
SSRG International Journal of Electronics and Communication Engineering Volume 12 Issue 12, 241-257, December 2025

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12I12P120 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

End-to-End Security and Privacy Protection for

Healthcare Data Using AES-256 and Dynamic

Authentication

T. Rathi Devi1*, S. Nallusamy2, D. Sobya3, P. Divya4, P. S. Chakraborty5

1,2,4,5Department of Adult, Continuing Education and Extension, Jadavpur University, Kolkata, India.

3Department of Computer Science and Engineering, Institute of Engineering and Management,

University of Engineering and Management, Kolkata, India.

1Corresponding Author : revathi.rathi26@gmail.com

Received: 18 October 2025 Revised: 19 November 2025 Accepted: 18 December 2025 Published: 27 December 2025

Abstract - Security and Confidentiality of patient information are important in the modern healthcare system. Patient

information is often stored on digital platforms through digital health records, telemedicine, and remote monitoring. The

proposed work presents a cryptographic authentication framework for healthcare monitoring that uses AES-256 and Virtual

Password Authentication(VPF) to protect sensitive data. The Virtual Password Function (VPF) is a little trick that combines

a secret function with a code booking technique. This technique prevents unauthorized users from compromising security. It

mitigates password-based attacks. Patient data is stored in a completely encrypted way to meet healthcare privacy mandates.

The proposed system was developed in Java for encryption and matching authentication of processes. The implementation

uses AES-256 encryption to safeguard patient data. It includes custom authentication logic for managing virtual passwords.

The cloud uses encrypted end-to-end patient information and stores it in MySQL. The scalable and maintainable front-end

web interface and backend control logic are developed using Java JSP Servlet. The framework provides secure, adequate

protection of sensitive healthcare data in digital health ecosystems by leveraging strong encryption and adaptive

authentication. As shown by experimental results and security analysis, the proposed model is effective for healthcare

applications requiring high-level security. It offers relatively low execution, processing, key generation, and

encryption/decryption times, alongside enhanced security.

Keywords - Patient information, Cryptographic Authentication, AES-256 Encryption, MySQL, Java JSP Servlet.

1. Introduction
The rapid digitalization of healthcare systems has

increased the number of stores that use EHRs, telemedicine

platforms, and cloud-based medical data storage [1].

Although such innovations enhance the ease of healthcare

delivery, interoperability, and efficiency, they raise

significant privacy and security concerns [2]. Healthcare

systems are among the targets of cybercriminals due to the

increasing volume of sensitive patient data exchanged and

stored on open, distributed networks, such as medical history,

diagnostic results, and treatment details [3]. Many healthcare

facilities still use outdated authentication techniques, such as

fixed usernames and passwords, despite the existence of

legislative frameworks to protect the confidentiality of

patients' medical records [4]. These approaches can be

attacked by various processes, including phishing,

keylogging, brute-force attacks, malware injection, and

shoulder surfing [5]. A breach of access to healthcare

infrastructure can lead to data manipulation, identity theft,

service disruption, and even fatal consequences, as recent

research indicates that such attacks have been on the rise,

with alarming rates of credential theft and ransomware.

Modes of research and operation should be designed to

ensure high levels of end-to-end security for healthcare data

[6].

To ensure confidentiality of health data, past studies

have presented numerous cryptographic solutions, including

RSA, ECC, attribute-based encryption, blockchain-based

systems, and hybrid encryption systems [7]. This is because

many of these approaches cannot be used in real-time,

resource-constrained healthcare environments due to their

high computational complexity, longer latency, scalability

concerns, or the complexity of managing keys, despite their

greater confidentiality. A significant security weakness of

end-to-end protection is that authentication processes are not

dynamic and are vulnerable, and most past studies have

primarily focused on data encryption.

http://creativecommons.org/licenses/by-nc-nd/4.0/

T. Rathi Devi et al. / IJECE, 12(12), 241-257, 2025

242

Most healthcare platforms still use plaintext

authentication, putting them at risk of cyber threats, though

secure methods such as SSL/TLS are widely known to secure

data transmission. Phishing attacks, malware and trojans,

keyloggers, shoulder surfing, and hidden surveillance are

some common threats.

 Malicious attackers masquerade as trusted healthcare

providers to illegally collect login credentials and patient

information, and call this a phishing scam.

 Malware and trojans are malicious programs responsible

for stealing sensitive medical information.

 Keyloggers are programs that silently record your

keystrokes to gather passwords and private patient

information.

 In public spaces, such as clinics or hospitals, attackers

see medical personnel keying credentials.

 Cloaked Surveillance: The assailant can use hidden

cameras to track the user’s login behaviour and check the

photos to capture the password [8].

To protect users' passwords against the mentioned

threats, a new security mechanism is developed that allows

users to choose their virtual password scheme from less

secure to more secure. A security mechanism based on VPF

helps safeguard passwords while maintaining an acceptable

trade-off between security and complexity. The scheme

requires very little computation from the user's end. The

system proposes several functions, using a codebook

approach, to conduct security analysis. For user-specified

functions, secret little functions are used to secure them by

hiding important authentication processes and algorithms.

This method enhances password security to prevent

cyberattacks while remaining user-friendly.

Encryption techniques are important because encryption

algorithms enable secure data transmission and exchange—

an effective way to reduce loss with ransomware attacks [10].

Making EHRs unreadable and inaccessible to unauthorized

users through encryption can protect them from ransomware

attacks. Cloud-based apps help send different kinds of data,

like sound, images, and even text, despite changes in a

network’s properties. Healthcare has telemedicine, and

entertainment has social media platforms, which are common

examples. Various applications interface with text and

images, such as medical reports with diagnoses in

telemedicine.

In such cases, data transmission should proceed without

any hiccups. Asymmetric and symmetric cryptography

protect the data stored in the cloud. Here, key generation is

based on key size to ensure security [11]. The analysis of

asymmetric algorithms is much more intensive, as they are

generally more complex than symmetric algorithms,

requiring longer key lengths to balance. Besides, for data

security, Digital Signature Algorithm (DSA), Rivest-Shamir-

Adleman (RSA), Blowfish, and Elliptic Curve Cryptography

(ECC) are other cryptographic techniques.

DSA ensures “Document Integrity” and “Document

Authenticity” by generating a unique digital signature using

the private key and validating it with the public key

associated with the document to attest to the document's

originality and prevent tampering [12]. RSA utilizes a pair of

keys to encrypt any data. It is used for encrypting patients’

medical data. RSA encryption creates a complex ciphertext

that is hard to crack due to its high computational

requirements. Thus, it has been one of the most researched,

most reliable, and elegantly designed cryptographic keys

[13]. The Blowfish algorithm makes medical data secure by

strengthening its F-function to generate very strong round

sub-keys. Thus, it is differentially attack-resistant. Blowfish

secures both textual and graphical data [14]. ECC, which

stands for Elliptic Curve Cryptography, is an encryption

system that relies on the algebraic structure of elliptic curves

over finite fields. It needs fewer keys than non-EC

Encryption methods and offers equivalent security. Digital

signatures, key agreements, and other cryptographic

functionalities are helpful and can be integrated with

symmetric encryption algorithms to enhance security

indirectly. Moreover, they are computationally intensive and

take longer to process [15].

To reduce security threats, the encryption model was

enhanced to make it harder to breach or access without

authority. Using an AES-based cryptosystem can reduce

security risks and attacks. The mentioned encryption model

uses AES encryption to convert medical images into

ciphertext, thereby increasing the data's security.

Fig. 1 Schematic representation of cryptographic encryption workflow

To begin with, cryptography was primarily used to

safeguard state secrets and other strategic information. Over

time, it has found wide application across various fields,

primarily in security. The basic idea of cryptographic keys is

to encrypt and decrypt data. Plaintext is information that does

not require software to read and understand. Encryption is

the transformation of plaintext into ciphertext so that it no

longer makes sense and appears entirely different from the

T. Rathi Devi et al. / IJECE, 12(12), 241-257, 2025

243

original text. It ensures that data is not outputable by

unauthorized people or anyone who can access the final

result. The ciphertext is decrypted to obtain the plaintext.

