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Abstract - With the property of excellent energy compaction and the ability to analyse hyperspectral images in the space-

frequency domain, the 3D Dyadic Wavelet Transform is broadly used for the compression of hyperspectral images. However, 

calculating the transform coefficient through the conventional wavelet transform is memory intensive, which makes the 

compression algorithm unsuitable for the resource constraint hyperspectral image sensors. In the present study, the transform 

coefficients are calculated through block-based fractional wavelet transform frame by frame of the hyperspectral image to 

reduce the transform memory. The transform coefficient is coded with the zero memory set partitioned embedded block. We 

evaluated the proposed compression algorithm through MATLAB simulations with six popular hyperspectral images. From 

the result, it has been observed that demand for transform memory and transform complexity is reduced significantly while 

the requirement of the coding memory is zero and coding complexity is at par with other listless compression algorithms. Thus, 

the proposed compression algorithm is an optimum choice for the resource constraint hyperspectral image sensors. 

Keywords - Hyperspectral Image Compression, Low Memory Architecture, Lossy Compression, Hyperspectral Image Coding, 

Wavelet Transform, Low Complexity.

1. Introduction  
HyperSpectral (HS) Imaging gathers spectral and spatial 

image data simultaneously in hundreds of narrow contiguous 

spectral bands from visible to infrared wavelengths [1]. HS 

image technology integrates both conventional imaging and 

spectroscopy, and spectral data are organized into 

hypercubes, having two spatial dimensions (2D spatial scene) 

and one spectral dimension (1D spectral profile) [2]. 

Applications of the HS images are ranging from the 

agriculture monitoring [3], astronomy [4], biomedical 

engineering [5], chemical imaging [6], corrosion detection 

(steel infrastructure) [7], cultural heritage [8], food quality 

analysis [9], forensics [10], land-cover mapping [11], 

medical [12], military (surveillance and reconnaissance) [13], 

pharmaceutical [14], remote sensing (earth monitoring), 

surgery (image-guided) [15], target detection [16], water 

pollution detection [17], weather prediction [18] etc. 

Hyperspectral image sensors (AVIRIS, HyMap, HYDICE, 

Hyperion, etc.) primarily capture electromagnetic radiation in 

the reflective range, which extends from the visible spectrum 

to the short-wave infrared region having hundreds of narrow 

contiguous spectral frequency frames with ten nanometres 

spacing [19]. Thus, a single pixel is represented as a stack of 

array instead of a fixed value in grayscale images, which 

represents a piece of fine information across the wavelength 

range from 400 nm to 2500 nm [20, 21]. With such kind of 

detail information, the HS images are used in multiple 

applications such as feature extraction [22], feature selection 

[23], band section [24], change detection [25], classification 

[26], compression, denoising [27], dimension reduction [28], 

segmentation [29], object recognition [30] etc. The 

hyperspectral image compression problem has recently 

received much attention in the remote sensing community 

[31]. Compression of the HS image is an essential step before 

the transmission of the HS images as it saves the storage 

memory [32], decreases image data browsing time [33], 

minimizes transmission bandwidth [34], shortens data 

transmission time and reduce HS image sensor complexity.  

This study aims to develop a compression algorithm that 

has the demands of transforming memory in line with the 

coding memory. Many compression algorithms had been 

developed in the past, but they did not consider the transform 

memory in the development of the compression algorithm. 

Thus, it is necessary to reduce the demand for the transform 

memory. Previously, a fraction wavelet filter was applied 
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with the transform-based low memory compression 

algorithm, but it still has high complexity and transforms 

memory demand [35]. In this manuscript, we present a novel 

compression algorithm based on the block-based fractional 

wavelet transform and zero-memory set partitioned 

embedded block used for encoding and decoding the 

transform coefficients. The proposed compression algorithm 

works for both lossy compression and lossless compression. 

The rest of this article is organized as follows: Section 2 

presents a brief review of the different HSICAs based on data 

loss and coding process, while Section 3 introduces the 

background principles of the proposed compression 

algorithm, which includes a detailed description of block-

based fractional wavelet filter, transform-based set 

partitioned hyperspectral image compression algorithm, 

zeroblock cube hyperspectral image compression algorithm 

and 2D-zero memory set partitioned embedded block. 

Section 4 presents the proposed compression algorithm with 

the associated pseudo code. We have validated the simulation 

results of our proposed algorithm in Section 5, demonstrating 

its effectiveness in the compression of HS images with a 

detailed analysis description. Finally, Section 6 summarizes 

the whole work's main findings and conclusions. 

2. Literature Review 
Many HyperSpectral Image Compression Algorithms 

(HSICAs) have been proposed for HS image data 

compression in the last two decades. There are two types of 

correlation (spatial and spectral) that exist in the HS image 

[36]. The spectral correlation exists between the multiple 

nearby frequency frames, while spatial correlation exists 

between the pixels in the same spectral frame [37]. It has been 

known that in HS images, spectral correlation is more 

significant than spatial correlation [38]. By removing the 

correlation, the redundancy in the HS image is also reduced 

[39]. 

 

The compression algorithms are divided based on two 

factors: image data loss and the coding process [39, 40]. In 

view of the data loss, the HSICA can be classified into three 

different subcategories names as lossy compression, lossless 

compression, and near-lossless compression. The 

Compression Ratio (CR) is the ratio between the size of the 

HS image and the size of the reconstructed HS image, and it 

is a unitless parameter. For the lossless HSICA, there is no 

loss of any HS image data during the compression process, 

but the CR is very low, while for the near-lossless HSICA, 

CR is a little bit higher, but there is a loss of some HS image 

data. This loss of HS image data is not so significant to the 

human eye [41].  

 

Lossy compression had a very high CR, but it came at 

the cost of losing the HS image data. It has also been known 

that lossless and near-lossless compression has very high 

coding efficiency, while lossy compression has low coding 

efficiency. In view of the complexity of the HSICA, lossy 

compression HSICA had low complexity, but lossy and 

lossless have high coding complexity due to the nature of 

computations during the compression process. In the view of 

the coding process, the HSICAs are divided into Predictive 

Coding (PC) [42], Vector Quantization (VQ) [43], Transform 

Coding (TC) [44], Compressive Sensing (CS) [45], Tensor 

Decomposition (TD) [46], Learning-Based Compression 

(LC) [47] and hybrid compression algorithms [48]. 

 

With the aid of the difference between the present pixel 

value and the previous pixel value, the predictive coding of 

HS images determines the future value of the pixel. 

Regarding the HS image, the predictive coding schemes are 

applied in the spatial domain with the help of different 

predictors. Entropy coding techniques, like arithmetic or 

Huffman coding, encode prediction errors [49]. These 

algorithms are data-dependable, and the HS image is only 

reconstructed when all HS image data is received by the 

decoder [42].  

 

The dictionary-based HS image compression, known as 

vector quantization, divides the HS image into several 

distinct blocks based on their similarities while 

simultaneously attempting to find the best possible 

approximation and then generating a unique symbol or code 

for each of those blocks [50]. There are two primary aspects 

to it: the first is the creation of the codebook, and the second 

is the hunt for the code word. An efficient method that 

employs X code words to represent Y training vectors can 

accomplish the generation of codes or symbols for the 

codebook. This can be done through an optimal scheme [51].  

 

The procedure for designing a codebook is the same as 

the construction process for X code words. The process of 

identifying code words that produce the least mean squares 

error with training vectors is referred to as "code word 

searching". During the decoding process, the HS image is 

created with the assistance of the received codebook [43]. 

 

The complexity of the coding is moved from the encoder 

end (onboard HS image sensor) to the decoder end (ground 

station) via the Compressive Sensing (CS) based HSICAs 

[31]. These methods are utilised in the real-time scenario, and 

in order for the compression process to work properly, they 

require a small amount of memory. After compressing the HS 

image data, the compression algorithm sends it to the ground 

station before proceeding to the next slice of the HS image.  

