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Abstract - The economic implications of sugarcane diseases on local farmers in India are significant and multifaceted, 

affecting not only their immediate yields but also their overall financial stability and livelihoods. About 70 percent of India's 

rural households still primarily depend on agriculture for their livelihood. As a cash crop, sugarcane holds a very important 

place in India's agrarian economy. India is not only the largest consumer of sugar but also its second-largest producer. 

Identifying the diseases in their initial stages helps not only the farmer but also reduces the burden on the country in many 

aspects. This paper discusses DenseNet, VGG, and ConvNeXt for classifying diseases in sugarcane plants, along with the 

detailed experimentation conducted. Based on evaluation metrics, ConvNeXt outperforms with 96% accuracy compared to 

DenseNet and VGG architectures on sugarcane disease detection.  
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1. Introduction 
India is the world's largest consumer and the second-

largest producer of sugar. With a 15% share in global sugar 

consumption and around 20% of global sugar production, 

trends in India's sugar industry have a significant impact on 

global markets [1]. Sugarcane farmers in India receive the 

highest cane prices in the world. India offers its citizens the 

cheapest sugar despite the world's sugar prices reaching 

record levels.  

The 10-year average of sugar production from the year 

2014 to 2023 was 31.92 Million Metric Tons. The marketing 

year 2023/2024 saw a decline of 3 Million Metric Tons; the 

production stood at 34 Million Metric Tons [2]. The current 

year's production estimate has been revised downward to 34 

MMT, or 32 MMT of crystal white sugar, due to delayed 

rainfall in Maharashtra and Karnataka and a red rot 

infestation in central Uttar Pradesh [3]. 

Around 50 million farmers and their families are 

estimated to be involved in sugarcane cultivation, while 

approximately 500,000 skilled and unskilled workers are 

employed in sugar mills and related industries. The sugar 

industry in India plays a crucial role in the socio-economic 

development of rural areas by mobilizing local resources, 

creating jobs, and boosting farm incomes [4]. Ensuring plant 

health and identifying diseases are essential for promoting 

sustainable agriculture. However, relying solely on manual 

methods for monitoring plant diseases presents significant 

challenges due to the complexity and time-intensive nature of 

the task. Implementing efficient and scalable solutions is vital 

to address these issues effectively. Plants are often affected 

by various diseases, and some of these diseases can destroy 

the whole crop if not diagnosed and treated in time [5].  
 

The primary diseases responsible for sugarcane yield 

losses include wilt (infecting the vascular system), red rot 

(attacks the cane’s inner tissues), Pokkah Boeng (abnormal 

growth, including twisted stems and stunted plants), 

sugarcane Grassy Shoot (yellowing, stunting, and the death 

of shoots), and pineapple sett rot (causing rotting and decay) 

[6]. 
 

Major challenges associated with these diseases are 

many of these diseases exhibit symptoms only in later stages, 

making early detection difficult and limiting effective 

management; certain diseases, such as sugarcane Grassy 

Shoot, are spread by insect vectors, adding another layer of 

complexity to disease control; weather patterns, such as 

delayed or irregular rainfall, can exacerbate disease spread 

and affect crop health; over time, pathogens may develop 

resistance to chemical treatments, making management even 

more challenging; Disease outbreaks lead to significant 

financial losses for farmers, affecting not only yields but also 

the quality of sugarcane, which influences sugar production 

and prices. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Traditional disease detection methods, like laboratory 

analysis or visual evaluation, require a lot of time and 

qualified personnel. Due to environmental variations and the 

similar symptoms that various diseases exhibit, these 

methodologies are also prone to human error. The lack of 

specialists and diagnostic facilities in rural or resource-

constrained areas makes prompt disease management even 

more difficult. 

CNNs and Transformers can play a pivotal role in 

shielding agricultural industries. By leveraging these 

advanced models, farmers can identify signs of diseases at an 

early stage, allowing for timely interventions and reducing 

crop loss. The power of transfer learning is employed with 

the help of pre-trained CNNs.  

