SSRG International Journal of Electronics and Communication Engineering
ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12112P120

Volume 12 Issue 12, 241-257, December 2025
© 2025 Seventh Sense Research Group®

Original Article

End-to-End Security and Privacy Protection for
Healthcare Data Using AES-256 and Dynamic
Authentication

T. Rathi Devi'", S. Nallusamy?, D. Sobya?, P. Divya*, P. S. Chakraborty®

1245Department of Adult, Continuing Education and Extension, Jadavpur University, Kolkata, India.
3Department of Computer Science and Engineering, Institute of Engineering and Management,
University of Engineering and Management, Kolkata, India.

ICorresponding Author : revathi.rathi26@gmail.com

Received: 18 October 2025 Revised: 19 November 2025 Accepted: 18 December 2025 Published: 27 December 2025
Abstract - Security and Confidentiality of patient information are important in the modern healthcare system. Patient
information is often stored on digital platforms through digital health records, telemedicine, and remote monitoring. The
proposed work presents a cryptographic authentication framework for healthcare monitoring that uses AES-256 and Virtual
Password Authentication(VPF) to protect sensitive data. The Virtual Password Function (VPF) is a little trick that combines
a secret function with a code booking technique. This technique prevents unauthorized users from compromising security. It
mitigates password-based attacks. Patient data is stored in a completely encrypted way to meet healthcare privacy mandates.
The proposed system was developed in Java for encryption and matching authentication of processes. The implementation
uses AES-256 encryption to safeguard patient data. It includes custom authentication logic for managing virtual passwords.
The cloud uses encrypted end-to-end patient information and stores it in MySQL. The scalable and maintainable front-end
web interface and backend control logic are developed using Java JSP Servlet. The framework provides secure, adequate
protection of sensitive healthcare data in digital health ecosystems by leveraging strong encryption and adaptive
authentication. As shown by experimental results and security analysis, the proposed model is effective for healthcare
applications requiring high-level security. It offers relatively low execution, processing, key generation, and
encryption/decryption times, alongside enhanced security.

Keywords - Patient information, Cryptographic Authentication, AES-256 Encryption, MySQL, Java JSP Servlet.

1. Introduction

The rapid digitalization of healthcare systems has
increased the number of stores that use EHRs, telemedicine
platforms, and cloud-based medical data storage [1].
Although such innovations enhance the ease of healthcare
delivery, interoperability, and efficiency, they raise
significant privacy and security concerns [2]. Healthcare
systems are among the targets of cybercriminals due to the
increasing volume of sensitive patient data exchanged and
stored on open, distributed networks, such as medical history,
diagnostic results, and treatment details [3]. Many healthcare
facilities still use outdated authentication techniques, such as
fixed usernames and passwords, despite the existence of
legislative frameworks to protect the confidentiality of
patients' medical records [4]. These approaches can be
attacked by various processes, including phishing,
keylogging, brute-force attacks, malware injection, and
shoulder surfing [5]. A breach of access to healthcare
infrastructure can lead to data manipulation, identity theft,

OSOE)

service disruption, and even fatal consequences, as recent
research indicates that such attacks have been on the rise,
with alarming rates of credential theft and ransomware.
Modes of research and operation should be designed to
ensure high levels of end-to-end security for healthcare data

[6].

To ensure confidentiality of health data, past studies
have presented numerous cryptographic solutions, including
RSA, ECC, attribute-based encryption, blockchain-based
systems, and hybrid encryption systems [7]. This is because
many of these approaches cannot be used in real-time,
resource-constrained healthcare environments due to their
high computational complexity, longer latency, scalability
concerns, or the complexity of managing keys, despite their
greater confidentiality. A significant security weakness of
end-to-end protection is that authentication processes are not
dynamic and are vulnerable, and most past studies have
primarily focused on data encryption.

ZEERT This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

http://creativecommons.org/licenses/by-nc-nd/4.0/

T. Rathi Devi etal./1JECE, 12(12), 241-257, 2025

Most healthcare platforms still use plaintext
authentication, putting them at risk of cyber threats, though
secure methods such as SSL/TLS are widely known to secure
data transmission. Phishing attacks, malware and trojans,
keyloggers, shoulder surfing, and hidden surveillance are
some common threats.

Malicious attackers masquerade as trusted healthcare
providers to illegally collect login credentials and patient
information, and call this a phishing scam.

Malware and trojans are malicious programs responsible
for stealing sensitive medical information.

Keyloggers are programs that silently record your
keystrokes to gather passwords and private patient
information.

In public spaces, such as clinics or hospitals, attackers
see medical personnel keying credentials.

Cloaked Surveillance: The assailant can use hidden
cameras to track the user’s login behaviour and check the
photos to capture the password [8].

To protect users' passwords against the mentioned
threats, a new security mechanism is developed that allows
users to choose their virtual password scheme from less
secure to more secure. A security mechanism based on VPF
helps safeguard passwords while maintaining an acceptable
trade-off between security and complexity. The scheme
requires very little computation from the user's end. The
system proposes several functions, using a codebook
approach, to conduct security analysis. For user-specified
functions, secret little functions are used to secure them by
hiding important authentication processes and algorithms.
This method enhances password security to prevent
cyberattacks while remaining user-friendly.

Encryption techniques are important because encryption
algorithms enable secure data transmission and exchange—
an effective way to reduce loss with ransomware attacks [10].
Making EHRs unreadable and inaccessible to unauthorized
users through encryption can protect them from ransomware
attacks. Cloud-based apps help send different kinds of data,
like sound, images, and even text, despite changes in a
network’s properties. Healthcare has telemedicine, and
entertainment has social media platforms, which are common
examples. Various applications interface with text and
images, such as medical reports with diagnoses in
telemedicine.

In such cases, data transmission should proceed without
any hiccups. Asymmetric and symmetric cryptography
protect the data stored in the cloud. Here, key generation is
based on key size to ensure security [11]. The analysis of
asymmetric algorithms is much more intensive, as they are
generally more complex than symmetric algorithms,
requiring longer key lengths to balance. Besides, for data
security, Digital Signature Algorithm (DSA), Rivest-Shamir-

242

Adleman (RSA), Blowfish, and Elliptic Curve Cryptography
(ECC) are other cryptographic techniques.

DSA ensures “Document Integrity” and “Document
Authenticity” by generating a unique digital signature using
the private key and validating it with the public key
associated with the document to attest to the document's
originality and prevent tampering [12]. RSA utilizes a pair of
keys to encrypt any data. It is used for encrypting patients’
medical data. RSA encryption creates a complex ciphertext
that is hard to crack due to its high computational
requirements. Thus, it has been one of the most researched,
most reliable, and elegantly designed cryptographic keys
[13]. The Blowfish algorithm makes medical data secure by
strengthening its F-function to generate very strong round
sub-keys. Thus, it is differentially attack-resistant. Blowfish
secures both textual and graphical data [14]. ECC, which
stands for Elliptic Curve Cryptography, is an encryption
system that relies on the algebraic structure of elliptic curves
over finite fields. It needs fewer keys than non-EC
Encryption methods and offers equivalent security. Digital
signatures, key agreements, and other cryptographic
functionalities are helpful and can be integrated with
symmetric encryption algorithms to enhance security
indirectly. Moreover, they are computationally intensive and
take longer to process [15].

To reduce security threats, the encryption model was
enhanced to make it harder to breach or access without
authority. Using an AES-based cryptosystem can reduce
security risks and attacks. The mentioned encryption model
uses AES encryption to convert medical images into
ciphertext, thereby increasing the data's security.

PLAIN TEXT (EHR DATA)

ENCRYPTIONY” \
JBLIC KE
PROCESS EUBEIC R —> COMPUTING MEMORY
A\ 4
TR = COMPUTING TIME
—5 PROCESSOR CONSUMPTION
DECRYPTION PRIVATE KEY
PROCESS \ 4
—> BATTERY CONSUMPTION
PLAIN TEXT (EHR DATA)

\L 4

Fig. 1 Schematic representation of cryptographic encryption workflow

To begin with, cryptography was primarily used to
safeguard state secrets and other strategic information. Over
time, it has found wide application across various fields,
primarily in security. The basic idea of cryptographic keys is
to encrypt and decrypt data. Plaintext is information that does
not require software to read and understand. Encryption is
the transformation of plaintext into ciphertext so that it no
longer makes sense and appears entirely different from the

T. Rathi Devi etal./1JECE, 12(12), 241-257, 2025

original text. It ensures that data is not outputable by
unauthorized people or anyone who can access the final
result. The ciphertext is decrypted to obtain the plaintext.
Figure 1 visually represents the encryption and decryption
workflow.