Figure 1 visually represents the encryption and decryption

workflow.

A cryptography algorithm, or cipher, is a mathematical

function used to encrypt and decrypt data. It operates

alongside a keyword, number, or phrase for authenticating

plaintext, with different keys generating distinct ciphertexts

from the same plaintext. Security of encrypted data depends

on both the robustness of the cryptographic method and the

confidentiality of the key. Essentially, cryptographic

algorithms use either public or private keys to perform their

functions.

Research Gap: In current healthcare security solutions,

there is a gap in adaptive, attack-resistant authentication

processes. These systems ought to be capable of resisting

credential-based attacks without augmenting user complexity

or computational expense, even though techniques such as

AES-based strong encryption can effectively ensure the

confidentiality of data. There is limited information on how

to secure electronic health record systems stored in the cloud

against phishing, replay, and keylogging attacks using

lightweight encryption and dynamic authentication.

Problem Statement: An end-to-end healthcare security

model is suggested, which combines the AES-256-based

encryption algorithm with a dynamic authentication

approach, based on Virtual Password Function (VPF). The

encrypted data of patients is stored in the cloud as session-

specific passwords of the virtual type created due to secret

functions and a code booking procedure. The framework,

implemented with Java JSP Servlet and MySQL, is compared

to available practices and proves to be highly secure, with low

computational costs, and appropriate in the context of real-

time healthcare settings.

Motivation: The protection of patient data in cloud-based

healthcare systems has been a critical research topic

supported by the use of encryption techniques. Nonetheless,

conventional algorithms with large key sizes occupy a lot of

memory space and require a lot of power. To resolve this

issue, the proposed AES-256 algorithm is used for the

adequate storage and retrieval of patient data.

1.1. Significant Contributions of Proposed Work

 This research presents the advanced AES-256

encryption, which efficiently consolidates various data

inputs, optimizing the process while strengthening data

integrity and security.

 The proposed methodology follows acknowledged

privacy legislation and data security standards. It

effectively meets regulatory criteria through

guaranteeing transparency and strong security measures.

The paper is structured as follows: Section 2 provides a

review of existing literature on securing patient-medical data

mechanisms. Section 3 outlines the proposed system

description, while Section 4 presents the proposed approach

to implementing such a mechanism. Section 5 evaluates the

effectiveness of the method compared to previous techniques,

highlighting performance measures and discussing the

results. Finally, Section 6 summarizes the findings and offers

suggestions for further research.

2. Related Works
Cryptography and distributed systems for protecting

healthcare information. Several studies have focused on

healthcare information. Capraz et al. [16] suggested sharing

medical data using the blockchain and a ChaCha20-Poly1305

encryption method, and even divided a file into parts to make

it more secure and difficult to compromise. The rate of

encryption of this technology is very low and therefore could

not be applicable to real-time healthcare, although it

improves data protection. In the context of healthcare data

analytics, Moheshkumar et al. [17] provided a patient

monitoring system that utilized patient data secured by SHA-

256. This is a better method of increasing data integrity, and

it opens the system to unwanted access as it fails to go to the

extent of ensuring privacy.

Hadad et al. [18] suggested that they would make their

approach of Modified IDEA more robust to allow transfer of

healthcare data through encryption of healthcare information

with a 1024-bit key. The key size is highly exaggerated in its

strength by the complexity of computation. In order to protect

medical records that were stored on cloud servers against

cybercriminals, Almalawi et al. [19] recommended a Serpent

encryption system that was pegged on Lionized Remora

Optimization, but since the system was costly to implement,

it could not be applied broadly. In providing security in health

care, Rastogi et al. [20] used a blockchain system to carry out

Darkie-Hellman Galois-Elliptic Curve Cryptography. This

approach has delays in processing in real-time applications.

The issue of scalability of cloud systems continues to exist,

although Vijaykumar et al. [21] used Diffie-Hellman key

exchange to improve cloud data security.

According to these studies, the current methods can

improve either encrypted data or access control and are

commonly linked with a higher level of complexity, latency,

or overhead of implementation. The unexploited requirement

of dynamic, attack-resistant authentication processes is the

motivation behind the proposed system, which is founded on

AES-256 and VPF.

2.1. Evaluating Existing Solutions and Comparing Them to

Benchmarks

The existing healthcare security designs utilize

Federated Learning (FL), advanced cryptography, and

blockchain to safeguard the patient. Although blockchain-

T. Rathi Devi et al. / IJECE, 12(12), 241-257, 2025

244

based solutions have the following benefits, immutability and

decentralization, they cause limitations to scalability, storage

overhead, and high transaction latency that are not

appropriate to real-time EHR systems.

Despite FL-based models having superior data privacy

due to local storage, they are susceptible to poisoning attacks,

complicated in nature regarding synchronization, and

expensive to communicate. Although they significantly

ameliorate security, complex cryptographic constructions

like attribute-based encryption, Modified IDEA, Serpent-

based optimization plans, and Diffie-Hellman-based schemes

have been linked with enormous increases in processing

latency, cost of implementation, and computing complexity.

The design offered, nevertheless, has low encryption,

execution, and key-generation time and minimizes the impact

of credential-based attacks; this is by combining the use of

AES-256 encryption with a dynamic authentication scheme

utilizing the Virtual Password Function (VPF). The gap

analysis shows that the proposed solution is innovative and is

not related to other solutions in the healthcare security

domain that use blockchain, FL, or cryptography. The

solution is scalable, lightweight, and real-time.

2.2. New Development and Regulatory Compliance

Healthcare security research has recently focused on

blockchain technology, Federated Learning (FL), and

privacy-preserving approaches such as secure multi-party

computation and differential privacy. Even though

blockchain technology may enhance auditability and

integrity, it complicates scalability and latency. Although

centralised storage can be eliminated and data privacy

enhanced, FL is prone to inference attacks and has high

communication overhead. Advanced encryption algorithms

are used to increase computational cost and enhance

confidentiality. Regulations, such as GDPR and HIPAA, all

require data minimization, auditability, encryption, and strict

control over access, which are equally essential for

compliance. Many existing solutions lack a good balance

between compliance and efficiency in security. The

suggested framework includes data encryption, access

controls, and limited credential exposure, all of which

promote practical compliance.

Table 1. Summary of existing security approaches for protecting healthcare data, including their core operations and identified challenges

Ref. Research Author Title Operations Challenges

[16] Seval Capraz et al

A secure medical data-

sharing framework using

a public blockchain to

combat pandemics like

COVID-19.

ChaCha20-Poly1305

encryption enhances security by

dividing files into 80 segments,

requiring 29 segments for

reconstruction, making it an

efficient and reliable choice for

safeguarding medical data.

However, it runs more

slowly when encrypting data.

[17]
G. Moheshkumar

et al

Secure data analytics for

patient monitoring in

healthcare applications

employing the Secure

Hash Algorithm (SHA-

256).

This study proposes improving

healthcare data analytics for

secure patient monitoring by

applying a security-driven

strategy based on SHA-256.

Nonetheless, it raises

substantial privacy concerns,

increasing the danger of data

breaches and illegal access.

[18] Bilas Haldar et al

A modified IDEA with a

1024-bit key improves

the security and

efficiency of data

transmission in

healthcare.

MIDEA ensures safety against

attacks by converting the given

plaintext to ciphertext by using

64-bit blocking, substitution,

and permutation. Furthermore,

the overall method is

cryptographically strong. Thus,

it can be used for encryption

and decryption with a 1024-bit

key.

Due to the increased bit size,

computational complexity is

increased.

[19]
Abdulmohsen

Almalawi et al

Securing Healthcare

Data for a Modern

System

The Lionized Remora

Optimization-based Serpent

(LRO-S) encryption method

improves healthcare

information protection by

encrypting patient data stored

in the cloud.

Reducing privacy breaches and

Nonetheless, due to the high

costs, the implementation

process hinders the adoption

of this technique.

T. Rathi Devi et al. / IJECE, 12(12), 241-257, 2025

245

cyber-attacks.

