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Abstract - Lung cancer remains the leading cause of cancer-related deaths worldwide, with Lung Adenocarcinoma (LUAD) 

accounting for a significant portion of non-small cell lung cancer cases. Early detection and accurate prognosis prediction 

are critical for improving treatment outcomes. Recent advancements in multi-omics data integration, including genomics, 

transcriptomics, and histopathology, have shown promise in enhancing the prediction accuracy for LUAD. Lung cancer 

detection benefits significantly from machine learning models trained on multi-omics datasets, including gene expression, 

methylation, and mutations. Techniques such as Random Forest, SVM, and GLM have been employed to achieve robust 

prediction outcomes. The contribution of features was further analyzed using SHAP values. In particular, models such as 

LungDWM, which uses Generative Adversarial Networks (GANs) and attention-based feature encoders, have shown superior 

performance in diagnosing LUAD subtypes and predicting patient outcomes. This review explores the application of 

multiomics approaches, such as identifying key prognostic genes and developing machine learning models, to improve 

survival prediction and cancer staging while highlighting the current state of research, challenges, and future directions in 

using multi-omics for lung cancer detection and prognosis. 
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1. Introduction  
The introduction should be succinct, with no 

subheadings. Limited figures may be included only if they 

are truly introductory and contain no new results. Lung 

cancer remains a significant global health concern, with Non-

Small Cell Lung Cancer (NSCLC) constituting 85% of all 

lung cancer cases and Lung Adenocarcinoma (LUAD) being 

the predominant subtype, accounting for 40% of these cases. 

Despite advances in treatment, the prognosis for LUAD 

patients remains poor, with a five-year survival rate as low as 

15%, primarily due to delayed diagnosis and tumor 

heterogeneity. Accurate survival prediction and risk 

stratification are critical for improving personalized 

treatment strategies. Multi-omics data, which integrates 

mRNA expression, miRNA, DNA methylation, and Copy 

Number Variations (CNV), has emerged as a promising 

approach to better understand LUAD mechanisms and 

identify reliable prognostic biomarkers. However, challenges 

such as data sparsity, high dimensionality, and class 

imbalance complicate effective feature selection and 

analysis. Machine learning and deep learning models solve 

these issues by improving predictive accuracy and 

identifying strong gene correlations. Furthermore, the tumor 

microenvironment, gut microbiome, and epigenomic 

modifications play crucial roles in cancer progression, 

necessitating integrative, explainable models for clinical 

applications. Addressing these challenges can advance early 

detection, enhance therapeutic outcomes, and provide 

actionable insights for LUAD prognosis. [3, 7, 8, 14-16] 

Multi-omics data significantly enhances survival 

prediction in lung cancer by integrating diverse biological 

layers such as genomics, transcriptomics, proteomics, and 

metabolomics. This combination of data provides a 

comprehensive view of cancer biology, revealing insights 

into the molecular mechanisms that underlie cancer 

development and progression. By incorporating gene 

expression, DNA methylation, mutations, and protein 

alterations, multi-omics approaches offer a deeper 

understanding of tumor heterogeneity and allow for more 

accurate prognosis predictions, which are crucial for 

personalized treatment strategies. Studies show that multi-

omics data can significantly outperform single-omics models 

in predicting survival risks for patients with Lung 

Adenocarcinoma (LUAD) [1, 16]. 

Moreover, multi-omics data plays a vital role in 

identifying molecular subtypes within lung cancer. These 
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subtypes exhibit distinct clinical behaviors, and by analyzing 

various data layers such as mRNA, miRNA, and copy 

number variations, researchers can identify specific patterns 

that correlate with patient outcomes. This integration 

enhances the ability to classify cancer subtypes more 

accurately, essential for selecting appropriate therapeutic 

interventions. Including DNA methylation data, for example, 

has been shown to improve survival predictions and support 

the identification of target groups for screening, ultimately 

leading to better risk stratification for lung cancer patients. 

[14, 16]  

In addition to improving prognostic accuracy, 

multiomics data aids in understanding the complex interplay 

between genetic mutations and epigenetic regulation in lung 

cancer. Researchers gain new insights into tumour evolution 

and drug resistance mechanisms by examining how 

mutations interact with epigenetic factors such as DNA 

methylation and histone modifications. Furthermore, 

advances in single-cell profiling technologies have enhanced 

the ability to study tumor heterogeneity at a finer resolution, 

providing insights into cellular-level changes during cancer 

progression. These insights are crucial for developing 

personalized treatments tailored to the specific molecular 

profiles of individual patients [1, 11, 14].  