A cryptography algorithm, or cipher, is a mathematical
function used to encrypt and decrypt data. It operates
alongside a keyword, number, or phrase for authenticating
plaintext, with different keys generating distinct ciphertexts
from the same plaintext. Security of encrypted data depends
on both the robustness of the cryptographic method and the
confidentiality of the key. Essentially, cryptographic
algorithms use either public or private keys to perform their
functions.

Research Gap: In current healthcare security solutions,
there is a gap in adaptive, attack-resistant authentication
processes. These systems ought to be capable of resisting
credential-based attacks without augmenting user complexity
or computational expense, even though techniques such as
AES-based strong encryption can effectively ensure the
confidentiality of data. There is limited information on how
to secure electronic health record systems stored in the cloud
against phishing, replay, and keylogging attacks using
lightweight encryption and dynamic authentication.

Problem Statement: An end-to-end healthcare security
model is suggested, which combines the AES-256-based
encryption algorithm with a dynamic authentication
approach, based on Virtual Password Function (VPF). The
encrypted data of patients is stored in the cloud as session-
specific passwords of the virtual type created due to secret
functions and a code booking procedure. The framework,
implemented with Java JSP Servlet and MySQL, is compared
to available practices and proves to be highly secure, with low
computational costs, and appropriate in the context of real-
time healthcare settings.

Motivation: The protection of patient data in cloud-based
healthcare systems has been a critical research topic
supported by the use of encryption technigques. Nonetheless,
conventional algorithms with large key sizes occupy a lot of
memory space and require a lot of power. To resolve this
issue, the proposed AES-256 algorithm is used for the
adequate storage and retrieval of patient data.

1.1. Significant Contributions of Proposed Work

This research presents the advanced AES-256
encryption, which efficiently consolidates various data
inputs, optimizing the process while strengthening data
integrity and security.

The proposed methodology follows acknowledged
privacy legislation and data security standards. It
effectively meets regulatory criteria through
guaranteeing transparency and strong security measures.

243

The paper is structured as follows: Section 2 provides a
review of existing literature on securing patient-medical data
mechanisms. Section 3 outlines the proposed system
description, while Section 4 presents the proposed approach
to implementing such a mechanism. Section 5 evaluates the
effectiveness of the method compared to previous techniques,
highlighting performance measures and discussing the
results. Finally, Section 6 summarizes the findings and offers
suggestions for further research.

2. Related Works

Cryptography and distributed systems for protecting
healthcare information. Several studies have focused on
healthcare information. Capraz et al. [16] suggested sharing
medical data using the blockchain and a ChaCha20-Poly1305
encryption method, and even divided a file into parts to make
it more secure and difficult to compromise. The rate of
encryption of this technology is very low and therefore could
not be applicable to real-time healthcare, although it
improves data protection. In the context of healthcare data
analytics, Moheshkumar et al. [17] provided a patient
monitoring system that utilized patient data secured by SHA-
256. This is a better method of increasing data integrity, and
it opens the system to unwanted access as it fails to go to the
extent of ensuring privacy.

Hadad et al. [18] suggested that they would make their
approach of Modified IDEA more robust to allow transfer of
healthcare data through encryption of healthcare information
with a 1024-bit key. The key size is highly exaggerated in its
strength by the complexity of computation. In order to protect
medical records that were stored on cloud servers against
cybercriminals, Almalawi et al. [19] recommended a Serpent
encryption system that was pegged on Lionized Remora
Optimization, but since the system was costly to implement,
it could not be applied broadly. In providing security in health
care, Rastogi et al. [20] used a blockchain system to carry out
Darkie-Hellman Galois-Elliptic Curve Cryptography. This
approach has delays in processing in real-time applications.
The issue of scalability of cloud systems continues to exist,
although Vijaykumar et al. [21] used Diffie-Hellman key
exchange to improve cloud data security.

According to these studies, the current methods can
improve either encrypted data or access control and are
commonly linked with a higher level of complexity, latency,
or overhead of implementation. The unexploited requirement
of dynamic, attack-resistant authentication processes is the
motivation behind the proposed system, which is founded on
AES-256 and VPF.

2.1. Evaluating Existing Solutions and Comparing Them to
Benchmarks

The existing healthcare security designs utilize
Federated Learning (FL), advanced cryptography, and
blockchain to safeguard the patient. Although blockchain-

T. Rathi Devi etal./1JECE, 12(12), 241-257, 2025

based solutions have the following benefits, immutability and
decentralization, they cause limitations to scalability, storage
overhead, and high transaction latency that are not
appropriate to real-time EHR systems.

Despite FL-based models having superior data privacy
due to local storage, they are susceptible to poisoning attacks,
complicated in nature regarding synchronization, and
expensive to communicate. Although they significantly
ameliorate security, complex cryptographic constructions
like attribute-based encryption, Modified IDEA, Serpent-
based optimization plans, and Diffie-Hellman-based schemes
have been linked with enormous increases in processing
latency, cost of implementation, and computing complexity.

The design offered, nevertheless, has low encryption,
execution, and key-generation time and minimizes the impact
of credential-based attacks; this is by combining the use of
AES-256 encryption with a dynamic authentication scheme
utilizing the Virtual Password Function (VPF). The gap
analysis shows that the proposed solution is innovative and is
not related to other solutions in the healthcare security

Table 1. Summary of existing security approaches for protectin

domain that use blockchain, FL, or cryptography. The
solution is scalable, lightweight, and real-time.

2.2. New Development and Regulatory Compliance

Healthcare security research has recently focused on
blockchain technology, Federated Learning (FL), and
privacy-preserving approaches such as secure multi-party
computation and differential privacy. Even though
blockchain technology may enhance auditability and
integrity, it complicates scalability and latency. Although
centralised storage can be eliminated and data privacy
enhanced, FL is prone to inference attacks and has high
communication overhead. Advanced encryption algorithms
are used to increase computational cost and enhance
confidentiality. Regulations, such as GDPR and HIPAA, all
require data minimization, auditability, encryption, and strict
control over access, which are equally essential for
compliance. Many existing solutions lack a good balance
between compliance and efficiency in security. The
suggested framework includes data encryption, access
controls, and limited credential exposure, all of which
promote practical compliance.

healthcare data, including their core operations and identified challenges

Ref. | Research Author Title

Operations Challenges

[16]

Seval Capraz et al

A secure medical data-
sharing framework using
a public blockchain to
combat pandemics like
COVID-19.

ChaCha20-Poly1305
encryption enhances security by
dividing files into 80 segments,

requiring 29 segments for
reconstruction, making it an
efficient and reliable choice for
safeguarding medical data.

However, it runs more

slowly when encrypting data.

[17]

G. Moheshkumar
et al

Secure data analytics for
patient monitoring in
healthcare applications
employing the Secure
Hash Algorithm (SHA-
256).

This study proposes improving
healthcare data analytics for
secure patient monitoring by

applying a security-driven
strategy based on SHA-256.

Nonetheless, it raises

substantial privacy concerns,
increasing the danger of data

breaches and illegal access.

(18]

Bilas Haldar et al

A modified IDEA with a
1024-bit key improves
the security and
efficiency of data
transmission in
healthcare.

MIDEA ensures safety against

attacks by converting the given

plaintext to ciphertext by using
64-bit blocking, substitution,

and permutation. Furthermore,

the overall method is

cryptographically strong. Thus,
it can be used for encryption

and decryption with a 1024-bit

key.

Due to the increased bit size,
computational complexity is

increased.

[19]

Abdulmohsen
Almalawi et al

Securing Healthcare
Data for a Modern
System

The Lionized Remora
Optimization-based Serpent
(LRO-S) encryption method

improves healthcare
information protection by
encrypting patient data stored
in the cloud.
Reducing privacy breaches and

Nonetheless, due to the high

costs, the implementation

process hinders the adoption

of this technique.

244

T. Rathi Devi etal./1JECE, 12(12), 241-257, 2025

cyber-attacks.

[20]

Parag Rastogi et al

Enhanced blockchain
framework for ORAP
verification and

healthcare data security.

Improving patient care while
reducing costs through efficient
use of medical resources,
initially secured by encrypting
the resource provider’s IoT data
using Diffie-Hellman Galois—

Nevertheless, it experiences a
processing delay in real-time
scenarios.

Elliptic Curve Cryptography

(DHGECC).

A Diffie-Hellman Key
Exchange Algorithm:
Improving Cloud Data
Security: Cloud Data
Security

[21] | VijayKumar et al

DHKEA enhances cloud
security by enabling secure
cryptographic key exchange
over open networks, addressing
threats in decentralized

However, they often struggle
to accommodate the
dynamic, interconnected
nature of cloud
infrastructure.
environments.