 

This process repeats until both slices of the HS image 

have been processed. The most significant benefits of CS-

based compression algorithms are their high compression 

performance, low encoder complexity, and required short 

coding memory. On the other hand, the most significant 

problems of these algorithms are their expensive 

decompression and complex decoding [45]. 
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The Tensor Decomposition (TD) based HSICAs can be 

applied with either the TC, PC, or LC-based HSICAs. A 

tensor is a matrix with n dimensions that may be 

deconstructed straightforwardly. The HS image is saved in 

the tensor, and then a compression technique is run on it to 

break it down into a tensor with fewer dimensions. This 

tensor with a low number of dimensions is given a code and 

sent through the channel. These algorithms offer a shorter run 

time and a high coding efficiency, but they have drawbacks 

such as data dependence, a manual parameter update 

technique, and a complex coding process [46]. 

 

The deep learning and machine learning methods are 

used in the LC-based HSICA. These compression algorithms 

also use the neural network (convolutional, recurrent, 

autoencoder, feedforward, multilayer perceptron) [52]. It has 

high coding efficiency with moderate CR. These HSICA 

have very high coding complexity and coding memory 

requirements. It also requires the other hardware resources 

[47]. 

 

In order to achieve the desired level of HS picture 

compression, the algorithms for hybrid code compression use 

a combination of any two or three of the methodologies 

described above [20]. These particular kinds of algorithms 

have a high coding efficiency, but this comes at the expense 

of a higher level of complexity [53]. The most common types 

of combinations that are used to create the HSICA are neural 

networks with predictive coding and neural networks with 

transform coding. Both of these types of combinations 

involve neural networks [48]. 

 

Transform Coding (TC) is the approach that is used the 

most frequently for the lossy and lossless compression of HS 

images [54]. The mathematical transform is utilised by these 

types of compression algorithms in order to bring about the 

necessary transformation of the image into the frequency 

domain. The Discrete Fourier Transform (DFT), Discrete 

Cosine Transform (DCT), Dyadic Wavelet Transform 

(DWT), Discrete Wavelet Packet Transform (DWPT), 

Integer Wavelet Packet Transform (IWPT), and Karhunen-

Loeve Transform (KLT) are the most popular mathematical 

transform use to compress the HS images [31, 35, 55].  

 

In order to accomplish the compression, these 

mathematical transformations reduce the spectral and spatial 

correlations. The TC-based HSICAs provide the highest 

possible performance even at the lowest possible bit rates. A 

significant rise in the total number of mathematical 

computations makes the TC compression technique more 

difficult to understand, which is the most significant 

drawback of this particular subcategory of compression 

algorithms [56-58]. The 3D-Set Partitioning Embedded 

Block (3D-SPECK) [59], 3D-Set Partitioning In Hierarchical 

Trees (3D-SPIHT) [60], 3D-Wavelet Block Tree Coding 

(3D-WBTC) [61], 3D-Listless SPECK (3D-LSK) [62], 3D-

No List SPIHT (3D-NLS) [63], 3D-Low memory block tree 

coding (3D-LMBTC) [64], 3D-Low complexity block tree 

coding (3D-LCBTC) [65], 3D-zero memory-set partitioned 

embedded bloCK (3D-ZM-SPECK) [66], 3D-Listless 

Embedded Zerotree Set Partitioning Coding (3D-LEZSPC) 

[67] and Fractional wavelet filter based ZM-SPECK [35] are 

the popular state of art TC based HSICAs. 

 

In terms of complexity, PC-based HSICA has the lowest 

complexity (processing and very simple hardware 

implementation). In contrast, LC-based HSICA has very high 

complexity due to the implementation (learning process and 

complex hardware implementation). While on the view of the 

coding efficiency, LC-based HSICA has high coding 

efficiency. Some TC-based HSICAs have embeddedness 

properties, meaning that HS images can be reconstructed at a 

lower bit rate than the encoding bit rate. TC-based HSICAs 

work for lossy and lossless compression per the application 

requirement. 

 

3. Background Principle 
This section presents a comprehensive introduction to 

low-memory wavelet transform, a foundation for developing 

low-memory HS image sensors. The mathematical transform 

converts the time domain HS image to the frequency domain 

HS image [61]. Many mathematical transforms are used to 

compress the HS images, but the choice of transform depends 

only on the application demand [64-67].  

A special type of TC-based HSICA is called Transform 

Based Set Partitioned Hyperspectral Image Compression 

Algorithms, which use the set structure to determine the 

significance against the current threshold. Among them, 

zeroblock cube HSICAs divide and transform the HS image 

into the contiguous block cubes and perform the significance 

test on the individual block cubes against the current 

threshold. 2D-Zero Memory Set Partitioned Embedded 

Block (2D‑ZM‑SPECK) is a special type of compression 

technique that does not require any coding memory and has 

low computational complexity. 

3.1. Block-Based Fractional Wavelet Filter (BFrWF)  

The 3D dyadic wavelet transforms (3D-DWT) had 

excellent energy clustering properties. However, it also 

requires a lot of memory for calculating the transform 

coefficients, which is impossible for low-resource HS image 

sensors [65]. For the calculation of the transform coefficients 

of the HS image through 3D-DWT, first, 1D-DWT is applied 

to all rows of the frequency frame, resulting in sub-bands L 

and H.  

 

After that, the second 1D-DWT is applied to all columns 

of the frequency frame, resulting in four sub-bands: LL, LH, 

HL and HH. This process is repeated to the rest of the 

frequency frames to calculate the transform coefficients. 

Lastly, 1D-DWT is applied to the spectral dimension of the 
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HS image for each pixel array, resulting in eight sub-bands: 

LLL, LLH, LHL, LHH, HLL, HLH, HHL and HHH. 

Through this approach, the whole HS image needs to be 

saved on the HS image sensor memory. The transform 

memory requirement grows linearly with the HS image size. 

It has been known that only a few MB of memory is available 

with the HS image sensors to calculate the transform 

coefficients [64]. So, this approach is not suitable for low-

resource HS image sensors. It has also been known that HS 

images are a collection of 2D frequency frames or slices 

taken for a single scene [35]. However, this is accomplished 

at the expense of coding gain due to the fact that 2D-DWT 

does not investigate the spectral correlation that exists 

between the frames of the HS image [35].  

 

Apart from the above-mentioned approaches, there are 

three types of approaches for calculating the transform 

coefficients, which minimize the demand for transform 

memory. The line-based DWT [68], strip-based DWT [69] 

and block based DWT [70] are the three approaches. When 

using line-based DWT, lines from the image are read into the 

system's buffer until it is possible to apply vertical filtering 

[68]. When applied to wide blocks, the DWT based on stripes 

is analogous to the DWT based on lines. Block-based DWT 

is more applicable to the job that we are doing since it first 

divides the image into several different blocks and then 

transforms each of those blocks individually [70]. They are 

not appropriate for altering images utilising low-cost sensor 

nodes or portable devices because of the memory and 

complexity limits those devices have [71]. 

 

The Fractional Wavelet Filter (FrWF) is one of the more 

recent developments that has helped reduce the amount of 

memory needed for the computation of forward DWT [72]. 

Despite the fact that FrWF requires very little memory for its 

implementation, the amount of memory that it needs to store 

data still varies depending on the size of the HS image 

frequency frame, which makes it unsuitable for transforming 

HS images on platforms with limited memory [73]. 

 

Block-Based FrWF (BFrWF) is a modified form of 

FrWF [70]. Compared to FrWF, BFrWF has fewer 

complexity and memory requirements. When using BFrWF, 

a frequency frame is initially broken up into blocks, and then 

the FrWF algorithm is utilised on each individual block in 

turn. The BFrWF makes use of five buffers: an input buffer I 

for storing one image line from the vertical filter area selected 

from the frequency frame block, four temporary buffers for 

storing and updating the sub-band coefficients created, and 

an output buffer F for outputting the sub-band coefficients. In 

order to illustrate the concept that underpins BFrWF, it starts 

by supposing that a frequency frame of an HS image is 

divided up into a certain number (call it 'b') of blocks. For the 

sake of keeping things simple, we will simply look at one 

level of wavelet decomposition here. 

 

3.2. Transform Based Set Partitioned Hyperspectral Image 

Compression Algorithm (TSP-HSICA)  

Many wavelet-based HS image compression algorithms 

that have shown to be rather effective have been proposed 

over the course of the years. They can be broadly divided into 

three groups: zero tree-based HSICAs, zeroblock cube-based 

HSICAs and zeroblock cube tree HSICAs [66]. The zero tree-

based HSICA does its task by forming a Spatial Orientation 

Tree (SOT) by grouping the wavelet coefficients 

corresponding to the same location and orientation into a 

single entity [65]. An HSICA based on a zero tree is then an 

SOT that does not have a significant coefficient in relation to 

the given threshold [].  