[20] Parag Rastogi et al

Enhanced blockchain

framework for ORAP

verification and

healthcare data security.

Improving patient care while

reducing costs through efficient

use of medical resources,

initially secured by encrypting

the resource provider’s IoT data

using Diffie-Hellman Galois–

Elliptic Curve Cryptography

(DHGECC).

Nevertheless, it experiences a

processing delay in real-time

scenarios.

[21] VijayKumar et al

A Diffie-Hellman Key

Exchange Algorithm:

Improving Cloud Data

Security: Cloud Data

Security

DHKEA enhances cloud

security by enabling secure

cryptographic key exchange

over open networks, addressing

threats in decentralized

environments.

However, they often struggle

to accommodate the

dynamic, interconnected

nature of cloud

infrastructure.

3. Proposed Model Description
In modern healthcare systems, patient information

security and confidentiality are of utmost importance. The

risks of cyberattacks and data breaches have increased

dramatically as people rely more on EHRs, telemedicine, and

remote patient monitoring. To securely protect medical data

from unauthorized access, this research proposes an

advanced AES-256 algorithm for efficient encryption. The

novel VPF-based password generation mechanism is

employed to resist cyber-attacks, comprising a secret little

function and code booking approach. It provides strong

security by preventing unauthorized access and reducing the

vulnerabilities found in traditional password-based systems.

Figure 2 shows the overall block diagram of the proposed

model.

For uploading or downloading medical data in the EHR

form by the patient or healthcare provider for the first time,

they need to register. In the registration phase, the user

downloads a random jar file from 11 jar files, each containing

a unique expression, which is stored in the database for

authentication purposes. After registration, users log in by

entering their username and password. After logging in to the

system, it generates an access key on the next page to prevent

cyberattacks. The associated textbox is left empty instead of

auto-filling the details. The user retrieves a session-specific

access key, runs a JAR file on a Java-compatible device, and

calculates an expression. AES-256 encryption protects

patient records by converting them into unintelligible

ciphertext, preventing unauthorized access. Only authorized

users can decrypt and access EHRs. If it is wrong, access is

blocked, and re-authentication is required.

3.1. System Architecture and Protocol Description

The many layers that comprise the proposed system

architecture include user devices, authentication systems,

encryption systems, and cloud-based electronic health record

storage. It has a web or mobile interface through which user

entities, including healthcare providers and patients, can

interact with the system. The parameters of a codebook and a

Virtual Password Function (VPF) are safely registered and

stored on the server. The server issues a random challenge

during the login process, which the VPF locally processes to

produce a custom session credential. Patient-related

information is encrypted with AES-256 before transmission

and stored in the cloud database after successful

authentication. Access to and decryption of data are restricted

to verified users. The formal processes in the sequential

implementation of the protocol are session termination,

authentication, dynamic credential computation, challenge

generation, and registration. This structured architecture and

protocol flow offer scalability, resistance to attacks, and are

helpful in health care systems in real time, allowing

unambiguous separation between authentication, encryption,

and storage.

3.2. Key Management Processes

The proposed system is based on a systematic key

management process to protect cryptographic keys

throughout their existence. AES-256 symmetric keys are

generated by using a cryptographically safe random number

generator when a user logs into the server. There is a

reduction in the risk of key compromise when each key is

used once and never reused. A key broadcast is never done in

plaintext across the network; it is used solely to encrypt and

decrypt patient data.

Quite to the contrary, there are server-side secure key

derivation and storage techniques. To ensure forward

secrecy, session keys are automatically invalidated whenever

the user logs out or a session expires. In addition, the Virtual

Password Function helps ensure that cryptographic material

does not leak through the authentication channels by not

relying on encryption keys. It will enhance the system's

security by separating authentication credentials and

encryption keys. The specified key issuance, use, storage, and

revocation processes ensure controlled access, the secrecy,

and the integrity of healthcare data.

T. Rathi Devi et al. / IJECE, 12(12), 241-257, 2025

246

3.3. Validation of Security Properties

The security features of the proposed framework are not

validated using formal cryptographic proofs; rather,

analytical reasoning and a specified threat model are used.

The adversaries in the model assume they can perform attacks

such as phishing, replay attacks, keylogging, and credential

theft. Examples of authentication methods that offer these

security measures include dynamic generation of virtual

passwords, non-credential reuse, and challenge-response-

based authentication using sessions. When applied with the

generally accepted adversarial assumptions in realistic

security studies, these strategies ensure that these attacks are

resisted.

Fig. 2 Block diagram of the proposed model

4. Proposed System Modeling
4.1. AES-256-Based Encryption Algorithm

Encryption is a widely used method for securing

sensitive data, transforming plain text into ciphertext

composed of random characters. Only those with the

designated key can decrypt this encoded information (Figure

3).

Fig. 3 Symmetric key encryption

4.2. AES Encryption Algorithm Modes

Block ciphers are designed to securely process large data

streams without compromising security, and they encrypt

data in fixed-size blocks, so identical plaintext produces

identical ciphertext, since a deterministic algorithm does that.

As a result, attackers may attempt to recover m by noticing

repeated message parts. There are approaches for masking the

output of ciphers.

The process works in such a way that a block of known

plaintext is combined with a block formed from ciphertext.

Therefore, the next round of encryption will use a modified

input, which improves security. There are five standardized

modes of operation:

T. Rathi Devi et al. / IJECE, 12(12), 241-257, 2025

247

4.2.1. Electronic Code Book (ECB)

In this mode, each block of plaintext is converted into a

single ciphertext using the same key. Typically, this mode is

appropriate for messages less than the block length. Longer

communications that require encryption are first separated

into properly sized blocks, with the final block padded as

needed. As a result, the ECB approach is commonly

employed to encrypt small amounts of data, providing some

resistance to future cyberattacks.

4.2.2. Cipher Block Chaining

This mode requires that identical plaintext blocks

produce different ciphertext blocks. To do this, cipher block

chaining allows for an XOR operation between each plaintext

block and the ciphertext from the previous round, all while

using the same encryption key.

4.2.3. Cipher Feed Back (CFB)

Cipher Feedback mode makes it easier to convert a block

cipher into a stream cipher, reducing the need for padding to

ensure the message adheres to an integral number of blocks.

Fig. 4 AES schematic diagram

4.2.4. Output Feed Back (OFB)

OFB mode is quite similar to CFB mode. However, there

is an internal feedback mechanism to ensure that identical

plaintext blocks do not generate identical ciphertext blocks.

This mechanism operates independently of plaintext and

ciphertext bit strings.

4.2.5. Counter (CTR)

Each block of plain text is encrypted with a different

counter value. While creating the ciphertext block during the

encryption process, the plaintext is XORed with the

encrypted counter. Decryption processes in the opposite

direction, using the same counter values and XOR to recover

the original plaintext. The main benefits of this mode include

clear architecture, resource efficiency, and enhanced

hardware and software security.

The AES algorithm operates through four key steps in

each encryption round, as depicted in Figure 4.

The Key Expansion procedure creates round keys from

cipher keys, producing separate 128-bit round key blocks for

each encryption round, plus an additional one.

Sub Bytes: Substitutes each byte with a predetermined

lookup table (S-box) for increased security, as depicted in

Figure 5. Byte substitution is the AES algorithm's only

nonlinear operation and is critical to its security. AES

employs 16 identical S-boxes, each handling an 8-bit input

and producing an 8-bit output in tandem. Byte replacement

replaces each byte in the algorithm state with a new byte in a

nonlinear fashion.

Fig. 5 Sub bytes step updates each byte in the array using an 8-bit s-

box

The S-box generation in AES follows two steps:

 In GF (2⁸), a byte is turned into its multiplicative inverse,

except for element 0, which maps to itself.

 The output undergoes an affine transformation, which

involves multiplying each byte by a constant matrix and

adding an 8-bit hexadecimal constant vector {63}, as

specified in (1).

