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Abstract - The growing usage of EVs has led to considerable progress in eco-friendly transportation. However, the effective 

administration of EV charging and discharging continues to be a vital challenge for personal vehicle owners and the stability 

of the larger electrical grid. This document introduces an innovative scheduling approach that utilizes quadratic programming 

to enhance the charging and discharging of electric vehicles, aiming primarily at reducing costs. The various factors involved 

in this scheduling technique are stations, EVs, city infrastructure, and the EV coverage area. The main aim of this research is 

to minimize the cost and make it most effective so that it can reduce the problem that occurs during a quadratic programming 

optimization task; the approaches that are utilized for this process are hybrid local and global optimum approaches. The 

properties of this scheduling approach are that it ensures that EVs can get changed at the time of off-peak hours so that it can 

optimize energy consumption because the electricity prices are lower at the time of off-peak hours. The experimental 

demonstration of the proposed scheduling strategy is performed in MATLAB/Simulink, and the efficiency of the proposed 

scheduling strategy is validated for the EVs. 

Keywords - Electric Vehicles (EVs), Global optimum scheme, Scheduling strategy, Energy consumption, Cost reduction. 

1. Introduction  
EV technology is one of the trending technologies that 

play a huge part in the transformation of the transportation 

sector when compared with traditional fuel-based vehicles 

(Patil & Kalkhambkar, 2020) [1] (Tan et al., 2017) [2]. 

Battery management is one of the critical bottlenecks in EVs, 

and the charging process and charging scheduling increase 

the challenges for EV adoption (Mao et al., 2019) [3] 

(Qureshi et al., 2021) [4] (Wu & Chen, 2021) [5]. Battery 

management and charge scheduling are extremely important, 

especially for improving the performance and life cycle of the 

battery.  

Traditional methods of EV charging are often static, 

lacking adaptability to varying conditions, availability of 

energy sources for charging (such as grid stations), and user 

preferences. Consequently, this results in suboptimal energy 

utilization, vehicle congestion during peak hours, and 

increased operational costs for both EV owners and utilities 

(Mukherjee & Gupta, 2014) [6] (Morsalin et al., 2016) [7]. 

By optimizing the charging schedule of EVs based on the 

vehicle range and driving modes, the cost of energy 

consumption can be reduced, thereby enhancing the overall 

efficiency of the EV and its model structure, which is 

illustrated in Figure 1 [8]. 

Fig. 1 Structure of Electric Vehicles (EVs) [8] 

In most cases, some regions do not sufficiently 

incorporate EV distribution and charging. Therefore, a 

bottom-up and top-down power at the micro-level cannot be 

set up yet. An effective micro-scale EV charging station 

prediction technique must be further investigated using 

suitable simulated or actual data. In general, it is essential to 

understand EV charging patterns because these 

infrastructures attract new EV buyers as an administrative 

strategy. If an EV is used in the urban environment, then the 

driver will be informed about the need for recharging based 

on the daily EV user profile (Luo et al., 2020) [9] 
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(Devendiran et al., 2021) [10]. In this case, the charging 

process can be slow. If the vehicle is operated over longer 

distances outside of the urban environment, then the most 

efficient solution (from the point of view of user comfort) is 

using a fast-charging station. However, designing an 

appropriate charging schedule is challenging considering the 

varying charging patterns, dynamic EV range, etc. The 

addressed major problems are slow charging for the EVs, 

charging infrastructure limitations, Demand creation due to 

mass creations of EVs, and cost and accessibility. This 

document aims to tackle the limitation by implementing an 

innovative scheduling approach that utilizes quadratic 

programming capabilities to improve EVs' efficiency and 

minimize charging expenses. The proposed quadratic 

programming approach is based on a Hybrid Local Optimum 

and Global Optimum Scheme for minimizing the energy cost. 

 

1.1. The Main Contributions of this Work  

This research proposes the design of a quadratic 

programming-based approach to enhance the efficiency of 

EVs by optimizing the cost of charging, and it can also 

increase the charging speed of the vehicles. The suggested 

charging scheduling method seeks to lower the expenses of 

EV operation by purposefully planning charging during 

periods of low electricity demand due to the mass production 

of EVs. The charging and discharging mechanism of the 

battery is analyzed for the load demand and different 

operating models. In addition, this paper analyzes the 

possible operating modes of EVs and achieves stable, 

desirable performance. 

