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Abstract - This review article made the comparative analysis quantitatively evaluates four applications of deep learning in 

healthcare: tuberculosis detection in chest radiography, skin cancer classification, Electronic Health Record (EHR) analysis, 

and drug discovery. The studies exhibit distinct model architectures and metrics, with tuberculosis and skin cancer 

classification achieving AUC values of 0.99 and above 0.91, respectively, using CNNs optimized with transfer learning and 

data augmentation. EHR analysis, utilizing CNN and RNN hybrids, reports AUCs between 0.70 and 0.85 for tasks like disease 

progression and patient readmission, demonstrating the variability introduced by heterogeneous, sequential data. Drug 

discovery models employ RNNs for molecular sequence prediction, highlighting a conceptual framework rather than specific 

performance metrics. The findings indicate that image-based models excel in quantitative performance and scalability, while 

models for EHR and molecular data face challenges in standardization and interpretability. This analysis underscores the 

need for data harmonization and explainability to enhance the clinical readiness of deep learning across diverse healthcare 

domains. 

Keywords - Deep Learning, Healthcare, Tuberculosis detection, Skin cancer classification, Electronic Health Records (EHR), 

CNNs, RNNs, Artificial Intelligence (AI). 

1. Introduction  
AI has transformed the healthcare sector by improving 

disease analysis, treatment scheduling, and patient care 

management. AI-powered solutions, especially deep learning 

models, have performed exceptionally well in medical 

imaging, predictive analytics, and precision medicine [1-3]. 

CNNs and RNNs have been highly effective in automating 

tasks like disease classification, drug discovery, and EHR 

analysis, minimizing human intervention while enhancing 

accuracy [4-6].  

 

AI applications, including virtual health assistants, 

telemedicine, and robotic-assisted surgeries, continue to 

advance patient care and accessibility [7]. Despite these 

innovations, challenges remain in achieving scalable, 

interpretable, and clinically deployable AI models in 

healthcare settings [8, 9]. While numerous studies have 

explored AI’s role in healthcare, existing research primarily 

focuses on isolated applications of deep learning without an 

in-depth comparative evaluation of different models across 

diverse clinical use cases [10, 11].  

 

Most studies assess the performance of AI models 

within specific domains, such as tuberculosis detection, skin 

cancer classification, or predictive analytics, but few provide 

a holistic analysis of how these models compare in terms of 

accuracy, generalizability, interpretability, and real-world 

feasibility [12]. 

Furthermore, deep learning models often face domain-

specific limitations that affect their effectiveness and clinical 

adoption. One major challenge is the variability in medical 

data, as the performance of AI models heavily depends on 

the quality and quantity of training data. While image-based 
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AI models benefit from large, annotated datasets, text-based 

models used for Electronic Health Record (EHR) analysis 

often struggle with unstructured and heterogeneous data 

formats, making standardization difficult [13, 14]. Another 

critical issue is the lack of interpretability, as deep learning 

predictions often function as "black boxes," providing 

limited explanations for their decisions.  

This lack of transparency makes it challenging for 

clinicians to trust and validate AI-driven recommendations in 

medical practice [15]. Additionally, scalability and 

deployment remain significant hurdles. Although deep 

learning models perform well in controlled settings, their 

real-world implementation is constrained by regulatory 

approval processes, data privacy concerns, and high 

computational requirements. These factors collectively 

hinder the seamless integration of AI into clinical workflows 

and patient care [16]. 

To bridge this research gap, this study presents a 

comparative analysis of four key deep learning applications 

in healthcare. The first application is tuberculosis detection 

in chest radiography. Convolutional Neural Network (CNN) 

architectures such as AlexNet and GoogLeNet are utilized to 

automate X-ray screening, improving diagnostic accuracy 

and accessibility in resource-limited settings [13]. The 

second application focuses on skin cancer classification, 

where deep learning models have demonstrated 

dermatologist-level accuracy in identifying malignant skin 

lesions, aiding in early detection and reducing the need for 

invasive diagnostic procedures [1].  