3. Proposed Model Description

In modern healthcare systems, patient information
security and confidentiality are of utmost importance. The
risks of cyberattacks and data breaches have increased
dramatically as people rely more on EHRSs, telemedicine, and
remote patient monitoring. To securely protect medical data
from unauthorized access, this research proposes an
advanced AES-256 algorithm for efficient encryption. The
novel VPF-based password generation mechanism is
employed to resist cyber-attacks, comprising a secret little
function and code booking approach. It provides strong
security by preventing unauthorized access and reducing the
vulnerabilities found in traditional password-based systems.
Figure 2 shows the overall block diagram of the proposed
model.

For uploading or downloading medical data in the EHR
form by the patient or healthcare provider for the first time,
they need to register. In the registration phase, the user
downloads a random jar file from 11 jar files, each containing
a unique expression, which is stored in the database for
authentication purposes. After registration, users log in by
entering their username and password. After logging in to the
system, it generates an access key on the next page to prevent
cyberattacks. The associated textbox is left empty instead of
auto-filling the details. The user retrieves a session-specific
access key, runs a JAR file on a Java-compatible device, and
calculates an expression. AES-256 encryption protects
patient records by converting them into unintelligible
ciphertext, preventing unauthorized access. Only authorized
users can decrypt and access EHRs. If it is wrong, access is
blocked, and re-authentication is required.

3.1. System Architecture and Protocol Description

The many layers that comprise the proposed system
architecture include user devices, authentication systems,
encryption systems, and cloud-based electronic health record
storage. It has a web or mobile interface through which user
entities, including healthcare providers and patients, can

245

interact with the system. The parameters of a codebook and a
Virtual Password Function (VPF) are safely registered and
stored on the server. The server issues a random challenge
during the login process, which the VPF locally processes to
produce a custom session credential. Patient-related
information is encrypted with AES-256 before transmission
and stored in the cloud database after successful
authentication. Access to and decryption of data are restricted
to verified users. The formal processes in the sequential
implementation of the protocol are session termination,
authentication, dynamic credential computation, challenge
generation, and registration. This structured architecture and
protocol flow offer scalability, resistance to attacks, and are
helpful in health care systems in real time, allowing
unambiguous separation between authentication, encryption,
and storage.

3.2. Key Management Processes

The proposed system is based on a systematic key
management process to protect cryptographic keys
throughout their existence. AES-256 symmetric keys are
generated by using a cryptographically safe random number
generator when a user logs into the server. There is a
reduction in the risk of key compromise when each key is
used once and never reused. A key broadcast is never done in
plaintext across the network; it is used solely to encrypt and
decrypt patient data.

Quite to the contrary, there are server-side secure key
derivation and storage techniques. To ensure forward
secrecy, session keys are automatically invalidated whenever
the user logs out or a session expires. In addition, the Virtual
Password Function helps ensure that cryptographic material
does not leak through the authentication channels by not
relying on encryption keys. It will enhance the system'’s
security by separating authentication credentials and
encryption keys. The specified key issuance, use, storage, and
revocation processes ensure controlled access, the secrecy,
and the integrity of healthcare data.

T. Rathi Devi etal./1JECE, 12(12), 241-257, 2025

3.3. Validation of Security Properties

The security features of the proposed framework are not
validated using formal cryptographic proofs; rather,
analytical reasoning and a specified threat model are used.
The adversaries in the model assume they can perform attacks
such as phishing, replay attacks, keylogging, and credential
theft. Examples of authentication methods that offer these

security measures include dynamic generation of virtual
passwords, non-credential reuse, and challenge-response-
based authentication using sessions. When applied with the
generally accepted adversarial assumptions in realistic
security studies, these strategies ensure that these attacks are
resisted.

Download
Register 7 I
User —_—> 1
Jar Jar If Key Is
0 . Calculate Valid
- Login Access Key Access
Key Generated Allowed

Aes-256 Encryption

1

Encryption Server

-
=

18w

Patient Medical Data

Ciphertext

Secret Key

Decryption Server) : o
@ Nurse g
Doctor Patient
AW
(Y =
Pathologist Admin

Secret Key

End User

Virtual Password Generation

(K/'k,, 'Ky) + (K k)

&; Random ¥
Acces
Key

¥

Access Key Generated

Fig. 2 Block diagram of the proposed model

4. Proposed System Modeling
4.1. AES-256-Based Encryption Algorithm

Encryption is a widely used method for securing
sensitive data, transforming plain text into ciphertext
composed of random characters. Only those with the
designated key can decrypt this encoded information (Figure
3).

SECRETKEY

—0O

SECRET /\SE(‘RET

57—
D) —o—f

PLAINTEXTDATA CIPHER TEXT
TO ENCRYPTION ~ ENCRYPTION o Copy b 1D DATA

Fig. 3 Symmetric key encryption

—[5)

PLAIN TEXT
DECRYPTED DATA

DECRYPTION

246

4.2. AES Encryption Algorithm Modes

Block ciphers are designed to securely process large data
streams without compromising security, and they encrypt
data in fixed-size blocks, so identical plaintext produces
identical ciphertext, since a deterministic algorithm does that.
As a result, attackers may attempt to recover m by noticing
repeated message parts. There are approaches for masking the
output of ciphers.

The process works in such a way that a block of known
plaintext is combined with a block formed from ciphertext.
Therefore, the next round of encryption will use a modified
input, which improves security. There are five standardized
modes of operation:

T. Rathi Devi etal./1JECE, 12(12), 241-257, 2025

4.2.1. Electronic Code Book (ECB)

In this mode, each block of plaintext is converted into a
single ciphertext using the same key. Typically, this mode is
appropriate for messages less than the block length. Longer
communications that require encryption are first separated
into properly sized blocks, with the final block padded as
needed. As a result, the ECB approach is commonly
employed to encrypt small amounts of data, providing some
resistance to future cyberattacks.

4.2.2. Cipher Block Chaining

This mode requires that identical plaintext blocks
produce different ciphertext blocks. To do this, cipher block
chaining allows for an XOR operation between each plaintext
block and the ciphertext from the previous round, all while
using the same encryption key.

4.2.3. Cipher Feed Back (CFB)

Cipher Feedback mode makes it easier to convert a block
cipher into a stream cipher, reducing the need for padding to
ensure the message adheres to an integral number of blocks.

ENCRYPTION

128-BIT DATA BLOCK

!

KEY EXPANSION

'

ADD ROUND KEY

SUB BYTES
SHIFT ROWS
MIX COLUMNS
ADD ROUND KEY

l

SUB BYTES
SHIFT ROWS
ADD ROUND KEY

L

SUB BYTES
SHIFT ROWS
ADD ROUND KEY

|

128-BIT ENCRYPTED
DATA BLOCK

INITIAL ROUND

MAIN BODY
(9 ROUNDS)

FINAL ROUND

Fig. 4 AES schematic diagram

4.2.4. Output Feed Back (OFB)

OFB mode is quite similar to CFB mode. However, there
is an internal feedback mechanism to ensure that identical
plaintext blocks do not generate identical ciphertext blocks.
This mechanism operates independently of plaintext and
ciphertext bit strings.

4.2.5. Counter (CTR)

Each block of plain text is encrypted with a different
counter value. While creating the ciphertext block during the
encryption process, the plaintext is XORed with the
encrypted counter. Decryption processes in the opposite
direction, using the same counter values and XOR to recover
the original plaintext. The main benefits of this mode include
clear architecture, resource efficiency, and enhanced
hardware and software security.

The AES algorithm operates through four key steps in
each encryption round, as depicted in Figure 4.

The Key Expansion procedure creates round keys from
cipher keys, producing separate 128-bit round key blocks for
each encryption round, plus an additional one.

Sub Bytes: Substitutes each byte with a predetermined
lookup table (S-box) for increased security, as depicted in
Figure 5. Byte substitution is the AES algorithm's only
nonlinear operation and is critical to its security. AES
employs 16 identical S-boxes, each handling an 8-bit input
and producing an 8-bit output in tandem. Byte replacement
replaces each byte in the algorithm state with a new byte in a
nonlinear fashion.

ap0|ao1|aoz2 | 03 boo|bo,1|boz|bos

ajolajaiz | 13 > b1o | b1 b1z | b1z

azo|az 32\,2 az3 b2, |bz|b22} | b23

azo|az; | as) :3,3 b3o|b#i|bsz|bss
S

Fig. 5 Sub bytes step updates each byte in the array using an 8-bit s-
box

The S-box generation in AES follows two steps:

e In GF (2%), abyte is turned into its multiplicative inverse,
except for element 0, which maps to itself.

