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Abstract - In this study, we present ProFoodNet, an advanced protein prediction system from food images leveraging both 

machine learning and a seven-layer deep Convolutional Neural Network (CNN). ProFoodNet aims to address the challenge of 

accurately estimating protein content in food items, which is crucial for managing dietary intake in individuals with protein-

related health conditions. Our approach utilizes the image database IDPE containing 990 images of various food products. 

First, we employ gradient-based edge detection operators (Prewitt, Sobel, and Kirsch) to extract image features. Two prediction 

models are then trained and tested using these features: a deep CNN and a linear regression model using a Support Vector 

Machine (SVM). The deep CNN model outperforms the SVM-based model by achieving the lowest average prediction error 

(±1.94), according to experimental results. Our findings highlight the potential of advanced machine and deep learning 

techniques in improving the accuracy of protein prediction from food images, facilitating dietary management and personalized 

nutrition advice. 

Keywords - Protein prediction, Support Vector Machine, Sobel operator, Prewitt operator, Kirsch operator, Deep CNN.

1. Introduction 
Food contains carbohydrates, fats, proteins and other 

nutrients. Amino acids combine to form proteins. Amino acids 

synthesize components such as peptide hormones, 

neurotransmitters and other proteins in the human body. 

Organs in a body get good structure due to the presence of 

protein in humans. For proper functioning of body organs 

protein is essential. One of the challenges nowadays is 

predicting protein content from food images. Nutrition-related 

information is required for people with protein-related 

diseases like marasmus, kwashiorkor, and Maple Syrup Urine 

Disease. A few diseases such as Chronic Kidney Disease 

(CKD), Liver Disease, Phenylketonuria (PKU), Gout, Protein-

Energy Malnutrition (PEM), Celiac Disease, Diabetes, Heart 

Disease, Cancer, HIV/AIDS also need the measurement of 

protein in food intake. Children with Maple Syrup Urine 

Disease especially require continuous monitoring of protein 

intake in order to be healthy. Laboratory methods like 

Sequence-Based Prediction Methods, Structure-Based 

Prediction Methods and Function Prediction Methods are 

available. However, a new method is necessary to find the 

protein in food intake.  
 

This is the rationale behind their direct protein prediction 

based on food photos. Using the Image Database for Protein 

Estimation (IDPE), protein may be predicted from food 

images. Here, a few machine learning methods and deep 

learning methods are proposed in this research work, namely 

ProFoodNet: Advanced Protein Prediction from Food Images 

Using Machine Learning and a 7-Layer Deep Convolutional 

Neural Network.   
 

2. Literature Survey 
Patients in hospitals need to know their nutrition. Protein 

intake needs to be calculated, especially for the above-

mentioned diseases. In earlier days, the patient's attendee 

calculated this and noted it on a weekly or daily basis. The 

following section discusses the traditional ways and changes 

that happened in calculating protein. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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One easy technique is to keep track of the amount and 

kind of food consumed. In the early 20th century, nutrition 

was manually forecasted based on the type and quantity of 

food consumed. Because of reporting mistakes by age group, 

there is an issue with either overestimating or underestimating 

the amount of food [1]. In order to lessen the issue of reporting 

errors, a food intake log can be kept. For this reason, a diary 

is employed to document [2]. The problem of recording in a 

diary is that it cannot be carried everywhere with the person. 

The person may not always carry the diary, which causes a 

delay in recording. That is, on a weekly or monthly basis. This 

delay, in turn, leads to some reporting errors. Therefore, Bruke 

et al. [2] suggested an electronic food diary named personal 

digital assistant. It is advantageous due to its electronic nature 

of reporting. One of the disadvantages noted here is training 

the user to use the device. Another disadvantage is improper 

updating of food intake. Like the diary and pencil method, the 

personal digital assistant shows the reporting problem. The 

accuracy of estimating the amount of food consumed by an 

individual is not guaranteed in either the diary and pencil 

method or the personal digital assistant. 

The accurate measurement of calories and nutrition is 

required. It is necessary to eradicate the issue of reporting in 

this century in order to adhere to a therapeutic diet. 

Researchers have expressed interest in employing image-

processing techniques to eradicate reporting inaccuracies. 

Many researchers have worked to estimate food's nutrition and 

calorie value from its images. 