 

The rest of the paper is structured as follows: Section II 

discusses the review of existing literary works related to 

charge scheduling of EVs and cost optimization. Section III 

provides a brief description of the proposed methodology for 

reducing EV costs. Section IV discusses the 

MATLAB/SIMULINK-based performance analysis, and 

Section V concludes the paper. 

 

2. Literature Review 
In [11] (Salah & Oulamara, 2014), this research 

addresses the Electric Vehicle Scheduling and Optimal 

Charging Problem (EVSCP) in a commercial context, aiming 

to optimize the use of EVs and CVs. It employs a mixed-

integer linear programming model to enhance scheduling 

while considering operational constraints. The project 

supports fleet managers transitioning to sustainable EV 

fleets, focusing on costs, emissions, and battery health. In 

[12] (Yao et al., 2020), a methodology for the Electric 

Vehicle Scheduling Problem with Multiple Vehicle Types 

(MVT-E-VSP) in public transportation. It optimizes 

schedules by simulating driving range, recharging duration, 

and energy usage to cut annual costs by 15. 93% compared to 

traditional methods, offering insights on charger placement 

and recharging strategies. In (Sassi & Oulamara 2017) [13], 

the EVSCP for fleets combines EVs and Combustion 

Vehicles (CVs). It asserts that EVSCP is NP-hard and utilizes 

mixed-integer linear programming, solved with CPLEX for 

smaller instances. It presents two heuristics for larger cases: 

the Sequential Heuristic (SH) and the Global Heuristic (GH), 

proving effective for up to 200 EVs and 320 tours. In [14] 

(Wan et al., 2018), an optimal charging strategy for Electric 

Vehicles (EVs) using demand response programs and real-

time pricing to reduce costs. It frames the challenge as a 

Markov Decision Process (MDP) with unknown transition 

probabilities. A model-free deep reinforcement learning 

method is proposed, incorporating a representation network 

and Q-network, demonstrating effectiveness through 

experiments. In [15] (Cai et al., 2018), how EV charging 

influences load-generation balance in a microgrid with 

distributed generators, energy storage systems, and control 

units. A statistical model accounts for the uncertainty in EV 

battery state of charge, establishing an optimization problem 

for economic microgrid operation through day-ahead 

scheduling using serial quadratic programming. 

In [16] (Rahman et al., 2020), analyzes PHEV 

charging/discharging timing in a Vehicle-to-Grid system, 

comparing deterministic and probabilistic methods. It 

highlights quadratic programming for efficient schedules and 

Monte Carlo simulations for TOU planning, demonstrating 

V2G's effectiveness in load leveling and cost reduction 

through a case study in [17] (Yin et al., 2023), in large-scale 

disordered EV charging, such as voltage drops and increased 

network losses. It proposes a dynamic pricing strategy to 

optimize grid operations, balancing wind power, EV needs, 

and network safety. A case study validates this multi-

objective optimization approach, benefiting both 

stakeholders. In [18] (Wu & Pang, 2023), an optimal 

scheduling strategy for EVs within microgrids addresses 

uncertainties in charging and discharging patterns through 

fuzzy theory and dynamic pricing. The method reduces total 

operating costs and peak-valley load differences by 

influencing EV owners with pricing incentives. A case study 

reveals significant cost reductions and load differences, 

validating the model’s effectiveness.  

In [19] (Ren et al., 2023), an LSTM-ILP framework 

aimed at optimizing EV charging through Vehicle-to-Grid 

participation. It considers demand, discharge capability, and 

preferences to reduce charging costs and grid load 

fluctuations. In [20], grid security issues from unregulated 

EV access using a reinforcement learning method with the 

SAC framework, optimizing charging schedules while 

reducing costs and preventing transformer overload. In [21], 

metaheuristic algorithms enhance EV charging schedules 

with V2G technology, reducing costs and managing energy 

demand. Among the four algorithms, WOA showed superior 

performance, improving user satisfaction. In [22], an 

enhanced hybrid PSO-GSA algorithm reduces grid load 

fluctuations and charging costs by effectively balancing 
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exploration and exploitation, leading to improved 

convergence and user benefits.  

The proposed approach considers different aspects of EV 

charging, such as charging demand, discharging potential, 

price of electricity, and demands of users and EV 

aggregators. Initially, the cost of charging and discharging in 

EVs is reduced, and the PVLD of the utility grid is reduced. 

