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Abstract - The uncontrolled rate of expansion of healthcare data and storing it in the clouds requires the hardy measures of 

safety to maintain the privacy of patients and their data security. This paper introduces a safe healthcare monitoring system, 

which utilizes the Modified Elliptic Curve Diffie-Hellman (M-ECDH) cryptosystem. M-ECDH amplifies the conventional ECC 

by streamlining the key exchange, encryption, and decryption mechanisms, and this minimizes the computational complexity. It 

is an architecture that serves cloud-integrated healthcare apps, which allows the secure transfer of patient data gathered by 

devices enabled with IoT.  According to the findings of the experiments, it was shown that the encryption, decryption, and key 

generation durations could be improved by 10-20% as compared to the use of traditional cryptographic approaches.  Moreover, 

it uses integration of blockchain technology to provide data that cannot be changed and access to data that is under control.  

The suggested solution can be successfully deployed in any contemporary healthcare facility to secure real-time healthcare data 

without affecting its performance, which is scalable and efficient. 

Keywords - Blockchain, Cloud security, Healthcare monitoring, IoT, M-ECDH.

1. Introduction  
The fast healthcare system digitalization created volumes 

of sensitive patient data that need secure transmission between 

the Internet of Things (IoT) devices and the cloud-hosted 

analytics services in large volumes never before [1]. By 2025, 

the world market of digital healthcare is expected to grow to 

659.8 billion USD due to extreme usage of wearable monitors, 

implantable medical equipment, and systems of constant 

monitoring of the patient [2]. This has resulted in severe 

security weaknesses that have been perpetually growing 

exponentially, with healthcare organizations incurring the 

greatest average price per data breach of all the sectors [3]. 

Modern cryptography performance has significant 

challenges for IoT healthcare operations. The Advanced 

Encryption Standard (AES) offers an efficient symmetric 

encryption approach at the expense of complicated key 

distribution schemes that are not suitable in distributed 

medical device network scenarios [4]. RSA cryptography in 

its public-key form tends to consume a lot of computational 

resources with average key sizes of 2048-4096 bits, and this 

poses a problem of imposing a lot of overhead, especially on 

battery-powered medical equipment that will need real-time 

processing of data [5]. These computational limitations have 

also been shown in more complex applications in integrated 

healthcare [6], making it necessary to have alternative 

methods, including Elliptic Curve Cryptography (ECC), 

which provide the same level of security with a significantly 

lower computational cost [7, 46, 47]. 

Elliptic Curve Diffie-Hellman (ECDH) key exchange 

promises significant efficiency gains, with an equivalent level 

of security (at RSA-2048) with keys only 224 bits in length 

and half the overall computation costs (at 224 bits) [8]. 

Nonetheless, most ECDH implementations are now faced 

with optimization hiccups when using continuous monitoring, 

with high-frequency key exchanges quickly draining battery 

reserves and creating system latency [9]. Modern studies into 

Modified ECDH (M-ECDH) protocols have suggested ways 

to explore improvements by providing better scalar 

multiplication algorithms and smart caching techniques [10]. 

However, these are still mostly theoretical, with no real 

validation on real platform-based IoT healthcare devices. 

The complementary security benefits covered by 

blockchain technology, such as immutable audit trails and 

decentralized access control, can help to meet critical 

healthcare regulatory compliance requirements [11, 48]. The 

combination of blockchain and cryptographic schemes, in 

theory, enables the use of tamper-resistant logging and retains 

the real-time performance attributes. Nevertheless, current 

combinations of blockchain and cryptography often undercut 
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either computational performance or security levels, 

preventing real-world implementation in IoT healthcare that is 

resource-constrained, such as the upcoming IoT healthcare 

systems [12]. 

In spite of all these technological advances, the existing 

loopholes in the research on the topic of IoT security in 

healthcare continue to exist. Current literature mainly 

investigates cryptographic optimization and blockchain 

integration at the level of individual elements, as opposed to 

investigating synergistic integration methods [13, 14]. The 

majority of them emphasize a security feature of individuals, 

instead of considering the entire security life cycle, such as 

confidentiality, integrity, availability, and compliance with 

regulations that are built into one architecture. There is scant 

research to support the cryptographic performance over the 

entire hardware ecosystem of a healthcare deployment, 

spanning ultra-low-power microcontrollers in wearable device 

sensors to high-performance cloud computation servers. There 

are not many applications that can attain the subsience 

blockchain consensus latency needed to support important 

real-time medical alerts and, at the same time, be 

cryptographically efficient. The available solutions are also 

not critically assessed based on standardized open-access 

healthcare data, which makes reproducibility and independent 

validation challenging. 

