditional cryptographic approaches. Moreover,
it uses integration of blockchain technology to provide data that cannot be changed and access to data that is under control.
The suggested solution can be successfully deployed in any contemporary healthcare facility to secure real-time healthcare data

without affecting its performance, which is scalable and efficient.
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1. Introduction

The fast healthcare system digitalization created volumes
of sensitive patient data that need secure transmission between
the Internet of Things (loT) devices and the cloud-hosted
analytics services in large volumes never before [1]. By 2025,
the world market of digital healthcare is expected to grow to
659.8 billion USD due to extreme usage of wearable monitors,
implantable medical equipment, and systems of constant
monitoring of the patient [2]. This has resulted in severe
security weaknesses that have been perpetually growing
exponentially, with healthcare organizations incurring the
greatest average price per data breach of all the sectors [3].

Modern cryptography performance has significant
challenges for loT healthcare operations. The Advanced
Encryption Standard (AES) offers an efficient symmetric
encryption approach at the expense of complicated key
distribution schemes that are not suitable in distributed
medical device network scenarios [4]. RSA cryptography in
its public-key form tends to consume a lot of computational
resources with average key sizes of 2048-4096 bits, and this
poses a problem of imposing a lot of overhead, especially on
battery-powered medical equipment that will need real-time
processing of data [5]. These computational limitations have
also been shown in more complex applications in integrated
healthcare [6], making it necessary to have alternative
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methods, including Elliptic Curve Cryptography (ECC),
which provide the same level of security with a significantly
lower computational cost [7, 46, 47].

Elliptic Curve Diffie-Hellman (ECDH) key exchange
promises significant efficiency gains, with an equivalent level
of security (at RSA-2048) with keys only 224 bits in length
and half the overall computation costs (at 224 bits) [8].
Nonetheless, most ECDH implementations are now faced
with optimization hiccups when using continuous monitoring,
with high-frequency key exchanges quickly draining battery
reserves and creating system latency [9]. Modern studies into
Modified ECDH (M-ECDH) protocols have suggested ways
to explore improvements by providing better scalar
multiplication algorithms and smart caching techniques [10].
However, these are still mostly theoretical, with no real
validation on real platform-based 10T healthcare devices.

The complementary security benefits covered by
blockchain technology, such as immutable audit trails and
decentralized access control, can help to meet critical
healthcare regulatory compliance requirements [11, 48]. The
combination of blockchain and cryptographic schemes, in
theory, enables the use of tamper-resistant logging and retains
the real-time performance attributes. Nevertheless, current
combinations of blockchain and cryptography often undercut
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either computational performance or security levels,
preventing real-world implementation in 10T healthcare that is
resource-constrained, such as the upcoming IoT healthcare
systems [12].

In spite of all these technological advances, the existing
loopholes in the research on the topic of loT security in
healthcare continue to exist. Current literature mainly
investigates cryptographic optimization and blockchain
integration at the level of individual elements, as opposed to
investigating synergistic integration methods [13, 14]. The
majority of them emphasize a security feature of individuals,
instead of considering the entire security life cycle, such as
confidentiality, integrity, availability, and compliance with
regulations that are built into one architecture. There is scant
research to support the cryptographic performance over the
entire hardware ecosystem of a healthcare deployment,
spanning ultra-low-power microcontrollers in wearable device
sensors to high-performance cloud computation servers. There
are not many applications that can attain the subsience
blockchain consensus latency needed to support important
real-time medical alerts and, at the same time, be
cryptographically efficient. The available solutions are also
not critically assessed based on standardized open-access
healthcare data, which makes reproducibility and independent
validation challenging.

This study provides a solution to the mentioned gaps by
outlining and testing a Modified Elliptic Curve Diffie-
Hellman (M-ECDH) cryptography implementation alongside
the lightweight blockchain technology specifically supporting
loT healthcare monitoring. The framework provides four
major contributions that are new. The M-ECDH
implementation M-ECDH implementation offers in the first
place a multi-level optimization approach based on sliding
window scalar multiplication, tunable 2-6-bit windows [23],
extended precomputation tables [10], and two-layered caching
of frequently used modular inversion operation and point
doubling operations [24]. This combined technique records
10-20 % superior performance when compared to standard
ECDH executions in encryption, decryption, and generation
of keys. The framework supports comprehensive validation of
real embedded healthcare hardware, such as ARM Cortex-M4
microcontrollers [32], edge computing gateways, and cloud
infrastructure, unlike the M-ECDH proposals proposed in
previous artistic theory [10, 17].