(

𝑏7
𝑏6
𝑏5
𝑏4
𝑏3
𝑏2
𝑏1
𝑏0)

=

(

11111000
01111100
00111110
00011111
10001111
11000111
11100011
11110001)

×

(

𝑎7
𝑎6
𝑎5
𝑎4
𝑎3
𝑎2
𝑎1
𝑎0)

⊕

(

0
1
1
0
0
0
1
1)

 (1)

Shift Rows is a transposition step that changes the rows

of a data matrix to introduce diffusion: the row-shift

procedure cyclically adjusts each row of the algorithm state

T. Rathi Devi et al. / IJECE, 12(12), 241-257, 2025

248

using various displacement amounts (Figure 6). The initial

row is unchanged, while the second and third rows are rotated

by 3-byte and 2-byte right shifts, respectively. The

transformation substantially improves diffusion in the AES

algorithm, thus enhancing security.

Fig. 6 The function cycles through the state's rows, shifting bytes by a

specific offset

Mix Columns: A mixing operation that transforms each

column using mathematical functions to strengthen

encryption, as given in Figure 7.

Fig. 7 An invertible linear transformation combines four bytes from

each state column

A column-blending transformation is a process that

individually applies a blending operation to each column in

the algorithm state. Each column is regarded as a polynomial

with coefficients in GF (2⁸), multiplied by a fixed

polynomial 𝑐(𝑥), then modularly reduced using the

polynomial (𝑥⁴ + 1).

𝑐(𝑥) = {03}𝑥3 + {01}𝑥2 + {01}𝑥 + {02} (2)

Each byte in the algorithm state is transformed into a new

value, determined by its relationship with the four bytes in

the column.

Fig. 8 Round key combined

Add Round Key: A step in which the transformed data is

combined with a round key using bitwise XOR for added

security, as illustrated in Figure 8.

A round key addition involves a bitwise XOR operation

between the 16-byte algorithm state matrix and the 16-byte

subkey. Subkey is derived through key expansion from the

initial key.

[

𝑎0,0 𝑎0,1 𝑎0,2 𝑎0,3

𝑎1,0 𝑎1,1 𝑎1,2 𝑎1,3

𝑎2,0 𝑎2,1 𝑎2,2 𝑎2,3

𝑎3,0 𝑎3,1 𝑎3,2 𝑎3,3

]⨁

[

𝑘0,0 𝑘0,1 𝑘0,2 𝑘0,3

𝑘1,0 𝑘1,1 𝑘1,2 𝑘1,3

𝑘2,0 𝑘2,1 𝑘2,2 𝑘2,3

𝑘3,0 𝑘3,1 𝑘3,2 𝑘𝑎3,3]

=

[

𝑏0,0 𝑏0,1 𝑏0,2 𝑏0,3

𝑏1,0 𝑏1,1 𝑏1,2 𝑏1,3

𝑏2,0 𝑏2,1 𝑏2,2 𝑏2,3

𝑏3,0 𝑏3,1 𝑏3,2 𝑏3,3]

 (3)

Mix Columns is a mixing step that combines four bytes

from each column to spread diffusion across the state matrix.

Moreover, in the last round, Mix Columns is skipped, leaving

only SubBytes, ShiftRows, and AddRoundKey.

 Generate round keys from the cipher key.

 Set the state array and apply the initial round key.

 Perform standard rounds (1 𝑡𝑜 9) executing all four

transformations.

 Execute the final round, omitting Mix Columns.

 Output the ciphertext chunk from the last round.

Key expansion algorithm: AES is a symmetric block

cipher with a 128-bit block length that supports three

different key sizes: 128, 192, and 256 bits. AES operates on

a symmetric key encryption model, meaning a single secret

key is used for both encryption and decryption. The

encryption process varies depending on the key length, as

listed in Table 2.

Table 2. AES-256 algorithm block, key size, and number of rounds

AES Algorithm 128-bit 192-

bit

256-bit

Key Size 4 6 8

Number of Rounds 10 12 14

Block Size 4 4 4

During encryption, multiple transformations are applied

to data blocks in a series of rounds. The number of rounds is

based on the key length. Ten rounds for 128-bit keys. 192-bit

keys have two rounds, and 256-bit keys have fourteen rounds.

These rounds encrypt data by changing data at every level to

increase security. The AES algorithm is controlled by rounds,

with four key functions in each encryption and decryption

round. The encryption rounds are SubByte, ShiftRows,

MixColumn, and AddRoundKey.Meanwhile, the decrypting

InvShiftRow, InvSubByte, AddRoundKey, InvMixColumn.

The last round has a slight variation and requires three

T. Rathi Devi et al. / IJECE, 12(12), 241-257, 2025

249

functions. This system will allow data to be safely

transformed.

Fig. 9 Key expansion algorithm

In the AES algorithm, subkeys are generated recursively,

meaning that to compute subkey 𝑤ᵢ, the preceding subkey

𝑤ᵢ₋₁ must be known. The fundamental unit for key expansion

in AES is a 32-bit word. The key expansion algorithm takes

4 words as input and produces a 1D array of 44 words.

Initially, the AES key serves as the first 4 keywords in

the extended key array. Subsequently, every newly generated

set of 4 keywords is appended to the remaining portion of the

extended key array. Within this array, each new keyword 𝑤ᵢ
is derived from 𝑤ᵢ₋₁ 𝑎𝑛𝑑 𝑤ᵢ₋₄. Additionally, a specialized

function 𝑔 is applied to compute keywords whose array index

is a multiple of 4.

From Figure 9, 𝑤𝑖 keyword is computed as,

𝑤𝑖 = {
𝑤𝑖−4 ⊕ wi−1; i mod 4 ≠ 0

𝑤𝑖−4 ⊕ g(wi−1); i mod 4 = 0
 (4)

Function 𝑔 () is a non-linear transformation that

processes a 4-byte input to generate a 4-byte output. First, the

four input bytes undergo a left cyclic shift of 1 byte. Next,

each of the four bytes is substituted using S-box

transformations. Finally, the transformed byte is XORed with

round constant 𝑅𝑐𝑜𝑛[𝑗], which is a 32-bit word where only

the leftmost byte holds a nonzero value.

The key keyword undergoes an XOR operation with the

round constant, which involves explicitly XORing the first

byte positioned to the left of the round constant. Each round

has a distinct round constant, defined as 𝑅𝑐𝑜𝑛[𝑗] =
 (𝑅𝑐[𝑗], 0,0,0), where 𝑅𝑐[1] = 1 and subsequent values

follow the relation 𝑅𝑐[𝑗] = 𝑅𝑐[𝑗 − 1] × 2, with

multiplication performed in 𝐺𝐹(2⁸). Table 3 provides the

hexadecimal representation of the ten round constants used in

the AES algorithm.

Table 3. Hexadecimal representation of rounds

𝒋 𝑹𝒄[𝒋]
1 01

2 02

3 04

4 08

5 10

6 20

7 40

8 80

9 1B

10 36

The round constants used in AES ensure that no two

round keys in the AES key expansion are alike and are not

susceptible to cryptanalysis. In this way, data is modified at

each stage to achieve the required level of encryption for data

protection. After using the AES-256 algorithm for effective

encryption of the medical data, authentication follows.

4.3. Virtual Password Authentication

To authenticate a user, a system (𝑆) must confirm their

identity (𝑈) by verifying the user-provided credentials: a

password (𝑋) and user ID (𝑈). This authentication process is

denoted as 𝑆 → 𝑈: 𝑈, 𝑋, where 𝑆 verifies 𝑈 using these fixed

credentials. Because both 𝑈 and 𝑋 remain unchanged,

passwords are designed for easy recall. However, this

convenience makes them susceptible to theft, allowing

adversaries to gain unauthorized access to a victim’s account.

While making 𝑋 a random variable could enhance security, it

would make it difficult for users to recall their passwords. To

address this challenge, we introduce a virtual password

scheme, which dynamically generates passwords while

maintaining usability and security.