This paper discusses DenseNet, VGG, and ConvNeXt 

regarding the classification of diseases in sugarcane plants, 

along with the detailed experimentation conducted. The 

approach combines advanced deep learning models with 

basic hyperparameter tuning and data augmentation to tackle 

the challenges of sugarcane disease detection. This helps 

create a reliable and effective system that enables timely 

interventions and minimizes crop loss. 

2. Literature Review 
The field of artificial intelligence has witnessed rapid 

advancements over the past decade, with significant 

contributions in the field of healthcare. Among these, 

diagnostic imaging has emerged as a turning point where AI 

applications show great promise. This literature review 

explores existing studies to identify advancements, 

challenges, and opportunities in AI-driven medical imaging. 

In the study [7], the authors used a dataset consisting of 

4 classes and a total of 1990 images of the sugarcane crop. 

They have used 4 pretrained neural network models 

comprising Alexnet, VGG19, Resnet18 and Densenet201. 

Due to the small amount of data, they used data augmentation 

to increase the model’s performance. It was found that 

VGG19 outperformed all of the other models. 

In the study [8], the authors have used two datasets: one 

is of rice leaves and the other is of potato leaves. The first one 

contains 5932 images, and the following one contains 1500 

images. The datasets were split 80:20 for training and testing. 

Along with CNN, they also used Machine Learning Models 

consisting of SVM, KNN, Decision Tree and Random Forest. 

CNN had outperformed all of them. The CNN scored a total 

of 99.58 accuracy for the rice dataset and 97.66 accuracy for 

the leaf dataset. 

In the study [9], the author researched tomato crops. The 

dataset consisted of 13,262 images. Utilized two pretrained 

models, Alexnet and VGG16 net. The dataset contained 7 

classes. The study was divided into two parts. In the first part, 

augmented images were given to the models. The second part 

consisted of the number of modified images, and the 

hyperparameters were changed. Using AlexNet and VGG16, 

classification accuracies of 97.49% and 97.29% were 

achieved for the first part. 

In the study [10], the authors have used classifiers on 

pretrained models. The pretrained models are Inception v3, 

VGG16, and VGG19, and the classifiers used on them are 

SVM, KNN, Neural Networks, Logistic Regression, 

AdaBoost, SGD and Naive Bayes. Their dataset consisted of 

a total of 240 images. The outcome of this experiment was 

that the VGG16 with SVM was chosen. SVM could classify 

sugarcane as diseased and non-diseased with the highest 

AUC, i.e., 90.2%. 

In the study [11], the authors have used a dataset on 

sugarcane leaf disease consisting of 5 classes. For their 

experiment, their proposed model is stacking, an ML 

ensemble technique.  

The paper is divided into two parts; in the first part, they 

compared all the pretrained models, and in the second, they 

used stacking. Their proposed model performed better in 

comparison to just using the pretrained models. It gave an 

accuracy of 0.8653. 

This study capitalises on the benefits of transfer learning 

by harnessing the power of three pioneering CNN 

architectures (VGG, DenseNet, and ConvNeXt). These 

models, pre-trained on vast datasets such as ImageNet, bring 

a wealth of pre-learned feature representations to the table.  

This strategic approach not only streamlines the training 

process but also significantly boosts model performance, 

outperforming the traditional method of building models 

from the ground up. 

3. Dataset 
The dataset being used is publicly available [12]. It 

consists of 5 classes: Yellow, RedRot, Rust, Healthy and 

Mosaic, as shown in Table 1. A total of 2521 images are 

contained in the dataset. 

4. Research Methodology 
VGG, DenseNet, and ConvNeXt, three novel 

Convolutional Neural Network (CNN) architectures, were 

used in the experimental setup. Each one of them has marked 

an important milestone in the world of deep learning.  

 

VGG is an example of the early CNN era, emphasizing 

depth and simplicity through the use of deep sequential layers 

and small convolution filters. 
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Table 1. Dataset distribution 

Class Mosaic 

 

Rust 

 

Yellow 

 

RedRot 

 
Healthy 

Instances 462 514 505 518 522 

Image 

     

DenseNet, which brought about a great paradigm shift 

with architectural design using dense connectivity based on 

feature reuse, is an example of the middle road taken while 

putting efficiency and gradient propagation forward. Finally, 

ConvNeXt concentrates on scalability and fine-grained 

performance optimization. It is a model that embodies the 

new wave that stems from developments in hierarchical 

design, influenced by the novel vision transformer. The 

experiment integrates three distinct architectures, each 

representing a different era in the evolution of computer 

vision. Transfer learning is a knowledge-sharing technique 

that reduces the volume of training data, training time, and 

processing costs for creating deep learning models. 