Second, the blockchain integration uses a new lightweight
permissioned architecture with smart batch processing using a
tunable batch size and efficient consensus algorithms with
commit latencies typically under a sub-millisecond and a
mean of 0.12ms [11]. It is an order of magnitude (15-20x)
performance improvement over current blockchain-healthcare
architectures [18] that generally have 2-5 second consensus
latency, which makes actually real-time critical medical
monitoring applications possible. Third, the framework
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delivers end-to-end cross-platform verification on three
standard open access datasets, including MIMIC-IV Demo of
patient monitoring data with 50,000+ vital sign readings [26,
27], eBACS SUPERCOP of cryptographic performance
benchmarking with 2,000+ ECDH measurements [28, 29],
and CICIoMT2024 of security validation with 720+ attack
scenarios and 40 10MT devices [30, 31]. Such uniform testing
on representative hardware systems and standardised datasets
makes it reproducible and allows independent verification,
which is a severe limitation of the relevant study of loT
security to date [13, 14].

Fourth, the integrated framework shows a better
performance in all the measured metrics than the current
approaches [15, 16, 19, 21], with the fastest key generation of
29.6ms, the highest energy efficiency of 91%, the highest
score of security validation of 9.3 out of 10, and full
capabilities of being integrated to blockchain, unlike
incomplete solutions. This performance benefit is offered by
the framework and offers a full-security lifecycle coverage,
such as confidentiality, integrity, availability, tamper-proof
audit logs, and regulatory compliance verification to meet
HIPAA requirements [48].

The following parts of this work are structured in the
following way. In Section 2, the relevant literature on elliptic
curve cryptography and 10T healthcare security structures, the
blockchain integration approach, and the strategy to improve
its performance have been analyzed exhaustively,
methodically identifying research gaps. Section 3 presents the
algorithm design of M-ECDH, blockchain integration
architecture, selection of the dataset, and experimental design.
Section 4 talks of more detailed experimental data, such as
cryptographic performance analysis, security validation
results, and cross-platform scalability experiments. Section 5
ends with significant findings, implications, limitations
identified, and future research directions.

2. Related Work

The safety of 1oT-based medical surveillance networks
has become one of the focal points of studies. The section
reviews the literature available in the field of elliptic curve
cryptography foundations, 10T healthcare security systems,
blockchain incorporation strategies, and performance
optimization strategies, and has identified research gaps,
which place the proposed M-ECDH framework.

2.1. Elliptic Curve Cryptography in Healthcare Applications

The Elliptic Curve Cryptography has featured
prominently in healthcare applications due to its ability to
provide a high level of security using significantly smaller
keys as compared to RSA. The mathematical concepts
developed by Koblitz [46] and Miller [47] indicate that a key
size worth 256 bits would sustain the same level of security as
a 3072-bit RSA key, but would require significantly fewer
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computational resources, such that ECC will be particularly
beneficial to resource-constrained loT medical health devices
[7, 22].

A container attribute-based ECC scheme to secure
healthcare monitoring in sensor cloud settings is suggested by
Dwivedi et al. [15] with a 40 % decrease in key generation
time and 35 % faster encryption speed than conventional RSA
schemes. Nevertheless, the design was rather an access control
policy implementation than a performance-centered
implementation of the elliptic curve arithmetic operations to
resource-constrained 10T devices.

Moreover, the assessment did not cover the continuous
assessments of patients involved in real-life clinical
implementations, where sensors are capable of providing
high-frequency data streams that would demand the persistent
cryptography operations.

Reddy et al. [19] proposed a state-of-the-art technique for
ECDH combined with big data analytics to safeguard satellite
images, proving that the algorithm enhanced the performance
of traditional ECDH by 10-15% using an optimized
mathematical operation procedure, such as non-adjacent form
representation and optimized modular reduction tools.
Although these optimizations were promising in the context of
processing static data, the satellite imagery field of application
is fundamentally different from the ongoing needs of medical
monitoring, wherein equipment needs to ensure consistent
cryptographic performance over an extended period and run
with reduced power so that battery life can be extended.

2.2. 10T Healthcare Security Frameworks and Challenges
The use of loT in healthcare facilities presents new
security threats. Health sensors powered by batteries,
wearable computers, and implantable medical equipment must
run on extreme computational and energy limitations and at
the same time be dedicated to the most sensitive patient
information that should be afforded high security [33, 34, 35].

Mahajan and Junnarkar [16] designed an intelligent
healthcare-based system, which systems lightweight ECC
with a personal blockchain to process multimedia medical
data, reducing the computational overhead by 45 % in
comparison with traditional AES-256 encryption and
transaction over rates of 850 operations per second. They
offered audit trails on access to medical data, which was
tamper-proof, through their blockchain integration.