A virtual password is a dynamically generated

authentication credential, uniquely created each time through

a virtual password scheme and subsequently sent to the server

for validation. The virtual password scheme (𝑃) comprises

two elements: a static alphanumeric value (𝑋), referred to as

the hidden password, and a function (𝐹) that operates within

a predefined letter space (𝜓). This function, referred to as the

T. Rathi Devi et al. / IJECE, 12(12), 241-257, 2025

250

virtual password function, generates a virtual password (𝑉)

used for authentication. VPF includes hidden parameters

(𝐻), which serve as confidential elements shared between the

server and the user. If such parameters exist, the function is

denoted as 𝐹𝐻 (. . .). The hidden password 𝑋 is represented

as a vector 𝑥1, 𝑥2, … , 𝑥𝑛, where 𝑥𝑖 𝑓𝑜𝑟 (𝑖 = 1,2, … , 𝑛) is a

digit, and 𝑛 is the length of the password. Similarly, a random

number (𝑅), called random salt, is provided by the server and

displayed on the login screen as 𝑟1, 𝑟2, . . . , 𝑟𝑛. The virtual

password (𝑉), expressed as 𝑣1, 𝑣2, . . . , 𝑣𝑛 is used for

authentication. User submits (𝑈, 𝑉), 𝑤ℎ𝑒𝑟𝑒 𝑈 is the user ID.

On the server side, the system computes 𝑉 using the same

function and compares it with the submitted password. This

process is represented as 𝑉 = 𝐹𝐻 (𝑋, 𝑅) 𝑜𝑟 𝐹𝐻 (𝑥𝑖 , 𝑟𝑖),

ensuring secure authentication.

The server efficiently verifies a user if 𝐹 is a bijective

function, as it allows straightforward authentication.

However, even if F is not bijective, the system still

authenticates the user by retrieving their record from the

database using their user ID (𝑈), computing 𝑉, and

comparing it with the provided password. A bijective

function simplifies the process by enabling the system to use

a reverse function to derive 𝑉, and this assumption is not

mandatory. To enhance security and flexibility, users should

be able to choose their own hidden password. A jar-file

security mechanism is introduced, allowing users to choose a

VPF that aligns with their preferred security level, as

illustrated in Figure 10.

Fig. 10 User login and registration

4.3.1. Registration Module

In the registration module, users (Patients, Doctors,

Nurses, Healthcare Technicians) register their accounts. At

first, it offers a combination of 11 unique jar files, each

containing a distinct, small encryption function. A jar file is

downloaded with a random value, then merged with their

account.

4.3.2. Login Module

Once registered, the user enters the login module where

security measures are enforced. At first, the user gives a

username and password for authentication. The system

generates a one-time key for that session only; it is generated

elsewhere, not the one created during registration, to prevent

replay attacks. The login system includes an appropriate text

box for the user to enter a dynamic key.

The value needs to be entered in an empty text box is

computed as: the previously installed JAR files are opened by

the user on a Java-compatible device. In which the session-

specific access key is entered. By using predefined

mathematical expressions, the jar file processes the access

key based on the “Secret Little Function” generated during

the registration module. Based on the encoded logic, the

output key is computed and entered in the designated text box

for authentication within the jar.

4.3.3. Validation

Validating the Generated Key

The key generated on a Java-compatible device or

emulator is entered by the user into the system text box if the

entered value matches the server's secret logic and access

key. If the value is correct, then access to EHR data (Read

patient health records, prescribe medications, publish lab

results, and manage hospital staff tasks) is granted. If the

provided key value is incorrect, the access is permitted.

If the key is incorrect, access is denied, and the user may

be prompted to retry or reauthenticate.

4.4. Secret Little Functions

The most effective security strategies involve allowing

users to define custom encryption functions or programs.

Since these functions remain private between the user and the

server, and the range of possible functions is vast and

complex, this method ensures a high level of security, even

for simple functions. Historically, classical encryption

methods relied on keeping the encryption algorithm itself

secret. Today, algorithms are open, and encryption keys are

kept secret in modern cryptography.

The key shift happened because secret algorithms

prevent communication and compatibility between systems,

for instance, in commercial applications and networking

protocols. Thus, the modern cryptographic schemes prefer to

keep keys secret since they are usually small data elements

and make the algorithm public. The proposal enhances

security, promotes interoperability, and enhances

transparency of encrypted data, as shown in Table 4.

T. Rathi Devi et al. / IJECE, 12(12), 241-257, 2025

251

Table 4. First step in user registration

Select your preferred PIN registration method from the following

options:

 Default Option [Default ()]: No virtual function is used.

 Recommended Virtual Function (): A suggested encryption

function is applied.

 Custom Functions:

 Function B = XXX

 Function B = YYY

 Function B = ZZZ

 User-Defined Function: A unique function set by the user, shared

securely between the user and the server.

 System-Defined Function with Adjustable Security Levels:

Choose a security level: Low (), Medium (), High (), or Very

High ().

 User-Defined Program: A custom encryption program written in

Java, shared between the user and the server.

Share-Little Function is a security approach in which

users define their own encryption functions rather than

relying solely on secret keys. Since only the user and the

server know the function, and the range of possible functions

is infinite, even simple functions become highly secure.

Traditional ciphers often used secret encryption algorithms,

and modern ciphers keep algorithms public while protecting

the encryption keys. Having algorithms open ensures that

other systems, such as Wi-Fi, remain interoperable as they

communicate across different manufacturers. Nonetheless,

for private user-server interactions, the use of secret

encryption algorithms makes attacks hard.

Fig. 11 User access code generation

From Figure 11, the random-access key is classified into

𝐾1, 𝐾2, 𝐾3, and a secret value is utilized to influence each

part (𝐾1 + 𝑋), (𝐾2 − 𝑋), (𝐾3 ∗ 𝑋). These modified values are

given as a secret function (𝐾1 ∗𝐾2 ∗𝐾3) + (𝐾1 + 𝐾2 + 𝐾3).

At last, the final access key is generated to encrypt patient

information. Password cracking becomes much harder

because bridge passwords are generated through secret

calculations. It has strong defence against attacks such as

phishing, keylogging, brute-force attempts, and more to

secure data access.

Safety is the one concern. It could be said that the user

will not be able to create any safe function. Even decision

functions are secure. The attacker does not know which

function was chosen. Hence, the level of safety is still high.

The password modification techniques are:

 Alter a single bit in the password.

 Modify one digit in the password.

 Increase each odd digit by one and decrease each even

digit by one.

 Triple the first digit of the password.

 Compute the password as an integer from ASCII codes,

then apply the formula: 100x + birthdate, where x

represents the transformed password.

 Reverse even bits of the password in its binary

representation.

 Additional variations and modifications as needed.

These techniques introduce randomness and complexity

to password generation, enhancing security against

unauthorized access.

4.5. Code Booking

When the user does not have the helper application, they

compute their dynamic password using a virtual function,

with a random salt and a manually computed constant virtual

password component. The virtual function needs to be simple

enough to perform without a mobile device (Manual

Computation). Changing your password is done in a similar

way to conventional methods: to select a new password, a

new virtual function, or both. In any case, the process needs

to memorise your updated virtual password. The importance

of the virtual function is the assurance of security when a

recommended function is used. With the sheer volume of

functions available, careful selection will help avert threats.

Virtual functions, when designed effectively, can enhance

resilience against phishing, keyloggers, and shoulder-surfing

attacks.

 The function must receive random input from the server,

ensuring different input values for different users and for

each user's login. Keyloggers cannot capture and reuse

the password since the actual password is never typed

directly.

 User-friendly design. As complexity increases, so does

T. Rathi Devi et al. / IJECE, 12(12), 241-257, 2025

252

security; too many complicated functions can be

complex for users to remember and/or use, and we strive

to create virtual functions that are both secure and

manageable.

 The password functionality should hide its secrets so no

one can discover any information from the user’s

password. This prevents thieves who use stolen

passwords from getting into places they should not be.

 The actual equivalent password must not be computable

from the function, even if attackers obtain its potential

information.

They provide guidelines for the effective design of

virtual functions. Although there are zero-knowledge

authentication protocols, they are often computation-

intensive and therefore not applicable. Moreover, some

functions can appear harmless and are unsafe upon closer

review.