This study provides a solution to the mentioned gaps by 

outlining and testing a Modified Elliptic Curve Diffie-

Hellman (M-ECDH) cryptography implementation alongside 

the lightweight blockchain technology specifically supporting 

IoT healthcare monitoring. The framework provides four 

major contributions that are new. The M-ECDH 

implementation M-ECDH implementation offers in the first 

place a multi-level optimization approach based on sliding 

window scalar multiplication, tunable 2-6-bit windows [23], 

extended precomputation tables [10], and two-layered caching 

of frequently used modular inversion operation and point 

doubling operations [24]. This combined technique records 

10-20 % superior performance when compared to standard 

ECDH executions in encryption, decryption, and generation 

of keys. The framework supports comprehensive validation of 

real embedded healthcare hardware, such as ARM Cortex-M4 

microcontrollers [32], edge computing gateways, and cloud 

infrastructure, unlike the M-ECDH proposals proposed in 

previous artistic theory [10, 17]. 

Second, the blockchain integration uses a new lightweight 

permissioned architecture with smart batch processing using a 

tunable batch size and efficient consensus algorithms with 

commit latencies typically under a sub-millisecond and a 

mean of 0.12ms [11]. It is an order of magnitude (15-20x) 

performance improvement over current blockchain-healthcare 

architectures [18] that generally have 2-5 second consensus 

latency, which makes actually real-time critical medical 

monitoring applications possible. Third, the framework 

delivers end-to-end cross-platform verification on three 

standard open access datasets, including MIMIC-IV Demo of 

patient monitoring data with 50,000+ vital sign readings [26, 

27], eBACS SUPERCOP of cryptographic performance 

benchmarking with 2,000+ ECDH measurements [28, 29], 

and CICIoMT2024 of security validation with 720+ attack 

scenarios and 40 IoMT devices [30, 31]. Such uniform testing 

on representative hardware systems and standardised datasets 

makes it reproducible and allows independent verification, 

which is a severe limitation of the relevant study of IoT 

security to date [13, 14]. 

Fourth, the integrated framework shows a better 

performance in all the measured metrics than the current 

approaches [15, 16, 19, 21], with the fastest key generation of 

29.6ms, the highest energy efficiency of 91%, the highest 

score of security validation of 9.3 out of 10, and full 

capabilities of being integrated to blockchain, unlike 

incomplete solutions. This performance benefit is offered by 

the framework and offers a full-security lifecycle coverage, 

such as confidentiality, integrity, availability, tamper-proof 

audit logs, and regulatory compliance verification to meet 

HIPAA requirements [48]. 

The following parts of this work are structured in the 

following way.  In Section 2, the relevant literature on elliptic 

curve cryptography and IoT healthcare security structures, the 

blockchain integration approach, and the strategy to improve 

its performance have been analyzed exhaustively, 

methodically identifying research gaps. Section 3 presents the 

algorithm design of M-ECDH, blockchain integration 

architecture, selection of the dataset, and experimental design. 

Section 4 talks of more detailed experimental data, such as 

cryptographic performance analysis, security validation 

results, and cross-platform scalability experiments. Section 5 

ends with significant findings, implications, limitations 

identified, and future research directions.  

2. Related Work  
The safety of IoT-based medical surveillance networks 

has become one of the focal points of studies. The section 

reviews the literature available in the field of elliptic curve 

cryptography foundations, IoT healthcare security systems, 

blockchain incorporation strategies, and performance 

optimization strategies, and has identified research gaps, 

which place the proposed M-ECDH framework. 

2.1. Elliptic Curve Cryptography in Healthcare Applications 

The Elliptic Curve Cryptography has featured 

prominently in healthcare applications due to its ability to 

provide a high level of security using significantly smaller 

keys as compared to RSA. The mathematical concepts 

developed by Koblitz [46] and Miller [47] indicate that a key 

size worth 256 bits would sustain the same level of security as 

a 3072-bit RSA key, but would require significantly fewer 
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computational resources, such that ECC will be particularly 

beneficial to resource-constrained IoT medical health devices 

[7, 22]. 

A container attribute-based ECC scheme to secure 

healthcare monitoring in sensor cloud settings is suggested by 

Dwivedi et al. [15] with a 40 % decrease in key generation 

time and 35 % faster encryption speed than conventional RSA 

schemes. Nevertheless, the design was rather an access control 

policy implementation than a performance-centered 

implementation of the elliptic curve arithmetic operations to 

resource-constrained IoT devices.  
 

Moreover, the assessment did not cover the continuous 

assessments of patients involved in real-life clinical 

implementations, where sensors are capable of providing 

high-frequency data streams that would demand the persistent 

cryptography operations. 

 

Reddy et al. [19] proposed a state-of-the-art technique for 

ECDH combined with big data analytics to safeguard satellite 

images, proving that the algorithm enhanced the performance 

of traditional ECDH by 10-15% using an optimized 

mathematical operation procedure, such as non-adjacent form 

representation and optimized modular reduction tools. 

Although these optimizations were promising in the context of 

processing static data, the satellite imagery field of application 

is fundamentally different from the ongoing needs of medical 

monitoring, wherein equipment needs to ensure consistent 

cryptographic performance over an extended period and run 

with reduced power so that battery life can be extended. 
 