The output undergoes an affine transformation, which
involves multiplying each byte by a constant matrix and
adding an 8-bit hexadecimal constant vector {63}, as
specified in (1).

b7 11111000 a7 0
b6 01111100 /a6\ /1\
| b5 00111110 | (a5 | |1 |
b4 [ooo11111 | | a4 | ~| O |
| b3 || 10001111 || a3 |® | 0 @
b2 11000111 a2 0
b1 11100011 al 1
b0 11110001 a0 1

Shift Rows is a transposition step that changes the rows
of a data matrix to introduce diffusion: the row-shift
procedure cyclically adjusts each row of the algorithm state

247

T. Rathi Devi etal./1JECE, 12(12), 241-257, 2025

using various displacement amounts (Figure 6). The initial
row is unchanged, while the second and third rows are rotated
by 3-byte and 2-byte right shifts, respectively. The
transformation substantially improves diffusion in the AES
algorithm, thus enhancing security.

' SHIFT ROWS

NO CHANGE 9,1

SHIFT 1
—
SHIFT 2
-«—

SHIFT 3
-—

a2

az1

azz

Fig. 6 The function cycles through the state’s rows, shifting bytes by a
specific offset

Mix Columns: A mixing operation that transforms each

column using mathematical functions to strengthen
encryption, as given in Figure 7.

g0 [[@01 Jao2| a0 boo[bod bo,1 po2|bos

a0 [a11 |a12fa13 — |b1o[b1]b1s Pa2bis

azo| |az1 |az22|az23 b2,o|b2d b1 p22|b23

azo | |az\a32|a33 bs0|bs, ;3,1 32| b33

Fig. 7 An invertible linear transformation combines four bytes from
each state column

A column-blending transformation is a process that
individually applies a blending operation to each column in
the algorithm state. Each column is regarded as a polynomial
with coefficients in GF (2%), multiplied by a fixed
polynomial c¢(x), then modularly reduced using the
polynomial (x* + 1).

c(x) = {03}1x3 + {01}x2 + {01}x + {02} (2)

Each byte in the algorithm state is transformed into a new
value, determined by its relationship with the four bytes in

the column.
I ADDROUNDKEY I

_—

29,0 |20,1 |02 |20,2 ,0|bo1 |boz2|bo2

Q10|11 |12 o|b11 bis

bl,Z

a0 |az1| 222 o|b21|P22 §bss

a30|a31 232|233 ,0|b3 7] b32|bss

1 Koz

) kl,Z

ko

1| K32

Fig. 8 Round key combined

248

Add Round Key: A step in which the transformed data is
combined with a round key using bitwise XOR for added
security, as illustrated in Figure 8.

A round key addition involves a bitwise XOR operation
between the 16-byte algorithm state matrix and the 16-byte
subkey. Subkey is derived through key expansion from the
initial key.

Qoo Qo1 Qo2 Qo3 [ko,o ko1 koz kogs]
A0 A1 G12 g3 EB|k1,o kin kiz kis |
Qo0 Gz1 G2z A23| " |kyo kpy kop kos |
3o Q31 Gz Q33 lk3'0 ks, ks, kass
[bo,o bo1 boz b0,3]
[b10 b1 b1z Dby 3)
|boo bay bz bas|
byo byy bsy bagl

Mix Columns is a mixing step that combines four bytes
from each column to spread diffusion across the state matrix.
Moreover, in the last round, Mix Columns is skipped, leaving
only SubBytes, ShiftRows, and AddRoundKey.

Generate round keys from the cipher key.

Set the state array and apply the initial round key.
Perform standard rounds (1 to 9) executing all four
transformations.

Execute the final round, omitting Mix Columns.

Output the ciphertext chunk from the last round.

Key expansion algorithm: AES is a symmetric block
cipher with a 128-bit block length that supports three
different key sizes: 128, 192, and 256 bits. AES operates on
a symmetric key encryption model, meaning a single secret
key is used for both encryption and decryption. The
encryption process varies depending on the key length, as
listed in Table 2.

Table 2. AES-256 algorithm block, key size, and number of rounds

AES Algorithm 128-bit 192- 256-bit
bit
Key Size 4 6 8
Number of Rounds 10 12 14
Block Size 4 4 4

During encryption, multiple transformations are applied
to data blocks in a series of rounds. The number of rounds is
based on the key length. Ten rounds for 128-bit keys. 192-bit
keys have two rounds, and 256-bit keys have fourteen rounds.
These rounds encrypt data by changing data at every level to
increase security. The AES algorithm is controlled by rounds,
with four key functions in each encryption and decryption
round. The encryption rounds are SubByte, ShiftRows,
MixColumn, and AddRoundKey.Meanwhile, the decrypting
InvShiftRow, InvSubByte, AddRoundKey, InvMixColumn.
The last round has a slight variation and requires three

T. Rathi Devi etal./1JECE, 12(12), 241-257, 2025

functions. This system will allow data to be safely
transformed.

KO0 | K4 [K8 | K12
K1 | KS [K9 | K13
K2 | K6 | K10 | K14
K3 | K7 | K11 | K15
WO | W1 | W2 | W3 g
g
@)
pvg
| ._)
3_.5?
W4 | W5 | W6 | W7
W36 | W37 | W38 | W39 g
&]
()
A
s
WI
.(?
W40 | W41 | W42 | W43

Fig. 9 Key expansion algorithm

In the AES algorithm, subkeys are generated recursively,
meaning that to compute subkey w;, the preceding subkey
wi—1 must be known. The fundamental unit for key expansion
in AES is a 32-bit word. The key expansion algorithm takes
4 words as input and produces a 1D array of 44 words.

Initially, the AES key serves as the first 4 keywords in
the extended key array. Subsequently, every newly generated
set of 4 keywords is appended to the remaining portion of the
extended key array. Within this array, each new keyword w;
is derived from w;_; and w;_,. Additionally, a specialized
function g is applied to compute keywords whose array index
is a multiple of 4.

From Figure 9, wi keyword is computed as,

_(Wiea @ wiy;, imod4 #0 4

Wi = {wi_4 @ g(wi_q), imod4 =0 “)
Function g () is a non-linear transformation that
processes a 4-byte input to generate a 4-byte output. First, the
four input bytes undergo a left cyclic shift of 1 byte. Next,

249

each of the four bytes is substituted using S-box
transformations. Finally, the transformed byte is XORed with
round constant Rcon|[j], which is a 32-bit word where only
the leftmost byte holds a nonzero value.

The key keyword undergoes an XOR operation with the
round constant, which involves explicitly XORing the first
byte positioned to the left of the round constant. Each round
has a distinct round constant, defined as Rcon[j] =
(Rc[j],0,0,0), where Rc[1] = 1 and subsequent values
follow the relation Rc[j] = Rc[j —1] x 2, with
multiplication performed in GF(2®). Table 3 provides the
hexadecimal representation of the ten round constants used in
the AES algorithm.

Table 3. Hexadecimal representation of rounds
Rclj]
01
02
04
08
10
20
40
80
1B
10 36
The round constants used in AES ensure that no two
round keys in the AES key expansion are alike and are not
susceptible to cryptanalysis. In this way, data is modified at
each stage to achieve the required level of encryption for data
protection. After using the AES-256 algorithm for effective
encryption of the medical data, authentication follows.

OO |N|O|ODW[N|F [~

4.3. Virtual Password Authentication

To authenticate a user, a system (S) must confirm their
identity (U) by verifying the user-provided credentials: a
password (X) and user ID (U). This authentication process is
denotedasS — U: U, X, where S verifies U using these fixed
credentials. Because both U and X remain unchanged,
passwords are designed for easy recall. However, this
convenience makes them susceptible to theft, allowing
adversaries to gain unauthorized access to a victim’s account.
While making X a random variable could enhance security, it
would make it difficult for users to recall their passwords. To
address this challenge, we introduce a virtual password
scheme, which dynamically generates passwords while
maintaining usability and security.

A virtual password is a dynamically generated
authentication credential, uniquely created each time through
a virtual password scheme and subsequently sent to the server
for validation. The virtual password scheme (P) comprises
two elements: a static alphanumeric value (X), referred to as
the hidden password, and a function (F) that operates within
a predefined letter space (). This function, referred to as the

T. Rathi Devi etal./1JECE, 12(12), 241-257, 2025

virtual password function, generates a virtual password (V)
used for authentication. VPF includes hidden parameters
(H), which serve as confidential elements shared between the
server and the user. If such parameters exist, the function is
denoted as FH (...). The hidden password X is represented
as a vector x1,x2, ..., xn, where xi for (i = 1,2,...,n)isa
digit, and n is the length of the password. Similarly, a random
number (R), called random salt, is provided by the server and
displayed on the login screen as r1,r2,...,rn. The virtual
password (V), expressed as vl1,v2,...,vn is used for
authentication. User submits (U, V), where U is the user ID.
On the server side, the system computes V using the same
function and compares it with the submitted password. This
process is represented as V = FH (X,R) or FH (xi,ri),
ensuring secure authentication.