The third analysis area is EHR analysis, which employs 

hybrid deep learning models, combining CNNs and RNNs, 

to enhance patient risk prediction and clinical decision-

making by extracting valuable insights from complex and 

unstructured medical data [12].  

Finally, the study examines drug discovery, where deep 

learning accelerates molecular sequence analysis and 

predictive modeling, identifying novel therapeutic 

compounds and optimizing the drug development process 

[17]. By systematically evaluating these applications, this 

study aims to highlight the strengths, limitations, and clinical 

viability of deep learning models across diverse healthcare 

domains. 

This study systematically evaluates these applications 

based on key performance metrics, including model 

architecture, dataset characteristics, interpretability, 

validation techniques, and scalability. The analysis aims to 

provide actionable insights into the strengths and limitations 

of different deep learning models, addressing crucial factors 

that influence their clinical readiness and real-world 

deployment. 

This article is in the field of AI-driven healthcare. First, 

it offers a comprehensive comparative analysis, 

distinguishing itself from existing studies focusing on 

individual AI applications. By evaluating multiple deep 

learning models side by side, this study provides a broader 

perspective on their effectiveness across different healthcare 

domains. Second, it includes a critical evaluation of 

interpretability and scalability, examining how AI models 

perform on both structured and unstructured medical data.  

This assessment directly addresses the black-box 

problem, a significant challenge in deep learning that affects 

model transparency and clinical trust. Lastly, the study 

provides guidance for clinical implementation, emphasizing 

the need for data harmonization, model explainability, and 

regulatory compliance to facilitate AI adoption in real-world 

healthcare settings. This research contributes valuable 

insights for improving AI-driven medical decision-making 

and enhancing patient outcomes by addressing these crucial 

aspects. 

 

The rest of this article is organized as follows: Section II 

offers a comprehensive review of related research on AI-

driven healthcare applications, summarizing key 

advancements, methodologies, and existing challenges. 

Section III presents a detailed comparative analysis of deep 

learning models, emphasizing their strengths, limitations, and 

clinical feasibility across various healthcare domains. 

Finally, Section IV concludes the study by summarizing key 

findings and discussing future research directions to improve 

AI's scalability, interpretability, and real-world adoption in 

healthcare. 

 

 2. Related Works 
AI and DL have significantly transformed healthcare by 

enhancing diagnostics, disease prediction, patient 

management, and drug discovery. Various studies have 

explored the integration of machine learning, deep learning, 

and hybrid AI techniques across different healthcare 

domains. However, a thorough comparison of their 

effectiveness across multiple applications is still lacking, 

particularly in terms of generalizability, scalability, and 

clinical feasibility. This section reviews existing research on 

AI-driven healthcare applications, highlighting key 

advancements, challenges, and research gaps. 

 
2.1. AI in Medical Imaging and Disease Detection 

Medical imaging has been one of the most successful 

applications of AI, with deep learning models achieving 

near-human performance in detecting diseases from 

radiographic images. Esteva et al. [1] developed a CNN-

based model for skin cancer classification, demonstrating 

dermatologist-level accuracy in distinguishing between 

malignant and benign lesions. Similarly, Lakhani and 

Sundaram [13] applied deep learning for Tuberculosis (TB) 
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detection in chest radiography, using pretrained CNNs 

(AlexNet and GoogLeNet) to achieve an AUC of 0.99, 

indicating high sensitivity and specificity. 

 

Notwithstanding these improvements, challenges remain 

in ensuring the generalizability and interpretability of these 

models across varied datasets and imaging conditions. 

Mazurowski et al. [14] emphasized the need for transfer 

learning and data augmentation to enhance model robustness 

in medical imaging. Jin et al. [15] explored explainable AI 

techniques to improve clinician trust in AI-driven diagnostic 

tools.  