In [3], the quantity of nutrients and calories is predicted 

by monitoring an individual’s food intake. Initially, the 

photograph of the food is captured. A checkerboard 

calibration card is also present along with the food image 

while capturing the food image. Food volume can be adjusted 

with the help of the checkerboard image. Food is manually 

identified, and an image processing method determines the 

portion size. Using a lookup table, food's calorie and nutrient 

content are anticipated. The prediction must be made user-

friendly by eliminating the need for a checkerboard to estimate 

the food's volume and the manual intervention needed to 

determine the type of food.  

Gao and Tan [4] unveiled the health-conscious 

smartphone app. A mobile phone is used to take the image of 

the food. The type of captured food image is determined 

through comparison with a food image database. The 

recognized food's calorie and nutritional information is 

anticipated using a lookup table. Only the food type's typical 

nutritional content can be provided by this kind of system. 

Marriapan et al. [5] introduced a classification algorithm 

to identify the type of food item. Food images are segmented. 

After the image has been segmented, features are extracted. 

Texture, color, and intensity are the attributes that were 

retrieved. To forecast the type of food based on the learned 

attributes, the Support Vector Machine (SVM) classifier is 

employed. Only 57.55% of the forecasts stated in [5] were 

correct. The amount of food and the nutrients are anticipated, 

much like Sun et al. [3]. 

Aizawa et al. estimate the dietary balance in images of 

food [6]. A Japanese food-balance chart is used to compare it 

[7]. Similar food-balance parameters are found in the United 

States Department of Agriculture (USDA) My Pyramid [8]. 

This entails photographing the dish being consumed. The 

recorded images are classified. The pictures are divided into 

two categories: images of food and non-food images. The 

Naivie classifier is used to further classify images that come 

under the food imagine category into categories such as grains, 

meat, fish, beans, vegetables, and fruit and dairy products. 

Utilizing the food-balance guide, the nutritional intake for the 

categorized food image is provided. 

An electronic gadget, specifically a camera worn on the 

breast, is used to forecast the amount of food that the person 

would ingest [9]. This technological device is worn by the 

individual. The person using the device must turn it on in order 

to take an image of the food. The electronic device calculates 

the amount of food based on the captured image using 

software. According to Jia et al. [9], the mean relative error 

between the estimated and real food amount is 2.8% for a total 

of 100 samples. The main problem with this method is that the 

person must always wear the e-device, and the device needs to 

be protected from atmospheric conditions such as rain. 

Pouladzadeh et al. calculated the calorie from food 

images. Initially, [10] identification of food type is done. For 

identification purposes, the size, color, texture, and shape 

features are obtained from food images. Using these features 

with the SVM classifier, the food type is identified. Using the 

food image, the area of the selected food is computed, 

followed by its volume and mass, and finally, the calorie is 

determined using a lookup table. In [3, 5], a checkerboard is 

used for the volume calculation, but Pouladzadeh et al. used 

the image of the thumb for the volume prediction. For the 

volume calculation, using the thumb, the top and side views 

of the food, along with the thumb, is necessary. This 

estimation process is complicated to follow in mixed food 

items. Hence, ingredients in food detection need to be done. 

Ingredients detection from food images is a boom in 2016 

[11].  

Pouladzadeh et al. have presented a deep learning neural 

network for measuring calories [12]. Using a neural network 

in conjunction with segmentation techniques, including 

texture, graph cut, and color, improved the accuracy of food 

recognition for a single food portion [12]. In this case, they 

used references to estimate the area and volume of the food 

portion. The area of the food portion is estimated by 

measuring the distance from which the food is captured, and 

the amount of the food portion is estimated by measuring the 
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finger. According to [12], estimating calories using 

convolutional algorithms takes a long time. It has been found 

that the processing time is reduced by using deep learning. 

Anthimopoulos et al. [13] took a step in estimating one of the 

macronutrient carbohydrates from food images. Along with a 

reference card, his team took pictures of the food for this 

study. The volume of the food is calculated using the reference 

card image. A 3D reconstruction of a food image is used to 

determine its volume.   

Using radial support vector machines, color 

characteristics, and linear binary pattern features, food kind is 

determined. The USDA nutritional database is used for 

carbohydrate estimation. Carbohydrate estimation from food 

images is remodeled in [14] using a two-view 3D 

reconstruction method.  

Hyperspectral images of the wheat kernel are taken as 

input in [15] for the purpose of protein measurement. A partial 

least square regression model is followed for the prediction. 

Volume prediction and use of a lookup table are eliminated in 

[15] while predicting the protein from its images. Despite 

appearing to be comparable to the research done in [15], this 

publication differs in a few ways, as mentioned below: i) 

Hyperspectral and photographic pictures are employed in 

opposition to each other, and ii) the complete food is examined 

in this study in opposition to the single wheat kernel. 