The server efficiently verifies a user if F is a bijective
function, as it allows straightforward authentication.
However, even if F is not bijective, the system still
authenticates the user by retrieving their record from the
database using their user ID (U), computing V, and
comparing it with the provided password. A bijective
function simplifies the process by enabling the system to use
a reverse function to derive V, and this assumption is not
mandatory. To enhance security and flexibility, users should
be able to choose their own hidden password. A jar-file
security mechanism is introduced, allowing users to choose a
VPF that aligns with their preferred security level, as

illustrated in Figure 10.
THERE WILL BE 11 JAR

« GET ACCESS KEY IN NEXT PAGT
« GENERATED KEY TEXT BOX IS AMONG THAT RANDOM]
LEFT EMPTY JAR DOWNLOAD

|

« USING EMULATOR OR JAVA \
SUPPORTING MOBILE: RUN THE
JAR

- TYPE THE ACCESS KEY

« CLICK AND CALCULATE

« GENERATED KEY WILL BE
VIEWED IN EMULATOR

!

(IF GENERATED VALUE IS M/\TCHF.D\
WITH THE DATABASE: CALCULATED
VALUE GETS PROCEED TO NEXT
PAGE

USER

J

(S J

\ J

Fig. 10 User login and registration

4.3.1. Registration Module

In the registration module, users (Patients, Doctors,
Nurses, Healthcare Technicians) register their accounts. At
first, it offers a combination of 11 unique jar files, each

250

containing a distinct, small encryption function. A jar file is
downloaded with a random value, then merged with their
account.

4.3.2. Login Module

Once registered, the user enters the login module where
security measures are enforced. At first, the user gives a
username and password for authentication. The system
generates a one-time key for that session only; it is generated
elsewhere, not the one created during registration, to prevent
replay attacks. The login system includes an appropriate text
box for the user to enter a dynamic key.

The value needs to be entered in an empty text box is
computed as: the previously installed JAR files are opened by
the user on a Java-compatible device. In which the session-
specific access key is entered. By using predefined
mathematical expressions, the jar file processes the access
key based on the “Secret Little Function” generated during
the registration module. Based on the encoded logic, the
output key is computed and entered in the designated text box
for authentication within the jar.

4.3.3. Validation
Validating the Generated Key

The key generated on a Java-compatible device or
emulator is entered by the user into the system text box if the
entered value matches the server's secret logic and access
key. If the value is correct, then access to EHR data (Read
patient health records, prescribe medications, publish lab
results, and manage hospital staff tasks) is granted. If the
provided key value is incorrect, the access is permitted.

If the key is incorrect, access is denied, and the user may
be prompted to retry or reauthenticate.

4.4. Secret Little Functions

The most effective security strategies involve allowing
users to define custom encryption functions or programs.
Since these functions remain private between the user and the
server, and the range of possible functions is vast and
complex, this method ensures a high level of security, even
for simple functions. Historically, classical encryption
methods relied on keeping the encryption algorithm itself
secret. Today, algorithms are open, and encryption keys are
kept secret in modern cryptography.

The key shift happened because secret algorithms
prevent communication and compatibility between systems,
for instance, in commercial applications and networking
protocols. Thus, the modern cryptographic schemes prefer to
keep keys secret since they are usually small data elements
and make the algorithm public. The proposal enhances
security, promotes interoperability, and enhances
transparency of encrypted data, as shown in Table 4.

T. Rathi Devi etal./1JECE, 12(12), 241-257, 2025

Table 4. First step in user registration

Select your preferred PIN registration method from the following
options:

Default Option [Default ()]: No virtual function is used.
Recommended Virtual Function (): A suggested encryption
function is applied.
Custom Functions:

Function B = XXX

FunctionB =YYY

Function B =277
User-Defined Function: A unique function set by the user, shared
securely between the user and the server.
System-Defined Function with Adjustable Security Levels:
Choose a security level: Low (), Medium (), High (), or Very
High ().
User-Defined Program: A custom encryption program written in
Java, shared between the user and the server.

Share-Little Function is a security approach in which
users define their own encryption functions rather than
relying solely on secret keys. Since only the user and the
server know the function, and the range of possible functions
is infinite, even simple functions become highly secure.
Traditional ciphers often used secret encryption algorithms,
and modern ciphers keep algorithms public while protecting
the encryption keys. Having algorithms open ensures that
other systems, such as Wi-Fi, remain interoperable as they
communicate across different manufacturers. Nonetheless,
for private user-server interactions, the use of secret
encryption algorithms makes attacks hard.

RANDOM ACCESS KEY

I

RANDOM ACCESS KEY IS SPLITED INTO 3 PARTS
AS K. K, K
SECRETEVALUES AS X.
FIRST PART ADDED WITH SECRETES VALUE K, X.
SECOND PART SUBTRACT WITH SECRETE VALUE
THIRD PART MULTIPLED WITH SECRETE VALUE

l

THREE PART VALUES ARE PASED
TO THE SECRETE FUNCTION
EXPRESSION.
(KIA' K2’~K3')+(K1+K2+K3)

\ 4

GENERATION OF ACCESS KEY

Fig. 11 User access code generation

251

From Figure 11, the random-access key is classified into
K1, K2, K3, and a secret value is utilized to influence each
part (K1 + X), (K2 — X), (K3 = X). These modified values are
given as a secret function (K1 K2 *K3) + (K1 + K2 + K3).
At last, the final access key is generated to encrypt patient
information. Password cracking becomes much harder
because bridge passwords are generated through secret
calculations. It has strong defence against attacks such as
phishing, keylogging, brute-force attempts, and more to
secure data access.

Safety is the one concern. It could be said that the user
will not be able to create any safe function. Even decision
functions are secure. The attacker does not know which
function was chosen. Hence, the level of safety is still high.

The password modification techniques are:

Alter a single bit in the password.

Modify one digit in the password.

Increase each odd digit by one and decrease each even
digit by one.

Triple the first digit of the password.

Compute the password as an integer from ASCII codes,
then apply the formula: 100x + birthdate, where Xx
represents the transformed password.

Reverse even bits of the password in its binary
representation.

Additional variations and modifications as needed.

These techniques introduce randomness and complexity
to password generation, enhancing security against
unauthorized access.

4.5. Code Booking

When the user does not have the helper application, they
compute their dynamic password using a virtual function,
with a random salt and a manually computed constant virtual
password component. The virtual function needs to be simple
enough to perform without a mobile device (Manual
Computation). Changing your password is done in a similar
way to conventional methods: to select a new password, a
new virtual function, or both. In any case, the process needs
to memorise your updated virtual password. The importance
of the virtual function is the assurance of security when a
recommended function is used. With the sheer volume of
functions available, careful selection will help avert threats.
Virtual functions, when designed effectively, can enhance
resilience against phishing, keyloggers, and shoulder-surfing
attacks.
The function must receive random input from the server,
ensuring different input values for different users and for
each user's login. Keyloggers cannot capture and reuse
the password since the actual password is never typed
directly.
User-friendly design. As complexity increases, so does

T. Rathi Devi etal./1JECE, 12(12), 241-257, 2025

security; too many complicated functions can be
complex for users to remember and/or use, and we strive
to create virtual functions that are both secure and
manageable.

The password functionality should hide its secrets so no
one can discover any information from the user’s
password. This prevents thieves who use stolen
passwords from getting into places they should not be.
The actual equivalent password must not be computable
from the function, even if attackers obtain its potential
information.

They provide guidelines for the effective design of
virtual functions. Although there are zero-knowledge
authentication protocols, they are often computation-
intensive and therefore not applicable. Moreover, some
functions can appear harmless and are unsafe upon closer
review.

Using fake passwords is an effective way to protect
against phishing attacks. For this, users need only a small
codebook, which can be easily carried as a printed card or
stored on a PDA or mobile device. It would be unrealistic to
ask users to memorize an entire codebook. A zero-knowledge
interactive proving protocol would be the best solution.
However, current constraints do not allow for this. As far as
security is concerned, the machine that will be used as a
server must have sufficient computational power to run a
cryptographically secure Random Number Generator (RNG).
This safeguard prevents the system from being compromised
if the user’s book is ever hijacked. In such cases, the user
requests a new codebook without altering RNG’s parameters.
It is important to note that Linear Congruential Generators
(LCGs) do not meet the standards of cryptographically secure
RNGs.