 

Training CNN models from scratch is very 

computationally expensive and time-consuming, particularly 

for deep learning architectures with parameters reaching a 

count of millions. It requires a lot of labelled data to achieve 

broad applicability and significant computational resources, 

such as high-performance GPUs or TPUs, to handle the 

extensive matrix operations and backpropagation 

calculations. Moreover, the training process usually contains 

several iterations regarding hyperparameters and 

adjustments, such as data preprocessing and optimization, 

adding to cost and time. In those situations, when the size of 

the datasets is limited or computing resources are insufficient, 

training CNN from scratch becomes too expensive or even 

impossible. Diversions such as transfer learning with pre-

trained models have gained vast relevance today.  
 

Pre-trained models, such as those available in 

TensorFlow Applications, are trained on large benchmark 

datasets like ImageNet and provide a solidly built feature 

extraction backbone that can be fine-tuned for specific tasks. 

This reduces training time and computational cost while 

improving model performance by using the rich feature 

representations learned during pre-training. This research 

fine-tuned the last 10 layers of each model. This approach 

allowed the models to retain learned general representations 

while adapting to domain-specific features in sugarcane 

disease images. Experimental results showed that fine-tuned 

models consistently outperformed their frozen counterparts, 

highlighting the importance of training deeper layers for 

improved classification accuracy. 

5. Deep Learning Model’s 
5.1. DenseNet 

DenseNet, an acronym for Densely Connected 

Convolutional Networks, establishes feedforward 

connections between each layer and every other layer, as 

shown in Figure 1. In DenseNets architecture, dense blocks 

and transition blocks are repeatedly used to strengthen feature 

propagation and encourage feature reuse [13]. Each 

convolutional layer in a dense block generates a fixed number 

of output channels. This number is called the "growth rate."  

The growth rate is a hyper-parameter that controls how 

many features each layer of a dense block adds and, therefore, 

directly affects memory and computational requirements. 

The growth rate is typically set to 32. A higher growth rate 

results in a larger number of feature maps at each layer, which 

can increase model capacity but also the number of 

parameters. Each dense block contains multiple layers, and 

each layer receives the output from all previous layers in that 

block.  

This is a key characteristic that distinguishes DenseNet 

from other traditional architectures. This architecture can be 

seen in Figure 1. Transition layers are used to connect one 

dense block to another dense block. During the experiment, 

data augmentation on the dataset was utilized for DenseNet. 

The images are flipped horizontally, rotated, zoomed, and 

rescaled (1/.255), and the height and width are also adjusted.  

In this paper, the 3 different versions of DenseNet are as 

follows: 

1) DenseNet121: 'BatchNormalization': 121, 'Activation': 

121, 'Conv2D': 120, 'Concatenate': 58, 

'AveragePooling2D': 3, 'ZeroPadding2D': 2, 

'InputLayer': 1, 'MaxPooling2D': 1 

2) DenseNet169: 'BatchNormalization': 169, 'Activation': 

169, 'Conv2D': 168, 'Concatenate': 82, 

'AveragePooling2D': 3, 'ZeroPadding2D': 2, 

'InputLayer': 1, 'MaxPooling2D': 1 

3) DenseNet201: 'BatchNormalization': 201, 'Activation': 

201, 'Conv2D': 200, 'Concatenate': 98, 

'AveragePooling2D': 3, 'ZeroPadding2D': 2, 

'InputLayer': 1, 'MaxPooling2D': 1 



Meenakshi Thalor et al. / IJECE, 12(3), 151-160, 2025 

 

154 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1 DenseNet architecture 
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Table 2. Details of DenseNet architectures 

Variants Layers 
Dense Block 

Configuration 

Parameters 

(Pretrained) 

Size 

(MB) 

DenseNet121 427 6-12-24-16 8.1M 33 

DenseNet169 595 6-12-32-32 14.3M 57 

DenseNet201 707 6-12-48-32 20.2M 80 

The explanation of each phase of DenseNet used are: 

1) BatchNormalization is applied after each convolutional 

operation to normalize the feature maps. 