In [16], a Raspberry Pi camera, which is attached to a 

smart fork, is used by the authors to collect data on food 

images. Using Bluetooth technology, the data is transmitted to 

a food database; hence, the calories, starch, fat, and protein are 

obtained. All the calculations for the above-mentioned 

nutrition are done using a smartphone, as mentioned in [16]. 

This is one of the methods for measuring calories from food 

images for the well-being of humans. As calories vary 

depending on the ingredients in the food, Turmchokkasam and 

Chamnongthai identified the food ingredients and obtained 

their nutritional information, brightness, and thermal 

conditions from a database. The segmented food is classified 

using fuzzy logic methods. Based on the area, the total calorie 

information is obtained as shown in [17]. 

The creation and use of the AlphaFold model are 

described in Jumper et al.'s very accurate protein structure 

prediction with AlphaFold. Key components include training 

deep neural networks on vast amounts of protein structure data 

and utilizing attention mechanisms and evolutionary 

information to capture spatial and sequential dependencies. 

The model employs an iterative process to refine its 

predictions, integrating multiple data sources and constraints 

to enhance accuracy. Advanced optimization techniques and 

high-performance computing resources were crucial for 

training the model. AlphaFold system achieved exceptional 

accuracy in protein structure prediction, greatly outperforming 

earlier techniques. 

Highly precise protein structure prediction using 

AlphaFold by Jumper et al. details the development and 

application of the AlphaFold model. Key components include 

training deep neural networks on vast amounts of protein 

structure data and utilizing attention mechanisms and 

evolutionary information to capture spatial and sequential 

dependencies [18]. The model employs an iterative process to 

refine its predictions, integrating multiple data sources and 

constraints to enhance accuracy. Advanced optimization 

techniques and high-performance computing resources were 

crucial for training the model. Its results in the Critical 

Assessment of Protein Structure Prediction (CASP) 

competition confirmed that the resulting AlphaFold system 

achieved exceptional accuracy in protein structure prediction, 

greatly outperforming earlier techniques. 

Mohammed AlQuraishi is interested in the Prediction of 

Protein Structures. It [19] includes handling and 

comprehending complicated biological data, and it is essential 

to integrate deep learning models, especially recurrent and 

convolutional neural networks. The models may discover 

complex patterns and relationships in the data because they are 

trained on large databases of known protein structures. In 

order to anticipate protein folding and interactions, the 

implementation additionally uses techniques for feature 

extraction and sequence alignment. The effectiveness of these 

models is validated through rigorous testing and comparison 

with traditional prediction methods, showcasing significant 

improvements in prediction accuracy and efficiency. 

The paper Protein-protein interaction prediction with 

deep learning: A thorough review by Soleymani et al. 

describes the use of deep learning techniques to predict 

Protein-Protein Interactions (PPIs). Neural network 

topologies specifically designed to capture the intricate 

properties of protein structures and sequences were one of the 

main focus areas. The research discusses several deep learning 

models, such as RNN and CNN, which were trained on large 

PPI datasets [20]. Feature extraction methods were employed 

to convert protein data into formats suitable for machine 

learning. The implementation also involved using validation 

techniques to assess the predictive accuracy of the models. 

The review highlights significant advancements in the field, 

emphasizing improved PPI prediction accuracy through deep 

learning approaches. 

The study on food value estimation from images involved 

several key steps. A comprehensive taxonomy was initially 

developed to categorize food items based on their nutritional 

content. Next, a dataset comprising thousands of labelled food 

images was curated from various sources [21]. The models 

were trained and fine-tuned using the curated dataset to 

accurately estimate the nutritional values of different food 

items. Finally, the system was tested for accuracy and 

reliability, demonstrating its capability to provide precise food 

value estimations from image inputs, thus aiding in dietary 
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assessment and management. The creation of a unique 

approach for calculating food nutrition is described in [22] 

DPF-Nutrition: Food Nutrition Estimation by Depth 

Prediction and Fusion by Han et al. The implementation 

involved using depth prediction techniques to capture 3D 

information on food items, improving accuracy in portion size 

estimation. The system integrates multiple data sources, 

including RGB images and depth maps, using a fusion 

approach to enhance the precision of nutritional estimates.  

Machine learning algorithms were trained on extensive 

datasets to recognize different food types and their nutritional 

values. The model was validated through rigorous testing, 

demonstrating its effectiveness in providing reliable nutrition 

information, aiding dietary assessment and management.  