Nevertheless, this framework did not directly place an
emphasis on optimization of elliptic curve scalar
multiplication operations to resource-constrained 10T devices
and, rather, it purely addressed the processing at the gateway
where resource constraints are less severe. Also, testing was
not done on real embedded healthcare hardware platforms,
such as ARM Cortex-M microcontrollers that are frequently
used as wearable medical sensors [32].
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A systematic survey on 45 blockchain-1oT healthcare
systems designed by Al-Nbhany et al. [20] found that three-
quarters of proposed systems did not offer sufficient security
strength to meet real-time performance demands. The
latencies that the systems with strong cryptographic protection
had were usually up to 2-5 seconds per transaction, which was
not aligned with the requirements of the critical real-time
monitoring systems.

The review stated that there is an urgent requirement for
unified architectures that are both energy-efficient in
cryptography and blockchain consensus, especially in battery-
powered medical sensors, where energy consumption directly
affects the devices' running life and safety components of the
patient [36, 37].

2.3.  Blockchain
Management

Healthcare data management Blockchain technology
provides solutions to the issue of audit trails, access control,
and logging functions that cannot be tampered with, which
fulfil healthcare regulatory obligations such as those of
HIPAA and GDPR [11, 48]. Nonetheless, a conventional
blockchain solution is prone to serious issues in real-time care
and medical monitoring cases, where the computational load
as well as per-unit storage is high [12, 38].

Integration for Healthcare Data

Zhang et al. [18] introduced a privacy-preserving e-health
system, which is built on blockchain to have cloud healthcare
data management, where a latency of less than 2 seconds is
empowered by practical Byzantine fault tolerance consensus
in transaction blocks of 100 patient data updates. It could
provide continuous vital sign monitoring of up to 500 patients
at the same time with 1Hz sampling rates. Nevertheless, the
model used standard ECDH key exchange in the absence of
optimum optimizations like precomputation tables, caching
scheme, or sliding window scalar multiplication tactic capable
of lowering further the computational expenses. Also, the
latency of the 2-second consensus, though permissible in
normal monitoring, is too slow in difficult real-time situations
when it should initiate rapid clinical action, such as arrhythmia
detection, immediate response to sudden changes in blood
pressure, or essential continuous alert in the named case [39,
40].

Recent studies have examined lightweight blockchain
operating systems that are specifically optimized to run loT
healthcare applications on permissioned networks, with low
complexity of consensus, and a layout of data formats [41, 42].
Most implementations, however, have not reached the sub-
millisecond consensus latency needed by the most serious
real-time monitoring applications. Moreover, the current
lightweight blockchain models tend to trade off security
assurances or the property of decentralization to obtain a better
performance, which results in possible vulnerabilities [43, 44].



Tamilselvan Kaliyaperumal & Poonguzhali Ramaiyan / IJECE, 12(12), 218-229, 2025

2.4.  Performance
Implementations

Resource optimization of cryptographic functions in
small-scale devices is an essential field of study in the
implementation of the 10T-based healthcare [9, 45]. Some of
the strategies have been studied, such as improvement of
algorithms, hardware acceleration methods, and smart caching
solutions [23, 24].

Optimization in  Cryptographic

A comparative study of the modified ECDH algorithms
has been carried out by Nagesh and Naresh [17], and it has
been shown that improved scalar multiplication methods can
lead to 15-20 % improvement in performance due to
windowed techniques and precomputation methods used.
Using six versions of ECDH algorithms and different types of
elliptic curves in the study, sliding window techniques were
observed to use custom window speeds (4-6 bits) that yielded
predetermined point tables, potentially cutting back point
doubling algorithms by large factors. Nevertheless, analysis
was still mostly theoretical, plus mathematical demonstrations
and complexity analysis without applying it to a real system
platform of an loT, like ARM Cortex-M microcontrollers, so
no real performance increases were proven.

The optimization of ECDH key exchange in thin loT
devices with resource constraints was prospectively covered
in Tanksale [21]. Field experiment results of ARM Cortex-
M3-based 10T sensor nodes demonstrated that key exchange
time (42ms to 34.4ms, reduced by 18%) and energy efficiency
(2.8mJ to 2.18mJ per key exchange improved by 22%) had
improved relative to conventional implementations. The
Battery lifetime estimates indicated that under the optimum,
the extensions could last the device up to 22 months with a
regular CR2032 coin cell battery that had a life of 18 months.
However, the architecture did not integrate blockchain
connectivity or provide solutions to the full end-to-end
security lifecycle required in healthcare apps, which includes
a tamper-proof audit trail and regulatory compliance
validation. Also, the tests were conducted on the performance

of individual devices, and not at the system level, on the entire
data flow, so the scalability of large healthcare networks has
not been studied.

