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Abstract - Truck tires, vulnerable to severe wear and possible damage in hostile settings, are a major component of mining 

operations' dependability and safety. This study describes a real-time, non-intrusive monitoring system that uses Digital Image 

Processing methods to identify tire wear and corrosion on mining trucks. While the mining truck is in motion, the system 

continuously captures video images of the surface via a camera located on the tire's fender. The processing method analyses 

these photos in real-time and categorises potential hazards such as jammed rocks, embedded nails or foreign wear. Because 

the system can quickly identify and report these problems, corrective action can be taken immediately, reducing the likelihood 

of tire failure and improving overall operational safety. The method ensures the longevity and performance of mining truck 

tires while reducing downtime and maintenance costs. It is also reasonably priced and scalable. Preliminary tests demonstrate 

the system's effectiveness in various mining situations, underscoring the potential for widespread use in the industry. 

Keywords - Tire wear and damage detection, Digital image processing, Non-intrusive monitoring, Mining truck maintenance. 

1. Introduction 
Maintaining tire integrity is essential to ensure the 

production, safety and profitability of mining trucks; mining 

activities depend highly on the performance and reliability of 

the heavy vehicles they operate during their working days. 

Truck tires are subjected to heavy loads, abrasive surfaces 

and sharp objects on the tracks in these harsh conditions, 

which accelerate tire wear and can cause damage or even 

catastrophic failures that would drive up maintenance costs. 

These incidents not only represent a serious safety risk but 

also increase maintenance costs and generate operational 

downtime. Studies have shown that tire failures are 

responsible for approximately 25% of unplanned shutdowns 

in mining operations, resulting in significant economic losses 

and reduced productivity [1]. 

Traditional tire condition monitoring techniques use 

labor-intensive, human error-prone manual inspections. 

Furthermore, these methods frequently call for removing cars 

from service, which leads to ineffective operations and 

financial loss because no production income is generated. In 

recent years, tire wear and damage identification have been 

automated thanks to Digital Image Processing (DIP) 

technology, providing a real-time, non-invasive alternative to 

human inspections. With the development of increasingly 

complex and accurate image analysis tools, enabled by 

advances in computing power, machine learning algorithms 

and camera technology, this is particularly pertinent [2]. 

Digital image processing-based real-time monitoring 

systems provide a number of benefits, including the ability to 

continuously monitor tire conditions without interfering with 

regular truck operations. In contrast to conventional methods, 

these techniques can identify minute variations in tire surface 

features, such as cuts, cracks, or the presence of foreign 

items like stones and nails, which, if ignored, could cause an 

early failure [3]. Numerous industrial and clinical 

applications have demonstrated the value of machine vision 

techniques, including edge detection, feature extraction, and 

pattern recognition for detecting wear and damage patterns 

[4, 5]. There is a notable lack of accurate application of these 

technologies in real-time tire monitoring of mining trucks, 

where environmental challenges such as dust, mud, and 

changing lighting make image collection and processing 

difficult and complicate the development of a potential tire 

damage detection system. 

The proposed technology uses a high-resolution camera 

installed within the fender to capture pictures of the tires' 

road contact surface while the mining truck moves to detect 

any potential damage or cracks. The system continuously 

scans these photos for irregularities that could indicate wear 
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or damage in real-time using sophisticated digital image 