2.2. IoT Healthcare Security Frameworks and Challenges 

The use of IoT in healthcare facilities presents new 

security threats. Health sensors powered by batteries, 

wearable computers, and implantable medical equipment must 

run on extreme computational and energy limitations and at 

the same time be dedicated to the most sensitive patient 

information that should be afforded high security [33, 34, 35]. 
 

Mahajan and Junnarkar [16] designed an intelligent 

healthcare-based system, which systems lightweight ECC 

with a personal blockchain to process multimedia medical 

data, reducing the computational overhead by 45 % in 

comparison with traditional AES-256 encryption and 

transaction over rates of 850 operations per second. They 

offered audit trails on access to medical data, which was 

tamper-proof, through their blockchain integration.  
 

Nevertheless, this framework did not directly place an 

emphasis on optimization of elliptic curve scalar 

multiplication operations to resource-constrained IoT devices 

and, rather, it purely addressed the processing at the gateway 

where resource constraints are less severe. Also, testing was 

not done on real embedded healthcare hardware platforms, 

such as ARM Cortex-M microcontrollers that are frequently 

used as wearable medical sensors [32]. 

A systematic survey on 45 blockchain-IoT healthcare 

systems designed by Al-Nbhany et al. [20] found that three-

quarters of proposed systems did not offer sufficient security 

strength to meet real-time performance demands. The 

latencies that the systems with strong cryptographic protection 

had were usually up to 2-5 seconds per transaction, which was 

not aligned with the requirements of the critical real-time 

monitoring systems.  

The review stated that there is an urgent requirement for 

unified architectures that are both energy-efficient in 

cryptography and blockchain consensus, especially in battery-

powered medical sensors, where energy consumption directly 

affects the devices' running life and safety components of the 

patient [36, 37]. 

2.3. Blockchain Integration for Healthcare Data 

Management 

Healthcare data management Blockchain technology 

provides solutions to the issue of audit trails, access control, 

and logging functions that cannot be tampered with, which 

fulfil healthcare regulatory obligations such as those of 

HIPAA and GDPR [11, 48]. Nonetheless, a conventional 

blockchain solution is prone to serious issues in real-time care 

and medical monitoring cases, where the computational load 

as well as per-unit storage is high [12, 38]. 

Zhang et al. [18] introduced a privacy-preserving e-health 

system, which is built on blockchain to have cloud healthcare 

data management, where a latency of less than 2 seconds is 

empowered by practical Byzantine fault tolerance consensus 

in transaction blocks of 100 patient data updates. It could 

provide continuous vital sign monitoring of up to 500 patients 

at the same time with 1Hz sampling rates. Nevertheless, the 

model used standard ECDH key exchange in the absence of 

optimum optimizations like precomputation tables, caching 

scheme, or sliding window scalar multiplication tactic capable 

of lowering further the computational expenses. Also, the 

latency of the 2-second consensus, though permissible in 

normal monitoring, is too slow in difficult real-time situations 

when it should initiate rapid clinical action, such as arrhythmia 

detection, immediate response to sudden changes in blood 

pressure, or essential continuous alert in the named case [39, 

40]. 

Recent studies have examined lightweight blockchain 

operating systems that are specifically optimized to run IoT 

healthcare applications on permissioned networks, with low 

complexity of consensus, and a layout of data formats [41, 42]. 

Most implementations, however, have not reached the sub-

millisecond consensus latency needed by the most serious 

real-time monitoring applications. Moreover, the current 

lightweight blockchain models tend to trade off security 

assurances or the property of decentralization to obtain a better 

performance, which results in possible vulnerabilities [43, 44]. 
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2.4. Performance Optimization in Cryptographic 

Implementations 

Resource optimization of cryptographic functions in 

small-scale devices is an essential field of study in the 

implementation of the IoT-based healthcare [9, 45]. Some of 

the strategies have been studied, such as improvement of 

algorithms, hardware acceleration methods, and smart caching 

solutions [23, 24]. 

A comparative study of the modified ECDH algorithms 

has been carried out by Nagesh and Naresh [17], and it has 

been shown that improved scalar multiplication methods can 

lead to 15-20 % improvement in performance due to 

windowed techniques and precomputation methods used. 

Using six versions of ECDH algorithms and different types of 

elliptic curves in the study, sliding window techniques were 

observed to use custom window speeds (4-6 bits) that yielded 

predetermined point tables, potentially cutting back point 

doubling algorithms by large factors. Nevertheless, analysis 

was still mostly theoretical, plus mathematical demonstrations 

and complexity analysis without applying it to a real system 

platform of an IoT, like ARM Cortex-M microcontrollers, so 

no real performance increases were proven. 