2.5. Research Gaps and Positioning

A thorough review of the available literature shows that
there are a number of critical gaps. First, existing studies
typically examine cryptographic optimization and blockchain
integration as separate research concerns, with limited
exploration of synergistic integration approaches that
simultaneously optimize both components [13, 14, 20].
Second, most performance evaluations focus on isolated
benchmarks measuring individual operations rather than
comprehensive end-to-end system analysis across the
complete data flow from 10T device sensor sampling through
encrypted transmission, gateway aggregation, blockchain
logging, and cloud processing.

Third, few frameworks address the complete security
lifecycle, including confidentiality, integrity, availability,
tamper-proof audit trails, and regulatory compliance within a
unified architecture [48]. Fourth, limited research has
validated cryptographic performance across diverse hardware
platforms typical in healthcare deployments, ranging from
ultra-low-power ARM Cortex-M microcontrollers in wearable
sensors to high-performance Intel Xeon processors in cloud
servers [32]. Fifth, existing blockchain-healthcare frameworks
generally fail to achieve the sub-second consensus latency
required for critical real-time medical alerts [18, 38]. Finally,
there is insufficient focus on reproducibility through the use
of standardized open-access datasets and publicly available
benchmarking frameworks [26-31].

Table 1 opresents a structured comparison of
representative related work, systematically analyzing
methodological approaches, datasets employed, deployment
platforms, key contributions, and identified limitations to
clearly position the current research.

Table 1. Literature survey of loT-based healthcare security frameworks

Author Methods Dataset Platform Advantages Limitations
Better access control Lacks 0T device
Dwivedi et Attribute-based | Real-time sensor Cloud s optimization and
- with improved ) S
al. [15] ECC data computing continuous monitoring
performance ;
analysis
Mahajan & Lightweight . . Effective multimedia Limited to multimedia
. Multimedia Integrated . . . :
Junnarkar ECC + Private - processing with audit data, no ECC operation
. medical data system . o
[16] Blockchain trails optimization
-200,
Nagesh & L Comparative Theoretical 1.5 20% perfor_mance Theoretical only, no real
Modified ECDH . . improvement in key . ;
Naresh [17] analysis evaluation . hardware implementation
operations
Zhang et al, Block_cham + Cloud Cloud R(_aal-tlme streaming No adyance_d I_ECC
Traditional : with comprehensive optimization, limited loT
[18] C healthcare data | environment L
rypto audit trails focus
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-150, i
Reddy et al. | Enhanced ECDH | Satellite image 10 15/0 p_erformance . Focus on satel_llte
. . 0T systems gain with attack imagery, not continuous
[19] + Analytics security X ; -
prevention medical monitoring
Al-Nbhany Literature Blockchain-l1oT Survey Compr_ehenswe gap _Rewew Paper, no
. 7 analysis and future implementation or
et al. [20] Review healthcare analysis Lo
directions performance data
Resource- Substantial .
Tanksale Efficient ECDH constrained 10T devices improvements in N? block(_:haln
[21] : integration
evaluation energy and speed

The proposed M-ECDH framework addresses these
identified gaps through an integrated solution that
simultaneously optimizes elliptic curve cryptographic
operations and blockchain consensus mechanisms, provides
comprehensive validation across ARM Cortex-M4 embedded
microcontrollers, Raspberry Pi 4 edge computing gateways,
and Intel Xeon cloud servers using three standardized open-
access healthcare datasets (MIMIC-1VV Demo with 50,000+
vital sign measurements [26, 27], eBACS SUPERCOP with
2,000+ ECDH measurements [28, 29], and CICIoMT2024
with 720+ attack scenarios [30, 31]). The system gains
materially 10-20 % improved performance on cryptographic
operations with sub-millisecond blockchain consensus latency
(median 0.12ms), which indicates a feasible state in the real-
world medical application setting of critical real-time
monitoring schemes.
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3. Methods
3.1. M-ECDH Algorithm Design and Implementation

The M-ECDH structure incorporates various essential
improvements to achieve better performance in the loT
healthcare environment. The method utilizes the NIST P-256
elliptic curve [22], characterized by the equation y? = x3 +
ax + b (mod p), which offers security comparable to RSA-
2048 while substantially decreasing processing demands. The
M-ECDH implementation enhances the traditional ECC
through the use of better scalar multiplication techniques,
larger precomputation tables, and advanced caching
mechanisms with consideration of resource-constrained
medical devices. In Figure 1, the diagrammatic representation
of the entire M-ECDH healthcare system is provided.