processing algorithms developed. Using a single camera 

array provides a scalable and cost-effective resolution that 

reduces implementation and maintenance complexity 

compared to multi-sensor systems seen in the current 

literature [6]. In addition, the system can adapt to various 

mining configurations and operational scenarios as required 

and progressively improve its detection accuracy through 

machine learning models that have been trained on various 

tire wear and damage scenario data sets [7]. Many elements 

that are essential for the installation of a reliable image-based 

tire monitoring system have been identified through a 

preliminary study. Preprocessing techniques are crucial to 

controlling noise and distortions caused by dust and other 

debris in the mining environment, as pointed out by Singh 

and colleagues [8]. One of the latest advances in deep 

learning, Convolutional Neural Networks (CNNs), have 

demonstrated remarkable effectiveness in the tasks of 

identifying objects and elements in a video frame. These 

CNNs can be adapted to identify certain types of tire 

damage, as seen in the current literature [9]. Combining 

many methods into a unified real-time operational 

framework presents technical challenges and creative 

opportunities for solving this detection problem. The rest of 

the document is structured as follows: Section 2 presents the 

works related to this research. Section 3 presents the 

methodology used to perform the data acquisition. Section 4 

presents the experimental development used for the 

classification of sleepiness. Section 5 shows the results 

obtained and their respective discussion. Finally, Section 6 

contains the conclusions and the projection of future work. 

2. Related Works 
The use of Digital Image Processing (DIP) in industrial 

applications has been the subject of active studies, especially 

in fields such as fault detection, predictive maintenance, and 

automated monitoring systems. In this section, an overview 

of the most relevant work on the application of image 

processing techniques to monitor tire wear and damage, as 

well as challenges and advances in real-time vision systems 

in harsh environments, such as mining, is presented. Several 

techniques for real-time damage identification have been 

proposed in the relatively new field of image processing 

research in tire monitoring systems. Vasan et al. [10] 

reported an automated method for automotive tire inspection. 

It uses edge detection algorithms to find wear patterns and 

anomalies such as cracks and punctures. Although their 

method worked well in controlled settings, it was vulnerable 

to distortion and noise from road debris. Similarly, 

Prasshanth [11] developed a feature extraction-based 

technique that used a Histogram of Oriented Gradients 

(HOG) descriptors to detect wheel train irregularities. 

Although the systems analyzed demonstrated exceptional 

accuracy, their enormous processing resource requirements 

hindered their scalability into real-time applications usable in 

a non-laboratory environment. The challenging operating 

environment common in mining, which includes dust, mud, 

and fluctuating lighting conditions that can significantly 

affect image quality, is one of the main problems observed in 

this research and intended to be addressed in the 

methodology approach. Wang et al. [12] discussed 

preprocessing techniques to address these problems by 

improving image clarity under difficult conditions. They 

employed morphological methods and filters to increase the 

detection of small foreign objects, such as stones or nails 

embedded in the tire, and to reduce noise. Their findings 

demonstrate the necessity of using standardized picture-

enhancing techniques for developing real-time monitoring 

systems. It is challenging to collect clean, noise-free data 

when using computer vision in severe areas like mines, oil 

rigs, and construction sites because of the continuously 

shifting environmental circumstances.  

Several researchers have focused on strengthening the 

resilience of visual systems to reduce these difficulties and 

improve the accuracy of the proposed systems. For example, 

Huang et al. [13] proposed a real-time object identification 

system created especially for outdoor environments. The 

proposed method combined motion detection with adaptive 

thresholding to improve accuracy in identifying and 

classifying fast-moving objects, even in environments with 

dust or variations in light levels. This same idea can be 

applied to truck tire damage monitoring in this study by 

developing algorithms capable of adjusting to changing 

conditions at mining sites. Additionally, Convolutional 

Neural Networks (CNN) are a deep learning method for real-

time vision applications. Deep residual learning 

outperformed traditional machine learning algorithms in 

terms of accurately classifying some objects in real-time, as 

He et al. [14] demonstrated. Convolutional Neural Networks 

(CNNs) require a great deal of processing power and 

computational work, but advances in the use of GPUs 

(Graphics Processing Units) have made these models viable 

for real-time applications. In mining operations, monitoring 

large volumes of visual data is critical to quickly detect tire 

wear. Timely identification can prevent accidents, reduce 

downtime and lower maintenance costs for mining trucks. 