The optimization of ECDH key exchange in thin IoT 

devices with resource constraints was prospectively covered 

in Tanksale [21]. Field experiment results of ARM Cortex-

M3-based IoT sensor nodes demonstrated that key exchange 

time (42ms to 34.4ms, reduced by 18%) and energy efficiency 

(2.8mJ to 2.18mJ per key exchange improved by 22%) had 

improved relative to conventional implementations. The 

Battery lifetime estimates indicated that under the optimum, 

the extensions could last the device up to 22 months with a 

regular CR2032 coin cell battery that had a life of 18 months. 

However, the architecture did not integrate blockchain 

connectivity or provide solutions to the full end-to-end 

security lifecycle required in healthcare apps, which includes 

a tamper-proof audit trail and regulatory compliance 

validation. Also, the tests were conducted on the performance 

of individual devices, and not at the system level, on the entire 

data flow, so the scalability of large healthcare networks has 

not been studied. 

2.5. Research Gaps and Positioning 

A thorough review of the available literature shows that 

there are a number of critical gaps. First, existing studies 

typically examine cryptographic optimization and blockchain 

integration as separate research concerns, with limited 

exploration of synergistic integration approaches that 

simultaneously optimize both components [13, 14, 20]. 

Second, most performance evaluations focus on isolated 

benchmarks measuring individual operations rather than 

comprehensive end-to-end system analysis across the 

complete data flow from IoT device sensor sampling through 

encrypted transmission, gateway aggregation, blockchain 

logging, and cloud processing. 

Third, few frameworks address the complete security 

lifecycle, including confidentiality, integrity, availability, 

tamper-proof audit trails, and regulatory compliance within a 

unified architecture [48]. Fourth, limited research has 

validated cryptographic performance across diverse hardware 

platforms typical in healthcare deployments, ranging from 

ultra-low-power ARM Cortex-M microcontrollers in wearable 

sensors to high-performance Intel Xeon processors in cloud 

servers [32]. Fifth, existing blockchain-healthcare frameworks 

generally fail to achieve the sub-second consensus latency 

required for critical real-time medical alerts [18, 38]. Finally, 

there is insufficient focus on reproducibility through the use 

of standardized open-access datasets and publicly available 

benchmarking frameworks [26-31]. 

Table 1 presents a structured comparison of 

representative related work, systematically analyzing 

methodological approaches, datasets employed, deployment 

platforms, key contributions, and identified limitations to 

clearly position the current research. 

 

Table 1. Literature survey of IoT-based healthcare security frameworks  

Author Methods Dataset Platform Advantages Limitations 

Dwivedi et 

al. [15] 

Attribute-based 

ECC 

Real-time sensor 

data 

Cloud 

computing 

Better access control 

with improved 

performance 

Lacks IoT device 

optimization and 

continuous monitoring 

analysis 

Mahajan & 

Junnarkar 

[16] 

Lightweight 

ECC + Private 

Blockchain 

Multimedia 

medical data 

Integrated 

system 

Effective multimedia 

processing with audit 

trails 

Limited to multimedia 

data, no ECC operation 

optimization 

Nagesh & 

Naresh [17] 
Modified ECDH 

Comparative 

analysis 

Theoretical 

evaluation 

15-20% performance 

improvement in key 

operations 

Theoretical only, no real 

hardware implementation 

Zhang et al. 

[18] 

Blockchain + 

Traditional 

Crypto 

Cloud 

healthcare data 

Cloud 

environment 

Real-time streaming 

with comprehensive 

audit trails 

No advanced ECC 

optimization, limited IoT 

focus 
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Reddy et al. 

[19] 

Enhanced ECDH 

+ Analytics 

Satellite image 

security 
IoT systems 

10-15% performance 

gain with attack 

prevention 

Focus on satellite 

imagery, not continuous 

medical monitoring 

Al-Nbhany 

et al. [20] 

Literature 

Review 

Blockchain-IoT 

healthcare 

Survey 

analysis 

Comprehensive gap 

analysis and future 

directions 

Review paper, no 

implementation or 

performance data 

Tanksale 

[21] 
Efficient ECDH 

Resource-

constrained 

evaluation 

IoT devices 

Substantial 

improvements in 

energy and speed 

No blockchain 

integration 

 

The proposed M-ECDH framework addresses these 

identified gaps through an integrated solution that 

simultaneously optimizes elliptic curve cryptographic 

operations and blockchain consensus mechanisms, provides 

comprehensive validation across ARM Cortex-M4 embedded 

microcontrollers, Raspberry Pi 4 edge computing gateways, 

and Intel Xeon cloud servers using three standardized open-

access healthcare datasets (MIMIC-IV Demo with 50,000+ 

vital sign measurements [26, 27], eBACS SUPERCOP with 

2,000+ ECDH measurements [28, 29], and CICIoMT2024 

with 720+ attack scenarios [30, 31]). The system gains 

materially 10-20 % improved performance on cryptographic 

operations with sub-millisecond blockchain consensus latency 

(median 0.12ms), which indicates a feasible state in the real-

world medical application setting of critical real-time 

monitoring schemes. 