Hurry Sign and Noman's Deep Neural Network-Based 

Food Protein Subcellular Prediction and IoT-Based Data 

Gathering Ali investigates the prediction of food proteins' 

subcellular location using Deep Neural Networks (DNNs). 

Knowing how proteins work and how they contribute to 

different biological processes depends on this prediction [23]. 

The authors employ an Internet of Things (IoT)-based 

data collection system to gather extensive and diverse 

datasets, including protein sequences, cellular localization 

signals, and environmental factors. These data are pre-

processed and fed into deep neural networks specifically 

designed to handle large, complex datasets. 

The DNN architecture includes multiple layers of 

convolutional and recurrent neural networks, adept at 

capturing intricate patterns and dependencies within the data. 

The model is trained and validated using standard 

performance metrics like accuracy, precision, and recall. 

The results indicate that the DNN approach, combined 

with IoT-based data collection, significantly improves the 

accuracy of subcellular localization predictions, offering 

valuable insights for food protein research and potential 

applications in biotechnology and medicine. 

The article Recent Progress of Protein Tertiary Structure 

Prediction by QiqigeWuyun et al. delves into the latest 

advancements in predicting protein tertiary structures, a 

critical aspect of understanding protein function and 

interactions. The implementation focuses on leveraging 

cutting-edge computational techniques and machine learning 

models to enhance prediction accuracy. 

The authors integrate various data sources, including 

amino acid sequences, known structural motifs, and 

evolutionary information. They use deep learning 

architectures to handle and evaluate these intricate datasets, 

including Recurrent Neural Networks (RNNs) and 

Convolutional Neural Networks (CNNs). The models are 

trained on extensive protein databases, utilizing advanced 

algorithms like AlphaFold and RoseTTAFold to predict 

protein folding patterns [24]. 

Performance is assessed using metrics such as Global 

Distance Test-Total Score (GDT-TS) and Root-Mean-Square 

Deviation (RMSD). As evidence of the effectiveness of 

contemporary machine learning techniques, the results show 

notable increases in prediction accuracy. This progress in 

protein tertiary structure prediction holds promise for 

advancing biological research and drug discovery. 

The article Optimizing Food Protein Prediction for Drug 

Composition Using Feature Fusion Techniques by Malik 

Arshad and Andrew McCullum focuses on enhancing the 

accuracy of predicting food protein interactions within drug 

compositions. The implementation revolves around 

leveraging advanced feature fusion techniques, which 

combine multiple data sources to improve predictive 

performance. 

Initially, the authors collect and preprocess diverse 

datasets, including protein sequences, structural information, 

and biochemical properties. They employ various feature 

extraction methods to derive meaningful representations from 

these datasets. These features include primary sequence 

patterns, secondary structure elements, and physicochemical 

properties. 

The core of the implementation lies in integrating these 

heterogeneous features using fusion techniques [25]. The 

authors experiment with several fusion strategies, such as 

early fusion, where features are combined at the input level, 

and late fusion, where predictions from individual models are 

merged. They also explore hybrid fusion approaches that 

integrate features at multiple stages of the prediction pipeline. 

In order to train the prediction models, the authors use deep 

learning architectures like CNNs and RNNs as well as 

machine learning methods like SVM and random forests. A 

carefully selected dataset is used to train and validate the 

models, guaranteeing their generalizability and robustness. 

The F1 score, recall, accuracy, and precision are among 

the metrics used to evaluate performance. The findings show 

that feature fusion techniques greatly improve prediction 

accuracy in contrast to conventional single-source feature 

methods. Implementing these techniques shows promise in 

optimizing drug composition by accurately predicting food-

protein interactions, potentially leading to more effective and 

safer pharmaceutical formulations. 

Prediction of protein from food can be investigated 

through chemical-based evaluation and image processing. 

Chemical-based methods for the prediction of proteins are a 

lengthy process. Also, the common person cannot always test 

in a laboratory. Everyone has a mobile nowadays, so it is easy 
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to capture the image and find the protein easily. One more 

reason is that children with protein-related diseases can find 

the amount of protein they need whenever they wish. Hence, 

the research on the measurement of protein from food is 

carried out using an image processing technique using 

MATLAB. 

The document's remaining sections are arranged as 

follows: The proposed framework is presented in Section 3, 

the protein prediction results are displayed in Section 4, and 

the study's conclusions are compiled in Section 5. 