Cloud-integrated
Healthcare
Applications

* EHR Systems

* Analytics

« Diagnosis

« Population Research

« Controlled Data
Access

* Audit Trails

+ Immutable Log

Blockchain Tamper-
proof Logging

N

Fig. 1 M-ECDH healthcare framework architecture

The architecture represents four main layers: (1) loT-
enabled device layer of patient data collection using wearable
sensors and medical monitors, (2) M-ECDH enhanced ECC
processing later of optimized key exchange and encryption,
(3) Blockchain tamper-proof logging layer of response to
integrity and controlled access to data, (4) Cloud-integrated
healthcare applications later of secure data processing and
analysis.

Core Optimization Strategy: Sliding window scalar
multiplication is employed by the system, and window sizes
can be adjusted between 2 and 6 bits. It has been done by
performing effective point operations using the Montgomery
ladder [23]. Equation (1) says that longer precomputed tables
list the powers of the basis point G.
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T[2{] = [2]6 fori = 0,1,2, ...,10 1)
This reduces the average number of point operations from
loga(k) to approximately 0.3 x logz(k) for scalar multiplication
[K]G. The mathematical complexity improvement is expressed
as Equation (2).
(1-

Where Complexityy _gcpy = 0.3 X log,(k) +
Ccache and ComplexityTraditional = lng(k) + Ccompute

Complexitypm—-EcDH )
Complexityiraditional

Improvement

@

Dual-layer caching mechanisms maintain frequently
computed modular inverses and point doubling operations
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[24]. When a™lmod p exists in the inverse cache, the based healthcare systems have had trouble with being able to
previously computed inverse is retrieved; otherwise, the grow [25]. This fixes those problems. To get commit latencies
inverse is computed and stored for future use. This of less than a millisecond, the system uses smart batch
comprehensive caching approach significantly reduces processing with batch sizes that can be changed (the default is
computational overhead during repeated cryptographic 50 transactions) and improved consensus methods.
operations typical in continuous patient monitoring scenarios.

Figure 2 illustrates the comprehensive procedure for
3.2. Blockchain Integration Architecture integrating a blockchain to facilitate real-time encrypted

The blockchain integration uses a simple permissioned  transmission and ensure data security.

design that works best for healthcare use. Other blockchain-

Patient Data M-ECDH Encrypted Blockchain Tamper-Proof Controlled
Collection Encryption Transmission Logging Audit Trail Data Access
* loT-enabled |:> * Key |:> « Secure |:> » Transaction |:> * Immutable |:> * Access
Devices Exchange Channel Creation Log Control
Optimization Verification

Fig. 2 Blockchain integration for tamper-proof logging

The tamper-proof scheme ensures the integrity of the data  rate, blood pressure, SpO2, and temperature. This is far greater
and uses cryptography hash chains, whereby the hash of each than the initial 18,000 records and offers clinically proven

block is calculated using Equation (3). information of real healthcare monitoring situations [26, 27].
H, = SHA256(Block,.data || H,_, Cryptographic Performance Data: eBACS SUPERCOP
|| timestamp,,) (3) benchmarking suite has more than 2,000 ECDH performance

measurements on ARM Cortex-M4, Raspberry Pi 4, and Intel
The role-based permissions are used by smart contractsto ~ Xeon platforms, which correspond exactly to the hardware
handle access control policies and audit trails generation based ~ configuration of M-ECDH evaluation. The dataset includes
on healthcare regulations. The authentication process also  cycle counts, timing measurements, memory utilization, and
authenticates the credentials of the user with predefined access ~ energy consumption data [28, 29].
policies, and when the threshold is met, transaction logs are

created in batch mode. Blockchain and Security Data: CICIoMT2024 dataset
contains network traffic from 40 1o0MT devices across WiFi,
3.3. Dataset Selection and Open Access Integration MQTT, and Bluetooth protocols with 18 distinct cyberattack

This study is aimed at achieving reproducibility and  types categorized into DDoS, DoS, Reconnaissance, MQTT-
allowing detailed validation by using publicly available open-  specific attacks, and spoofing. This provides 720+ security
access datasets, which is beyond the original specifications  validation scenarios substantially exceeding the original 150
and offers better validation opportunities. record specification [30, 31].