In order for zeroblock cube HSICAs to function, the 

modified image must first be segmented into continuous 

blocks. Then, the significance test must be carried out on each 

individual block cube [61, 74]. Therefore, a block with no 

significant coefficients concerning the provided threshold is 

considered a candidate for a zero block-based HSICA. The 

zeroblock cube tree partitions a transformed HS image into 

coefficient block cubes, and then block cube trees are formed 

with the roots in the topmost sub-band in a zero tree fashion. 

3.3. Zeroblock Cube-Based Hyperspectral Image 

Compression Algorithm  

The zeroblock cube-based HSICA is a special type of 

TSP-HSICA, which partitions the HS image into two sets 

named the ‘S’ set and the ‘I’ set. The dimension of the ‘S’ set 

depends on the level of wavelet transform, and the initial ‘S’ 

set lies on the left corner of the HS image while the rest of 

the HS image is regarded as the ‘I’ set. These sets checked 

for significance against the current threshold. Suppose the ‘S’ 

set is partitioned into the eight ‘S’ sets, test for the 

significance.  

 

The ‘I’ set found significance, then it is partitioned into 

the seven new ‘S’ sets, and a new ‘I’ set will be generated. 

This process repeats with the bit budget available. Further, 

these can be divided into two parts: zeroblock cube HSICA 

and listless zeroblock cube HSICA.  

 

The list zeroblock cube HSICA uses lists to track the 

significance of the sets or coefficients, while for the same 

task, the listless zeroblock cube-based HSICA uses different 

types of markers or state tables. 3D-SPECK [59], 3D-ZM-

SPECK [66], 3D-M-ZM-SPECK, 3D-BCP-ZM-SPECK and 

3D-LSK [62] belong to zeroblock cube based HSICA group. 

 

3.4. 2D-Zero Memory Set Partitioned Embedded Block 

(2D‑ZM‑SPECK)  

The 2D-ZM-SPECK is a unique implementation of 2D-

SPECK, which does not depend on any type of coding 

memory for the lists state tables or markers. It is performed 

with the help of Morton mapping or linear indexing to 

determine the length of the sets. 2D-ZM-SPECK does not use 
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any lists such as in 2D-SPECK [75] or state markers as in 2D-

LSK [76]. Through the use of Morton mapping or indexing 

property of wavelet transform, it does not require List of 

Significant Pixels (LSP), and it avoids LSP by merging the 

sorting pass and refinement pass for the current threshold.  

 

In this way, it does not require any static coding memory 

(fix size coding memory), but for some low-level calculations 

(logical, algebraic or arithmetic), it requires dynamic coding 

memory. It is a bit plane coding algorithm that encodes the 

high-priority bit plane first and then the other according to 

their weight until the bit budget is available.   

 

The ‘L’ level transform HS image frequency frame is 

partitioned into ‘S’ set and ‘I’ set according to the level of 

transform. If ‘S’ set (𝑆𝜏
𝜎)is significant to the current threshold 

than the ‘S’ set is partitioned into the four new ‘S’ sub sets 

(𝑆𝜏
𝜎/4

 ;  𝑆𝜏+ 𝜎/4
𝜎/4

 ;  𝑆𝜏+ 𝜎/2
𝜎/4

 𝑎𝑛𝑑 𝑆𝜏+3𝜎/4
𝜎/4

) and significance 

testing is done accordingly against the current threshold.  

 

For the ‘I’ set (Iτ) testing for the significance, if found 

significance, then three new ‘S’ sets (𝑆𝜏
𝜏 ;  𝑆2𝜏

𝜏  𝑎𝑛𝑑 𝑆3𝜏
𝜏 ) and a 

new ‘I’ set (I4τ) formed.  

 

The new 'S' set maintains the same dimensions as its 

predecessors in terms of its size. The same approach is carried 

out until a significant coefficient corresponding to the present 

threshold can be identified. The testing of the ‘S’ set is 

performed with the significance function ψ(.), which is 

calculated through Equation (1) while σ is the set length. 

 

Ψ𝑛 (𝑆)  =  {

1       ;   𝑖𝑓 2𝑛  ≤ max|𝑆|  ≤  2𝑛+1 

0        ;    𝑖𝑓  max|𝑆|  <  2𝑛                 

𝑁𝑢𝑙𝑙  ;    max|𝑆|  ≥  2𝑛+1                    

 

 

(1) 

σ is calculated as Eq 2 for the frequency frame of 

dimension ‘N’ by ‘N’, which is calculated as in Eq 2 

 

𝜎 =   [
𝑁 ∗ 𝑁

4𝐿
]      (2) 

  

If the bit budget is depleted between the bit planes, then 

the coding gain of the 2D-ZM-SPECK algorithm will be 

reduced. 

4. Process of Encoding 
The block-based fractional wavelet transform transforms 

the HS image frame by frame. To calculate the discrete 

wavelet converted coefficients of an image, this study makes 

use of a Block-based fractional wavelet filter, also known as 

a BFrWF.  

 

In this method, the HS image frequency frame is first 

divided into blocks, and the FrWF algorithm is then utilised 

on each individual block in turn. 

 

The modified HS image cube is created by taking a slice 

of eight continuous frequency frames of the transform HS 

image together, placing the first frame as it is while other 

frames are the difference between the current and the last 

frames.  

 

This process repeats for all frequency frames. After that, 

each frequency frame of the HS image is divided into the 

number of blocks mentioned during the transformation of the 

frequency frames of the HS image. 

 

The encoding and decoding time of every block of 

frequency frame is measured independently and then added 

together to calculate the coding complexity of the whole HS 

image. The same process is also followed to calculate the 

coding efficiency. In this way, the complexity of the coding 

process of the compression algorithm is reduced 

significantly.  

 

With a few minor adjustments and an extra phase of 

significance testing sets and coefficients to find sets with 

refinement, the decoding process is similar to the encoding 

technique. Table 1 provides the pseudo-code for the proposed 

compression algorithm. Figure 1 shows the encoding process 

of the compression algorithm. 

 

 
 

Fig. 1 Encoding process of the proposed HSICA 

Modified HS 

Image 

Set Initial 

Threshold 

T 

Apply the 2D-ZM-

SPECK on each 

block of every 

frequency frame  

Output Bit 

Stream 

T = T/2 
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Table 1. Pseudo code of proposed HSICA 

          

Input : Original HS image ′Α′ (α & β is defined as spatial dimension while spectral dimension as γ 

Step 1  Transform of the HS Image 

 HS image is transformed with the BFrWF and it is applied to each frequency frame of   HS image. It has 

been performed one by one for each frequency frame. 

Transform HS image is defined as ′Β′ 
Step 2 Creation of the Modified HS Image Cube (MHSIC) 

  for ϕ = 0: γ -1 

  { 

   if(rem(ϕ,8)) = = 0 

   { 

    MHSIC(ϕ) = HS(ϕ) 

    else 

     MHSIC(ϕ) = [HS(ϕ) – HS(ϕ-1)] 

   }       

  }        

Step 3 Initialization Step 

 Generation of a 1D Linear array ′Κ′ is created from the 3D MHSIC through Morton Mapping.  