In the next step, the dynamic price of electric energy is 

determined using the LSTM model, and ILP is employed to 

solve the optimization problem related to the charging and 

discharging of EVs. Lastly, an optimal cost of the electric 

energy and an optimal charging and discharging schedule is 

obtained. Results of the simulation analysis show that the 

strategy based on LSTM-ILP effectively reduces the 

charging cost of EVs and achieves an appropriate Peak and 

valley trimming of the grid load. As observed from the 

results, the charging cost of the EVs was minimized by 42.1 

% and 22 % compared to conventional unordered charging 

and ordered charging, respectively. It can be inferred from 

existing works that the conventional control strategies lack 

the desired robustness and do not consider the uncertainty of 

EVs.  

3. Research Methodology  
This segment will examine the suggested Scheduling 

Strategy for the Charging and Discharging of EVs using a 

hybrid optimal method based on quadratic programming. The 

algorithms and techniques used will be described in detail. 

Battery management strategies are important to ensure proper 

operation of EVs. This includes an optimal charging and 

discharging scheduling which is critical to minimize the cost 

of charging in EVs. Optimal scheduling refers to the process 

of strategically planning and controlling the charging and 

discharging mechanism of EV batteries to achieve specific 

objectives efficiently. The primary goal of optimal 

scheduling is typically to minimize operational costs and 

enhance energy efficiency in EVs. This research uses a 

quadratic programming approach to design the scheduling 

strategy based on the Hybrid Local Optimum and Global 

Optimum Scheme. The stages involved in the proposed 

approach are discussed in the below sub-sections, and it is 

illustrated in Figure 2. 

3.1. Data Collection and Description of System Components 

The data of 500 EVs is assumed (by random generation) 

wherein the information related to EVs, such as percentage 

of battery, charging time (hrs), charging efficiency, and start 

point and end point (destination point) of EVs, is randomly 

generated. The expressions for determining this information 

are given as follows: 

 

Battery percentage = batt_crit + randi (100 - batt_crit); 

 

Charge time = (100-battery percentage) * (25 + randi 

(10)) / (10* (94 + randi (6))); 

Start position X = random number of size x; size x = 500; 

Start Position Y = random number of size y; size y=500; 
 

Destination Y = random number of size y; 
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In this research, each EV is considered to have a fixed 

threshold of the SoC value of the battery. Suppose the 

difference between the present energy levels and maximum 

energy levels in the battery is less than the threshold value. In 

that case, the EV attempts to find an appropriate charging 

station for charging based on the optimal solution generated 

by the quadratic programming method. In addition, the EV 

also selects the nearest or closest Charging Station (CS) based 

on the available electrical energy, which is decided by the 

quadratic programming technique. The CS is located at a 

specific location and consists of multiple slots for charging 

EVs in parallel. Details of CS, such as the number of EVs 

already present in the CS and the time required for charging, 

are determined by the optimal quadratic programming 

approach. This approach is considered a centralized 

architecture for charging the ‘n’ number of EVs. While 

selecting nearby CS, EVs access details and make 

reservations. 

 

In this approach, certain assumptions are made wherein 

it is assumed that the CSs are present in the urban areas and 

that the quadratic programming method can manage the 

charging processes for all EVs present in the network. It is 

presumed that all EVs are equipped with wireless 

communication devices that allow the vehicles to interact 

with CS to request or reserve charging slots. As mentioned 

previously, CS is assumed to have multiple charging slots to 

enable parallel charging of EVs.  

 

The sequence of EVs charging is determined on a first 

come first serve basis, and EVs at a low charging stage must 

proceed to the chosen CS (determined by the quadratic 

programming technique) for charging. Other vehicles go to 

the CS based on their respective charging state. If an EV 

arrives before the scheduled time, then its priority will be 

changed, and if the CS is full, i.e., if all charging slots are 

occupied, then EVs must wait till the slots become free. 

Especially each EV has its time slot for parking at the CS; 

hence, in certain cases, EVs might leave the CS without 

getting charged. 