Patient Monitoring Data: MIMIC-IV Clinical Database of Table 2 provides the dataset specifications, such as type,
PhysioNet offers deidentified electronic health records of 100 source, records, and parameters.
patients with more than 50,000 vital signs data, such as heart

Table 2. Dataset specifications

Dataset Type Source Records Parameters
Patient Monitoring | MIMIC-1V Demo (PhysioNet) 50,000+ HR, BP, SpO-, Temperature
Crypto Performance eBACS SUPERCOP 2,000+ Key Gen, Encrypt, Decrypt
Blockchain/Security | CICIoMT2024 (UNB-CIC) | 1,000+/720+ | Traffic, Attacks, Transactions

3.4. Experimental Setup Hardware Platforms: ARM Cortex-M4 microcontrollers

Performance evaluation was conducted using the open- (168MHz, 192KB RAM), matching the eBACS SUPERCOP
access datasets identified in Section 3.3, with experimental benchmarking platform specifications for embedded
hardware configured to match the data collection cryptographic performance evaluation. Raspberry Pi 4
environments and benchmarking platforms specified in these gateways (1.5GHz, 4GB RAM) simulating the IoMT device
datasets. aggregation environment from the CICIoMT2024 dataset
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collection. Intel Xeon cloud servers (2.4GHz, 32GB RAM)
replicating the cloud infrastructure used for MIMIC-IV
clinical data processing at Beth Israel Deaconess Medical
Center [32].

Dataset Integration Framework: MIMIC-IV Demo
patient monitoring data (50,000+ vital sign measurements)
was processed using Python 3.9 with pandas 1.3.0 for
healthcare data manipulation and analysis. The eBACS

SUPERCOP cryptographic performance measurements
(2,000+ ECDH benchmarks) were analyzed using the existing
benchmark  framework  with custom M-ECDH

implementations integrated for comparison. CICloMT2024
network traffic data (720+ security scenarios across 40 loMT
devices) was processed using Wireshark for packet analysis
and Python scripts for attack scenario simulation.

Performance Measurement Methodology: Cryptographic
performance testing follows the eBACS SUPERCOP
standardized benchmarking protocol, ensuring compatibility
with the 2,000+ existing ECDH measurements in the dataset.
Patient monitoring data simulation utilizes the physiological
parameter ranges from MIMIC-1V Demo (heart rate: 40-180
bpm, blood pressure: 70-200 mmHg, SpO.: 85-100%,
temperature: 35.0-40.5°C) to generate realistic healthcare
workloads for M-ECDH evaluation.

Security Validation Environment: The infrastructure of
testing is a replica of the CICIoMT2024 experimental facility,
which has 40 simulated 1o0MT devices on Wi-Fi, MQTT, and
Bluetooth protocols. Using the original attack vectors and
network configuration described in the CICloMT2024
methodology, it was possible to reproduce the 18 attack types
out of the dataset (DDoS, DoS, Reconnaissance, MQTT-
specific attacks, and spoofing).

Performance Metrics: security performance metrics in the
case of loT devices are optimization of key exchange duration,
encryption time on patient data, decryption time of encrypted
data in cloud-integrated patient care applications, and the
comparison between computational complexity and the
traditional ECC, along with blockchain commit latency as an
effective transaction logging solution [33].  Performance
improvement was also calculated using Equation (4), which
depicts performance improvement in detail.

Security Analysis: The security analysis will concentrate
on threat conditions that relate to patient data obtained with
the help of a set of loT-enabled systems, along with safe
transfer to integrated health IT solutions available in the
clouds [34]. The threats of Denial of Service (DoS),
fingerprinting, routing, selective forwarding, sensor, and
replay assaults fit in the threat modeling and pose significant

Ttraditional~"TM-ECDH

(4)

Improvement = (
Ttraditional
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threats to healthcare monitoring systems [35]. The regulation
compliance validation guarantees compliance with HIPAA,
GDPR, and ISO/IEC 27001 regulations by using
administrative, physical, and technical protection measures
[36]. Role-based access control is set through multiple
administrative controls that ensure that administrative
safeguards are in place and physical safeguards are there to
offer device-level encryption with the help of tamper-evident
logging. The set of technical solutions guarantees the end-to-
end encryption with the best forward secrecy [37].

4. Results and Discussion
4.1. M-ECDH Performance Evaluation Results

M-ECDH cryptographic system has also shown
significant improvement of 10-20 % in the speed of
encryption, decryption, and the generation of key compared to
the traditional ECC systems. Detailed analysis of more than
2,000 cryptographic performance tasks of the eBACS
SUPERCOP data shows a steady optimization benefit across
every operation and has a statistically significant result (p-
values less than 0.01). Figure 3 indicates the overall
performance of traditional ECC and M-ECDH systems when
implemented on the various hardware platforms.