The capacity of non-intrusive monitoring to 

continuously evaluate equipment conditions without 

interfering with operations has drawn attention to it. Similar 

non-intrusive imaging techniques were used in recent work 

by Dąbek et al. [15] to present a system for monitoring 

conveyor belt health in mining. As part of their strategy, they 

placed high-capture cameras at strategic locations along the 

conveyor system and examined the images they took to 

detect patterns of wear and misalignment of the belts. While 

conveyor systems were the subject of that study, truck tires 

can also benefit from this idea of using images to track wear 

in real-time, as long as the dynamic geometry of tire 

movement is taken into account. Becker et al. [16] have also 

investigated cost-effective methods. They created a scalable 



Gianfranco Jose Farfan Silva et al. / IJECE, 12(3), 134-142, 2025 

136 

monitoring system that uses inexpensive cameras and basic 

image processing techniques to monitor the condition of 

industrial machinery. Although the complexity of faults their 

system identified was limited, it demonstrated that non-

intrusive and reasonably priced monitoring systems are a 

good option for companies trying to cut costs. 

Modern tire monitoring systems rely heavily on Machine 

Learning (ML) models because they can learn from historical 

data and improve accuracy in future evaluations. Using ML 

techniques to analyze visual data collected over time, 

Theissler et al. [17] could predict the wear of mechanical 

components, demonstrating that machine learning algorithms 

can outperform rule-based systems by considering variations 

in wear patterns that do not follow predictable trends. 

Support Vector Machines (SVMs) and random forests are 

two machine-learning techniques used in tire monitoring that 

have been used to categorize different types of wear based on 

visual signals captured by the camera sensor. For example, 

Lin [18] created a hybrid system to identify punctures and 

embedded objects in tires by combining traditional image 

processing with machine learning classifiers to obtain better 

detections. Although their system showed promising results 

in controlled environments, it required a large amount of 

training data to work reliably in more complex conditions, 

such as in mining operations. 

Despite advances in machine learning and Digital Image 

Processing (DIP) in predictive maintenance and fault 

diagnosis, several challenges still exist, especially in real-

time monitoring within mining. Most systems currently on 

the market are designed for regulated or relatively clean 

conditions, where dust and dirt have little effect on image 

capture, which does not reflect a real mining environment. In 

addition, the high processing requirements of real-time 

machine learning models can make them difficult to 

implement, particularly at remote mine sites with limited 

resources. However, recent research has shown that 

combining adaptive algorithms with efficient preprocessing 

methods that reduce the computational load is one way to 

overcome these challenges and create a tire monitoring 

system that is more reliable and scalable and allows for 

optimal tire wear detection. 

3. Methodology 
This paper presents the non-intrusive real-time wear and 

damage monitoring system for mining truck tires using 

digital image processing and machine learning algorithms to 

detect wear and damage. The proposed methodology of this 

system is separated into five phases: image acquisition, 

preprocessing, feature extraction, damage detection and 

alarm and notification. In addition, all necessary steps are 

taken to optimize the system's accuracy, robustness and real-

time performance in challenging mining circumstances 

where environmental factors such as dust, changing lighting 

and vibrations from heavy equipment can affect image 

quality and processing efficiency. Figure 1 shows the block 

diagram of the proposed complete system. 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 System block diagram 

3.1. Image Acquisition 

The system uses a high-resolution camera on the fender 

of the mining truck to continuously capture images of the tire 

surface, the surface that contacts the ground, as the vehicle 

moves along its work route. Positioning the camera at the 

perfect angle to provide a full view of the tire tread allows it 

to capture possible anomalies such as cracks, embedded 

stones or foreign objects such as nails. The camera has a 

polarizing filter and LED-based illumination to mitigate the 

impacts of ambient light fluctuations and minimize glare, 

ensuring image consistency even in a dynamic environment 

[19]. When installed on the truck, the system allows real-

time analysis of possible damage to the mining truck. 