 

2.2. AI in EHR and Predictive Analytics 
AI has also been leveraged in Electronic Health Records 

(EHRs) to enhance patient prediction, progression modeling, 

and decision support. Shickel et al. [12] provided a 

comprehensive review of DL techniques for EHR analysis, 

emphasizing the role of CNNs and RNNs in extracting 

valuable insights from both structured and unstructured 

clinical data. Rajkomar et al. [2] developed an AI-driven 

EHR analysis system that is achieved in predicting patient 

readmission risks. However, data standardization, privacy, 

and bias mitigation remain significant challenges. Desai et al. 

(2022) [18] highlighted the difficulty of integrating AI 

models with existing hospital workflows due to inconsistent 

EHR formats and missing data issues. The AI-driven EHR 

analytics is highly on data, necessitating advanced data pre-

processing and feature engineering techniques. 

 

2.3. AI in Drug Discovery and Personalized Medicine 
DL has accelerated drug discovery and personalized 

medicine by enabling faster identification of molecular 

targets and predicting drug interactions. Mak and Pichika [5] 

demonstrated how AI models reduce drug development time 

by 50%, enhancing molecular docking and compound 

screening efficiency. Soni et al.  [17] applied RNN-based 

architectures to genomic data analysis, improving precision 

in personalized cancer therapy.  

 

Despite these advancements, interpretability and data 

quality issues hinder AI adoption in clinical pharmacology. 

Ghosh et al. [21] emphasized that AI-based drug discovery 

models require large, high-quality training datasets, often 

unavailable due to privacy regulations. Furthermore, Yan et 

al. [23] pointed out that continuous monitoring and 

validation are necessary to ensure the reliability of AI-driven 

predictions in drug response modeling. 

 

2.4. Challenges and Gaps in AI-Driven Healthcare 
While AI has demonstrated significant potential, several 

challenges limit its clinical deployment. Data remains a 

major concern, as handling patient data raises ethical issues 

and requires robust encryption methods and federated 

learning approaches to ensure confidentiality and compliance 

[11]. Another critical challenge is model interpretability, as 

most DL models function, making it difficult for clinicians to 

validate AI-driven diagnoses and trust automated decision-

making [15]. Additionally, generalizability poses a 

significant issue, as AI models often struggle to maintain 

performance across datasets from different populations and 

geographic regions.  

 

This necessitates improved transfer learning techniques 

to enhance adaptability and reliability [14]. Furthermore, 

regulatory and ethical concerns present barriers to AI 

adoption in healthcare, as compliance with strict regulations 

such as HIPAA and GDPR is mandatory, often slowing 

down the integration of AI-driven solutions into clinical 

practice [16].  

 

2.5. Summary of Literature Review and Need for this Study 
The literature highlights significant advancements in AI-

driven medical imaging, EHR analytics, and drug discovery. 

However, most studies focus on individual applications, 

lacking a comparative evaluation of different deep learning 

approaches. Existing research does not provide a clear 

assessment of model performance across diverse healthcare 

domains, making it difficult to identify the most effective AI 

methodologies for clinical use. This study addresses this gap 

by systematically comparing four major deep-learning 

applications in healthcare tuberculosis detection, skin cancer 

classification, EHR analysis, and drug discovery. The 

comparative approach will offer valuable insights into model 

strengths, weaknesses, scalability, and clinical feasibility, 

helping researchers and practitioners make informed 

decisions on AI adoption in healthcare. 

 

3. Comparative Analysis   
Deep learning has transformed healthcare by enhancing 

accuracy and efficiency in diagnostics, personalized 

medicine, patient outcome prediction, and drug discovery. 

This study conducts a comparative analysis of four key 

applications: tuberculosis detection in radiography [13], skin 

cancer classification [1], Electronic Health Record (EHR) 

analysis [12], and drug discovery [17]. Each employs 

specialized deep learning architectures, including CNNs for 

image-based tasks, RNNs for sequential data, and hybrid 

models for multimodal data. The analysis evaluates their 

performance, architectural design, dataset characteristics, 

clinical relevance, interpretability, and scalability. By 

identifying strengths and limitations, this study offers the 

role of DL in healthcare and its potential for real-world 

clinical integration. 