M-ECDH vs Traditional ECC

46.2
Overa e N 57.1

- . 41.1
eyt Time N 512

20 40

M-ECDH m Traditional

Fig. 3 M-ECDH vs Traditional ECC performance comparison

The findings reveal that there are important
improvements in the specified aspects, as the key exchange
has increased by 19.2%, the encryption by 18.7% and the
decryption by 19.8%. The net increase of 19.1% is in support
of the positive attainment of the study objectives, hence
offering tangible contributions to the loT-based health
devices.

The optimizations vary in effectiveness depending on the
type of device; ARM Cortex-M4-based microcontrollers,



Tamilselvan Kaliyaperumal & Poonguzhali Ramaiyan / IJECE, 12(12), 218-229, 2025

showing significant (21.3% key generation, 18.9%
encryption, 20.1% decryption) gains due to architecture-
specific optimizations. The improvements in cases of
implementations in cloud servers reached a steady
improvement of 16.4%, 17.2%, and 18.1% respectively, and
this indicates scalability in the entire range of healthcare
deployments. Energy efficiency analysis reveals a 15-22%
improvement as measured on high-performance servers to
ARM Cortex-M4 microcontrollers, respectively, leading to an
18.7% improvement in battery life of wearable healthcare
monitoring devices on average.

4.2. Blockchain Integration and Security Validation

The blockchain technology has helped in making the
logging tamper-proof and data access very controlled without
compromising on the real-time performance requirements, a
feature that has been verified by the recent authenticated
health data access models that utilise blockchain [38]. A
review of 1000+ blockchain transactions performed at the
CICIoMT2024 healthcare data study shows stunning
performance rates: 84.3% of the transactions took less than
0.2 milliseconds, and the average commit time was 0.12-
0.35 milliseconds, respectively, which were the 95" percentile
performance indicators. Such performances exceed the
performance standards attributed to the health application of
the fog server implementations [39].

The blockchain integration demonstrates a high level of
performance, and the average commit latency corresponds to
the mathematical relation that is described in Equation (5).

Latency_avg = 0.08 + 0.012 X
log(batch_size) milliseconds (5)
Where batch_size represents the number of transactions
processed simultaneously. Logarithmic relation illustrates the
system scaled well as transaction levels increased, which is
essential to large-scale implementations of healthcare.

The performance with regard to throughput of 1,507.6
transactions per second is very high as compared to the
standard operational thresholds of a healthcare monitoring
system. The transaction success rate of 99.75% with a 0.25%
failure rate, primarily due to network connectivity rather than
blockchain  processing limitations, demonstrates high
reliability for critical healthcare data management, surpassing
benchmarks set by privacy-enforced access control models
[40].

The effectiveness of the M-ECDH framework in the
reduction of threat vectors unique to the healthcare sector is
supported with extensive security validation involving more
than 720+ individual test conditions. Testing utilized the
CICIoMT2024 dataset's 18 attack types across 40 IoMT
devices, systematically evaluating each identified attack
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vector. Recent studies on 10T sensor-initiated healthcare data
security have identified similar threat patterns [41].

Table 3 presents the security validation outcomes for
diverse attack categories, illustrating the framework's
effectiveness in mitigating various threat situations. The
results provide robust defense against identified threat vectors,
showing uniform efficacy across all attack categories.

Table 3. Security validation results by attack type

Success .
Attack Type Rate Mltlgatlon HIP'.A‘A
Effectiveness | Compliance
(%)
loT Devu_:e 92.0 Excellent Compliant
Compromise
Transm|s§|on 86.7 Very Good Compliant
Interception
Cloud Access .
Breach 85.0 Very Good Compliant
Key
Exchange 88.6 Excellent Compliant
Attack
Data_ 88.0 Excellent Compliant
Tampering
Replay .
Attack 80.0 Good Compliant
Overall
Security 87.3 Very Good 96.0%
Success

The overall security success rate of 87.3% demonstrates
robust protection exceeding established benchmarks for
healthcare security frameworks. Key exchange attacks are
mitigated with the highest value of 88.6%, which confirms
superior security attributes in M-ECDH optimizations and has
the same cryptographic power as standard ECC-256 ones.
These findings are in line with the recent security and privacy
reviews of smart cloud-based health systems [42].

HIPAA compliance evaluation reveals 96.0% compliance
rate across all security scenarios, exceeding the 95% threshold
required for healthcare data protection frameworks [43].
Specific compliance metrics include data minimization
(98.2%), purpose limitation (95.7%), and right to erasure
(94.3%), consistent with comprehensive e-health cloud
system security requirements [44].