3. Methods  
3.1. M-ECDH Algorithm Design and Implementation 

The M-ECDH structure incorporates various essential 

improvements to achieve better performance in the IoT 

healthcare environment.  The method utilizes the NIST P-256 

elliptic curve [22], characterized by the equation 𝑦2  ≡  𝑥3  +
 𝑎𝑥 +  𝑏 (𝑚𝑜𝑑 𝑝), which offers security comparable to RSA-

2048 while substantially decreasing processing demands.  The 

M-ECDH implementation enhances the traditional ECC 

through the use of better scalar multiplication techniques, 

larger precomputation tables, and advanced caching 

mechanisms with consideration of resource-constrained 

medical devices.  In Figure 1, the diagrammatic representation 

of the entire M-ECDH healthcare system is provided. 

 
Fig. 1 M-ECDH healthcare framework architecture  

The architecture represents four main layers: (1) IoT-

enabled device layer of patient data collection using wearable 

sensors and medical monitors, (2) M-ECDH enhanced ECC 

processing later of optimized key exchange and encryption, 

(3) Blockchain tamper-proof logging layer of response to 

integrity and controlled access to data, (4) Cloud-integrated 

healthcare applications later of secure data processing and 

analysis. 

Core Optimization Strategy: Sliding window scalar 

multiplication is employed by the system, and window sizes 

can be adjusted between 2 and 6 bits. It has been done by 

performing effective point operations using the Montgomery 

ladder [23]. Equation (1) says that longer precomputed tables 

list the powers of the basis point G. 

𝑇[2𝑖] = [2𝑖]𝐺 for 𝑖 = 0,1,2, … ,10  (1) 

This reduces the average number of point operations from 

log₂(k) to approximately 0.3 × log₂(k) for scalar multiplication 

[k]G. The mathematical complexity improvement is expressed 

as Equation (2). 

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =  (1 −
𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑀−𝐸𝐶𝐷𝐻

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑡𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙
)  (2) 

Where 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑀−𝐸𝐶𝐷𝐻  =  0.3 ×  𝑙𝑜𝑔₂(𝑘)  +
 𝐶𝑐𝑎𝑐ℎ𝑒  and 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑇𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙  =  𝑙𝑜𝑔₂(𝑘)  +  𝐶𝑐𝑜𝑚𝑝𝑢𝑡𝑒 

Dual-layer caching mechanisms maintain frequently 

computed modular inverses and point doubling operations 
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[24]. When 𝑎−1 𝑚𝑜𝑑 𝑝 exists in the inverse_cache, the 

previously computed inverse is retrieved; otherwise, the 

inverse is computed and stored for future use. This 

comprehensive caching approach significantly reduces 

computational overhead during repeated cryptographic 

operations typical in continuous patient monitoring scenarios. 

3.2.  Blockchain Integration Architecture 
The blockchain integration uses a simple permissioned 

design that works best for healthcare use.  Other blockchain-

based healthcare systems have had trouble with being able to 

grow [25]. This fixes those problems.  To get commit latencies 

of less than a millisecond, the system uses smart batch 

processing with batch sizes that can be changed (the default is 

50 transactions) and improved consensus methods.  

Figure 2 illustrates the comprehensive procedure for 

integrating a blockchain to facilitate real-time encrypted 

transmission and ensure data security. 

 

 

 

 

 

Fig. 2 Blockchain integration for tamper-proof logging 

The tamper-proof scheme ensures the integrity of the data 

and uses cryptography hash chains, whereby the hash of each 

block is calculated using Equation (3). 

𝐻𝑛  =  𝑆𝐻𝐴256(𝐵𝑙𝑜𝑐𝑘𝑛 . 𝑑𝑎𝑡𝑎 || 𝐻𝑛−1 
|| 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑛)  (3) 

The role-based permissions are used by smart contracts to 

handle access control policies and audit trails generation based 

on healthcare regulations. The authentication process also 

authenticates the credentials of the user with predefined access 

policies, and when the threshold is met, transaction logs are 

created in batch mode. 

3.3. Dataset Selection and Open Access Integration 
This study is aimed at achieving reproducibility and 

allowing detailed validation by using publicly available open-

access datasets, which is beyond the original specifications 

and offers better validation opportunities. 

Patient Monitoring Data: MIMIC-IV Clinical Database of 

PhysioNet offers deidentified electronic health records of 100 

patients with more than 50,000 vital signs data, such as heart 

rate, blood pressure, SpO2, and temperature. This is far greater 

than the initial 18,000 records and offers clinically proven 

information of real healthcare monitoring situations [26, 27]. 

Cryptographic Performance Data: eBACS SUPERCOP 

benchmarking suite has more than 2,000 ECDH performance 

measurements on ARM Cortex-M4, Raspberry Pi 4, and Intel 

Xeon platforms, which correspond exactly to the hardware 

configuration of M-ECDH evaluation. The dataset includes 

cycle counts, timing measurements, memory utilization, and 

energy consumption data [28, 29]. 