The initial codebook design is simple. During the setup
process, the user selects the desired password length, denoted
as n. The server then generates n random numbers, each
consisting of 10 digits. For instance, if the system is securing
a 4-digit PIN (i. e. , n = 4), the server provides four random
numbers: X0, X1, X2, and X3, each containing 10 digits. The
digits of Xi is represented as (0), x(1), x(2), ..., x(9). The
user’s codebook is structured accordingly.

x(0,0),x(0,1),x(0,2),...
x(1,0),x(1,1),x(1,2),...
x(2,0),x(2,1),x(2,2),...
x(3,0),x(3,1),x(3,2),...

,x(0,9)
,x(1,9)
x(2,9)
x(3,9)

()

It is up to the user to choose whether to save or memorize
the codebook. To log in, the system displays a four-digit
random number R = abcd, with each letter representing a
digit. The virtual password for the user to type in is:

(x(i,a)x(i, b)x(i, c)x(i,d)) (6)

252

For security evaluation, phishing attacks are the primary
focus, as they represent the most aggressive form of attack
where the adversary has control over the random number R.
In each instance, the attacker provides a fraudulent random
number R to the victim. If successful, the attacker gains
access to four corresponding digits from the codebook.
Consequently, the probability that the attacker correctly
guesses a single digit of the password depends on the
likelihood that the system requests the same position,
combined with the probability that the system asks for any of
the other nine positions and that the attacker correctly guesses
it.

1

~

1 9 1
TN s @

The probability of an attacker successfully breaching a
victim's account after a single phishing attempt is calculated
as (0.2)2 = 1/625. However, since attackers often execute
multiple phishing attempts, victims remain unaware during
the initial rounds. To maximize the amount of stolen
information, the attacker requests different password

positions in each attempt.

Let p represent the number of successful phishing
attempts targeting the same user, n denote the password
length, and s indicate the number of unique symbols available
for each digit (in this case, s = 10). The probability of an
attacker successfully accessing a victim's account is
determined using a specific formula based on these
parameters.

)p

1\P 1+
Gomnd =
s s s s2

When the system uses this codebook and gets the
following Table 5 outcome.

S—p
s

+ @)

A conventional PIN code typically consists of four
Arabic digits, providing a key space of size 10 in a phishing-
free environment. Without virtual password protection, a
single successful phishing attack can completely compromise
the PIN. The codebook approach significantly reduces the
likelihood of a breach, as repeated phishing attempts alert the
victim, prompting them to stop engaging with the attacker.
After three successful phishing attacks, the probability of
unauthorized access increases, and the account remains
relatively secure if the system locks access after multiple
failed login attempts. However, since longer passwords are
impractical, an alternative approach is to expand the symbol
set by incorporating letters and special characters. A symbol
size of 64 is considered reasonable for improving security
while maintaining usability.

Table 6 indicates that, in a phishing-free environment,
the security level of four-digit passwords after five successful
phishing attempts remains at the level of a traditional four-

T. Rathi Devi etal./1JECE, 12(12), 241-257, 2025

digit PIN code, even when the symbol size is extended to 64.
In actuality, a user is unlikely to appease a phisher more than
five times before becoming distrustful. It is noted that cyber-

attacks differ greatly from chosen (or known) plaintext
attacks in the context of cryptography; the phisher does not
have access to a significant amount of plaintext.

Table 5. The number of phishing attacks occurred

Symbol Size (s = Number of phishing attacks occurred (p)
10) 0 1 2 3 4 5
Length of 4 | 1.00 x107* 1.30 x 1073 6.1.5 x 1073 1.87 x 1072 448 x 1072 9.15 x 1072
the 6 | 1.00 x10° 470 x 1075 482 x 107 2.57 x 1073 9.47 x 1073 2.77 x 1072
password 8 | 1.00 x 1078 1.70 x 1076 3.78 x 107> 3.51 x10~* 2.00 x 1073 8.37 x 1073
(n) 10 | 1.00 x 10710 6.13 x 1078 2.96 x 107° 481 x 1075 424 x 1073 2.53 x 1073
Table 6. Phishing attacks-free security levels
Symbol Size Number of phishing attacks occurred (p)

(5=10) 0 1 2 3 4 5 6 7 8 9 10
Length 4| 596 9.84 5.03 1.60 3.92 8.14 1.51 2.58 4.13 6.30 9.23
of the x1078 | x1077 | x107® | x10™° | x1075 | x107° | x10™* | x107™* | x107™* | x10™* | x 10™*

passwor | 6 | 1.46 9.76 1.31 6.39 2.45 7.43 1.85 4.14 8.40 1.58 2.81
d (n) x 10711 | x1071° | x 1078 | x1078 | x1077 | x1077 | x107¢ | x107® | x 1076 | x 1075 | x 1075
8 | 3.55 9.68 2.53 2.56 1.53 6.62 2.28 6.46 1.71 3.97 8.53
x10715 | x10718 | x10711 | x1071° | x107° | x107™° | x1078 | x1078 | x1077 | x 1077 | x 1077
1| 8.67 9.60 5.68 1.02 9.59 5.97 2.80 1.07 3.47 9.97 2.59
0| x10719 | x107%° | x 107 | x 1072 | x107*? | x 10711 | x1071% | x10™° | x10™° | x 107° | x 1078

5. Results and Discussion

In this section, results from the implementation of AES-
256 encryption to safeguard patient data, along with
enhanced authentication logic for virtual password
management, are analysed.

service visitor registration form can enhance patient
registration and is EHR-compliant.

R [] 4
R T AR T ———
PATIENT REGISTRATION
PATIENT REGISTRATION m— ‘ = —
UserName * [saranya il Password * [|
ConformedPassword | |
Password * | Kaageos
Name * [|3
ConfirmedPassword *| ****** Date of Birth * []
rame? — Age —

Date of Birth * 16-05-1986

Age* 39
Address * | cbe
Mobile * | 9791334453
Email * | saranya@gmail.com
Disease * | fever

Submit Cancel

Fig. 12 Registration form

Figure 12 shows the patient registration form used in the
healthcare system to authenticate patient information. The
patient registration form includes key fields such as
Username, Password, Name, Date of Birth, Age, Address,
Mobile number, Email, and Disease conditions. This
registration process provides precise data entry and ensures
that healthcare authorities store and manage HER data
effectively. The AES-256 encryption method is used to create
and authenticate sensitive patient records. The healthcare

253

Address * []

Disease * ["submit] ["cancel |

Stored Successfully Please Click on to Jar Download
UserlID: UID10000002
Stored Successfully Please Click on to Jar Download
APK download

Fig. 13 Jar file downloaded

Figure 13 shows the download webpage for the jar file.
The secure healthcare system uses AES-256 encryption and
virtual passwords to protect patient registration,
authentication, and data management from unauthorized
access. Patients must register by entering the necessary
information, which will be encrypted and safely stored on the
MySQL cloud database. To stop brute-force and phishing
attacks, the solution dynamically validates credentials via a
code-reservation system. Similarly, a jar file download
enables consumers to access encrypted health data through a
mobile application. Backend processes run on Java JSP
Servlets are highly scalable and maintainable. So, it is a
practical approach to digital healthcare that respects privacy.

T. Rathi Devi etal./1JECE, 12(12), 241-257, 2025

Cancel

Fig. 14 User login form

Figure 14 represents the user login form. On this
webpage, the user’s name and a strong password are required
for authentication. The patient information is protected by the
AES-256 mechanism to prevent unauthorized access.
Furthermore, a virtual password mechanism is integrated,
utilizing a code-based approach to modify login credentials
and enhance security dynamically.

Username:

| saranya |

| PP I

Password”

Fig. 15 User login credentials

According to Figure 15, it is the login credentials form
used by users. When using this website, users enter details
such as a username and password for authentication.
Moreover, the credentials are sent and stored in MySQL
cloud databases, encrypted with AES-256 for extra security
by the system. After a successful sign-in, the user is
redirected to the next page that contains the access code. This
access code serves as an extra layer of protection, enhancing
virtual password authentication using a code booking method
that prevents phishing and brute-force attacks.

When the jar file is installed on a mobile phone, the
following page appears. This webpage contains a secure
access code entry form, where users enter an access code to
generate a new computed code, as shown in Figure 16.