To check the significance of the ‘S’ set and ‘I’ set against the current threshold is performed through ′Ψ′ 
function, which is defined in Equations (1) and (2) 

Set : Total number of coefficients in the linear array 𝜆 = 𝑙𝑒𝑛𝑔𝑡ℎ |𝐾| 
Set :  Total number of bit plane in the linear array ‘K’ 𝑛 =  log2[max (𝐾)] 
Set : Initial threshold of the linear array ‘K’ 𝜂 =  2𝑛 

Set : Initial starting index of the linear array ‘K’ 𝜏 = 0 

Set : Initial root set length 𝜎𝑟𝑜𝑜𝑡 

Set : 𝜎 =  𝜎𝑟𝑜𝑜𝑡 

Step 4 Sorting Pass 

  while (γ ≤ 256) 

  {        

   while (τ ≤ λ) 

   {       

    PSScan(𝑆𝜏
𝜎) 

    if ((𝜏 =  𝜎) &&  (𝜏 ≥  𝜎𝑟𝑜𝑜𝑡   )) 
    { 

     PIScan(Iτ) 

    }      

   }       

  }        

Step 5 Quantization Step 

 {         

  n = (n-1)     

 }         

          

Description of the functions 

Function 1 PSScan() Function of ‘S” set processing  

 {         

  Output Ψ𝑛 (𝑆𝜏
𝜎)     

  if (Ψ𝑛(𝑆𝜏
𝜎) = 0)     

  {        

   τ = (τ + σ)     

   else     

   {       

    if (σ > 4)     

    {     

     σ = (σ/4)     
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     return     

     else     

     {      

      PS(σ,η)     

     }      

    }      

   }       

  }        

  NSL(τ,σ)     

 }         

          

Function 2 PIScan() Function of ‘I’ set processing 

 {         

  Output (Ψ𝑛 (𝐼𝜏))     

  {        

   𝑖𝑓 (Ψ𝑛(𝐼𝜏)  =   0)     

   {       

    τ = λ     

   }       

  }        

 }         

          

Function 3 PS() Small ‘S’ set processing function 

 {         

  for (ε = 0 : 3)     

  {        

   Output (Ψ𝑛 (𝐾(𝜀 +  𝜏)))     

   if     

   {       

    Ψ𝑛  (𝐾(𝜀 +  𝜏))  = 1     

    Output sign bit of  𝐾(𝜀 +  𝜏)     

    else     

    {      

     Ψ𝑛 (𝐾(𝜀 +  𝜏)) = 𝑁𝑢𝑙𝑙     

     Output of nth MSB of K(ε+τ)    

    }      

   }       

  }        

  τ = (τ + 4)     

 }         

          

Function 4 NSL () Function for the calculation of set length 

 {         

  while bitand (τ, 3σ) =0 ;     

  {        

   σ = 4σ     

  }        

 }         

          

 

5. Experimental Results and Discussion  
In this section, we evaluate the performance of the 

proposed HSICA with the other state of art HSICAs on six 

HS images. The performance of the proposed HSICA has 

been done based on the transform side and coding side, which 

is missing in previously stated TSP-HSICAs. The 

performance of the associated transform was analysed based 

on the demand for transform memory and transform 

complexity (calculation of wavelet transform coefficients). 

For the coding part of the HSICA, the performance of the 
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proposed HSICA is analysed based on coding complexity, 

coding memory, and coding efficiency. 

5.1. Dataset  

Six different HS images were taken to validate the 

performance of the different HSICAs with the proposed 

HSICA. Washington DC Mall (Hyperspectral Image I), 

Yellowstone Scene 0 (Hyperspectral Image II), Yellowstone 

Scene 3 (Hyperspectral Image III), Yellowstone Scene 18 

(Hyperspectral Image IV), Pavia Centre (Hyperspectral 

Image V), and University (Hyperspectral Image VI) is taken 

for the simulation test on Matlab platform. Hyperspectral 

Image I is captured by the HYDICE HS image sensor (400 

nm to 2500 nm with a 10 nm bandwidth having pixel depth 

14) while Hyperspectral Image II, III and IV are captured by 

AVIRIS sensor (380 nm to 2500 nm with a 10 nm bandwidth 

having pixel depth 16). Hyperspectral Images V and VI are 

captured by ROSIS HS image sensor (430 nm to 860 nm with 

a 4 nm bandwidth having pixel depth 13). All HS images are 

cropped from the top left corner to the size of the cube of 

dimensions '256' and ‘512’. The HS images belonging to the 

Yellowstone dataset have featured forests (river, vegetation, 

etc), while the three HS images have city architectures (roads, 

buildings etc). 

 

5.2. Performance Metrics 

We evaluate the performance of state of art HSICS and 

proposed HSICA in Peak Signal-to-Noise Ratio (PSNR), 

Structural Similarity (SSIM) index, Compression Raio (CR), 

Coding memory and coding complexity [75-78]. For the 

different types of wavelet transform, the block-based 

fractional wavelet filter performance was tested based on the 

transform memory requirement and computational 

complexity. All the simulation experiments were conducted 

on the i5 (11th generation) processor having RAM of 20 GB 

with Windows 11 operating system.  

The CR is defined as mathematical, as in Equation (3). 

 

𝐶𝑅 =  
𝑆𝑖𝑧𝑒 𝑜𝑓 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐻𝑆 𝑖𝑚𝑎𝑔𝑒

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑢𝑟𝑐𝑡𝑒𝑑 𝐻𝑆 𝑖𝑚𝑎𝑔𝑒
 (3) 

 

PSNR is the ratio of the maximum possible power of a 

signal, which is the original image, to the power of the noise, 

which is based on the disparity between the original and 

processed images [77]. It is calculated through Equation (4). 

 

𝑃𝑆𝑁𝑅 =   20 log10 [
𝑀𝑎𝑥

𝑀𝑆𝐸
] (4) 

 

The highest possible pixel value of the HS image is 

denoted by the letter Max and the Mean Square Error (MSE) 

of the reconstructed HS image compared to the original HS 

image. It is calculated as Equation (5). 

𝑀𝑆𝐸 =  
1

𝑁𝑝𝑖𝑥

∑ [𝑓(𝑥, 𝑦, 𝑧) − 𝑔(𝑥, 𝑦, 𝑧)]2

𝑥,𝑦,𝑧

 (5) 

The total number of pixels that exist in the HS image is 

represented as Npix, while the original HS image and 

reconstructed HS image after the compression process are 

represented as ‘f(x,y,z)’ and ‘g(x,y,z)’. 

 

5.3. Benchmark Hyperspectral Image Compression 

Algorithms 

To evaluate the performance of the proposed 

compression algorithm, the proposed algorithm is compared 

with state-of-the-art HSICAs 3D-SPECK (CA-I) [59], 3D-

SPIHT (CA-II) [60], 3D-WBTC (CA-III) [61], 3D-LSK 

(CA-IV) [62], 3D-NLS (CA-V) [63], 3D-LMBTC (CA-VI) 

[64], 3D-LCBTC (CA-VII) [65], 3D-ZM-SPECK (CA-VIII) 

[66], 3D-LEZSPC (CA-IX) [67] and Fractional wavelet filter 

based ZM-SPECK (CA-X) [35]. The CA-I, CA-II and CA-

III are list-based HSICA while other uses state tables or 

markers for the tracking of the significance of the partitioned 

sets. 

5.4. Transform Memory 

The demand for memory during the transformation and 

calculation of the wavelet transform is known as transformed 

memory. BFrWF needs one input buffer to store the part of 

the frequency frame and four other buffers to calculate the 

four final sub-bands. Let the size of the HS image frequency 

frame be ‘N’ by ‘N’, and ‘b’ is the number of blocks of the 

HS image frequency frames. The dimension of the input 

buffer is 1 ×  
𝑁

𝑏/2
  while the rest of the buffer dimension is 

1 ×  
𝑁

𝑏
 .  

 

It has been clear from Table 2 that the requirement of the 

transformed memory is minimal for the BFrWF while for the 

other transform. The 3D-DWT and 2D-DWT have very high 

transform memory requirements as they need to save the 

whole HS image (for 3D-DWT) or the whole frequency 

frame (for 2D-DWT). The fractional wavelet filter 

significantly reduces the need for transform memory. 

Further, it is reduced by using BFrWF to make the transform 

memory in line with the coding memory, which is near zero. 

From Table 2, it is also clear that when we increase the 

number of blocks in the frequency frame, the transform 

memory also reduces the factor of ‘2’.  