3. Proposed Method 
3.1. Image Database 

Proteins in food photos are predicted using the Image 

Database for Protein Estimation (IDPE). The 990 images in 

the database are made up of nine different foods. Food images 

comprise images of milk powders and images of health drink 

powders. The IDPE database consists of images of food items 

such as Boost, Bournvita, Complan, Dexolac, Farex, Horlicks 

Lactogen, Nan and Similac. Figure 1 shows a few images of 

the IDPE database. IDPE database can also predict calories, 

macronutrients, and micronutrients. 

IDPE database images are in JPG format. The size of the 

images is 3120 x 4160. In addition, Table 1 shows the food 

items in the IDPE database along with their names, properties 

and the amount of protein in 100 grams. 

  
COM05S2118.00 BOO01S1107.50 

  
HOR03S3211.00 SIM15S4214.50 

Fig. 1 Sample images of IDPE 

Table 1. Food items and the protein content 

Name of the food 

item 
Fine/Corse 

Protein content 

per 100 grams 

Lactogen Fine 15.20 

Nan Fine 15.30 

Similac Very Fine 15.50 

Farex Fine 17.00 

Dexolac Very Fine 12.00 

Horlicks Coarse 11.00 

Boost Coarse 06.50 

Bournvita Coarse 06.00 

Complan Coarse 19.00 

3.2. ProFoodNet: Advanced Protein Prediction from Food Images 

  

 
Fig. 2 Proposed machine learning model

Real-world applications of the technology include 

supporting individuals with protein-specific dietary demands, 

such as athletes enhancing performance, patients managing 

chronic kidney disease, or those requiring exact protein intake 

for malnutrition recovery. ProFoodNet might also be shown in 

contexts such as hospitals, fitness facilities, or mobile health 

applications, showcasing how it integrates smoothly into 

everyday food planning and monitoring. Both machine 

learning and deep learning models are used in this study to 

predict proteins. The machine learning model for the 

suggested task is displayed in Figure 2. 

Figure 2 shows the Deep learning model, namely 

ProFoodNet: Advanced Protein Prediction from Food Images 

used for the protein prediction. This method is briefed in 

section 3.4. 

3.3. Feature Extraction 

There are differences between the types of information 

that are collected from photos and those that are perceived by 

human eyes. If the objects and features in an image cannot be 

precisely compared by placing them next to each other, 

humans are particularly bad at determining their color or 
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brightness. The way that human vision responds to the relative 

size, angle, or location of many things is essentially 

comparative rather than quantitative; it cannot provide 

numerical measurements unless one of the reference items is 

a measuring scale. The characteristics of an image are 

represented by some information called the image features. 

Feature play an important role in the area of image processing. 

Color, shape, texture, contrast and size are some examples of 

features. Texture features can be extracted to analyze the 

different structures in an image. Image brightness changes or 

discontinuity can be sharply identified using edge 

characteristics. Edge features can be derived from images to 

model some constructions. 

 

 
Fig. 3 ProFoodNet: Advanced protein prediction from food images

Prewitt mask is used to detect the horizontal and vertical 

edges. They measure the 2D spatial gradient values. Sobel 

mask, similar to Prewitt, has more weight and hence detects 

more edges. Additionally, the intensity values' first-order 

derivative is produced. The edges of the Kirsch mask can be 

found in eight distinct directions: north, west, east, south, 

northeast, northwest, southeast, and southwest. To accomplish 

this, turn the mask 45 degrees. 

3.3.1. Gradient Magnitude and Direction Using Prewitt 

Operator 

The usage of gradient values is one of the characteristics 

taken into account for protein prediction. The 2D spatial 

gradient values are detected using the Prewitt mask, which is 

employed for this purpose. Using the Prewitt operator, one 

may determine the direction of the greatest potential shift in 

intensity. The Prewitt mask can be used to analyze abrupt or 

gradual feature changes at a spot. Two templates are available 

for the Prewitt edge detection operator. Both the templates are 

of size (3x3). The vertical template along the three rows and 

the horizontal template along the 3 columns are given by [26] 

Prewitt & Mendelsohn (1966).   

The template and the image are convolved to generate the 

2D spatial derivatives. Consider an image (s) and its gradient 

(∇s). Additionally, let GDx and GDy represent the picture's 

horizontal and vertical derivatives, respectively. The 

following is the location of the derivatives GDx and GDy. 