 

 

3.2. Problem Formulation 

This research considers a smart charging scheduling 

mechanism wherein the peak energy demand is determined 

based on the load profile. In this approach, the critical state 

vehicle is charged in the CS during peak load times, and the 

EV battery is charged during off-peak times. This is achieved 

by analyzing the load profile of the CS. The batteries are 

charged during low load demand, and this is mathematically 

expressed as follows: 

Minimize (Ecs)2                           (1)                                                                                               

ECS = El + Ec                              (2)                                                                                                                                                                                                                      

Where Ecs is the output power of the charging station, 

El is the load profile of the CS, and Ec is the charging power 

of the EV. In Equation (2), El is an important constraint, and 

Ec is optimized to reduce Ecs.  

 

The problem in this research is formulated for analyzing 

two cases: (1) when the batteries of EVs should charge and 

(2) when the batteries of EVs should discharge. The 

optimization section addresses the optimization process of 

the formulated problem. 

 

3.3. Hybrid Optimization Algorithm (Local Optimal Scheme 

and Global Optimal Scheme) 

Quadratic programming represents a mathematical 

optimization method employed to address issues in which 

both the objective function and constraints are quadratic. In 

this study, specifically for examining the charging scheduling 

of EVs, quadratic programming is utilized to enhance the 

charging and discharging schedules of EVs with the main aim 

of reducing the costs linked to their operation. It considers 

various cost factors, constraints, and decision variables to 

find the most cost-effective and efficient charging strategy 

for EVs, ultimately benefiting vehicle owners, grid operators, 

and the environment. The steps involved in the hybrid 

optimization algorithm are illustrated in Figure 3. 

 

 

 
 

 

 

 

 

 

 

Fig. 3 Hybrid optimization algorithm 
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EVs scheduling process includes certain variables such 

as vehicle power level analysis, duration analysis, and 

System on Chip (SoC) for various time intervals at the time 

of the charging and discharging process.  

 

EVs' charging and discharging process is performed 

using a quadratic equation to optimize the objective function. 

The quadratic programming consists of certain constraints, 

which are given below. 

 

3.3.1. Battery Capacity Constraints 

The battery power of the EVs is properly monitored 

using SoC, which is maintained within a limit until the end of 

the scheduling process.  

 

3.3.2. Energy Balance Constraints 

To maintain the performance of EVs, it is very essential 

to reduce their energy consumption. So that the power 

utilized by the EVs remains equal to the power supplied to 

the grid. 

 

3.3.3. CS Related Constraints 

Closed Charging Stations (CCS) mainly concentrate on 

the EV load and demand applied to the charging slots. 

 

Following the formulation of the objective function and 

constraints, cost minimization is concentrated by finding an 

optimal decision variable, and for that purpose, the quadratic 

programming solvers are utilized. Certain mathematical 

analysis is required to perform such finding of an optimal 

decision variable, which is achieved using the optimization 

algorithms.  

 

The characteristics of the quadratic programming are 

very adjustable to perform effective charging and discharging 

schedules for EVs by analysing their power level and battery 

condition. This process is directly dynamically reflected in 

cost minimization.  

 

The optimization technique used for this process is a 

quadratic program-based optimization strategy, which is the 

most effective model for the process of cost minimization at 

the time of charging and discharging of EVs. In this model, 

the global optimum solution is applied to find the maximum 

or minimum value of the objective function where the global 

minimum is represented as x_global used to reduce the 

charging cost where the analysis is discussed below. 

 

If x > x_global, then optimize f (x) for all values of x. 

 

An extreme (highest or minimum) point of the objective 

function for a specific area of the input space is known as a 

local optimum. Formally, x_local is a local minimum of the 

objective function f for the minimization situation if and only 

if: 

If f (x) equals f (x_local) 

For every value of ‘x’, it must be ensured that the value 

is within the interval and that the amount of power needed to 

charge the EV battery is calculated, as shown in Equation (3). 

 

Power required = (Battery capacity) - (Power remaining in 

the battery)     (3) 

 

The amount of time needed to charge an electric vehicle 

battery depends on the charger's rated output power. Thus, 

the charging time can be determined using the formula shown 

in Equation (4). 