 

5.5. Transform Complexity 

The complexity of any type of wavelet transform is 

measured by the time required to calculate wavelet 

coefficients. There are many ways to calculate the wavelet 

transform coefficients. Table 3 shows that FrWF has the 

highest time requirement while BFrWF (with four blocks) 

has almost a similar time requirement as 2D-DWT. As the 

number of blocks increases, the transform complexity 

increases, as shown in Table 3. The transform complexity of 

FrWF is higher than the 2D-DWT because FrWF calculates 

the wavelet coefficients in different ways and calculates the 

HS image frequency frame. 
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5.6. Coding Complexity 

The coding complexity of any HSICA is calculated as 

the time consumed by the compression algorithm for the 

encoding and decoding process. The amount of time needed 

for the encoding process is significantly longer than the 

amount of time needed for the decoding procedure. A rise in 

the bit rate will result in an increase not just in the amount of 

time required for encoding but also for decoding [66].  It has 

been clear from Table 4 (Appendix) it has been clear that the 

proposed HSICA is less complex than its counterpart, FrWF-

based HSICA, but has high complexity compared to the other 

listless HSICA except for 3D-LEZSPC [67]. Also, it has a 

lower complexity than the other list based HSICA. Due to the 

2D nature of the coding, its complexity has been increased 

but is around 2% to 5% less than the FrWF-based HSICA. 

The HSICA divide frequency frames into 4 blocks, and 2D-

ZM-SPECK is applied independently to all blocks. Then, the 

computation time is calculated and summed up for the 

calculations.

 

Table 2. Transform memory requirement of different types of wavelet transform for different HS image size 

Dimension of HS Image Cube 

Type of wavelet 

Transform 

128 256 512 

3D-Dyadic Wavelet Transform 38.34 MB 306.72 MB 2453.76 MB 

2D- Dyadic Wavelet Transform 174.592 KB 698.368 KB 2793.472 KB 

Fractional Wavelet Transform 3.123 KB 6.246 KB 12.493 KB 

Block-Based Fractional Wavelet Transform (4) 1.5615 KB 3.123 KB 6.246 KB 

Block-Based Fractional Wavelet Transform (8) 0.78075 KB 1.5615 KB 3.123 KB 

Block-Based Fractional Wavelet Transform (16) - 0.78075 KB 1.5615 KB 

 
Table 3.  Transform Complexity of the different wavelet transforms for different HS image sizes 

Dimension of HS Image Cube 

Type of wavelet 

Transform 

256 512 

3D-Dyadic Wavelet Transform 2.96 sec 18.47 sec 

2D- Dyadic Wavelet Transform 5.65 sec 44.54 sec 

Fractional Wavelet Transform 7.59 sec 47.24 sec 

Block-Based Fractional Wavelet Transform (4) 6.01 sec 37.06 sec 

Block-Based Fractional Wavelet Transform (8) 6.67 sec 39.48 sec 

Block-Based Fractional Wavelet Transform (16) 7.48 sec 45.02 sec 

 

5.7. Coding Memory 

It has been known that onboard HS image sensors have 

limited memory. It is clear from Table 5 (Appendix) that the 

proposed HSICA does not require any coding memory. It is 

due to the nature that the linear indexing property of the 

wavelet transform is used to avoid the use of associated lists 

and state table markers. Other HSICAs, except CA-VIII [66] 

and CA-X [65], have the requirement for coding memory, 

and coding memory grows rapidly with the increase in the bit 

rates for the list-based HSICA. For the listless HSICA, the 

coding memory is fixed and depends only on the size of the 

HS image under test. Due to the low (almost zero) coding 

memory, the proposed HSICA can be a candidate for the 

resource constraint HS image sensors.  

 

5.8. Coding Efficiency  

Table 6 (Appendix) presents the comparative analysis of 

the proposed HSICA with state-of-the-art HSICA. It has been 

observed that the proposed HSICA outperform all other 

HSICA except CA-X [35]. The proposed HSICA has higher 

coding efficiency than other HSICA from 2 dB to 4 dB at 

different bit rates. When using 3D-SPECK [59], the coding 

gain of the PSNR is enhanced from 6% to 10 % across the 

board despite the varying bit rates. The large coding gain can 

be attributed to the fact that the topmost bit planes are 

unavailable in the majority of the frames of the modified HS 

image cube. This coding benefit is accomplished by the 

utilisation of the HS image's inherent spectral redundancy 

[64, 79]. When the bit budget between the bit planes is 

exhausted, the suggested compression technique's 

performance is poor, resulting in a modest drop in the coding 

gain. It was noted that the range of coding efficiency (PSNR) 

between 25 dB and 30 dB is adequate for optimal image 

quality [41]. Table 7 gives the comparative analysis between 

the 3D-ZM-SPECK [66], FrWF-based HSICA [35] and 

proposed HSICA for two different HS image sizes at bit rates 

of 0.1 based on coding efficiency, coding memory and coding 

complexity. The low-complex architecture of the 

compression algorithms plays a greater role in processing the 

image data [66, 79-81]. 
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Table 7. Comparative analysis of the different zero memory HSICA at bit rate 0.1 

HS Image 256  512 

 Coding Efficiency 

 CA-VIII [66] CA-X [35] Proposed HSICA CA-VIII [66] CA-X [35] Proposed HSICA 

Hyperspectral Image II 35.46 37.42 37.02 41.7 44.06 43.68 

Hyperspectral Image III 36.37 40.34 39.95 40.13 43.54 43.03 

Hyperspectral Image IV 36.2 39.47 39.01 44.29 47.28 47.14 

 Coding Memory 

Hyperspectral Image II 0 0 0 0 0 0 

Hyperspectral Image III 0 0 0 0 0 0 

Hyperspectral Image IV 0 0 0 0 0 0 

 Coding Complexity  

Hyperspectral Image II 36.23 64.4 63.35 124.85 201.51 195.36 

Hyperspectral Image III 57.96 105.78 100.13 117.47 199.17 191.25 

Hyperspectral Image IV 35.4 81.1 77.01 117.76 192.74 188.09 

6. Conclusion  
The manuscript presents a novel compression algorithm 

that reduces the HS image sensors' working memory 

requirement and complexity (transform and coding). It is also 

observed from the simulation results that the BFrWF has 

lower transform memory and transform complexity than 

FrWF. Incorporating parallel processing of blocks is 

something that will be looked into more in the future because 

it has the potential to further reduce the complexity of 

BFrWF. 
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Appendix 
Table 4. Coding complexity analysis (encoding and decoding time) of the different set partitioned HS Image compression algorithms for different bit rates 

Bit Rate 
Computation 

Time 

CA-I 

[59] 

CA-II 

[60] 

CA-III 

[61] 

CA-IV 

[62] 

CA-V 

[63] 

CA-VI 

[64] 

CA-VII 

[65] 

CA-VIII 

[66] 

CA-IX 

[67] 

CA-X 

[35] 

Proposed 

CA 

  Hyperspectral Image I 

0.001 

Enc Time 3.99 4.06 5.94 2.67 14.18 5.91 3.17 3.24 20.09 3.29 3.14 

Dec Time 1.78 2.92 1.59 2.08 12.79 2.48 2.21 3.02 3.57 3.11 3.97 

Total Time 5.77 6.98 7.53 4.75 26.97 8.39 5.38 6.26 23.66 6.4 6.11 

0.005 

Enc Time 9.85 9.73 8.2 2.78 61.33 8.35 3.35 4.83 82.29 4.91 4.7 

Dec Time 5.18 5.25 2.41 2.43 48.29 3.86 2.68 4.65 14.87 4.68 4.38 

Total Time 15.13 14.98 10.61 5.21 109.62 12.21 6.03 9.48 97.16 9.59 9.08 

0.01 

Enc Time 20.45 29.93 10.99 3.25 73.64 9.26 4.41 5.97 93.55 7.89 7.55 

Dec Time 10.78 14.31 4.51 2.68 57.16 4.04 3.08 5.61 21.59 7.29 7.05 

Total Time 31.23 44.24 15.5 5.93 130.8 13.3 7.49 11.58 115.14 15.18 14.6 

0.05 

Enc Time 222.2 303.4 94.36 5 90.57 19.45 5.49 12.18 102.89 20.27 19.76 

Dec Time 172.7 236.2 84.75 4.02 69.23 12.01 4.34 11.79 51.47 18.57 18.03 

Total Time 394.9 539.6 179.11 9.02 159.8 31.46 9.83 23.97 154.38 38.84 37.79 

0.1 

Enc Time 1163 1297 762.6 7.31 102.5 34.74 7.94 19.55 117.8 33.29 31.95 

Dec Time 1081 1078 762.11 6.24 77.57 21.79 6.71 18.36 59.6 31.84 30.09 

Total Time 2244 2375 1524.71 13.55 180.07 56.53 14.65 37.91 177.4 65.13 62.04 

0.25 

Enc Time 6234 6871 4358 13.35 120.8 68.15 14.02 40.25 131.8 77.51 74.89 

Dec Time 6012 6305 4703 11.68 90.45 50.91 12.02 37.86 67.2 69.84 68.08 

Total Time 12246 13176 9061 25.03 211.25 119.06 26.04 78.11 199 147.35 142.97 

0.5 

Enc Time 17995 18742 19551 24.12 151.3 122.5 26.03 74.87 160.8 112.81 108.59 

Dec Time 17597 18534 15400 22.65 100.5 96.84 25.07 69.02 89.7 107.94 98.87 

Total Time 35592 37276 34951 46.77 251.8 219.34 51.10 143.89 250.5 220.75 207.46 

  Hyperspectral Image II 

0.001 
Enc Time 3.42 4.33 5.94 2.35 15.97 5.73 2.47 2.94 17.89 3.38 3.21 

Dec Time 1.87 1.52 1.46 1.4 12.18 2.18 1.61 2.79 9.78 3.14 3.04 
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Total Time 5.29 5.85 7.4 3.75 28.15 7.91 4.08 5.73 27.67 6.52 6.25 