∇s =[
𝐺𝐷𝑥

𝐺𝐷𝑦
]=[

𝜕𝑠

𝜕𝑥
𝜕𝑠

𝜕𝑦

]                    (1) 

The gradient magnitude and gradient direction 𝑧(𝑥, 𝑦) are 

obtained as follows. 
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𝑚𝑎𝑔(𝛻𝑠)=[𝐺𝐷𝑥
2𝐺𝐷𝑦

2]
1

2⁄
                      (2) 

𝑧(𝑥, 𝑦) = 𝑡𝑎𝑛−1(𝐺𝐷𝑦/𝐺𝐷𝑥)                            (3) 

Prewitt kernels compute the gradient. It is the product of 

averaging and then differentiation. The final resultant has a 

smoothening effect. Using equations 1, 2, and 3, the statistical 

measurements examined in this study are correlation, mean, 

and standard deviation. 

3.3.2. Gradient Magnitude and Direction Using Sobel 

Operator 

It calculates an approximate gradient for the picture 

intensity function. The Sobel operator is a discrete 

differentiation operator. In the classical Sobel operator 

situation, each image has a template, GDx and GDy. The 

gradient estimate in the x-direction is represented by GDx, and 

the gradient estimation in the y-direction by GDy, as per 

equation 1. Equation 2 can be used to get the absolute gradient. 

Equation 3 can be utilized to determine the gradient's 

direction. The mask used for the Sobel operator is shown 

below. 

 Due to its ability to detect edges in images containing 

redundant information, such as noise, the Sobel operator is the 

gradient-based operator most commonly used for edge 

detection. Because each image is differentially separated by 

two rows and columns, the edge components on both sides are 

enhanced, giving the edges a thick and vivid appearance. The 

gradient direction is obtained using equations 1, 2, and 3. 

3.3.3. Gradient Magnitude and Direction Using Kirch 

Operator 

Krisch mask is also a derivative mask. It takes a single 

mask and rotates in 8 different directions. The greatest of the 

eight orientations determines the image edge magnitude. 

Applying the mask involves angles of 0, 45, 90, 135°, 180°, 

225°, 270 degrees, 315°, and 360°. This technique offers 

important edge properties when used for database photos.  

The numerous compass directions can be obtained at 45-

degree increments. The compass indicates the following 

directions: North, South, East, West, North East, North West, 

South East, and South West. Prewitt, Sobel, and Kirsch are 

used to extract statistical features from the RGB, red, green, 

blue, and gray images of the IDPE. 

3.4. Protein Estimation 

From IDPE food images, the protein content is estimated 

using two different methods. This is the first protein prediction 

method that uses the suggested linear regression with support 

vector machine technique. Using deep learning as an advanced 

technique for this study, ProFoodNet is the second approach 

used for protein prediction: Protein Prediction with Advanced 

Images of Food. 

In the first method, the steps followed are 1) IDPE images 

are resized, 2) a mask is applied to the images, and the gradient 

features are obtained. 3)statistical features are obtained from 

the gradient values. 4) A model of linear regression using 

support vector machines. Step four is utilized to determine the 

protein content and make predictions based on the properties 

of the image. Figure 2 outlines the procedures for protein 

prediction using support vector machines and linear 

regression. 

Protein content serves as the independent variable in this 

study, while the image's statistical properties serve as the 

dependent variable. The model learns about the correlation 

between protein content and statistical image attributes 

throughout the training process. 

A ten-fold cross-validation scheme is also used in this 

investigation. Hence, training to test ratio is 90:10. Ten sets of 

statistical features are separated here, and they are mutually 

exclusive. Nine sets are utilized for testing during the 

investigation, whereas one set is used for testing. The 

regression model is trained and tested 10 times in such a way 

that each set acts as a test at any one time. The averaged value 

of ten-fold cross-validation produces the estimation.  

Prewitt, Sobel, and Kirsch convolution are used 

independently for each image component in our experiment, 

yielding gradient features for each. Statistical features such as 

2-dimensional mean, standard deviation and autocorrelation 

are derived for a better protein prediction. 

In the second method, the steps are 1) IDPE images are 

resized, 2) Images are fed as input to deep CNN. Figure 3 

shows the protein prediction using deep CNN. In this 

investigation, deep CNN with 7 layers is followed. The layers 

are 1) the Input layer, 2) the Convolutional layer, 3) the 

Rectification layer, 4) the Pooling Layer, 5) the Fully 

connected layer, and 6) the Regression layer. 

The IDPE images are resized to 256x256 and are given as 

input to the input layer of deep CNN. Then, the images are 

convolved using a 3x3 mask, followed by the rectification 

process. In the rectification layer, the activation process is 

done as a threshold process. Next is the average pooling 

process, in which the averaging is done using a mask size 2x2 

and with stride 2. In this investigation using deep CNN,40 

epochs having 200 iterations and with a learning rate of 

0.001is followed. For the purpose of training the model, the 

steepest gradient descent algorithm is used.   