 

3.1. Four Methods Comparative Analysis  

The diverse applications of deep learning in healthcare, 

from Table 1 (Appendix), diagnostic radiology and drug 

discovery to EHR analysis and dermatology. Each study 

highlights deep learning and treatment personalization but 

also notes the current limitations in data availability across 

diverse patient populations and clinical environments. 
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3.2. Dataset Characteristics and Data Pre-processing 

The Tuberculosis Detection study [13] utilizes 

Montgomery County and Shenzhen datasets, ensuring model 

generalizability across diverse populations. Pre-processing 

includes image normalization and data augmentation to 

enhance training data quality. In Drug Discovery [17], the 

study integrates omics data from clinical trials and preclinical 

research, which is essential for biomarker identification but 

demands extensive pre-processing due to dataset 

heterogeneity. EHR Analysis [12] faces challenges due to the 

unstructured, multimodal nature of patient records, requiring 

data normalization, handling of missing values, and 

embeddings for categorical features. Meanwhile, the Skin 

Cancer Classification study [1] employs a large dataset of 

over 129,000 dermatologist-labeled images, including 

dermoscopic and biopsy-confirmed cases, ensuring high 

reliability but still facing real-world variability in image 

quality. Comparative Insight: The effectiveness of deep 

learning in healthcare strongly depends on data quality and 

diversity. While EHR and molecular datasets require 

extensive pre-processing to manage unstructured and 

heterogeneous data, medical imaging datasets benefit from 

augmentation and normalization to address variations in 

imaging conditions and device settings. 

 

3.3. Deep Learning Architectures and Model Design 

The Tuberculosis Detection study [13] utilizes AlexNet 

and GoogLeNet, both optimized for image classification. 

These networks, pretrained on ImageNet, benefit from 

transfer learning, enhancing their performance on medical 

imaging tasks. An ensemble model combining both networks 

and a radiologist-augmented approach further improves 

accuracy in uncertain cases. In Drug Discovery [17], 

Recurrent Neural Networks (RNNs) and transfer learning are 

crucial in handling sequential omics data, allowing models to 

recognize patterns in molecular interactions, 

pharmacokinetics, and toxicology profiles that require time-

dependent analysis. EHR Analysis [12] explores a mix of 

architectures, including CNNs for feature extraction, RNNs 

for time-series analysis, and autoencoders for dimensionality 

reduction. These approaches help address EHR-specific 

challenges, such as temporal dependencies and feature 

sparsity. In Skin Cancer Classification [1], the study employs 

GoogleNet Inception v3, leveraging transfer learning to 

handle the complexity of high-resolution dermatological 

images. The model is trained end-to-end, capturing subtle 

variations in lesion appearances directly from raw pixel data. 

 

3.4. Model Validation and Evaluation Techniques 

In Tuberculosis Detection [13], validation relied on 

AUC as the primary metric, with the model achieving an 

AUC of 0.99. To improve reliability, radiologists reviewed 

ambiguous cases, increasing specificity to 100% in those 

instances. Cross-validation on multiple datasets further 

demonstrated the model's generalizability across different 

populations. In Drug Discovery [17], evaluation focused on 

qualitative assessments of molecular interaction predictions 

and disease pathways. While standard validation metrics like 

AUC for classification or RMSE for regression could be 

applied, their use depends on the specific prediction tasks 

being benchmarked. 

 

For EHR Analysis [12], validation emphasized 

prediction accuracy and interpretability, but the lack of 

universal benchmarks makes standardization difficult. 

However, using large EHR datasets, such as MIMIC-III, has 

enabled consistent cross-study comparisons.  

 

In Skin Cancer Classification [1], the study used 

sensitivity and specificity as key performance metrics. The 

CNN model achieved dermatologist-level accuracy on 

biopsy-confirmed images, with an AUC exceeding 91%. 

Cross-validation with biopsy-proven test images further 

supported the model’s reliability and clinical relevance. 

 

3.5. Performance Metrics and Accuracy 

 The Tuberculosis Detection study [13] achieved an AUC 

of 0.99, with sensitivity and specificity improving to 97.3% 

and 100%, respectively, in a radiologist-augmented setup. 