3.2. Preprocessing 

Several preprocessing procedures are applied to improve 

the clarity and focus of images captured in mining 

environments, where conditions can be harsh and 

unpredictable. The process begins with noise reduction using 

a Gaussian filter, which minimizes high-frequency noise 

caused by dust and small particles while preserving the 

essential edges of the tire tread. In addition, adaptive 

histogram equalization is employed to enhance image 

contrast, allowing better visualization of fine details in 

different lighting conditions. Preprocessing also includes 

segmentation techniques that separate the tire surface from 

the background. Through edge detection and contour 

analysis, the system identifies the tire's Region of Interest 

(ROI), as shown in Figure 2, thus reducing the computational 

burden by focusing on the relevant sections and eliminating 

background noise that could generate false detections. 
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Fig. 2 ROI detection in the image frame 

3.3. Feature Extraction 

Feature extraction techniques are used to detect 

important tire surface features once the image has been 

preprocessed. The damage detection model uses these 

properties as inputs, and they are chosen for their ability to 

detect foreign items and wear patterns. 

3.3.1. Texture Analysis 

The surface texture of the tire tread is captured by 

computing texture characteristics, such as Local Binary 

Patterns (LBP) and Gray-Level Co-occurrence Matrix 

(GLCM) metrics. Wear patterns suggestive of increasing tire 

deterioration can be identified using these characteristics, 

which are sensitive to variations in surface roughness [20]. 

3.3.2. Shape and Contour Analysis 

Edge detection algorithms, such as the Canny edge 

detector, highlight the tread pattern's contours. Shape 

descriptors, such as aspect ratio, perimeter and circularity, 

are calculated to identify irregularities, such as cuts or 

embedded objects, that alter the typical tire tread pattern 

[21]. In this way, the dimensions and levels of damage can 

be obtained and reported through the notification system. 

3.3.3. Foreign Object Detection 

Color thresholding and Hough Transform are used in 

tandem to find things embedded in the tire. The Hough 

Transform detects round shapes, which are characteristic of 

nails or bolts, while color thresholding isolates the darker or 

differently colored regions corresponding to foreign objects, 

such as stones or metal fragments [22]. 

3.4. Damage Detection 

Tire damage can be identified by a machine learning 

classifier that uses attributes extracted from images as input 

data. For this purpose, classifiers based on Convolutional 

Neural Networks (CNN) and Support Vector Machines 

(SVM) are employed due to their real-time performance and 

ability to handle high-dimensional inputs. The labeled 

dataset used to train the classifier includes images of tires in 

various conditions, such as worn, normal, deflated and with 

embedded objects. Figure 3 shows a collection of images of 

damaged or worn tires that were used to train the developed 

system. The training begins with assigning labels to each 

image to build a varied data set. Then, data augmentation 

techniques, such as rotation, scaling and inversion, are 

applied to improve the model's ability to generalize to 

different tire orientations, which is necessary because shots 

will not always be ideal. This machine learning component is 

critical for efficiently identifying tire deterioration in real-

time, which helps improve operational safety and reduce 

downtime in mining truck mining operations. 

 
Fig. 3 Images used to train the system 

3.5. Alarm and Notification 

The system has been fitted with a real-time alarm and 

notification function that immediately alerts maintenance 

personnel, allowing them to react quickly to any detected 

damage to the tyres. The method uses predetermined 

thresholds that correlate to various types and levels of 

damage, for example, the defect's area and depth, to 

categorise the damage based on its severity. An alert 

emphasizing the necessity of regular maintenance to prevent 

further degradation is generated when significant damage is 

found. Critical warnings will only sound, though, in the 

event of serious problems that immediately jeopardize the 

tire's integrity (such as deep cuts or the presence of 

embedded items like stones or nails). In certain situations, 

START 
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the system sends a high-priority notification requiring 

immediate inspection or repair. 

The alarm system also uses multiple communication 

channels to ensure maintenance personnel receive the 

information quickly, avoiding a major complications. In 

addition, visual and audible warnings are activated on-site to 

notify operators that they are experiencing severe tire 

damage. In addition, remote notifications are sent to the 

control center, to a secure mobile app or via SMS messages, 

providing key details such as the exact time of the incident 

and an image of the detected damage, facilitating rapid 

verification and action. Each alert is automatically logged 

with information on time, severity level and associated 

images.  