4. Results and Discussion 
The first approach yielded average protein prediction 

errors using SVM training and testing of linear regression. 

Table 2 shows the statistical features and the abbreviations 

used in this paper. 
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Tables 3, 4, and 5 display the average prediction errors 

derived from training and testing linear regression using each 

combination of image attributes of the four image components 

of Prewitt, Sobel, and Kirsch convolution, respectively. Table 

3 displays the average protein prediction error derived from 

combining statistical measurements of gradient magnitude 

and gradient direction based on the Prewitt operator. In this 

case, the prediction error is less when the combination of 

MGM, SGM, MGD and SGD is used for predicting the 

protein. The findings indicate that proteins can be predicted 

with a minimum average error of ±2.68 based on the gradient 

magnitude and gradient direction of the red color component 

of the database image. 

Table 2. Statistics on the direction and degree of gradients 

Statistical Feature Abbreviation 

Mean of Gradient Magnitude MGM 

Standard Deviation of Gradient 

Magnitude 
SGM 

Autocorrelation of Gradient Magnitude CGM 

Mean of Gradient Direction MGD 

Standard Deviation of Gradient Direction SGD 

Autocorrelation of Gradient Direction CGD 

Table 3. Prewitt feature-derived average prediction error 

Statistical Measures of Gradient 

Magnitude and Gradient Direction 

Feature 

Average Prediction Error 

Image Component 

Gray Color 

Component 

Red Color 

Component 

Green Color 

Component 

Blue Color 

Component 

MGM ±2.98 ±2.97 ±2.95 ±2.95 

SGM ±2.92 ±2.90 ±2.88 ±2.88 

CGM ±2.81 ±2.80 ±2.84 ±2.84 

MGD ±2.77 ±2.82 ±2.76 ±2.76 

SGD ±2.79 ±2.78 ±2.77 ±2.77 

CGD ±2.81 ±2.89 ±2.89 ±2.90 

MGM, MGD ±2.99 ±2.94 ±2.93 ±2.93 

SGM, SGD ±2.81 ±2.72 ±2.79 ±2.79 

CGM, CGD ±2.75 ±2.82 ±2.84 ±2.84 

MGM, SGM, CGM ±3.06 ±3.06 ±3.01 ±3.01 

MGD, SGD, CGD ±2.81 ±2.82 ±2.81 ±2.81 

MGM, SGM, MGD, SGD ±3.00 ±2.68 ±2.78 ±2.78 

MGM, SGM, CGM, MGD, SGD, CGD ±3.03 ±2.90 ±2.98 ±2.98 

 

Table 4. Mean prediction error as determined by the sobel feature 

Statistical Measures of Gradient 

Magnitude and Gradient Direction 

Feature Tests 

Average prediction error 

Image component 

Gray Color 

Component 

Red Color 

Component 

Green Color 

Component 

Blue Color 

Component 

MGM ±2.97 ±3.01 ±2.97 ±2.95 

SGM ±2.93 ±2.91 ±2.90 ±2.87 

CGM ±2.77 ±2.84 ±2.81 ±2.87 

MGD ±2.80 ±2.70 ±2.75 ±2.77 

SGD ±2.76 ±2.76 ±2.75 ±2.80 

CGD ±2.74 ±2.79 ±2.81 ±2.84 

MGM, MGD ±2.98 ±2.94 ±3.01 ±2.96 

SGM, SGD ±2.87 ±2.83 ±2.87 ±2.85 

CGM, CGD ±2.74 ±2.82 ±2.84 ±2.81 

MGM, SGM, CGM ±2.97 ±3.05 ±3.01 ±2.95 

MGD, SGD, CGD ±2.80 ±2.82 ±2.80 ±2.86 

MGM, SGM, MGD, SGD ±2.88 ±2.95 ±2.94 ±2.94 

MGM, SGM, CGM, MGD, SGD, CGD ±2.90 ±3.00 ±2.90 ±2.93 



P. Josephin Shermila et al. / IJECE, 12(2), 73-85, 2025 

81 

The average protein prediction error obtained using the 

combinations of statistical measures of gradient magnitude 

and gradient direction based on the Sobel operator is shown in 

Table 4. In this case, the prediction error is lower when MGD 

is used to predict the protein. 