2) Activation layers introduce non-linearity and help the 

network learn complex patterns. 

3) Conv2D is responsible for learning spatial hierarchies in 

the data (e.g., edges, textures). Each convolution is 

followed by a batch normalization layer and an 

activation function. 

4) Concatenate layers combine the feature maps from 

different layers in the network.  

5) Average Pooling is a down-sampling operation that 

reduces the size of the feature maps after certain blocks 

to make the computation more manageable as the model 

progresses through the layers. 

6) Zero Padding is used to add extra pixels (usually zero) 

around the border of the feature maps to maintain spatial 

dimensions. 

7) The Input Layer is where the data enters and specifies 

the shape of the input.  

8) MaxPooling2D is another down-sampling operation that 

reduces the spatial dimensions of the feature maps by 

selecting the maximum value from a defined region. 

Input layer reshaping the images to (224, 224, 3) and a 

data augmentation layer have been added before the 

pretrained model. GlobalAveragePooling2D and Dense 

Layer have been added after the pretrained model. The last 

10 layers of each model are unfrozen to achieve greater 

accuracy. The epochs being used are 10. The details of 

DenseNet architectures are shown in Table 2. 

 

5.2. VGG 
It laid the foundation for deep learning in computer 

vision. VGG stands for Visual Geometry Group. VGG uses a 

simple design philosophy, stacking small 3x3 convolutional 

filters with ReLU activations and a stride of 1, followed by 

max-pooling layers (2x2 filters with a stride of 2) to gradually 

reduce spatial dimensions while increasing feature 

complexity. VGG provides better results while having 

smaller convolutional layers since it doesn’t rely on a large 

number of hyper-parameters [14].  

VGG demonstrated that increasing network depth 

significantly improves performance. This architecture can be 

seen in Figure 2. Before input, the image needs to be pre-

processed to convert RGB to BGR. Input layer reshaping the 

images to (224, 224, 3) and a data augmentation layer have 

been added before the pretrained model. 

GlobalAveragePooling2D and Dense Layer have been added 

after the pretrained model. The details of VGG architectures 

are shown in Table 3. 

 

Data augmentation on the dataset is utilized for the VGG 

during the experiment. The images are flipped horizontally, 

rotated, and zoomed, and height and width are adjusted. 

In this paper, the 2 different versions of VGG used are: 

1) VGG16:'Conv2D': 13, 'MaxPooling2D': 5, 'InputLayer': 

1 

2) VGG19:'Conv2D': 16, 'MaxPooling2D': 5, 'InputLayer': 

1 

The explanation of each phase of VGG is as follows: 

1) Conv2D stands for the 2D convolutional layers in the 

network. These layers extract the input images' features 

like edges, textures, shapes, etc.. These layers are 

arranged in blocks to learn hierarchical representations. 

2) MaxPooling2D layers are used to down sample the 

feature maps after the convolutional operations. These 

layers reduce the spatial size (height and width) of the 

feature maps, helping to control overfitting and reduce 

computation. 

3) The InputLayer is where the image data enters the 

network. This layer specifies the shape and format of the 

input data. 

5.3. ConvNeXt 

ConvNeXt divides the network into stages, similar to 

Transformers, gradually increasing the number of channels 

while downsampling the spatial dimensions, as shown in 

Figure 3. The core component is the ConvNeXt block that 

includes depthwise convolution and pointwise convolution, 

bringing better efficiency and a module named LayerScale 

applied on each ConvNeXt block which adds a learnable 

scale for the output of each block. ConvNeXT is constructed 

entirely from standard ConvNet modules [15]. The inputs of 

ConvNeXt models are expected to be float or uint8 tensors of 

pixels with values between 0 and 255. Input layer reshaping 

the images to (224, 224, 3) has been added before the 

pretrained model. GlobalAveragePooling2D and Dense 

Layer have been added after the pretrained model. The last 

10 layers of each model are unfrozen to achieve greater 

accuracy. The number of epochs being used is 10. The details 

of ConvNeXt architectures are shown in Table 4.  In this 

paper, the 5 different versions of ConvNeXt used are: 
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1) ConvNeXtBase: 'Dense': 72, 'Activation': 72, 