4.3. Cross-Platform Scalability and System Performance

Scalability  evaluation validates the M-ECDH
framework's applicability from resource-constrained loT
devices to powerful cloud applications. Cross-platform
analysis shows consistent benefits with performance
improvements ranging from 13.2% on high-performance
cloud servers to 21.8% on resource-constrained loT
wearables.
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Complete Healthcare Data Processing Pipeline
e [0T Device ® M-ECDH Processing  Blockchain Logging e Cloud Application

Processing Stage Timeline (millisecconds):
IoT Data Collection: [l 2.1 ms
M-ECDII Key Exchange: (S 42.3 ms

M ECDH Encryption: [ 55.1 ms

Blockchain Logging: | 0.12 ms
Cloud Transmission: [} 5.8 ms

Cloud Decryption: [ 41.1 ms

Total Pipcline: (N, |46.4 ms

Comparison with Traditional System:

‘Iraditional Pipeline: |

181.2 ms

M-ECDH Pipeline:

146.4 ms

Improvement: 19.2% reduction in total processing time

Fig. 4 End-to-End system performance flow

Figure 4 illustrates the dynamics of the overall system
performance, specifically addressing the M-ECDH
optimizations and their contribution to system efficiency
regarding the processing of patient data through loT-enabled
devices coupled with cloud-based healthcare applications.

Complete healthcare data processing pipeline analysis
reveals cumulative benefits of M-ECDH optimizations and
blockchain integration. Traditional processing requires 181.2
milliseconds for complete data flow from IloT device
collection through cloud application processing, while the M-
ECDH framework reduces this to 146.4 milliseconds,
representing 19.2% overall improvement.

The scalability tests demonstrate a linear scale to each
unit of data collection, and they are able to support up to
10,000 sessions at once to track patients. The framework
possesses predictable performance behaviour in which the
throughput scales in Equation (6).

Throughput = Baseprougnput X (1 —0.05 X
log,o(concurrent_sessions)) (6)

This scaling relationship implies that the performance
will not decrease significantly even in a highly loaded
condition characteristic of large hospital networks or
population health monitoring deployment. The network
overhead analysis proves that there will be a low effect on
bandwidth consumption, and blockchain integration will
contribute to total data transmission needs by less than 3%,
which matches the recent results of cybersecurity threats
analysis [45].

The M-ECDH framework demonstrates superior
performance across all measured metrics, achieving the fastest
key generation (29.6ms), encryption (15.4ms), highest energy
efficiency (91%), and strongest security score (9.3/10) while
providing complete blockchain integration capabilities
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unavailable in existing solutions. Memory utilization shows a
15-25% reduction in peak usage across all platforms, with the
greatest benefits on 10T devices where constraints are most
critical.

5. Conclusion

The research demonstrates the development and
validation of a Modified Elliptic Curve Diffie-Hellman (M-
ECDH) cryptographic system to ensure security for cloud-
based healthcare monitoring systems. The hybrid paradigm of
integrating lightweight blockchain with the improved elliptic
curve encryption deals with the performance and safety
problems in the loT-powered healthcare systems, yet still
satisfies the regulatory requirements.

The efficiency of encryption and decryption and key
generation performed by the M-ECDH framework is
enhanced by 10-20 % because of the technique of enhanced
optimization, such as sliding window scalar multiplication,
improved precomputation table, and dual-level caching.
Experimental validation has demonstrated key exchanges that
are 19.2 % quicker, encryption that is 18.7 % faster, and
decryption that is 19.8 % faster across several hardware

platforms, including ARM  Cortex-M4  embedded
microcontrollers and Intel Xeon cloud servers.
The integration of blockchain facilitates the

implementation of tamper-proof logging and restricted access
to processed data, delivering outstanding performance with
sub-millisecond characteristics. The values of 0.12
milliseconds and over 1500 transactions per second are the
mean of latency and indicate the framework is fit for real-time
healthcare. The results of the security validation showed that
the general success rate was 87.3%, and the HIPAA
compliance rate was 96.0% under a wide set of attack
scenarios, which surpasses the industry standards required for
a healthcare data protection framework. The practical
advantages to the performance throughput observed are
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directly related to such items as 18-22% improvements in improvement in secure 10T within healthcare and proves that
energy efficiency, which facilitate the durability of wearable complex cryptography optimization can provide high-
healthcare sensors and drastically lower the energy cost of  performance benefits with no disturbance of security
monitoring devices. The comparative analysis of the existing properties or compliance with regulations. The research
security technologies in the healthcare 10T industry shows provides a solid foundation for the future prevalence of end-
their outstanding performance in all assessed parameters,  to-end security in healthcare technology systems, facilitating
although the overall ability to integrate blockchain technology ~ rather than constraining technical innovation in emerging
is what makes the M-ECDH framework superior to currently next-generation digital health ecosystems.

used partial solutions.
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