 

R = (Battery capacity - Power remaining in the battery) / 

(Rated output of the charge           (4) 

 

Where R is the charging time in hours. Correspondingly, 

the cost of charging a single EV can be determined using (5), 

which is given as follows: 

 

Charging Cost of an EV = Power necessary * Ecost (t) (5)  

 

Where Ecost (t) is the cost of energy at a specific hour, 

the cost of all the vehicles' charging can be minimized using 

the most effective method of scheduling, known as globally 

optimal scheduling. The locally optimal scheduling scheme 

is the ideal response to the local scheduling optimization 

issue. Optimized Charge schedule is allocated based on the 

maximum price and minimum price. Based on that, the 

objective function has been implemented, and the charging 

rate is determined using a locally optimal scheduling 

approach. Mathematically, it is represented as shown in 

Equation (6). 

Charging rate matrix = number of EVs * number of 

charging slots                (6) 

Further, the charging status of all EVs is verified, and it 

is checked whether all EVs are fully charged. The charging 

level of EVs is checked at each interval, and the required 

energy level for each EV is determined. Furthermore, the 

nearby CS is located, and the charging status is updated for 

each EV. The best solution obtained through quadratic 

programming is updated to find the global optimal value. 

Further, the cost is minimized, and slots allotted by both local 

and global controllers are used to determine the status of EV 

charging.  

 

Lastly, the quadratic programming strategy checks 

whether the EV requires charging or not based on the modes 

of the vehicle. If charging is required, then the closest CS is 

located, and the slots are booked. In this research, four modes 

are considered for the analysis i.e., (a) Normal mode, (b) 

Echo mode, (c) Traffic mode, and (d) Terrain mode. The 

results of the proposed approach for all these modes are 

discussed in the next section. 
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4. Results and Discussions 
This section discusses the experimental validation of the 

proposed approach, which is simulated using the 

MATLAB/SIMULINK platform. Initially, the decision 

variables for the simulation are declared, such as the number 

of stations, number of EVs, dimension of city, and EV range. 

The considered values are tabulated in Table 1.  

Table 1. Decision variables for simulation 

 

The tow count (number of vehicles that need to be towed 

due to non-availability of sufficient charge in the vehicle 

battery) is considered initially to be 0. In the next step, the 

charging station is allocated for each EV along with the 

charging station number, charge time of EV, slot book for the 

EV vehicle, and location.  
 

Here, the coordinates of the CS are generated randomly, 

and the number of CS allotted to each EV is 10 (maximum). 

As mentioned previously, if the vehicle is at its lowest level 

of charging, then the EV finds the closest charging station 

and books the slot. For further experimentation, other 

parameters such as the base load and predicted base load, the 

basic price of the grid, length of charging time, EV battery 

capacity, charging rate, number of Charge EVs, and vehicle 

to the grid are considered. 
 

4.1. Base Load and Predicted Base Load 

The outcomes illustrating the examination of the actual 

base load and forecasted base load are presented in Figure 4. 

In general, the factor of real base load in EVs defines the 

utility of the charging process at each instant of time.  
 

Similarly, the predicted base load defines the estimated 

utility of the charging process in the EVs at each period, and 

the prediction can be performed according to the past and 

current charging processes. From Figure 4, it is understood 

that the predicted base load value is higher than the predicted 

real base load value. 
 

The graph above shows that the load (KW) profile is 

examined over 24 hours, illustrating the contrast between the 

actual base load and the forecasted base load. The graph 

shows that both real and predicted base load decreases from 

0 to 10 hours, and the peak load is from 15 to 20 hours. 

 
Fig. 4 Analysis of real base load and predicted base load 

 

4.2. Load with Optimal Charging of EVs 

The process is mainly developed to increase the 

efficiency of the EVs and as well to reduce the cost. In 

general, here the term load defines the demand of the 

charging process. The load with optimal EV charging is 

shown in Figure 5. This ideal charging is utilized in several 

processes, such as baseload without EV charging, overall 

load with globally optimal EV charging, locally optimal EV 

charging, native EV charging, and hybrid processes. For the 

performed load analysis, this calculation is carried out up to 

24 hours, showing variation in the presented charging 

processes. A comparison of pricing for different charging 

stations based on the time of day is presented in Figure 5. 

 

 
Fig. 5 Charging energy pricing comparison 

Based on graphs, it can be said that the cost of charging 

in EVs maximum between 15 to 20 hours. The remaining 

time it charges, during this time cost is low and with load 

considerations. The cost of charging for different stages is 

Parameters Values 

Number of Stations 10 (Max 1 station per sq km) 

X- Dimension of city 500 Km 

Y- Dimension of city 500 Km 

Total Number of EVs 

(EV num) 
500 

Critical Battery 

Percentage (batt_crit) 
20 % 

Range of EV (evrange) 
207 km (Maximum distance 

covered at full charge 
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illustrated in Figure 5, and the pricing comparison for 

different charging stations is presented in Figure 5. 