'LayerNormalization': 37, 'Conv2D': 36, 

'LayerScale': 36, 'Sequential': 4, 'InputLayer': 1, 

'Normalization': 1 

2) ConvNeXtLarge: ‘Dense': 72, 'Activation': 72, 

'LayerNormalization': 37, 'Conv2D': 36, 

'LayerScale': 36, 'Sequential': 4, 'InputLayer': 1, 

'Normalization': 1 

3) ConvNeXtSmall: 'Dense': 72, 'Activation': 72, 

'LayerNormalization': 37, 'Conv2D': 36, 

'LayerScale': 36, 'Sequential': 4, 'InputLayer': 1, 

'Normalization': 1 

4) ConvNeXtTiny: 'Dense': 36, 'Activation': 36, 

'LayerNormalization': 19, 'Conv2D': 18, 

'LayerScale': 18, 'Sequential': 4, 'InputLayer': 1, 

'Normalization': 1 

5) ConvNeXtLarge: 'Dense': 72, 'Activation': 72, 

'LayerNormalization': 37, 'Conv2D': 36, 

'LayerScale': 36, 'Sequential': 4, 'InputLayer': 1, 

'Normalization': 1

 

 

 

 

 

 
Fig. 2 VGG architectures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3 ConvNeXt architectures 
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Table 3. Details of VGG architectures 

Variants 
Conv2D 

Layers 
MaxPooling2D 

Input 

Layer 

Total 

Layers 
Parameters 

Pretrained 

On 
Size(MB) 

VGG16 13 5 1 19 138.4M ImageNet 528 

VGG19 16 5 1 22 143.7M ImageNet 549 
 

Table 4. Details of ConvNeXt architectures 

Variants Layers Parameters Pretrained on 
Size 

(MB) 

Block 

Configuration 

Projection dims 

(per Block) 

ConvNeXtTiny 133 28.6M ImageNet 109.42 3, 3, 9, 3 96, 192, 384, 768 

ConvNeXtSmall 259 50.2M ImageNet 192.29 3, 3, 27, 3 96, 192, 384, 768 

ConvNeXtBase 259 88.5M ImageNet 338.58 3, 3, 27, 3 128, 256, 512, 1024 

ConvNeXtLarge 259 197.7M ImageNet 755.07 3, 3, 27, 3 192, 384, 768, 1536 

ConvNeXtXLarge 259 350.1M ImageNet 1310 3, 3, 27, 3 
256, 512, 1024, 

2048 

 

The explanation of each phase of ConvNeXt is as 

follows: 

1) Dense layers in ConvNeXt are fully connected layers and 

help combine the features extracted by the earlier 

convolutional layers to make high-level decisions about 

the input data. 

2) Activation layers introduce non-linearity by an 

activation function such as ReLU or GELU, which helps 

the network learn more complex relationships between 

features. 

3) Layer Normalization is a practice used to normalize each 

layer's inputs, ensuring that the activations remain 

centered around zero with a standard deviation of one. It 

is applied at various points in the model to ensure smooth 

training by lessening internal covariate shift Conv2D 

layers perform convolution operations to extract 

meaningful features from the input images, forming the 

basis of the network's learning. 

4) Conv2D layers perform convolution operations to 

extract meaningful features from the input images, 

forming the basis of the network's learning. 

5) LayerScale is a technique used to scale the outputs of 

certain layers to maintain numerical stability and 

improve training. It allows the model to adjust the 

importance of each layer during training. This method 

helps fine-tune the contributions of each layer to the 

network’s overall performance. 

6) Sequential is a container for linearly stacking layers. 

Each block may consist of multiple types of layers (e.g., 

Conv2D, Dense, LayerNormalization), and they work 

together to progressively extract and refine features. 

7) The InputLayer is where the data (typically an image) 

enters the network. This layer doesn't perform any 

computation but simply specifies the shape and format 

of the input data. 