This data allows trends to be analyzed over time and 

maintenance to be planned more efficiently, enabling the 

implementation of predictive maintenance strategies based 

on wear patterns and damage frequency. In addition, the 

system incorporates a feedback mechanism that allows 

maintenance personnel to update or validate findings after a 

physical inspection, improving the system's accuracy and 

reducing the number of false alarms in the future. Thanks to 

this comprehensive alert and notification management 

approach, the system ensures efficient communication and 

rapid response, improving reliability and safety in mining 

operations. 

3.6. Algorithm Developed 

The algorithm developed for detecting damage in mining 

truck tires is composed of several sequential stages that allow 

identifying, classifying and reporting possible defects in real 

time. The process starts with the acquisition of images using 

a calibrated camera, which captures the tire surface under 

controlled conditions to minimize optical distortions. 

Subsequently, image preprocessing is applied, including 

noise reduction, filtering and contrast enhancement 

techniques, to highlight relevant tire features.  

 

Next, Region of Interest (ROI) segmentation is 

performed, isolating the tire area for more accurate analysis. 

In the feature extraction stage, key parameters such as edges, 

textures and contours are obtained using morphological 

analysis and edge detection methods. Thresholding 

techniques using SVM and CNN machine learning 

techniques are applied to detect any damage in this data. The 

severity of damage is classified into four categories: Normal, 

Light Wear, Moderate Damage and Critical Damage.  

In the event that major damage is discovered, the system 

saves the data for further analysis and generates a 

maintenance notification. This activity allows continuous 

monitoring of tire conditions, aiding decision-making to 

avoid costly operational breakdowns. Figure 4 shows the 

complete flowchart of the developed algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Flowchart of the developed algorithm 

4. Experimental Development  
The method for monitoring mining truck tire wear and 

damage in real time was developed experimentally in a 

controlled environment that mimicked actual operating 

conditions during a mining day.  

To properly test the system, machine learning 

algorithms, image processing, hardware component selection 

and configuration, and performance evaluation under various 

operating conditions were implemented.  

The system was installed on the fender of a mining truck 

and focused solely on performing the validation tests of this 

research. Figure 5 shows two images taken from different 

angles of the mining truck tire used in the system tests. 
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Fig. 5 Tire of the mining truck used to carry out the tests, (a) Isometric 

image of the tire, (b) Side image of the tire. 

4.1. Experimental Setup 

The tires on a mining truck that had the system installed 

were put through simulated damage scenarios and regulated 

wear conditions. A high-resolution industrial camera (Basler 

Ace2 series, 5 MP) was fixed to the fender to take pictures of 

the tire tread surface while the truck was moving normally. 

The camera was positioned at an optimal angle of 45 degrees 

relative to the tire’s surface to ensure complete coverage of 

the tread area.  

A synchronized triggering system was implemented 

using an optical sensor to detect the tire’s presence and 

activate the camera at precise intervals, ensuring consistent 

image capture across different test cycles. To account for the 

different environmental conditions typical of mining 

operations, LED illumination with adjustable intensity and a 

polarizing filter were used to reduce glare and shadows, thus 

improving image consistency.  

The captured images were transmitted to a local 

processing unit equipped with a Raspberry Pi 4, which 

handled the real-time image processing and damage 

detection tasks. The system architecture followed an edge 

computing approach to minimize latency and enable on-site 

decision-making. 

4.2. Image Dataset and Damage Simulation 

A set of images of mining truck tires was collected 

under various conditions, including clean and dusty surfaces, 

different illumination intensities, and different tread wear 

levels. The dataset consisted of 5000 images captured at 

resolutions of 1920 x 1080 pixels, with an even distribution 

of normal, worn and damaged tires. As these were controlled 

tests, the research team decided to test the system by 

incorporating objects such as nails, screws and stones into 

the tire tread, simulating real-world conditions in which 

foreign objects can become lodged in the tire surface. The 

collected images were annotated by tire maintenance experts, 

categorizing each image based on the severity of damage into 

four classes: normal, minor wear, moderate damage, and 

critical damage. Table 1 includes the classification according 

to the analyzed data of past maintenance performed on 

mining trucks. 