Using fake passwords is an effective way to protect

against phishing attacks. For this, users need only a small

codebook, which can be easily carried as a printed card or

stored on a PDA or mobile device. It would be unrealistic to

ask users to memorize an entire codebook. A zero-knowledge

interactive proving protocol would be the best solution.

However, current constraints do not allow for this. As far as

security is concerned, the machine that will be used as a

server must have sufficient computational power to run a

cryptographically secure Random Number Generator (RNG).

This safeguard prevents the system from being compromised

if the user’s book is ever hijacked. In such cases, the user

requests a new codebook without altering RNG’s parameters.

It is important to note that Linear Congruential Generators

(LCGs) do not meet the standards of cryptographically secure

RNGs.

The initial codebook design is simple. During the setup

process, the user selects the desired password length, denoted

as 𝑛. The server then generates 𝑛 random numbers, each

consisting of 10 digits. For instance, if the system is securing

a 4-digit PIN (𝑖. 𝑒. , 𝑛 = 4), the server provides four random

numbers: 𝑋0, 𝑋1, 𝑋2, and 𝑋3, each containing 10 digits. The

digits of 𝑋𝑖 is represented as (0), 𝑥(1), 𝑥(2), … , 𝑥(9). The

user’s codebook is structured accordingly.

𝑥(0,0),𝑥(0,1),𝑥(0,2),… ,𝑥(0,9)
𝑥(1,0),𝑥(1,1),𝑥(1,2),… ,𝑥(1,9)

𝑥(2,0),𝑥(2,1),𝑥(2,2),… ,𝑥(2,9)
𝑥(3,0),𝑥(3,1),𝑥(3,2),… ,𝑥(3,9)

 (5)

It is up to the user to choose whether to save or memorize

the codebook. To log in, the system displays a four-digit

random number 𝑅 = 𝑎𝑏𝑐𝑑, with each letter representing a

digit. The virtual password for the user to type in is:

(𝑥(𝑖, 𝑎)𝑥(𝑖, 𝑏)𝑥(𝑖, 𝑐)𝑥(𝑖, 𝑑)) (6)

For security evaluation, phishing attacks are the primary

focus, as they represent the most aggressive form of attack

where the adversary has control over the random number R.

In each instance, the attacker provides a fraudulent random

number R to the victim. If successful, the attacker gains

access to four corresponding digits from the codebook.

Consequently, the probability that the attacker correctly

guesses a single digit of the password depends on the

likelihood that the system requests the same position,

combined with the probability that the system asks for any of

the other nine positions and that the attacker correctly guesses

it.
1

5
+

9

10
×

1

10
≈

1

5
 (7)

The probability of an attacker successfully breaching a

victim's account after a single phishing attempt is calculated

as (0.2)2 = 1⁄625. However, since attackers often execute

multiple phishing attempts, victims remain unaware during

the initial rounds. To maximize the amount of stolen

information, the attacker requests different password

positions in each attempt.

Let 𝑝 represent the number of successful phishing

attempts targeting the same user, 𝑛 denote the password

length, and 𝑠 indicate the number of unique symbols available

for each digit (in this case, 𝑠 = 10). The probability of an

attacker successfully accessing a victim's account is

determined using a specific formula based on these

parameters.

(
𝑝

𝑠
+

𝑠−𝑝

𝑠
×

1

𝑠
)

𝑝

= (
1+𝑝

𝑠
−

𝑝

𝑠2)
𝑝

 (8)

When the system uses this codebook and gets the

following Table 5 outcome.

A conventional PIN code typically consists of four

Arabic digits, providing a key space of size 10 in a phishing-

free environment. Without virtual password protection, a

single successful phishing attack can completely compromise

the PIN. The codebook approach significantly reduces the

likelihood of a breach, as repeated phishing attempts alert the

victim, prompting them to stop engaging with the attacker.

After three successful phishing attacks, the probability of

unauthorized access increases, and the account remains

relatively secure if the system locks access after multiple

failed login attempts. However, since longer passwords are

impractical, an alternative approach is to expand the symbol

set by incorporating letters and special characters. A symbol

size of 64 is considered reasonable for improving security

while maintaining usability.

Table 6 indicates that, in a phishing-free environment,

the security level of four-digit passwords after five successful

phishing attempts remains at the level of a traditional four-

T. Rathi Devi et al. / IJECE, 12(12), 241-257, 2025

253

digit PIN code, even when the symbol size is extended to 64.

In actuality, a user is unlikely to appease a phisher more than

five times before becoming distrustful. It is noted that cyber-

attacks differ greatly from chosen (or known) plaintext

attacks in the context of cryptography; the phisher does not

have access to a significant amount of plaintext.

Table 5. The number of phishing attacks occurred

Symbol Size (s =

10)

Number of phishing attacks occurred (𝒑)

0 1 2 3 4 5

Length of

the

password

(𝒏)

4 1.00 × 10−4 1.30 × 10−3 6.1.5 × 10−3 1.87 × 10−2 4.48 × 10−2 9.15 × 10−2

6 1.00 × 10−6 4.70 × 10−5 4.82 × 10−4 2.57 × 10−3 9.47 × 10−3 2.77 × 10−2

8 1.00 × 10−8 1.70 × 10−6 3.78 × 10−5 3.51 × 10−4 2.00 × 10−3 8.37 × 10−3

10 1.00 × 10−10 6.13 × 10−8 2.96 × 10−6 4.81 × 10−5 4.24 × 10−3 2.53 × 10−3

Table 6. Phishing attacks-free security levels

Symbol Size

(𝑺 = 𝟏𝟎)

Number of phishing attacks occurred (𝒑)

0 1 2 3 4 5 6 7 8 9 10

Length

of the

passwor

d (𝒏)

4 5.96
× 10−8

9.84
× 10−7

5.03
× 10−6

1.60
× 10−5

3.92
× 10−5

8.14
× 10−5

1.51
× 10−4

2.58
× 10−4

4.13
× 10−4

6.30
× 10−4

9.23
× 10−4

6 1.46
× 10−11

9.76
× 10−10

1.31
× 10−8

6.39
× 10−8

2.45
× 10−7

7.43
× 10−7

1.85
× 10−6

4.14
× 10−6

8.40
× 10−6

1.58
× 10−5

2.81
× 10−5

8 3.55
× 10−15

9.68
× 10−13

2.53
× 10−11

2.56
× 10−10

1.53
× 10−9

6.62
× 10−9

2.28
× 10−8

6.46
× 10−8

1.71
× 10−7

3.97
× 10−7

8.53
× 10−7

1

0
8.67
× 10−19

9.60
× 10−16

5.68
× 10−14

1.02
× 10−12

9.59
× 10−12

5.97
× 10−11

2.80
× 10−10

1.07
× 10−9

3.47
× 10−9

9.97
× 10−9

2.59
× 10−8

5. Results and Discussion
In this section, results from the implementation of AES-

256 encryption to safeguard patient data, along with

enhanced authentication logic for virtual password

management, are analysed.

Fig. 12 Registration form

Figure 12 shows the patient registration form used in the

healthcare system to authenticate patient information. The

patient registration form includes key fields such as

Username, Password, Name, Date of Birth, Age, Address,

Mobile number, Email, and Disease conditions. This

registration process provides precise data entry and ensures

that healthcare authorities store and manage HER data

effectively. The AES-256 encryption method is used to create

and authenticate sensitive patient records. The healthcare

service visitor registration form can enhance patient

registration and is EHR-compliant.

Fig. 13 Jar file downloaded

Figure 13 shows the download webpage for the jar file.

The secure healthcare system uses AES-256 encryption and

virtual passwords to protect patient registration,

authentication, and data management from unauthorized

access. Patients must register by entering the necessary

information, which will be encrypted and safely stored on the

MySQL cloud database. To stop brute-force and phishing

attacks, the solution dynamically validates credentials via a

code-reservation system. Similarly, a jar file download

enables consumers to access encrypted health data through a

mobile application. Backend processes run on Java JSP

Servlets are highly scalable and maintainable. So, it is a

practical approach to digital healthcare that respects privacy.