254

Enter the Access Code:

304083

Your Calculated Code:

Fig. 16 Access code inserted

Y Enter the Access Code:

304083

Your Calculated Code:

-767437

Fig. 17 Virtual password generation

Figure 17 displays an interface that makes safe
authentication for healthcare systems easier by allowing
users to enter an access code and generate a calculated code
for verification. The interface has separate fields for entering
the access code and displaying the dynamically produced
computed code. The Submit and Cancel buttons allow users
to confirm or reset their actions. The solution includes AES-
256 encryption and virtual password authentication, which
ensures strong data protection against unauthorized access.
The calculated code is dynamically updated using a small,
hidden function and code-based booking to deter phishing
and brute-force attacks. Once a user is authenticated, they
gain access to encrypted patient records that comply with
medical privacy laws.

T. Rathi Devi etal./1JECE, 12(12), 241-257, 2025

B Modified
IDEA[18]

§ DHGECC[20] § DHKEA[21]
§ PROPOSED

Modified
IDEA[18]

§ DHGECC[20] @ DHKEA[21]
PROPOSED

D ABE[6] B DSAS[11] 0 ABE[6] B DSAS[11]

[
o

-
IS

w
w

(8]
~

—
—

Encryptiom Time (ssSec)

Decryptiom Time (mSec)

=
<

64KB 128KB 12KB 256 KB 64KB 128KB 192KB 256KB

Key Size (KB)
Fig. 18 Comparison of encryption and decryption time

Key Size (KB)

Figure 18 includes a graph showing the time required for
encryption and decryption using various algorithms. The
researchers analysed encryption algorithms like Attribute-
Based Encryption (ABE) [6], Data Sharing and Authorized
Search (DSAS) [11], Modified International Data Encryption
Algorithm (MIDEA) [18], Diffie-Hellman Galois—Elliptic-
Curve Cryptography (DHG-ECC) [20], Diffie-Hellman
Galois—Elliptic-Curve Cryptography (DHGECC) [21] with
the proposed AES-256 algorithm. The designed AES-256
technique is the fastest encryption and decryption method in
all key sizes. Thus, it is highly efficient and promotes feasible
healthcare systems.

102 % PDR[4] @ MES[5] @ PROPOSED
y

. \/‘_f/
L
o 10
£
o
£
g 100
g
&
107!

12 13 14 15 16

Data Sequence Length (2;4(v))
Fig. 19 Comparison of processing time

Figure 19 compares processing time (ms) with data
sequence length (2log (n)) for PDR [4], MES [5], and the
proposed AES-256 algorithm. Based on the graph, the
processing time of the PDR and MES methods is the highest,
ranging from 10 ms to almost 100 ms.

255

© PROPOSED

® PMRSS[1]

% PDR[4]

.
»

Execution Time(s)
e 2 o B o=
A & »®» o

S
o

=
=

10 20 30 40 50 60 70 80 90 100

Number of Attributes

Fig. 20 Comparison of execution time

The chart in Figure 20 illustrates the execution time
required for three encryption techniques: PMRSS [1], PDR
[4], and the proposed AES-256 algorithm. The processing
time range (in milliseconds) is between 10~ and 102 (ms).
PDR displays a significant computational burden and the
longest execution time, while PMRSS is moderately
efficient. The proposed AES-256 algorithm is well-suited for
real-time medical applications and for securing healthcare
data. This can be gauged from the algorithm'’s execution time,
which is pretty efficient.

% ABE[6]
* DHG-ECC[20]

0.5

S
=

% PROPOSED

&
W

e
%)

| T

80

Tiime of Security Claim(s)

b+

1

S
=

=]

10 20 30 40 50 60 70 90 100
Data Size(Mb)

Fig. 21 Security level evaluation

Figure 21 shows how secure different data size security
approaches are. The ABE [6] and DHG-ECC [20] took the
longest time compared to the suggested approach, AES-256,
which exhibited the shortest time suitable for protecting
patient information in healthcare.

As shown in Figure 22, the key generation time for
several algorithms, including the proposed technique,
Modified IDEA [18], DSAS [11], and DHG-ECC [20]. The
new algorithm generates keys the fastest, producing excellent

T. Rathi Devi etal./1JECE, 12(12), 241-257, 2025

results. The Modified IDEA, DES, and DHGECC traditional 6. Conclusion

algorithms take longer to process and are growing faster than The proposed system highlights the critical importance
the proposed algorithm. As stated before, the paper reveals of safeguarding patient data to secure the digital healthcare
that the prOpOSEd algorithm is effective for VPF-based rapid System_ The AES-256 encryption and VPF code booking
key generation using a secret little function and code booking technique framework will prevent security loopholes and
approach for the health care system to process patient data hacking vulnerabilities from gaining access. VPF modifies
securely and efficiently. the authentication process by generating a time-sensitive

b=
n

Key Generation Time (ms)

S
n

access key, thereby mitigating the risks of password-based

2X10° attacks. Plus, there’s that little secret function in the system's

authentication framework. This significantly enhances
security, as the password is encoded using the system'’s logic
in accordance with the norms. This will prevent password
guessing and brute-force attacks. Patient data is encrypted
before storage to prevent unauthorized access and ensure
privacy. The system is developed in Java technology, and
MySQL is used as a secure database for all data. The Java
JSP Servlet-based interface for a system is easy to use and
manage. According to security tests, AES-256, VPF, and the
code booking mechanism are very effective at preventing

cyber-attacks. Thus, it can use this framework robustly and
/4/ scalably in a cloud-based system for a healthcare facility.

0 200 200 400 400 600 800 800 1000 Acknowledgments

The authors sincerely thank the supervisor for providing
consistent guidance and strong support throughout the
progress of this research.

@ MODIFIED IDEA[18]
@ DSAS[11]

@ DHG-ECC[20]

9 PROPOSED

—

Files Number
Fig. 22 Performance evaluation of key generation time

References

(1]
(2]
(3]

(4]
(5]
(6]
[7]
(8]

(9]

Yi Sun et al., “PMRSS: Privacy-Preserving Medical Record Searching Scheme for Intelligent Diagnosis in IoT Healthcare,” IEEE
Transactions on Industrial Informatics, vol. 18, no. 3, pp. 1981-1990, 2021. [CrossRef] [Google Scholar] [Publisher Link]

Rui Zhang, Rui Xue, and Ling Liu, “Security and Privacy for Healthcare Blockchains,” IEEE Transactions on Services Computing, vol.
15, no. 6, pp. 3668-3686, 2022. [CrossRef] [Google Scholar] [Publisher Link]

Guangjun Wu et al., “Privacy-Preserved Electronic Medical Record Exchanging and Sharing: A Blockchain-based Smart Healthcare
System,” IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 5, pp. 1917-1927, 2021. [CrossRef] [Google Scholar]
[Publisher Link]

Jusak Jusak et al., “A New Approach for Secure Cloud-Based Electronic Health Record and its Experimental Testbed,” IEEE Access,
vol. 10, pp. 1082-1095, 2021. [CrossRef] [Google Scholar] [Publisher Link]

Maryam Shabbir et al., “Enhancing Security of Health Information Using Modular Encryption Standard in Mobile Cloud Computing,”
IEEE Access, vol. 9, pp. 8820-8834, 2021. [CrossRef] [Google Scholar] [Publisher Link]

Fengqi Li et al., “EHRChain: A Blockchain-Based EHR System using Attribute-based and Homomorphic Cryptosystem,” IEEE
Transactions on Services Computing, vol. 15, no. 5, pp. 2755-2765, 2021. [CrossRef] [Google Scholar] [Publisher Link]

Mohammad Kamrul Hasan et al., “Lightweight Encryption Technique to Enhance Medical Image Security on Internet of Medical Things
Applications,” IEEE Access, vol. 9, pp. 47731-47742, 2021. [CrossRef] [Google Scholar] [Publisher Link]

Sangjukta Das, and Suyel Namasudra, “A Lightweight and Anonymous Mutual Authentication Scheme for Medical Big Data in
Distributed Smart Healthcare Systems,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 21, no. 4, pp.
1106-1116, 2022. [CrossRef] [Google Scholar] [Publisher Link]

Mehedi Masud et al., “Lightweight and Anonymity-Preserving User Authentication Scheme for 10T-Based Healthcare,” IEEE Internet
of Things Journal, vol. 9, no. 4, pp. 2649-2656, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[10] Leonardo Da Costa et al., “Sec-Health: A Blockchain-Based Protocol for Securing Health Records,” IEEE Access, vol. 11, pp. 16605-

16620, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[11] Linlin Xue, “DSAS: A Secure Data Sharing and Authorized Searchable Framework for e-Healthcare System,” IEEE Access, vol. 10,

pp. 30779-30791, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[12] Asep Saepulrohman, and Agus Ismangil, “Data Integrity and Security of Digital Signatures on Electronic Systems using the Digital