0.005 

Enc Time 9.84 5.85 8.5 2.71 75.93 7.36 3.87 6.44 84.67 9.02 8.12 

Dec Time 5.4 2.45 2.77 2.49 66.24 3.21 3.01 6.05 54.94 8.47 7.74 

Total Time 15.24 8.3 11.27 5.2 142.17 10.57 6.88 12.49 139.61 17.49 15.86 

0.01 

Enc Time 22.53 9.41 10.83 2.88 90.43 16.99 4.29 10.28 99.47 18.37 17.52 

Dec Time 10.01 4.92 3.86 2.71 81.48 6.23 3.27 10.04 66.38 17.89 17.01 

Total Time 32.54 14.33 14.69 5.59 171.9 23.22 7.56 20.32 165.85 36.26 34.53 

0.05 

Enc Time 250.3 134.4 131.5 4.14 106.55 27.4 5.02 16.02 121.8 28.81 28.02 

Dec Time 207.2 127.8 130.1 3.38 94.49 14.94 3.94 11.35 79.7 25.29 24.62 

Total Time 457.5 262.2 261.6 7.52 201.04 42.34 8.96 27.37 201.5 54.1 52.64 

0.1 

Enc Time 966.7 570.8 632.6 6.04 125.87 36.27 7.21 18.42 143.8 33.59 33.06 

Dec Time 887.6 717.5 614.3 5.98 106.8 23.01 6.64 17.81 80.3 30.81 30.29 

Total Time 1854.3 1288.3 1246.9 12.02 232.67 59.28 13.85 36.23 224.1 64.4 63.35 

0.25 

Enc Time 4973 3032 4100 10.24 134.4 96.34 12.21 56.67 155.9 87.29 82.29 

Dec Time 4796 3029 4040 6.74 113.86 58.62 7.18 47.06 87.5 81.08 78.68 

Total Time 9769 6161 8240 16.98 248.26 154.96 19.39 103.73 243.4 168.37 160.97 

0.5 

Enc Time 12007 10112 12975 17.25 154.41 177.73 18.95 67.74 180.9 109.05 101.94 

Dec Time 11898 9954 12299 14.7 125.56 120.33 15.34 60.13 99.5 101.75 95.39 

Total Time 23905 20066 25274 31.95 279.97 298.06 34.29 127.87 280.4 210.8 197.33 

  Hyperspectral Image III 

0.001 

Enc Time 4.08 4.03 5.85 2.07 15.97 5.68 2.76 3.19 17.79 5.54 5.02 

Dec Time 1.74 1.39 1.32 1.89 8.43 4.1 2.11 3.02 6.54 4.87 4.61 

Total Time 5.82 5.42 7.17 3.96 24.4 9.78 4.87 6.21 24.33 10.41 9.63 

0.005 

Enc Time 9.12 5.96 7.87 2.89 75.93 7.78 3.28 4.74 88.54 7.09 6.74 

Dec Time 5.13 2.24 2.44 2.47 66.02 6.02 2.74 3.99 49.87 6.78 6.09 

Total Time 14.25 8.2 10.31 5.36 141.95 13.8 6.02 8.73 138.41 13.87 12.83 

0.01 
Enc Time 20.18 9.7 11.64 3.34 90.43 8.55 4.01 7.52 101.5 12.87 12.05 

Dec Time 12.51 5.18 5.14 2.69 84.96 7.06 3.02 6.33 79.5 11.49 11.38 
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Total Time 32.69 14.88 16.78 6.03 175.39 15.61 7.03 13.85 181 24.36 23.43 

0.05 

Enc Time 204.3 125.2 89.77 4.57 106.55 19.48 5.31 22.88 119.5 31.65 30.25 

Dec Time 160.3 114.7 80.01 4.46 92.68 14.84 5.19 18.56 87.4 29.81 28.36 

Total Time 364.6 239.9 169.78 9.03 199.23 34.32 10.5 41.44 206.9 61.46 58.61 

0.1 

Enc Time 1183 775.8 835.9 5.91 125.87 32.46 6.47 30.14 138.8 54.79 51.39 

Dec Time 1074 760.5 827.8 5.59 104.98 21.49 6.37 27.82 100.5 50.99 48.74 

Total Time 2257 1536.3 1663.7 11.5 230.85 53.95 12.84 57.96 239.3 105.78 100.13 

0.25 

Enc Time 8499 5151 6309 10.41 134.14 70.4 11.91 43.49 149.5 89.32 81.29 

Dec Time 8387 5832 6233 9.27 115.94 48.95 10.34 39.95 108.2 83.67 76.32 

Total Time 16886 10983 12858 19.68 250.08 119.35 22.25 83.44 257.7 182.99 154.61 

0.5 

Enc Time 29849 18383 23861 16.19 154.41 125.42 17.09 72.62 165.8 121.21 117.62 

Dec Time 26948 15672 23161 14.97 141.97 114.52 16.68 67.23 130.1 118.37 111.95 

Total Time 56797 34055 47022 31.16 296.38 239.94 33.77 139.85 295.9 239.58 229.67 

  Hyperspectral Image IV 

0.001 

Enc Time 4.56 5.6 7.23 2.39 6.03 5.74 2.89 2.82 7.85 3.03 2.91 

Dec Time 2.41 1.64 1.73 2.02 5.27 2.1 2.24 2.74 4.34 2.81 2.7 

Total Time 6.97 7.24 8.96 4.41 11.3 7.84 5.13 5.56 12.19 5.84 5.61 

0.005 

Enc Time 15.24 6.23 8.15 2.81 11.53 7.53 3.34 4.44 12.94 4.91 4.77 

Dec Time 9.57 2.33 2.55 2.34 8.26 2.88 2.47 4.28 7.19 4.75 4.42 

Total Time 24.81 8.56 10.7 5.15 19.79 10.41 5.81 8.72 20.13 9.66 9.19 

0.01 

Enc Time 21.67 10.2 12.64 3.18 18.44 8.93 3.98 5.64 21.18 9.08 8.11 

Dec Time 12.68 5.23 6.11 2.89 14.44 3.91 3.23 5.41 12.78 8.48 7.81 

Total Time 34.35 15.43 18.75 6.07 32.88 12.84 7.21 11.05 33.96 17.56 15.92 

0.05 

Enc Time 269.6 130.4 98.12 4.3 22.64 18.61 4.88 13.02 24.91 21.35 20.18 

Dec Time 226.5 120.5 89.08 3.74 19.5 11.48 4.29 11.36 17.47 19.48 18.89 

Total Time 496.1 250.9 187.2 8.04 42.14 30.09 9.17 24.38 42.38 40.83 39.07 

0.1 
Enc Time 1336 893.4 882.3 6.11 25.53 32.45 6.41 18.18 30.58 41.81 40.39 

Dec Time 1241 829.1 866.3 5.96 21.07 21.02 6.57 17.22 20.17 37.29 36.62 
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Total Time 2577 1722.5 1748.6 12.07 46.6 53.47 12.98 35.4 50.75 81.1 77.01 