Table 1. Tire damage categorization 

Classes Surface (m2) Depth (m) 

Normal 0 0 

Minor wear ≤ 0.1 ≤ 0.05 

Moderate damage 0.1 – 0.5 0.05 – 0.2 

Critical damage > 0.5 > 0.2 

 

This labeled dataset served as the ground truth for 

training and validating the machine learning model. Data 

augmentation techniques, including rotation, scaling, and 

contrast adjustment, were applied to enhance the dataset's 

diversity and improve model robustness. Figure 6 shows the 

analysis performed on a tire with damage detected on the 

surface.  

   
(a)                                                          (b) 

Fig. 6 Tire of the mining truck used to carry 

4.3. Machine Learning Model Training 

The damage detection system successfully classifies tire 

damage using a Convolutional Neural Network (CNN) and a 

Support Vector Machine (SVM) classifier. 20% of the 

dataset was used for testing, and the remaining 80% was 

used for training. To obtain the highest classification 

accuracy, hyperparameters such as kernel type and 

regularization parameter were optimized using a grid search 

technique.  

Standard metrics, such as precision, recall, and F1 score, 

were used to evaluate model performance. Initial tests 

revealed an overall classification accuracy of 92.3% and a 

recovery rate of 95% for critical damage situations, 

indicating the excellent reliability of the system for detecting 

severe damage. 
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4.4. Real-Time Performance and Deployment 

Considerations 

The real-time performance of the system was validated 

by testing in a simulated operating environment in which 

mining trucks traveled at various speeds ranging from 5 to 15 

km/h (3 to 9 mph). The system achieved an average 

processing time of 180 milliseconds per image, which 

allowed real-time detection without causing operational 

delays. Tests were performed under various environmental 

conditions to evaluate the system's resistance to vibration and 

exposure to dust and humidity. The camera and processing 

unit were housed in an IP67-rated protective housing to 

ensure reliable performance under harsh circumstances. The 

system’s ability to instantly notify maintenance personnel via 

mobile devices was validated by testing its remote 

monitoring and alerting capabilities. Based on the results 

obtained from the tests, the proposed system can be used in 

mining operations as it maintains real-time performance and 

provides accurate and prompt alerts on tire wear. To increase 

detection accuracy and reduce the need for manual feature 

engineering, future optimization efforts will focus on using 

deep learning techniques. 

5. Results and Discuss 
5.1. System Performance Evaluation 

The proposed system was evaluated based on its ability 

to accurately detect tire wear and embedded foreign objects 

in real-time mining conditions. Table 2 shows the average of 

the performance metrics obtained in the tests performed, 

including the precision, accuracy, recall, F1 score and 

processing time values. After testing, the system achieved an 

overall detection accuracy of 92.3%, with an accuracy of 

90.1% and a recovery rate of 95.4% for critical damage 

detection. The high recovery value indicates the system's 

effectiveness in identifying potential hazards, which 

minimizes the risk of failures not detected by the algorithm. 

However, the accuracy rate points out the presence of some 

false positives, mainly due to dirt and uneven tire textures 

that were incorrectly labeled as damage. Finally, to avoid 

interfering with the mining truck's processes, the system's 

processing time was, on average, 180 milliseconds per image 

frame, more than enough time to be considered real-time. 

Table 2. Performance metrics achieved during testing 

Damage 

Type 

Accuracy 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Processing 

Time (ms) 

Normal 90.7 92.3 91.7 141 

Minor 

Wear 
88.7 92.1 90.3 150 

Moderate 

Damage 
90.3 93.5 91.8 180 

Critical 

Damage 
90.1 95.4 92.7 210 

 

The system demonstrated a higher detection efficiency 

for critical damage and embedded objects compared to minor 

wear detection. This indicates that the feature extraction and 

classification model are well-suited for identifying severe 

damage, although minor wear detection may require further 

refinement. 