8) Normalization can refer to various forms of normalizing 

the data (e.g., batch normalization, layer normalization, 

or other forms) to standardize the inputs to a network 

layer.  

6. Evaluation Measures 
Evaluation metrics are frequently used to discover how 

well machine learning models achieve, particularly regarding 

classification problems. The confusion matrix for all disease 

classes is taken into consideration, as shown in Figure 4. 

While precision and recall focus on particular areas, like the 

accuracy of positive predictions and an ability to recognize 

many important cases, accuracy provides a broad picture of 

the model's overall correctness. 

 

 

 
 

Actual 

Outcome 

 Predicted Outcome 

 Positive Negative 

Positive TP FN 

Negative FP TN 
 

Fig. 4 Confusion matrix 

 

6.1. Accuracy 

The proportion of correctly classified occurrences (True 

Positive and True Negative) to the total number of 

occurrences. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
                       (1) 

 

6.2. Precision 

The proportion of correctly classified correct positive 

occurrences (True Positive) to the total number of positive 

occurrences. 

Precision =
TP

TP + FP
                       (2) 

 

6.3. Recall 

Also known as Sensitivity. The proportion of correctly 

classified correct positive occurrence (True Positive) to the 

sum of true positive and false negative instances. 

Recall =
TP

TP + FN
                             (3) 
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7. Experimental Results 
During the implementation of the system, different CNN 

architectures, such as DenseNet, VGG, and ConvNeXt, are 

employed. This paper leverages pretrained models from 

TensorFlow and Keras. The dataset was split 80:20 between 

train and test. Categorical Crossentropy as loss function and 

Adam optimizer are used during experimentation in all 

models. During the implementation of this work, Nvidia T4 

provided by Google Colaboratory was used to compile all the 

models. To summarize the whole experimental set, a dataset 

consisting of 2521 instances and 5 classes is used. The data 

converted to the shape of (224, 224, 3) was made into batches 

of 32, and they were shuffled for the training dataset and not 

for the validation dataset. The pretrained models were taken 

from TensorFlow. An augmentation layer was applied for the 

DenseNet and VGG. The last 10 layers were unfrozen for 

ConvNeXt and DenseNet models to achieve higher accuracy. 

The models were fit for a total of 10 epochs. The analysis 

encompasses both traditional architectures like VGG 

variants, DenseNet variants, and modern ConvNeXt models, 

which are evaluated across multiple performance metrics. 

Figures 4 and 5 show the train data and test data evaluation 

results for all CNN models taken into consideration. 

 

 

    
 

Fig. 5 Results on Train Data 
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Fig. 6 Results of validation data 

 
 The ConvNeXt family of models generally outperforms 

the older architectures (VGG and DenseNet). Making models 

trainable (fine-tuning) consistently improves performance 

across all architectures. Fine-tuned models consistently 

outperform their frozen counterparts, with improvements in 

validation accuracy. While several ConvNeXt variants 

achieve perfect training accuracy (1.0), their validation 

performance suggests moderate overfitting.  

 

 Fine-tuning substantially improved performance across 

all architectures, with the most significant gains observed in 

the DenseNet variants. The generalization gap between 

training and validation metrics provides crucial insights; while 

ConvNeXt variants achieved perfect or near-perfect training 

metrics (1.00) when trainable, their validation performance 

showed realistic degradation.   
 

8. Conclusion 
 Sugarcane is a vital crop for the global economy, 

contributing significantly to sugar production and bioenergy. 

However, diseases in sugarcane can lead to severe yield 

losses, affecting both farmers and industries dependent on this 

crop. With a focus on sugarcane disease classification, this 

paper discusses the use of deep learning in agriculture. In this 

paper, three categories of deep learning, VGG, DenseNet, and 

ConvNeXt, are evaluated. The verdict of this study aims to 

assist sustainable agriculture by enabling precision farming 

practices, reducing crop losses, and promoting food security. 
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For future work, a bigger dataset could be used. The 

hyperparameter of said models can be optimized using nature-

inspired search and optimization algorithms. Transformers 

like Vision Transformer and Swin Transformer could be used 

to better understand what classification is suitable, such as 

CNN or Transformer.                                                                          
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