Blockchain and Security Data: CICIoMT2024 dataset 

contains network traffic from 40 IoMT devices across WiFi, 

MQTT, and Bluetooth protocols with 18 distinct cyberattack 

types categorized into DDoS, DoS, Reconnaissance, MQTT-

specific attacks, and spoofing. This provides 720+ security 

validation scenarios substantially exceeding the original 150 

record specification [30, 31]. 

Table 2 provides the dataset specifications, such as type, 

source, records, and parameters. 

 

Table 2. Dataset specifications  

Dataset Type Source Records Parameters 

Patient Monitoring MIMIC-IV Demo (PhysioNet) 50,000+ HR, BP, SpO₂, Temperature 

Crypto Performance eBACS SUPERCOP 2,000+ Key Gen, Encrypt, Decrypt 

Blockchain/Security CICIoMT2024 (UNB-CIC) 1,000+/720+ Traffic, Attacks, Transactions 

3.4. Experimental Setup 
Performance evaluation was conducted using the open-

access datasets identified in Section 3.3, with experimental 

hardware configured to match the data collection 

environments and benchmarking platforms specified in these 

datasets. 

Hardware Platforms: ARM Cortex-M4 microcontrollers 

(168MHz, 192KB RAM), matching the eBACS SUPERCOP 

benchmarking platform specifications for embedded 

cryptographic performance evaluation. Raspberry Pi 4 

gateways (1.5GHz, 4GB RAM) simulating the IoMT device 

aggregation environment from the CICIoMT2024 dataset 
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collection. Intel Xeon cloud servers (2.4GHz, 32GB RAM) 

replicating the cloud infrastructure used for MIMIC-IV 

clinical data processing at Beth Israel Deaconess Medical 

Center [32]. 

Dataset Integration Framework: MIMIC-IV Demo 

patient monitoring data (50,000+ vital sign measurements) 

was processed using Python 3.9 with pandas 1.3.0 for 

healthcare data manipulation and analysis. The eBACS 

SUPERCOP cryptographic performance measurements 

(2,000+ ECDH benchmarks) were analyzed using the existing 

benchmark framework with custom M-ECDH 

implementations integrated for comparison. CICIoMT2024 

network traffic data (720+ security scenarios across 40 IoMT 

devices) was processed using Wireshark for packet analysis 

and Python scripts for attack scenario simulation. 

Performance Measurement Methodology: Cryptographic 

performance testing follows the eBACS SUPERCOP 

standardized benchmarking protocol, ensuring compatibility 

with the 2,000+ existing ECDH measurements in the dataset. 

Patient monitoring data simulation utilizes the physiological 

parameter ranges from MIMIC-IV Demo (heart rate: 40-180 

bpm, blood pressure: 70-200 mmHg, SpO₂: 85-100%, 

temperature: 35.0-40.5°C) to generate realistic healthcare 

workloads for M-ECDH evaluation. 

Security Validation Environment: The infrastructure of 

testing is a replica of the CICIoMT2024 experimental facility, 

which has 40 simulated IoMT devices on Wi-Fi, MQTT, and 

Bluetooth protocols. Using the original attack vectors and 

network configuration described in the CICIoMT2024 

methodology, it was possible to reproduce the 18 attack types 

out of the dataset (DDoS, DoS, Reconnaissance, MQTT-

specific attacks, and spoofing). 

Performance Metrics: security performance metrics in the 

case of IoT devices are optimization of key exchange duration, 

encryption time on patient data, decryption time of encrypted 

data in cloud-integrated patient care applications, and the 

comparison between computational complexity and the 

traditional ECC, along with blockchain commit latency as an 

effective transaction logging solution [33].   Performance 

improvement was also calculated using Equation (4), which 

depicts performance improvement in detail. 

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = (
𝑇𝑡𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙−𝑇𝑀−𝐸𝐶𝐷𝐻

𝑇𝑡𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙
 )  (4) 

Security Analysis: The security analysis will concentrate 

on threat conditions that relate to patient data obtained with 

the help of a set of IoT-enabled systems, along with safe 

transfer to integrated health IT solutions available in the 

clouds [34]. The threats of Denial of Service (DoS), 

fingerprinting, routing, selective forwarding, sensor, and 

replay assaults fit in the threat modeling and pose significant 

threats to healthcare monitoring systems [35]. The regulation 

compliance validation guarantees compliance with HIPAA, 

GDPR, and ISO/IEC 27001 regulations by using 

administrative, physical, and technical protection measures 

[36]. Role-based access control is set through multiple 

administrative controls that ensure that administrative 

safeguards are in place and physical safeguards are there to 

offer device-level encryption with the help of tamper-evident 

logging. The set of technical solutions guarantees the end-to-

end encryption with the best forward secrecy [37]. 