Signature Algorithm (DSA),” International Journal of Electronics and Communications System, vol. 1, no. 1, pp. 11-15, 2021.
[CrossRef] [Google Scholar] [Publisher Link]

256

https://doi.org/10.1109/TII.2021.3070544
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PMRSS%3A+Privacy-preserving+medical+record+searching+scheme+for+intelligent+diagnosis+in+IoT+healthcare&btnG=
https://ieeexplore.ieee.org/abstract/document/9394758
https://doi.org/10.1109/TSC.2021.3085913
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Security+and+privacy+for+healthcare+blockchains&btnG=
https://ieeexplore.ieee.org/abstract/document/9445631
https://doi.org/10.1109/JBHI.2021.3123643
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Privacy-preserved+electronic+medical+record+exchanging+and+sharing%3A+A+blockchain-based+smart+healthcare+system&btnG=
https://ieeexplore.ieee.org/abstract/document/9594683
https://doi.org/10.1109/ACCESS.2021.3138135
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+new+approach+for+secure+cloud-based+electronic+health+record+and+its+experimental+testbed&btnG=
https://ieeexplore.ieee.org/abstract/document/9662386
https://doi.org/10.1109/ACCESS.2021.3049564
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+Security+of+Health+Information+Using+Modular+Encryption+Standard+in+Mobile+Cloud+Computing&btnG=
https://ieeexplore.ieee.org/abstract/document/9316223
https://doi.org/10.1109/TSC.2021.3078119
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=EHRChain%3A+A+blockchain-based+EHR+system+using+attribute-based+and+homomorphic+cryptosystem&btnG=
https://ieeexplore.ieee.org/abstract/document/9425439
https://doi.org/10.1109/ACCESS.2021.3061710
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lightweight+encryption+technique+to+enhance+medical+image+security+on+internet+of+medical+things+applications&btnG=
https://ieeexplore.ieee.org/abstract/document/9361564
https://doi.org/10.1109/TCBB.2022.3230053
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+lightweight+and+anonymous+mutual+authentication+scheme+for+medical+big+data+in+distributed+smart+healthcare+systems&btnG=
https://ieeexplore.ieee.org/abstract/document/9992149
https://doi.org/10.1109/JIOT.2021.3080461
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lightweight+and+anonymity-preserving+user+authentication+scheme+for+IoT-based+healthcare&btnG=
https://ieeexplore.ieee.org/abstract/document/9430932
https://doi.org/10.1109/ACCESS.2023.3245046
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sec-Health%3A+A+blockchain-based+protocol+for+securing+health+records&btnG=
https://ieeexplore.ieee.org/abstract/document/10044680
https://doi.org/10.1109/ACCESS.2022.3153120
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DSAS%3A+a+secure+data+sharing+and+authorized+searchable+framework+for+e-healthcare+system&btnG=
https://ieeexplore.ieee.org/abstract/document/9718101
https://doi.org/10.24042/ijecs.v1i1.7923
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Data+integrity+and+security+of+digital+signatures+on+electronic+systems+using+the+digital+signature+algorithm+%28DSA%29&btnG=
https://ejournal.radenintan.ac.id/index.php/IJECS/article/view/7923

T. Rathi Devi etal./1JECE, 12(12), 241-257, 2025

[13] Osama Fouad Abdel Wahab et al., “Hiding Data Using Efficient Combination of RSA Cryptography and Compression Steganography
Techniques,” IEEE Access, vol. 9, pp. 31805-31815, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[14] Pahrul Irfan et al., “Application of the Blowfish Algorithm in Securing Patient Data in the Database,” Matrix: Journal of Technology
and Informatics Management, vol. 12, no. 2, pp. 102-108, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[15] Hailong Yao et al., “ECC-based Lightweight Authentication and Access Control Scheme for 10T E-Healthcare,” Soft Computing, vol.
26, no. 9, pp. 4441-4461, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[16] Seval Capraz, and Adnan Ozsoy, “A Secure Medical Data Sharing Framework for Fight against Pandemics like COVID-19 by using
Public Blockchain,” IEEE Access, vol. 12, pp. 39593-93605, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[17] G. Moheshkumar et al., Security-Driven Data Analytics for Secure Patient Monitoring in Healthcare Application using Secure Hash
Algorithm (256), Challenges in Information, Communication and Computing Technology, CRC Press, pp. 167-172, 2025. [Google
Scholar] [Publisher Link]

[18] Bilas Haldar, Partha Kumar Mukherjee, and Himadri Nath Saha, “An Approach of Modified IDEA with 1024 Bits Key to Enhance
Security and Efficiency of Data Transmission in The Healthcare Sector,” International Journal of Mathematical, Engineering and
Management Sciences, vol. 9, no. 6, pp. 1453-1482, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[19] Abdulmohsen Almalawi et al., “Managing Security of Healthcare Data for a Modern Healthcare System,” Sensors, vol. 23, no. 7, pp. 1-
18, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[20] Parag Rastogi, Devendra Singh, and Sarabjeet Singh Bedi, “An Improved Blockchain Framework for ORAP Verification and Data
Security in Healthcare,” Journal of Ambient Intelligence and Humanized Computing, vol. 15, pp. 2853-2868, 2024. [CrossRef] [Google
Scholar] [Publisher Link]

[21] Vijaykumar Mamidala, “A Diffie—Hellman Key Exchange Algorithm: Improving Cloud Data Security,” International Journal of
Advanced Research in Information Technology and Management Science, vol. 1, no. 1, pp. 88-99, 2024. [Google Scholar] [Publisher
Link]

[22] M. Natarajan et al., “Quantum Secure Patient Login Credential System using Blockchain for Electronic Health Record Sharing
Framework,” Scientific Reports, vol. 15, pp. 1-29, 2025. [CrossRef] [Google Scholar] [Publisher Link]

257

https://doi.org/10.1109/ACCESS.2021.3060317
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hiding+data+using+efficient+combination+of+RSA+cryptography+and+compression+steganography+techniques&btnG=
https://ieeexplore.ieee.org/abstract/document/9356603
https://doi.org/10.31940/matrix.v12i2.102-108
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Application+of+the+Blowfish+algorithm+in+securing+patient+data+in+the+database&btnG=
https://ojs2.pnb.ac.id/index.php/MATRIX/article/view/495
https://doi.org/10.1007/s00500-021-06512-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ECC-based+lightweight+authentication+and+access+control+scheme+for+IoT+e-healthcare&btnG=
https://link.springer.com/article/10.1007/s00500-021-06512-8
https://doi.org/10.1109/ACCESS.2024.3423714
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+secure+medical+data+sharing+framework+for+fight+against+pandemics+like+COVID-19+by+using+public+blockchain&btnG=
https://ieeexplore.ieee.org/abstract/document/10584433
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Security-driven+data+analytics+for+secure+patient+monitoring+in+healthcare+application+using+secure+hash+algorithm+%28256%29&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Security-driven+data+analytics+for+secure+patient+monitoring+in+healthcare+application+using+secure+hash+algorithm+%28256%29&btnG=
https://www.taylorfrancis.com/chapters/oa-edit/10.1201/9781003559085-29/security-driven-data-analytics-secure-patient-monitoring-healthcare-application-using-secure-hash-algorithm-256-moheshkumar-meenakshi-devi-karthick-kousika-nasir-akhtar-jamali
https://doi.org/10.33889/IJMEMS.2024.9.6.078
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+approach+of+modified+IDEA+with+1024+bits+key+to+enhance+security+and+efficiency+of+data+transmission+in+the+healthcare+sector&btnG=
https://www.ijmems.in/cms/storage/app/public/uploads/volumes/78-IJMEMS-24-0422-9-6-1453-1482-2024.pdf
https://doi.org/10.3390/s23073612
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Managing+security+of+healthcare+data+for+a+modern+healthcare+system&btnG=
https://www.mdpi.com/1424-8220/23/7/3612
https://doi.org/10.1007/s12652-024-04780-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+improved+blockchain+framework+for+ORAP+verification+and+data+security+in+healthcare&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+improved+blockchain+framework+for+ORAP+verification+and+data+security+in+healthcare&btnG=
https://link.springer.com/article/10.1007/s12652-024-04780-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Diffie%E2%80%93Hellman+key+exchange+algorithm%3A+Improving+cloud+data+security&btnG=
https://ijaritms.com/aritms/index.php/ijaritms/article/view/30
https://ijaritms.com/aritms/index.php/ijaritms/article/view/30
https://doi.org/10.1038/s41598-025-86658-9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Quantum+secure+patient+login+credential+system+using+blockchain+for+electronic+health+record+sharing+framework&btnG=
https://www.nature.com/articles/s41598-025-86658-9