T. Rathi Devi et al. / IJECE, 12(12), 241-257, 2025

254

Fig. 14 User login form

Figure 14 represents the user login form. On this

webpage, the user’s name and a strong password are required

for authentication. The patient information is protected by the

AES-256 mechanism to prevent unauthorized access.

Furthermore, a virtual password mechanism is integrated,

utilizing a code-based approach to modify login credentials

and enhance security dynamically.

Fig. 15 User login credentials

According to Figure 15, it is the login credentials form

used by users. When using this website, users enter details

such as a username and password for authentication.

Moreover, the credentials are sent and stored in MySQL

cloud databases, encrypted with AES-256 for extra security

by the system. After a successful sign-in, the user is

redirected to the next page that contains the access code. This

access code serves as an extra layer of protection, enhancing

virtual password authentication using a code booking method

that prevents phishing and brute-force attacks.

When the jar file is installed on a mobile phone, the

following page appears. This webpage contains a secure

access code entry form, where users enter an access code to

generate a new computed code, as shown in Figure 16.

Fig. 16 Access code inserted

Fig. 17 Virtual password generation

Figure 17 displays an interface that makes safe

authentication for healthcare systems easier by allowing

users to enter an access code and generate a calculated code

for verification. The interface has separate fields for entering

the access code and displaying the dynamically produced

computed code. The Submit and Cancel buttons allow users

to confirm or reset their actions. The solution includes AES-

256 encryption and virtual password authentication, which

ensures strong data protection against unauthorized access.

The calculated code is dynamically updated using a small,

hidden function and code-based booking to deter phishing

and brute-force attacks. Once a user is authenticated, they

gain access to encrypted patient records that comply with

medical privacy laws.

T. Rathi Devi et al. / IJECE, 12(12), 241-257, 2025

255

Fig. 18 Comparison of encryption and decryption time

Figure 18 includes a graph showing the time required for

encryption and decryption using various algorithms. The

researchers analysed encryption algorithms like Attribute-

Based Encryption (ABE) [6], Data Sharing and Authorized

Search (DSAS) [11], Modified International Data Encryption

Algorithm (MIDEA) [18], Diffie-Hellman Galois–Elliptic-

Curve Cryptography (DHG-ECC) [20], Diffie-Hellman

Galois–Elliptic-Curve Cryptography (DHGECC) [21] with

the proposed AES-256 algorithm. The designed AES-256

technique is the fastest encryption and decryption method in

all key sizes. Thus, it is highly efficient and promotes feasible

healthcare systems.

Fig. 19 Comparison of processing time

Figure 19 compares processing time (ms) with data

sequence length (2log (𝑛)) for PDR [4], MES [5], and the

proposed AES-256 algorithm. Based on the graph, the

processing time of the PDR and MES methods is the highest,

ranging from 10 ms to almost 100 ms.

Fig. 20 Comparison of execution time

The chart in Figure 20 illustrates the execution time

required for three encryption techniques: PMRSS [1], PDR

[4], and the proposed AES-256 algorithm. The processing

time range (in milliseconds) is between 10⁻¹ and 10² (ms).

PDR displays a significant computational burden and the

longest execution time, while PMRSS is moderately

efficient. The proposed AES-256 algorithm is well-suited for

real-time medical applications and for securing healthcare

data. This can be gauged from the algorithm's execution time,

which is pretty efficient.

Fig. 21 Security level evaluation

Figure 21 shows how secure different data size security

approaches are. The ABE [6] and DHG-ECC [20] took the

longest time compared to the suggested approach, AES-256,

which exhibited the shortest time suitable for protecting

patient information in healthcare.

As shown in Figure 22, the key generation time for

several algorithms, including the proposed technique,

Modified IDEA [18], DSAS [11], and DHG-ECC [20]. The

new algorithm generates keys the fastest, producing excellent

T. Rathi Devi et al. / IJECE, 12(12), 241-257, 2025

256

results. The Modified IDEA, DES, and DHGECC traditional

algorithms take longer to process and are growing faster than

the proposed algorithm. As stated before, the paper reveals

that the proposed algorithm is effective for VPF-based rapid

key generation using a secret little function and code booking

approach for the health care system to process patient data

securely and efficiently.

Fig. 22 Performance evaluation of key generation time

6. Conclusion
The proposed system highlights the critical importance

of safeguarding patient data to secure the digital healthcare

system. The AES-256 encryption and VPF code booking

technique framework will prevent security loopholes and

hacking vulnerabilities from gaining access. VPF modifies

the authentication process by generating a time-sensitive

access key, thereby mitigating the risks of password-based

attacks. Plus, there’s that little secret function in the system's

authentication framework. This significantly enhances

security, as the password is encoded using the system's logic

in accordance with the norms. This will prevent password

guessing and brute-force attacks. Patient data is encrypted

before storage to prevent unauthorized access and ensure

privacy. The system is developed in Java technology, and

MySQL is used as a secure database for all data. The Java

JSP Servlet-based interface for a system is easy to use and

manage. According to security tests, AES-256, VPF, and the

code booking mechanism are very effective at preventing

cyber-attacks. Thus, it can use this framework robustly and

scalably in a cloud-based system for a healthcare facility.

Acknowledgments
The authors sincerely thank the supervisor for providing

consistent guidance and strong support throughout the

progress of this research.

References

[1] Yi Sun et al., “PMRSS: Privacy-Preserving Medical Record Searching Scheme for Intelligent Diagnosis in IoT Healthcare,” IEEE

Transactions on Industrial Informatics, vol. 18, no. 3, pp. 1981-1990, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[2] Rui Zhang, Rui Xue, and Ling Liu, “Security and Privacy for Healthcare Blockchains,” IEEE Transactions on Services Computing, vol.

15, no. 6, pp. 3668-3686, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[3] Guangjun Wu et al., “Privacy-Preserved Electronic Medical Record Exchanging and Sharing: A Blockchain-based Smart Healthcare

System,” IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 5, pp. 1917-1927, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[4] Jusak Jusak et al., “A New Approach for Secure Cloud-Based Electronic Health Record and its Experimental Testbed,” IEEE Access,

vol. 10, pp. 1082-1095, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[5] Maryam Shabbir et al., “Enhancing Security of Health Information Using Modular Encryption Standard in Mobile Cloud Computing,”

IEEE Access, vol. 9, pp. 8820-8834, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[6] Fengqi Li et al., “EHRChain: A Blockchain-Based EHR System using Attribute-based and Homomorphic Cryptosystem,” IEEE

Transactions on Services Computing, vol. 15, no. 5, pp. 2755-2765, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[7] Mohammad Kamrul Hasan et al., “Lightweight Encryption Technique to Enhance Medical Image Security on Internet of Medical Things

Applications,” IEEE Access, vol. 9, pp. 47731-47742, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[8] Sangjukta Das, and Suyel Namasudra, “A Lightweight and Anonymous Mutual Authentication Scheme for Medical Big Data in

Distributed Smart Healthcare Systems,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 21, no. 4, pp.

1106-1116, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[9] Mehedi Masud et al., “Lightweight and Anonymity-Preserving User Authentication Scheme for IoT-Based Healthcare,” IEEE Internet

of Things Journal, vol. 9, no. 4, pp. 2649-2656, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[10] Leonardo Da Costa et al., “Sec-Health: A Blockchain-Based Protocol for Securing Health Records,” IEEE Access, vol. 11, pp. 16605-

16620, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[11] Linlin Xue, “DSAS: A Secure Data Sharing and Authorized Searchable Framework for e-Healthcare System,” IEEE Access, vol. 10,

pp. 30779-30791, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[12] Asep Saepulrohman, and Agus Ismangil, “Data Integrity and Security of Digital Signatures on Electronic Systems using the Digital

Signature Algorithm (DSA),” International Journal of Electronics and Communications System, vol. 1, no. 1, pp. 11-15, 2021.

[CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/TII.2021.3070544
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PMRSS%3A+Privacy-preserving+medical+record+searching+scheme+for+intelligent+diagnosis+in+IoT+healthcare&btnG=
https://ieeexplore.ieee.org/abstract/document/9394758
https://doi.org/10.1109/TSC.2021.3085913
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Security+and+privacy+for+healthcare+blockchains&btnG=
https://ieeexplore.ieee.org/abstract/document/9445631
https://doi.org/10.1109/JBHI.2021.3123643
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Privacy-preserved+electronic+medical+record+exchanging+and+sharing%3A+A+blockchain-based+smart+healthcare+system&btnG=
https://ieeexplore.ieee.org/abstract/document/9594683
https://doi.org/10.1109/ACCESS.2021.3138135
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+new+approach+for+secure+cloud-based+electronic+health+record+and+its+experimental+testbed&btnG=
https://ieeexplore.ieee.org/abstract/document/9662386
https://doi.org/10.1109/ACCESS.2021.3049564
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+Security+of+Health+Information+Using+Modular+Encryption+Standard+in+Mobile+Cloud+Computing&btnG=
https://ieeexplore.ieee.org/abstract/document/9316223
https://doi.org/10.1109/TSC.2021.3078119
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=EHRChain%3A+A+blockchain-based+EHR+system+using+attribute-based+and+homomorphic+cryptosystem&btnG=
https://ieeexplore.ieee.org/abstract/document/9425439
https://doi.org/10.1109/ACCESS.2021.3061710
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lightweight+encryption+technique+to+enhance+medical+image+security+on+internet+of+medical+things+applications&btnG=
https://ieeexplore.ieee.org/abstract/document/9361564
https://doi.org/10.1109/TCBB.2022.3230053
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+lightweight+and+anonymous+mutual+authentication+scheme+for+medical+big+data+in+distributed+smart+healthcare+systems&btnG=
https://ieeexplore.ieee.org/abstract/document/9992149
https://doi.org/10.1109/JIOT.2021.3080461
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lightweight+and+anonymity-preserving+user+authentication+scheme+for+IoT-based+healthcare&btnG=
https://ieeexplore.ieee.org/abstract/document/9430932
https://doi.org/10.1109/ACCESS.2023.3245046
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sec-Health%3A+A+blockchain-based+protocol+for+securing+health+records&btnG=
https://ieeexplore.ieee.org/abstract/document/10044680
https://doi.org/10.1109/ACCESS.2022.3153120
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DSAS%3A+a+secure+data+sharing+and+authorized+searchable+framework+for+e-healthcare+system&btnG=
https://ieeexplore.ieee.org/abstract/document/9718101
https://doi.org/10.24042/ijecs.v1i1.7923
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Data+integrity+and+security+of+digital+signatures+on+electronic+systems+using+the+digital+signature+algorithm+%28DSA%29&btnG=
https://ejournal.radenintan.ac.id/index.php/IJECS/article/view/7923

T. Rathi Devi et al. / IJECE, 12(12), 241-257, 2025

257

[13] Osama Fouad Abdel Wahab et al., “Hiding Data Using Efficient Combination of RSA Cryptography and Compression Steganography

Techniques,” IEEE Access, vol. 9, pp. 31805-31815, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[14] Pahrul Irfan et al., “Application of the Blowfish Algorithm in Securing Patient Data in the Database,” Matrix: Journal of Technology

and Informatics Management, vol. 12, no. 2, pp. 102-108, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[15] Hailong Yao et al., “ECC-based Lightweight Authentication and Access Control Scheme for IoT E-Healthcare,” Soft Computing, vol.

26, no. 9, pp. 4441-4461, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[16] Seval Capraz, and Adnan Ozsoy, “A Secure Medical Data Sharing Framework for Fight against Pandemics like COVID-19 by using

Public Blockchain,” IEEE Access, vol. 12, pp. 39593-93605, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[17] G. Moheshkumar et al., Security-Driven Data Analytics for Secure Patient Monitoring in Healthcare Application using Secure Hash

Algorithm (256), Challenges in Information, Communication and Computing Technology, CRC Press, pp. 167-172, 2025. [Google

Scholar] [Publisher Link]

[18] Bilas Haldar, Partha Kumar Mukherjee, and Himadri Nath Saha, “An Approach of Modified IDEA with 1024 Bits Key to Enhance

Security and Efficiency of Data Transmission in The Healthcare Sector,” International Journal of Mathematical, Engineering and

Management Sciences, vol. 9, no. 6, pp. 1453-1482, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[19] Abdulmohsen Almalawi et al., “Managing Security of Healthcare Data for a Modern Healthcare System,” Sensors, vol. 23, no. 7, pp. 1-

18, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[20] Parag Rastogi, Devendra Singh, and Sarabjeet Singh Bedi, “An Improved Blockchain Framework for ORAP Verification and Data

Security in Healthcare,” Journal of Ambient Intelligence and Humanized Computing, vol. 15, pp. 2853-2868, 2024. [CrossRef] [Google

Scholar] [Publisher Link]

[21] Vijaykumar Mamidala, “A Diffie–Hellman Key Exchange Algorithm: Improving Cloud Data Security,” International Journal of

Advanced Research in Information Technology and Management Science, vol. 1, no. 1, pp. 88-99, 2024. [Google Scholar] [Publisher

Link]

[22] M. Natarajan et al., “Quantum Secure Patient Login Credential System using Blockchain for Electronic Health Record Sharing

Framework,” Scientific Reports, vol. 15, pp. 1-29, 2025. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/ACCESS.2021.3060317
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hiding+data+using+efficient+combination+of+RSA+cryptography+and+compression+steganography+techniques&btnG=
https://ieeexplore.ieee.org/abstract/document/9356603
https://doi.org/10.31940/matrix.v12i2.102-108
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Application+of+the+Blowfish+algorithm+in+securing+patient+data+in+the+database&btnG=
https://ojs2.pnb.ac.id/index.php/MATRIX/article/view/495
https://doi.org/10.1007/s00500-021-06512-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ECC-based+lightweight+authentication+and+access+control+scheme+for+IoT+e-healthcare&btnG=
https://link.springer.com/article/10.1007/s00500-021-06512-8
https://doi.org/10.1109/ACCESS.2024.3423714
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+secure+medical+data+sharing+framework+for+fight+against+pandemics+like+COVID-19+by+using+public+blockchain&btnG=
https://ieeexplore.ieee.org/abstract/document/10584433
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Security-driven+data+analytics+for+secure+patient+monitoring+in+healthcare+application+using+secure+hash+algorithm+%28256%29&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Security-driven+data+analytics+for+secure+patient+monitoring+in+healthcare+application+using+secure+hash+algorithm+%28256%29&btnG=
https://www.taylorfrancis.com/chapters/oa-edit/10.1201/9781003559085-29/security-driven-data-analytics-secure-patient-monitoring-healthcare-application-using-secure-hash-algorithm-256-moheshkumar-meenakshi-devi-karthick-kousika-nasir-akhtar-jamali
https://doi.org/10.33889/IJMEMS.2024.9.6.078
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+approach+of+modified+IDEA+with+1024+bits+key+to+enhance+security+and+efficiency+of+data+transmission+in+the+healthcare+sector&btnG=
https://www.ijmems.in/cms/storage/app/public/uploads/volumes/78-IJMEMS-24-0422-9-6-1453-1482-2024.pdf
https://doi.org/10.3390/s23073612
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Managing+security+of+healthcare+data+for+a+modern+healthcare+system&btnG=
https://www.mdpi.com/1424-8220/23/7/3612
https://doi.org/10.1007/s12652-024-04780-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+improved+blockchain+framework+for+ORAP+verification+and+data+security+in+healthcare&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+improved+blockchain+framework+for+ORAP+verification+and+data+security+in+healthcare&btnG=
https://link.springer.com/article/10.1007/s12652-024-04780-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Diffie%E2%80%93Hellman+key+exchange+algorithm%3A+Improving+cloud+data+security&btnG=
https://ijaritms.com/aritms/index.php/ijaritms/article/view/30
https://ijaritms.com/aritms/index.php/ijaritms/article/view/30
https://doi.org/10.1038/s41598-025-86658-9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Quantum+secure+patient+login+credential+system+using+blockchain+for+electronic+health+record+sharing+framework&btnG=
https://www.nature.com/articles/s41598-025-86658-9