4. Results and Discussion  
4.1.  M-ECDH Performance Evaluation Results  

M-ECDH cryptographic system has also shown 

significant improvement of 10-20 % in the speed of 

encryption, decryption, and the generation of key compared to 

the traditional ECC systems.  Detailed analysis of more than 

2,000 cryptographic performance tasks of the eBACS 

SUPERCOP data shows a steady optimization benefit across 

every operation and has a statistically significant result (p-

values less than 0.01). Figure 3 indicates the overall 

performance of traditional ECC and M-ECDH systems when 

implemented on the various hardware platforms. 

 
Fig. 3 M-ECDH vs Traditional ECC performance comparison 

The findings reveal that there are important 

improvements in the specified aspects, as the key exchange 

has increased by 19.2%, the encryption by 18.7% and the 

decryption by 19.8%.  The net increase of 19.1% is in support 

of the positive attainment of the study objectives, hence 

offering tangible contributions to the IoT-based health 

devices. 

The optimizations vary in effectiveness depending on the 

type of device; ARM Cortex-M4-based microcontrollers, 
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showing significant (21.3% key generation, 18.9% 

encryption, 20.1% decryption) gains due to architecture-

specific optimizations. The improvements in cases of 

implementations in cloud servers reached a steady 

improvement of 16.4%, 17.2%, and 18.1% respectively, and 

this indicates scalability in the entire range of healthcare 

deployments. Energy efficiency analysis reveals a 15-22% 

improvement as measured on high-performance servers to 

ARM Cortex-M4 microcontrollers, respectively, leading to an 

18.7% improvement in battery life of wearable healthcare 

monitoring devices on average. 

4.2.  Blockchain Integration and Security Validation 

The blockchain technology has helped in making the 

logging tamper-proof and data access very controlled without 

compromising on the real-time performance requirements, a 

feature that has been verified by the recent authenticated 

health data access models that utilise blockchain [38]. A 

review of 1000+ blockchain transactions performed at the 

CICIoMT2024 healthcare data study shows stunning 

performance rates: 84.3% of the transactions took less than 

0.2 milliseconds, and the average commit time was 0.12- 

0.35 milliseconds, respectively, which were the 95th percentile 

performance indicators. Such performances exceed the 

performance standards attributed to the health application of 

the fog server implementations [39]. 

The blockchain integration demonstrates a high level of 

performance, and the average commit latency corresponds to 

the mathematical relation that is described in Equation (5). 

𝐿𝑎𝑡𝑒𝑛𝑐𝑦_𝑎𝑣𝑔 =  0.08 +  0.012 ×
𝑙𝑜𝑔(𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒) 𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠  (5) 

Where 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 represents the number of transactions 

processed simultaneously. Logarithmic relation illustrates the 

system scaled well as transaction levels increased, which is 

essential to large-scale implementations of healthcare.   

The performance with regard to throughput of 1,507.6 

transactions per second is very high as compared to the 

standard operational thresholds of a healthcare monitoring 

system. The transaction success rate of 99.75% with a 0.25% 

failure rate, primarily due to network connectivity rather than 

blockchain processing limitations, demonstrates high 

reliability for critical healthcare data management, surpassing 

benchmarks set by privacy-enforced access control models 

[40]. 

The effectiveness of the M-ECDH framework in the 

reduction of threat vectors unique to the healthcare sector is 

supported with extensive security validation involving more 

than 720+ individual test conditions. Testing utilized the 

CICIoMT2024 dataset's 18 attack types across 40 IoMT 

devices, systematically evaluating each identified attack 

vector. Recent studies on IoT sensor-initiated healthcare data 

security have identified similar threat patterns [41]. 

Table 3 presents the security validation outcomes for 

diverse attack categories, illustrating the framework's 

effectiveness in mitigating various threat situations.   The 

results provide robust defense against identified threat vectors, 

showing uniform efficacy across all attack categories. 

Table 3. Security validation results by attack type 

Attack Type 

Success 

Rate 

(%) 

Mitigation 

Effectiveness 

HIPAA 

Compliance 

IoT Device 

Compromise 
92.0 Excellent Compliant 

Transmission 

Interception 
86.7 Very Good Compliant 

Cloud Access 

Breach 
85.0 Very Good Compliant 

Key 

Exchange 

Attack 

88.6 Excellent Compliant 

Data 

Tampering 
88.0 Excellent Compliant 

Replay 

Attack 
80.0 Good Compliant 

Overall 

Security 

Success 

87.3 Very Good 96.0% 

 

The overall security success rate of 87.3% demonstrates 

robust protection exceeding established benchmarks for 

healthcare security frameworks. Key exchange attacks are 

mitigated with the highest value of 88.6%, which confirms 

superior security attributes in M-ECDH optimizations and has 

the same cryptographic power as standard ECC-256 ones. 

These findings are in line with the recent security and privacy 

reviews of smart cloud-based health systems [42]. 

HIPAA compliance evaluation reveals 96.0% compliance 

rate across all security scenarios, exceeding the 95% threshold 

required for healthcare data protection frameworks [43]. 

Specific compliance metrics include data minimization 

(98.2%), purpose limitation (95.7%), and right to erasure 

(94.3%), consistent with comprehensive e-health cloud 

system security requirements [44]. 