Based on the Kirsch operator, Table 5 displays the 

average protein prediction error derived from the 

combinations of statistical measures of gradient magnitude 

and gradient direction. Using CGM to estimate the protein 

reduces the prediction error in this situation. The findings 

demonstrate that proteins can be predicted with a minimum 

average error of ±2.71 based on the gradient magnitude and 

gradient direction of the red color component of the database 

image. 

Comparing the three results based on the operators for the 

prediction of protein, the red colour component of the Prewitt 

template produces the best result with a minimum prediction 

error of ±2.68.  

The outcomes of the second technique are the average 

protein prediction errors obtained by using deep CNN to train 

and test the database picture. Protein prediction errors 

obtained when images are given directly as input to deep CNN 

with 7 layers are shown in Table 6. 

Figures 4, 5 and 6 show the protein prediction error 

obtained while experimenting with Prewitt, Sobel and Krisch 

features. Figure 7 shows the Average Protein Prediction Error 

obtained with the CNN model formed in 7 layers.  

Table 5. Kirsch feature-derived average prediction error 

Statistical Measures of Gradient 

Magnitude and Gradient Direction 

Feature 

Average prediction error 

Image component 

Gray color 

component 

Red color 

component 

Green color 

component 

Blue color 

component 

MGM ±2.80 ±2.81 ±2.81 ±2.78 

SGM ±2.80 ±2.80 ±2.80 ±2.81 

CGM ±2.79 ±2.71 ±2.73 ±2.79 

MGD ±2.81 ±2.82 ±2.80 ±2.79 

SGD ±2.74 ±2.81 ±2.77 ±2.81 

CGD ±2.87 ±2.74 ±2.76 ±2.79 

MGM, MGD ±2.80 ±2.87 ±2.93 ±2.96 

SGM, SGD ±3.52 ±3.56 ±3.57 ±3.67 

CGM, CGD ±2.79 ±2.81 ±2.72 ±2.73 

MGM, SGM, CGM ±3.15 ±2.95 ±3.18 ±3.32 

MGD, SGD, CGD ±2.81 ±2.82 ±2.77 ±2.85 

MGM, SGM, MGD, SGD ±2.98 ±3.42 ±3.63 ±3.60 

MGM, SGM, CGM, MGD, SGD, 

CGD 
±3.53 ±3.18 ±3.52 ±3.64 

In this case, the minimum average error of ±1.94 is 

obtained when the RGB image is given directly as input to 

deep CNN. Deep CNN with 7 layers produces less error 

compared to the Prewitt operator. This is 0.74 less than the 

minimum error obtained with the Prewitt operator. 

ProFoodNet: Advanced Protein Prediction Method followed 

here predicts protein with less error. 

4.1. Comparison of Different Methodologies 

Figure 8 displays the comparative outcomes of protein 

prediction. The best findings are used for this comparison. The 

CNN model is found to have the lowest prediction error, at 

1.94. Compared to the CNN model, the Prewitt, Sobel, and 

Krisch models provide 0.74, 0.76, and 0.77 more errors, 

respectively. Hence, the best model for predicting proteins 

from images of food is ProFoodNet: Advanced Protein 

Prediction Method, particularly for IDPE images that include 

milk and health drink powders. 

Table 6. Average protein prediction error obtained by deep CNN with 7 

layers 

Image Component 
Average Prediction Error 

Average Pooling 

Gray ±2.05 

Red ±2.14 

Green ±2.01 

Blue ±1.97 

RGB ±1.94 
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Fig. 4 Results of prewitt feature 

 
Fig. 5 Results of sobel feature 
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Fig. 6 Results of krisch feature 

Fig. 7 Results of CNN model
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Fig. 8 Comparison of best average prediction error

5. Conclusion and Future Work  
The evaluation of protein from food is done in this study 

using an IDPE database. The protein content of food products 

is predicted using both deep CNN and a linear regression 

model using support vector machines. When the linear 

regression system is modeled using mean and standard 

deviation (gradient magnitude and direction) characteristics, 

the Prewitt mask applied to the red color component yields a 

minimum average protein prediction error of ±2.68By using 

deep CNN, it is possible to observe a minimum average 

protein prediction error of ±1.94. Deep learning has a 

reputation for being able to identify patterns in photos, but it 

is more effective at predicting the protein content of images 

when it uses image attributes as input. Additional features, 

particularly one that conveys the distinctive change 

information of light when reflected by protein, can be taken to 

improve the accuracy of protein prediction. Research can be 

conducted by adding more photos of food from fruits, 

vegetables, mixed foods, and other sources to the existing 

study database.  
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