4.3. Energy Evaluation Analysis 

Overall Energy evolution of EVs is from 16 to 20 hours 

for discharging at a high cost and charging at less cost, shown 

in Figure 5. In the proposed hybrid method, the average 

energy utilized by the grid is higher, and the peak level is also 

lower compared to other methods. In this research, 10 EVs 

are considered for the analysis. Using the local optimal 

scheme, the energy grid utilized to 3500 kWh is illustrated in 

Figure 6. 

 

Fig. 6 Energy evolution for EV 

 
In the equal allocation scheme, the energy grid utilized 

more than 4100 kWh, and in the global allocation scheme, 

the energy grid utilized 4000 kWh, slightly more than the 

earlier method. In the hybrid allocation scheme, the energy 

utilized is about 4200 kWh. The evolution of the energy in 

the proposed approach is illustrated in Figure 6. The output 

graphs for different modes of EV operation (normal mode, 

eco mode, traffic mode, and terrain mode) are shown in 

Figure 7. 

 

Fig. 7 Model-based charge status 

As per the output graph shown in Figure 7, If an EV is 

running in normal mode, then the battery discharges in a 

regular manner before reaching the charging station, and in 

this case, the tow count is at 20.  

If an EV is running in Echo mode, then the battery 

discharges slowly compared to other EVs whose battery 

discharges quickly before reaching the charging station, and 

in this case, the tow count is at 15. If an EV is running in 

traffic mode, then the battery discharges faster than normal 

and eco modes before reaching the charging station, and here, 

the tow count is at 28.  

As a result, the count has increased. Lastly, if the EV is 

running in terrain mode, then it discharges very Fast 

compared to other methods, and in this case, the tow count is 

at 33, and thereby, the count is further increased. 

4.4. Comparative Analysis 

The methods that are utilized for the comparative 

analysis are DRLCDS [20], MAOCDS [21] and IGPOCDS 

[22]. Figures 8, 9, and 10 discuss the proposed hybrid 

scheduling technique for EV charging, which employs a 

quadratic programming method combining local and global 

optimization to enhance efficiency.  

 

 

Fig. 8 Convergence plot 

Fig. 9 Boxplot of fitness values 
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Fig. 10 Power Vs Time calculation 

The Convergence Plot shows iterative improvements in 

fitness value, indicating faster convergence and greater 

accuracy than traditional methods. The Boxplot of Fitness 

Values highlights robust performance across various runs, 

ensuring dependable EV charging and discharging schedules. 

The Power vs. Time graph highlights the variations in power 

demand over 24 hours, showcasing the effectiveness of a 

proposed hybrid scheduling method for EV charging and 

discharging. It uses the base load as a benchmark to plan EV 

charging during non-peak, cost-effective times while 

discharging during peak times, alleviating grid strain. This 

dynamic coordination minimizes the peak-to-average load 

ratio, promotes energy efficiency, and ensures grid stability 

through Vehicle-to-Grid technology, demonstrating the 

hybrid method's superiority 

5. Conclusion 
The major concentration of this paper is on the 

implementation of an optimal scheduling strategy to improve 

the charging and discharging process of EVs on a real-time 

basis and it mainly focuses on the reduction of cost. It can 

also be inferred that a realistic range determination system 

considering real-time inputs, compared to other average 

power consumption-based systems, provided better 

estimation for range prediction. To attain sustainable 

mobility, this model focuses on quadratic programming to 

find an optimal solution for cost reduction. The major factors 

that are considered for this analysis are power level, battery 

level, and SoC, which are directly reflected in the 

maximization of efficiency of the charging and discharging 

processes of EVs. The simulation based on assumptions 

highlights that a hybrid approach towards charging of EV 

using a combination of local and global optimization results 

in better utilization of the power grid as compared to 

currently used and experimented methods such as stand-

alone local optimization or equal allocation-based method. In 

the future, the extended research concentrates on advanced 

Artificial Intelligence (AI) optimization models for the 

further improvement of charging and discharging schedules 

based on real-time data.
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