5.2. Comparison with Traditional Inspection Methods 

The proposed approach was contrasted with traditional 

manual inspection methods often used in mining operations. 

Visual assessments performed by qualified persons during 

manual inspections are often subjective and prone to human 

error due to the fact that the operator usually performs this 

type of operation and does not take into account objective 

values. Compared to human methods, the automated system 

increased damage detection accuracy by 35% and reduced 

inspection time by more than 50%, as the automated analysis 

is performed constantly and without interruption.  

Furthermore, unlike traditional inspections carried out 

manually by operators, which sometimes lead to delayed 

responses, the real-time alarm system enabled prompt 

messages sent to maintenance specialists. However, during 

field tests, certain difficulties were detected. The proposed 

system generated false alerts due to the accumulation of mud 

on the tires and the variable natural illumination of the 

environment due to the conditions in which the system was 

located. These problems could be reduced in future research 

by using deep learning-based noise reduction and additional 

image preparation methods or by adding a constant cleaning 

method to the camera lens. 

5.3. Environmental Impact Assessment 

Mining environments present challenging conditions 

such as dust, vibration and variable lighting, affecting image 

quality and system performance because the model cannot be 

fully trained to anticipate these situations. During extensive 

field testing, the system maintained consistent accuracy in 

various environmental conditions, with only a 3.2% 

reduction in detection accuracy in extreme lighting scenarios. 

Testing in real-world environments identified the need for 

periodic lens cleaning or implementation of self-cleaning 

systems, as dust accumulation significantly impacted 

performance. In addition, an evaluation of the durability of 

the camera system confirmed that the IP67-certified housing 

effectively protected against moisture and dust, allowing 

continuous operation for extended periods. 

5.4. Result of the Developed System 

The system captured images and analyzed the tires of 

mining vehicles in different conditions, especially when 

damage was detected, providing visual evidence of the 

observed wear patterns. Several types of damage were 

identified in the processed images, ranging from scratches to 

heavier wear damage. Using edge detection and texture 

analysis techniques, the system could accurately differentiate 

the affected areas, allowing a detailed assessment of the 

degree of wear of the truck tires. The system’s ability to 
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consistently generate high-quality annotated images in real-

time demonstrates its potential for deployment in large-scale 

mining operations, improving decision-making processes 

related to maintenance and tire replacement strategies. Figure 

7 shows four video frames where the algorithm detects 

damage to the tire surface. 

    
                                                            (a)                                                                                                                          (b) 

Fig. 7 Images obtained from the developed system, (a) This image shows a tire with a crack classified as minor damage, and (b) This image shows a 

very damaged tire, with three damages classified as minor, moderate and critical.

6. Conclusion 
This work uses digital image processing techniques to 

create a real-time monitoring system for damage to mining 

truck tires and the detection of possible embedded objects. 

The developed system is a reliable and effective way to 

monitor the condition of tires, thanks to the results obtained 

from all the tests performed, and also offers significant 

advantages over traditional inspections. The system 

demonstrated a high ability to detect major damage and 

provide early notifications, preventing failures that might 

impact operations. In testing, it obtained an accuracy of 

92.3%. The findings imply that automated identification of 

various damage types with little human interaction is 

possible when picture preprocessing, feature extraction, and 

machine learning-based categorization are combined. With 

an average analysis time of 180 milliseconds per frame, the 

system can process images in real-time without 

compromising the efficiency of the vehicles in operation. In 

addition, its automatic alarm system significantly reduces 

response times by immediately notifying the maintenance 

team. Notwithstanding its strong performance, several issues 

were noted, including the sporadic incidence of false 

positives brought on by environmental factors like dust 

buildup and changes in light.   

In order to enhance the system going forward, it is 

advised to incorporate self-cleaning camera systems, use 

adaptive illumination solutions, and reinforce the model by 

employing deep neural networks for feature extraction. To 

cover extensive mining activities, the system's scalability 

through cloud analytics and the installation of many cameras 

should also be considered.  
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