This underscores the high predictive capability of CNNs in 

radiological applications, making them well-suited for TB 

screening in clinical settings. The near-perfect AUC indicates 

strong reliability in binary classification tasks. In Drug 

Discovery [18], the study does not rely on a direct metric, as 

its focus is on the framework for applying deep learning to 

molecular discovery rather than classification-based 

evaluation. However, if precision-recall or Root Mean 

Square Error (RMSE) were applied to molecular property 

prediction, it could provide more quantifiable comparisons.  

 

 The study highlights drug efficacy, requiring the 

interpretation of complex molecular relationships. For EHR 

Analysis [12], the study employs prediction accuracy and 

AUC, but the values vary significantly based on the specific 

prediction task (e.g., mortality prediction, readmission 

prediction). AUC scores in EHR applications typically range 

from 0.70 to 0.85, with some models achieving 0.9 for 

specific outcomes. This variability reflects the challenges of 

heterogeneous data structures and feature engineering 

requirements in health informatics. 

In Skin Cancer Classification [1], the model achieved 

dermatologist-level performance, with an AUC exceeding 

91% for keratinocyte carcinoma and melanoma detection. 

The high AUC, combined with strong sensitivity and 

specificity, demonstrates its real-world applicability, 

particularly when tested on biopsy-confirmed samples. 

 

3.6. Data Size and Quality 

 The Tuberculosis Detection study [13] utilized 1,007 

radiographs from different regions, making it one of the 

smaller datasets among the studies. Although the dataset 
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included images from four distinct sources, enhancing 

generalizability, its limited sample size remains a constraint. 

In contrast, Drug Discovery [17] leverages massive, multi-

source molecular datasets, often comprising millions of 

molecular entries from various drug databases.  

 However, privacy concerns prevent the disclosure of 

exact sample sizes, and data heterogeneity necessitates 

extensive pre-processing. For EHR Analysis [12], datasets 

like MIMIC-III contain hundreds of thousands of patient 

records, making it one of the largest data sources in this 

comparison. The high volume of data allows for 

comprehensive studies, but standardization challenges and 

data-cleaning complexities remain significant hurdles. 

Meanwhile, the Skin Cancer Classification study [1] used a 

large dataset of 129,450 images, including dermoscopic and 

biopsy-confirmed cases. This dataset, one of the largest 

dermatology image collections, improves model robustness 

and compensates for real-world variability in lighting, image 

quality, and device differences. 

 

3.7. Model Complexity and Architecture Selection 

The Tuberculosis Detection study [13] employs AlexNet 

and GoogLeNet, which, while relatively simpler CNN 

architectures by modern standards, are optimized with 

ensemble methods to improve accuracy. These models are 

well-suited for structured, single-modality image data but 

may struggle with multimodal data integration. In Drug 

Discovery [17], the study incorporates RNNs and transfer 

learning, both essential for processing molecular data 

sequences. Given the need to analyze drug interactions and 

pharmacodynamics, these models are architecturally and 

computationally complex compared to traditional CNNs.  

For EHR Analysis [12], the study utilizes RNNs for 

temporal data processing and CNNs for feature extraction, 

effectively addressing the heterogeneous nature of EHR data, 

including numeric, categorical, and unstructured text 

formats. The combination of RNNs and CNNs reflects the 

need for advanced architectures to capture both sequential 

dependencies and structured data variability. Meanwhile, the 

Skin Cancer Classification study [1] leverages the GoogleNet 

Inception v3 architecture with transfer learning, allowing it 

to handle high-resolution images efficiently. While its single 

CNN setup is ideal for large, labeled datasets, it may lack 

flexibility in dealing with multimodal or longitudinal data. 