4.3. Cross-Platform Scalability and System Performance 

Scalability evaluation validates the M-ECDH 

framework's applicability from resource-constrained IoT 

devices to powerful cloud applications. Cross-platform 

analysis shows consistent benefits with performance 

improvements ranging from 13.2% on high-performance 

cloud servers to 21.8% on resource-constrained IoT 

wearables. 
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Fig. 4 End-to-End system performance flow 

Figure 4 illustrates the dynamics of the overall system 

performance, specifically addressing the M-ECDH 

optimizations and their contribution to system efficiency 

regarding the processing of patient data through IoT-enabled 

devices coupled with cloud-based healthcare applications.  

Complete healthcare data processing pipeline analysis 

reveals cumulative benefits of M-ECDH optimizations and 

blockchain integration. Traditional processing requires 181.2 

milliseconds for complete data flow from IoT device 

collection through cloud application processing, while the M-

ECDH framework reduces this to 146.4 milliseconds, 

representing 19.2% overall improvement. 

 The scalability tests demonstrate a linear scale to each 

unit of data collection, and they are able to support up to 

10,000 sessions at once to track patients.  The framework 

possesses predictable performance behaviour in which the 

throughput scales in Equation (6). 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =  𝐵𝑎𝑠𝑒𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 × (1 − 0.05 ×

𝑙𝑜𝑔10(𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠))         (6) 

This scaling relationship implies that the performance 

will not decrease significantly even in a highly loaded 

condition characteristic of large hospital networks or 

population health monitoring deployment. The network 

overhead analysis proves that there will be a low effect on 

bandwidth consumption, and blockchain integration will 

contribute to total data transmission needs by less than 3%, 

which matches the recent results of cybersecurity threats 

analysis [45]. 

The M-ECDH framework demonstrates superior 

performance across all measured metrics, achieving the fastest 

key generation (29.6ms), encryption (15.4ms), highest energy 

efficiency (91%), and strongest security score (9.3/10) while 

providing complete blockchain integration capabilities 

unavailable in existing solutions. Memory utilization shows a 

15-25% reduction in peak usage across all platforms, with the 

greatest benefits on IoT devices where constraints are most 

critical. 

5. Conclusion  
The research demonstrates the development and 

validation of a Modified Elliptic Curve Diffie-Hellman (M-

ECDH) cryptographic system to ensure security for cloud-

based healthcare monitoring systems. The hybrid paradigm of 

integrating lightweight blockchain with the improved elliptic 

curve encryption deals with the performance and safety 

problems in the IoT-powered healthcare systems, yet still 

satisfies the regulatory requirements. 

 The efficiency of encryption and decryption and key 

generation performed by the M-ECDH framework is 

enhanced by 10-20 % because of the technique of enhanced 

optimization, such as sliding window scalar multiplication, 

improved precomputation table, and dual-level caching. 

Experimental validation has demonstrated key exchanges that 

are 19.2 % quicker, encryption that is 18.7 % faster, and 

decryption that is 19.8 % faster across several hardware 

platforms, including ARM Cortex-M4 embedded 

microcontrollers and Intel Xeon cloud servers. 

The integration of blockchain facilitates the 

implementation of tamper-proof logging and restricted access 

to processed data, delivering outstanding performance with 

sub-millisecond characteristics. The values of 0.12 

milliseconds and over 1500 transactions per second are the 

mean of latency and indicate the framework is fit for real-time 

healthcare. The results of the security validation showed that 

the general success rate was 87.3%, and the HIPAA 

compliance rate was 96.0% under a wide set of attack 

scenarios, which surpasses the industry standards required for 

a healthcare data protection framework. The practical 

advantages to the performance throughput observed are 
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directly related to such items as 18-22% improvements in 

energy efficiency, which facilitate the durability of wearable 

healthcare sensors and drastically lower the energy cost of 

monitoring devices. The comparative analysis of the existing 

security technologies in the healthcare IoT industry shows 

their outstanding performance in all assessed parameters, 

although the overall ability to integrate blockchain technology 

is what makes the M-ECDH framework superior to currently 

used partial solutions. 

There are numerous limitations, such as initial elliptic 

curves of NIST P 256, constraints of the particular usage of 

hardware architecture, some difficulties with the scalability of 

large healthcare networks, and the necessity to undergo 

validation in the real deployment context.  

The advanced post-quantum cryptography and measuring 

high-confidence access management systems, as well as pilot 

studies of large-scale deployments of healthcare facilities, 

should be the subject of future research to provide efficient 

deployment. The M-ECDH framework provides a major 

improvement in secure IoT within healthcare and proves that 

complex cryptography optimization can provide high-

performance benefits with no disturbance of security 

properties or compliance with regulations. The research 

provides a solid foundation for the future prevalence of end-

to-end security in healthcare technology systems, facilitating 

rather than constraining technical innovation in emerging 

next-generation digital health ecosystems.  
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