0.25 

Enc Time 8435 5133 5501 10.35 34.5 69.66 11.38 36.3 38.54 67.28 64.23 

Dec Time 9067 4536 5494 6.62 29.65 48.91 7.08 33.79 24.25 61.3 59.19 

Total Time 17502 9669 10995 16.97 64.15 118.57 18.46 70.09 62.79 128.58 123.42 

0.5 

Enc Time 27917 17945 18818 17.43 65.13 125.19 19.01 66.91 70.04 111.92 105.32 

Dec Time 25042 17677 18136 12.03 55.03 92.97 12.87 62.31 48.95 109.21 103.09 

Total Time 52959 35622 36954 29.46 120.16 218.16 31.88 129.22 118.99 221.13 208.41 

  Hyperspectral Image V 

0.001 

Enc Time 1.47 1.4 2.04 0.95 3.17 2.17 1.87 1.40 5.07 3.02 2.95 

Dec Time 0.78 0.53 0.49 0.89 1.55 0.76 0.71 1.29 3.57 2.91 2.41 

Total Time 2.25 1.93 2.53 1.84 4.72 2.93 2.58 2.69 8.64 5.93 5.36 

0.005 

Enc Time 4.89 2.9 3.70 0.99 4.03 4.84 3.94 1.71 5.54 3.39 3.11 

Dec Time 3.36 1.15 1.13 0.96 1.89 1.67 1.57 1.58 3.94 3.01 2.87 

Total Time 8.25 4.05 4.83 1.95 5.92 6.51 5.51 3.29 9.48 6.4 5.98 

0.01 

Enc Time 11.30 4.5 6.56 1.52 4.80 5.33 4.34 2.20 6.27 4.06 3.84 

Dec Time 5.62 2.21 3.65 1.39 2.13 2.84 2.94 1.97 5.37 3.32 3.41 

Total Time 16.92 6.71 10.21 2.91 6.93 8.17 7.28 4.17 11.64 7.38 7.25 

0.05 

Enc Time 113.8 44.0 42.07 1.98 6.11 8.07 6.98 4.14 6.84 8.04 7.48 

Dec Time 100.9 40.69 39.48 2.09 2.31 4.58 4.03 3.67 5.84 7.33 7.02 

Total Time 214.7 84.69 81.55 4.07 8.42 12.65 11.01 7.81 12.68 15.37 14.5 

0.1 

Enc Time 622.6 270.5 254.4 3.05 7.58 12.94 9.11 6.75 8.89 11.84 11.6 

Dec Time 591.9 268.7 272.4 2.91 3.34 8.72 7.89 6.02 8.02 10.41 10.21 

Total Time 1214.5 539.2 526.8 5.96 10.92 21.66 17 12.77 16.91 22.25 21.81 

0.25 

Enc Time 3211 3145 1757 5.69 9.83 24.13 14.24 16.12 11.06 28.74 27.07 

Dec Time 2879 3004 1637 5.32 5.84 16.36 12.59 14.89 9.28 26.32 25.51 

Total Time 6090 6149 3394 11.01 15.67 40.49 26.83 31.01 20.34 55.06 52.58 

0.5 
Enc Time 20522 21256 22415 9.39 11.92 38.28 21.29 29.80 14.28 55.68 53.94 

Dec Time 17695 18111 18942 8.17 9.18 31.38 19.54 26.85 12.67 52.86 51.83 
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Total Time 38217 39367 41357 17.56 21.1 69.66 40.83 56.65 26.95 108.54 105.77 

  Hyperspectral Image VI 

0.001 

Enc Time 1.33 1.38 2.38 0.87 3.95 2.02 1.79 1.32 4.11 2.22 2.01 

Dec Time 0.62 0.53 0.70 0.83 1.29 0.67 0.61 1.34 1.59 2.09 1.94 

Total Time 1.95 1.91 3.08 1.7 5.24 2.69 2.4 2.66 5.7 4.31 3.95 

0.005 

Enc Time 3.55 2.17 3.53 1.22 5.54 3.46 3.17 2.19 6.29 3.59 3.33 

Dec Time 1.86 0.84 0.97 1.10 2.10 1.23 1.12 2.42 2.68 3.32 3.09 

Total Time 5.41 3.01 4.5 2.32 7.64 4.69 4.29 4.61 8.97 6.91 6.41 

0.01 

Enc Time 7.09 2.97 4.84 1.43 5.64 4.13 3.69 2.77 6.78 4.48 4.21 

Dec Time 4.24 1.47 1.82 1.26 2.74 1.66 1.48 2.54 2.59 4.01 3.99 

Total Time 11.33 4.44 6.66 2.69 8.38 5.79 5.17 5.31 9.37 8.49 8.2 

0.05 

Enc Time 63.50 34.88 30.20 2.60 6.59 8.17 6.08 4.68 8.05 8.11 7.74 

Dec Time 49.05 32.07 25.15 2.43 3.39 4.86 4.41 4.43 3.01 7.47 7.05 

Total Time 112.55 66.95 55.35 5.03 9.98 13.03 10.49 9.11 11.06 15.58 14.79 

0.1 

Enc Time 437.6 295.7 222.1 3.30 8.24 13.61 7.79 7.18 9.28 13.68 13.02 

Dec Time 357.2 247.2 216.6 3.10 5.08 8.71 7.98 6.68 4.21 12.91 12.24 

Total Time 794.8 542.9 438.7 6.4 13.32 22.32 15.77 13.86 13.49 26.59 25.26 

0.25 

Enc Time 2241 2014 1983 5.22 14.10 25.99 12.91 13.85 16.21 22.35 21.29 

Dec Time 1946 1905 1751 5.27 12.34 19.54 11.29 12.77 9.58 20.68 20.09 

Total Time 4187 3919 3734 10.49 26.44 45.53 24.2 26.62 25.79 43.03 41.38 

0.5 

Enc Time 6956 7019 7145 10.64 20.99 50.41 17.83 25.96 21.78 48.91 46.09 

Dec Time 6625 6762 6829 9.01 15.07 36.01 29.58 25.11 11.81 46.29 44.58 

Total Time 13581 13781 13974 19.65 36.06 86.42 47.41 51.07 33.59 95.2 90.57 
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Table 5. Coding Memory requirement (in KB) between the proposed HSICA with the other wavelet transform based set partitioned HSICA 

Bit 

Rate 

CA-I 

[59] 

CA-II 

[60] 

CA-III 

[61] 

CA-IV 

[62] 

CA-V 

[63] 

CA-VI 

[64] 

CA-

VII 

[65] 

CA-VIII 

[66] 

CA-

IX 

[67] 

CA-X 

[35] 

Proposed 

CA 

 Hyperspectral Image I 

0.001 26.67 37.33 28.08 4096 8192 96 2318 0 2304 0 0 

0.005 102.3 99.21 89.33 4096 8192 96 2318 0 2304 0 0 

0.01 232.2 222.7 202.4 4096 8192 96 2318 0 2304 0 0 

0.05 1084 1041 991.7 4096 8192 96 2318 0 2304 0 0 

0.1 1846 1931 1756 4096 8192 96 2318 0 2304 0 0 

0.25 4571 4463 4289 4096 8192 96 2318 0 2304 0 0 

0.5 8644 8555 8514 4096 8192 96 2318 0 2304 0 0 

 Hyperspectral Image II 

0.001 22.58 21.51 22.69 4096 8192 96 2318 0 2304 0 0 

0.005 91.12 98.91 91.29 4096 8192 96 2318 0 2304 0 0 

0.01 265.9 267.8 266.4 4096 8192 96 2318 0 2304 0 0 

0.05 982.4 1036 985.4 4096 8192 96 2318 0 2304 0 0 

0.1 2219 2326 2229 4096 8192 96 2318 0 2304 0 0 

0.25 5450 5611 5464 4096 8192 96 2318 0 2304 0 0 

0.5 10005 9981 9832 4096 8192 96 2318 0 2304 0 0 

 Hyperspectral Image III 

0.001 25.28 24.94 25.06 4096 8192 96 2318 0 2304 0 0 

0.005 101.2 105.8 101.5 4096 8192 96 2318 0 2304 0 0 

0.01 205.1 218.9 208.6 4096 8192 96 2318 0 2304 0 0 

0.05 1108 1149 1136 4096 8192 96 2318 0 2304 0 0 

0.1 1855 1808 1854 4096 8192 96 2318 0 2304 0 0 

0.25 4401 4449 4412 4096 8192 96 2318 0 2304 0 0 

0.5 7918 7805 7935 4096 8192 96 2318 0 2304 0 0 
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 Hyperspectral Image IV 