3.8. Interpretability and Clinical Integration 

In Tuberculosis Detection [13], the radiologist-

augmented model enhances interpretability by incorporating 

human oversight, allowing it to achieve high specificity and 

sensitivity. This setup makes it well-suited for clinical 

deployment, particularly in resource-limited settings where 

radiologist availability is scarce. In Drug Discovery [17], 

interpretability is a significant experiment omics data. The 

study emphasizes the need for explainable AI techniques, 

such as attention mechanisms, to improve clinician trust and 

regulatory compliance by revealing drug mechanisms at a 

molecular level. For EHR Analysis [12], interpretability 

remains a major limitation, as DL models. While techniques 

like attention layers can help, the heterogeneous nature of 

EHR data and the variety of predictive tasks make it difficult 

to establish standardized interpretability metrics. The clinical 

adoption of these models depends on their ability to provide 

transparent and justifiable predictions. Meanwhile, in Skin 

Cancer Classification [1], interpretability is achieved 

primarily through accuracy and specificity in biopsy-proven 

images, making the model reliable for dermatologist-level 

classification. However, additional interpretability techniques 

could improve end-user trust and decision-making 

confidence for clinical deployment. 

 

3.9. Generalizability and Scalability 

In Tuberculosis Detection [13], the model demonstrates 

good generalizability across multiple regions, but its small 

dataset size limits scalability. Training on larger, more 

diverse datasets could improve its applicability in broader 

clinical settings. In Drug Discovery [17], scalability is a 

strength due to the high volume of available molecular data. 

However, data privacy and interpretability issues present 

major hurdles. While deep learning models in drug discovery 

can generalize across multiple disease areas, they require 

disease-specific validation to ensure reliability. 

 

For EHR Analysis [12], scalability is challenged by 

variations in EHR formats and standards across institutions. 

While models may scale effectively within standardized 

healthcare systems, they often struggle with cross-

institutional generalizability due to the lack of data 

harmonization. In Skin Cancer Classification [1], the model 

benefits from a large and diverse dataset, supporting 

generalizability. Additionally, its potential integration into 

mobile health applications enhances scalability in under-

resourced areas. However, deployment across different 

devices would require further optimization to account for 

variations in camera quality and image conditions. 

 

4. Conclusion 
From this comparative analysis of DL in healthcare 

analysis, this article reveals both the usefulness and the 

challenges of applying DL in healthcare. Image-based tasks, 

such as tuberculosis and skin cancer detection, demonstrate 

high quantitative performance with near-perfect AUC values, 

making them readily deployable in clinical settings, 

especially in resource-limited areas. These models benefit 

from CNN architectures and are relatively straightforward to 

interpret, enhancing clinical applicability. On the other hand, 

drug discovery and EHR analysis tackle more complex, 

heterogeneous data, where RNNs and hybrid architectures 

are essential but introduce challenges in model 

interpretability and data standardization. While these models 

offer transformative potential in personalized medicine and 
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clinical prediction, they require significant advancements in 

explainability and data harmonization to achieve widespread 

clinical acceptance. Future research must prioritize 

scalability, interpretability, and privacy to harness the DL in 

healthcare, ensuring that AI-driven tools can be trusted and 

utilized effectively across diverse healthcare settings. 
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Appendix 
Table 1. Comparative analysis of deep learning case studies 

Methods Key Points Methodology Results Strengths Limitations 

Deep Learning 

for 

Tuberculosis 

Detection on 

Chest 

Radiography 

[13] 

 

The study evaluates 

deep DCNNs for 

detecting TB in chest 

X-rays. Automated TB 

detection is especially 

beneficial for regions 

with limited access to 

radiologists. 

The study utilizes two DCNN 

architectures-AlexNet and 

GoogLeNet-with both 

pretrained and untrained 

models on ImageNet. The 

researchers trained the 

networks on deidentified 

datasets and used data 

augmentation techniques. An 

ensemble approach of both 

networks was applied, and in 

cases of classifier 

disagreement, radiologists 

reviewed the images to 

improve accuracy. 

The best-performing 

model achieved 0.99, 

significantly improving 

accuracy when using 

pretrained models and 

data augmentation. The 

radiologist-augmented 

workflow achieved a 

sensitivity of 97.3% and 

a specificity of 100%. 

 

High accuracy and 

sensitivity suggest this 

model suits TB screening 

in low-resource settings. 

The radiologist-

augmented approach 

leverages human 

expertise for ambiguous 

cases for the model. 