0.001 24.67 22.41 24.55 4096 8192 96 2318 0 2304 0 0 

0.005 100.8 105.5 101.1 4096 8192 96 2318 0 2304 0 0 

0.01 210.9 229.9 214.4 4096 8192 96 2318 0 2304 0 0 

0.05 1088 1212 1106 4096 8192 96 2318 0 2304 0 0 

0.1 1970 2083 1980 4096 8192 96 2318 0 2304 0 0 

0.25 4867 5047 4878 4096 8192 96 2318 0 2304 0 0 

0.5 9078 8488 9093 4096 8192 96 2318 0 2304 0 0 

 Hyperspectral Image V 

0.001 22.27 24.22 22.89 4096 8192 96 2318 0 2304 0 0 

0.005 102.7 102.1 102.8 4096 8192 96 2318 0 2304 0 0 

0.01 210.0 231.4 213.8 4096 8192 96 2318 0 2304 0 0 

0.05 1082 1138 1099 4096 8192 96 2318 0 2304 0 0 

0.1 1866 1961 1864 4096 8192 96 2318 0 2304 0 0 

0.25 4670 4778 4669 4096 8192 96 2318 0 2304 0 0 

0.5 8880 8891 9002 4096 8192 96 2318 0 2304 0 0 

 Hyperspectral Image VI 

0.001 23.65 23.24 24.19 4096 8192 96 2318 0 2304 0 0 

0.005 103.3 106.9 103.0 4096 8192 96 2318 0 2304 0 0 

0.01 213.3 239.5 218.0 4096 8192 96 2318 0 2304 0 0 

0.05 1128 1207 1156 4096 8192 96 2318 0 2304 0 0 

0.1 1923 2038 1925 4096 8192 96 2318 0 2304 0 0 

0.25 4906 4954 4916 4096 8192 96 2318 0 2304 0 0 

0.5 8392 8425 8245 4096 8192 96 2318 0 2304 0 0 
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Table 6. Comparative Analysis of the Coding Efficiency (PSNR) between the proposed HSICA with the other wavelet transform based set partitioned HSICA 

Bit Rate CR 
CA-I 

[59] 

CA-II 

[60] 

CA-III 

[61] 

CA-IV 

[62] 

CA-V 

[63] 

CA-VI 

[64] 

CA-VII 

[65] 

CA-VIII 

[66] 

CA-IX 

[67] 

CA-X 

[35] 

Proposed 

CA 

 Hyperspectral Image I 

0.001 14000 26.28 26.28 26.25 26.14 25.90 26.26 26.41 26.32 26.41 28.71 28.24 

0.005 2800 28.95 28.95 28.93 28.71 28.71 28.70 28.66 28.73 28.97 31.24 31.01 

0.01 1400 30.08 30.08 30.04 29.99 29.83 29.98 30.01 29.99 30.21 32.84 32.44 

0.05 280 34.23 34.23 34.21 34.04 33.81 33.99 34.29 34.06 34.42 36.94 36.37 

0.1 140 37.22 37.22 37.20 36.96 37 36.83 37.34 36.87 37.34 40.05 39.32 

0.25 56 42.17 42.17 42.16 41.62 41.69 41.34 42.28 41.37 42.38 45.11 44.78 

0.5 28 48.02 47.99 47.97 47.01 47.79 47.51 48.11 47.55 48.21 52.21 51.89 

 Hyperspectral Image II 

0.001 14000 27.11 26.75 27.09 26.83 26.61 26.75 26.87 26.82 26.87 30.24 29.57 

0.005 2800 29.45 29.31 29.43 29.27 29.25 29.24 29.41 29.25 29.54 32.01 31.49 

0.01 1400 30.28 30.19 30.27 30.27 30.15 30.31 30.53 30.33 30.48 32.94 32.59 

0.05 280 33.76 33.61 33.73 33.56 33.59 33.51 33.69 33.54 33.93 35.32 34.99 

0.1 140 35.57 35.44 35.56 35.49 35.41 33.45 35.55 35.46 35.69 37.42 37.02 

0.25 56 39.30 39.19 39.29 39.26 39.17 39.22 39.37 39.23 39.41 42.76 42.22 

0.5 28 43.62 43.65 43.51 43.57 43.26 43.55 43.62 43.58 43.74 46.22 45.76 

 Hyperspectral Image III 

0.001 14000 27.82 27.49 27.8 27.78 27.28 27.88 28.07 27.92 27.77 29.81 29.44 

0.005 2800 30.24 30.09 30.22 30.03 30.03 30.01 30.44 30.02 30.28 32.47 32.04 

0.01 1400 31.27 31.14 31.25 31.17 31.1 31.13 31.42 31.14 31.38 33.74 33.51 

0.05 280 34.57 34.39 34.55 34.58 34.27 34.44 34.67 34.51 34.63 37.09 36.51 

0.1 140 36.63 36.49 36.64 36.42 36.49 36.35 36.74 36.37 36.71 40.34 39.95 

0.25 56 40.83 40.63 40.84 40.46 40.59 40.29 40.81 40.31 40.85 43.68 43.27 

0.5 28 45.88 45.66 45.87 45.39 45.57 45.13 45.58 45.15 45.92 47.81 47.11 
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 Hyperspectral Image IV 

0.001 14000 28.11 27.94 28.06 28.08 27.88 28.07 28.14 28.16 28.15 30.41 29.96 

0.005 2800 30.44 30.32 30.43 30.27 30.03 30.26 30.22 30.28 30.52 33.05 32.49 

0.01 1400 31.41 31.29 31.39 31.32 31.1 31.29 31.57 31.43 31.52 34.14 33.48 

0.05 280 34.46 34.3 34.45 34.41 34.27 34.25 34.62 34.28 34.53 37.38 37.03 

0.1 140 36.43 36.29 36.43 36.25 36.49 36.19 36.51 36.2 36.55 39.47 39.01 

0.25 56 40.08 39.93 40.07 39.92 40.59 39.8 40.19 39.84 40.17 43.84 43.37 

0.5 28 44.51 44.47 44.5 44.31 44.46 44.22 44.63 44.22 44.62 47.09 46.58 

 Hyperspectral Image V 

0.001 14000 27.13 26.80 27.10 27.03 26.80 27.06 27.21 27.08 27.31 30.02 29.54 

0.005 2800 29.76 29.53 29.73 29.62 29.45 29.55 29.81 29.59 30.11 33.24 32.87 

0.01 1400 31.03 30.85 31.00 30.93 30.81 30.87 31.01 30.89 31.95 34.84 34.37 

0.05 280 35.23 34.92 35.20 35.11 34.79 35.03 35.34 35.10 36.08 38.59 38.05 

0.1 140 37.73 37.49 37.72 37.55 37.43 37.48 37.98 37.49 38.89 41.75 41.12 

0.25 56 42.43 42.35 42.43 42.14 41.98 41.92 42.48 41.93 43.02 47.28 46.91 

0.5 28 48.51 48.45 48.44 48.48 48.19 47.92 48.29 47.93 50.07 53.51 53.08 

 Hyperspectral Image VI 

0.001 14000 27.43 27.07 27.38 27.30 27.02 27.40 27.41 27.42 28.08 30.65 30.08 

0.005 2800 30.07 29.85 30.05 29.92 29.77 29.86 30.02 29.90 30.56 32.74 32.47 

0.01 1400 31.47 31.27 31.45 31.35 31.24 31.31 31.44 31.33 32.28 34.01 33.41 

0.05 280 35.78 35.44 35.75 35.57 35.32 35.56 35.84 35.59 36.06 39.05 38.68 

0.1 140 38.46 38.20 38.45 38.22 38.07 38.11 38.44 38.14 39.34 42.89 42.33 

0.25 56 43.64 43.63 43.64 43.51 43.24 43.29 43.71 43.31 44.12 47.18 46.73 

0.5 28 49.68 49.67 49.71 49.69 49.37 49.70 49.78 49.71 50.79 53.51 52.94 

 