This method is dataset-

dependent, and the 

efficacy might vary with 

different populations or 

image qualities. Moreover, 

generalizability could be 

constrained by the 

variations in radiograph 

standards across regions. 

 

DLDR   

Medicine [17] 

This review discusses 

the role of DL in 

precision medicine and 

drug discovery, 

emphasizing its 

potential to 

individualize treatment 

strategies based on 

patient-specific 

molecular data. 

The paper reviews various 

deep learning frameworks, 

including RNNs and 

transfer learning, applied to 

analyze omics data and 

predict drug efficacy. It 

highlights how deep 

learning can automate data 

mining from vast molecular 

databases and assist in de 

novo drug design. 

The authors outline how 

deep learning enhances 

drug discovery by 

identifying biomarkers 

and therapeutic targets 

more efficiently than 

traditional methods. 

They cite examples like 

patient-specific 

epigenetic signatures for 

personalized cancer 

therapies. 

The review underscores 

the versatility of deep 

learning in integrating 

diverse datasets for more 

comprehensive drug 

discovery. Its application 

in precision medicine 

holds promise for 

transforming treatment 

plans across various 

medical fields, including 

oncology and 

nephrology. 

The paper highlights 

limitations in model 

interpretability and the 

need for vast, high-quality 

training data, which can be 

a barrier to drug discovery 

due to privacy concerns 

and dataset heterogeneity. 

Additionally, deep learning 

models for drug discovery 

require substantial 

computational resources. 

Deep EHR for 

EHR Analysis 

[12] 

This article surveys 

advancements in deep 

learning for EHR 

analysis, covering 

applications in 

information extraction, 

outcome prediction, 

and patient 

phenotyping. 

 

The paper reviews DL 

techniques, such as CNNs, 

RNNs, and autoencoders, 

applied to structured and 

unstructured EHR data for 

clinical tasks. It identifies 

model architectures tailored 

to EHR complexities, 

including health records' 

heterogeneous and 

sequential nature. 

The paper finds that 

deep learning models 

outperform traditional 

methods in predictive 

accuracy and efficiency 

across a range of EHR-, 

such as disease 

prediction and clinical 

decision support. 

This survey provides a 

comprehensive overview 

of DL applications in 

EHR, addressing how 

these methods enhance 

clinical workflow and 

decision-making. The 

models' ability to 

automate feature 

extraction directly from 

raw data is advantageous 

for clinical informatics. 

Challenges include limited 

model interpretability and 

the lack of standardized 

benchmarks across 

institutions, which impede 

model generalizability. 

Privacy and data security 

are also critical concerns, 

as EHR data is sensitive 

and prone to biases from 

missing or incomplete 

records. 
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CNN for Skin 

Cancer 

Classification 

[1] 

 

This study develops a 

CNN to classify skin 

cancer using a large 

dataset of skin lesion 

images. It focuses on 

automating the 

differentiation between 

benign and malignant 

skin lesions, aiming 

for early cancer 

detection. 

 

A CNN model based on the 

GoogleNet Inception v3 

architecture was trained on 

over 129,000 images and 

validated against the 

performance of 

dermatologists on biopsy-

proven images. The model 

used end-to-end training 

without hand-crafted 

feature extraction, 

benefiting from transfer 

learning. 

CNN performed on par 

with 21 board-certified 

dermatologists in 

classifying keratinocyte 

carcinomas and 

melanomas. Sensitivity 

and specificity metrics 

were high, 

demonstrating the 

model's potential for 

clinical application. 

 

The study leverages a 

massive and diverse 

dataset, enhancing the 

model's robustness 

against image variations. 

The model’s capability to 

perform dermatologist-

level classifications 

suggests a significant 

impact on accessible 

cancer screening. 

 

The CNN's performance 

may be limited in real-

world clinical settings 

where image quality and 

patient diversity vary. 

Additionally, the reliance 

on labeled biopsy data 

could limit the model's 

scalability in areas with 

limited biopsy-proven 

images. 

 

 
 

 