Finally, integrating multi-omics data has profound 

implications for drug discovery and therapeutic strategies. By 

identifying molecular targets across various biological levels, 

multi-omics supports the development of precision therapies 

tailored to the specific characteristics of an individual’s 

tumor. This approach not only aids in improving treatment 

efficacy but also plays a key role in overcoming challenges 

such as drug resistance. Furthermore, it accelerates the 

identification of biomarkers that could guide future 

therapeutic strategies, providing a foundation for precision 

medicine in lung cancer care. The holistic nature of multi-

omics data transforms cancer research and clinical decision-

making, offering the potential for more effective, 

personalized treatments [6].  

Machine Learning (ML) and Deep Learning (DL) 

techniques have revolutionized the prediction of cancer 

treatment outcomes, particularly in lung cancer. By 

leveraging high-dimensional, complex datasets, ML 

algorithms can extract and select features that identify key 

biomarkers influencing disease progression. Algorithms such 

as random forests, Support Vector Machines (SVM), and 

Bayesian networks are widely used to build predictive 

models that analyze genetic, epigenetic, and clinical data. 

These models help clinicians make more accurate predictions 

regarding patient prognosis, facilitating personalized 

treatment plans. Additionally, ML models like random 

survival forests improve survival analysis accuracy by 

incorporating multi-omics data such as genomics, 

transcriptomics, and proteomics, enhancing the prediction of 

survival outcomes in cancer patients. Deep learning further 

enhances cancer treatment prediction by modeling complex 

relationships in omics data. Convolutional Neural Networks 

(CNNs) and autoencoders are powerful DL techniques that 

extract features from high-dimensional genomic data, 

offering valuable insights into cancer development and 

treatment response. Deep learning’s ability to learn from 

large datasets makes it highly effective in identifying 

prognostic biomarkers, classifying cancer subtypes, and 

predicting treatment outcomes. Moreover, autoencoders and 

Deep Neural Networks (DNNs) are used for feature 

reduction and data fusion, improving accuracy in survival 

prediction by capturing intricate patterns in multi-omics data. 

Machine learning applications extend beyond survival 

prediction and treatment outcomes to lung cancer's early 

detection and staging. By analyzing gene expression data, 

clinical symptoms, and histopathological images, ML models 

can classify patients according to cancer progression and 

predict appropriate treatment options. Techniques such as 

SVMs and neural networks have successfully distinguished 

between early and late-stage cancers, thereby improving 

diagnostic capabilities. Integrating multiomics data—

including microbiome and metabolic information—further 

strengthens the diagnostic process, providing a more 

comprehensive understanding of cancer. This approach is 

particularly beneficial in advancing personalized medicine, 

where treatment options are tailored to an individual’s 

molecular profile [1, 4-6, 10, 11].  

In addition to ML and DL, Cox regression plays a 

crucial role in cancer prognosis, particularly for survival 

analysis. This statistical technique helps identify the 

relationship between various risk factors and patient survival 

by modeling the hazard function. In lung cancer, Cox 

regression is valuable for identifying independent prognostic 

factors, such as genetic mutations, which influence cancer 

progression and treatment outcomes. By integrating multi-

omics data, Cox regression provides deeper insights into how 

biomarkers and clinical variables contribute to survival 

predictions. Its ability to assess gene signatures and survival 

risk factors enhances the precision of prognosis and aids in 

developing personalized treatment strategies for cancer 

patients [1, 7, 9, 16].  

Integrating multi-omics data, including gene expression, 

DNA methylation, mutations, and copy number variations, 

has proven to be a robust approach for predicting lung cancer 

survival, identifying biomarkers, and improving diagnostic 

accuracy. Multi-omics studies reveal that combining various 

data types enables better classification of high-risk and low-

risk patient groups and improves cancer staging outcomes. 

Machine learning algorithms, such as random forest, support 

vector machines, and deep learning, are widely employed to 

handle high-dimensional omics data, demonstrating 

improved predictive capabilities compared to traditional 

statistical methods. Gene signatures and metabolic 
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biomarkers have emerged as key indicators for early 

diagnosis and prognostic evaluations, highlighting the 

importance of biological pathways and molecular subtypes in 

understanding tumor progression. Furthermore, research has 

introduced novel hallmarks of cancer, such as disrupted 

differentiation, phenotypic plasticity, and epigenetic 

reprogramming, as contributors to tumorigenesis [5-7, 10]. 

Advanced computational approaches have addressed 

challenges such as missing values, dataset imbalance, and 

heterogeneity, ensuring more reliable and interpretable 

results. Models developed using multi-omics data have been 

validated across multiple independent datasets, solidifying 

their effectiveness in clinical applications. Techniques 

leveraging histopathological imaging, microbial 

transcriptome analysis, and plasma metabolites further 

complement multi-omics studies, enabling improved survival 

predictions and early detection strategies. Additionally, 

functional analyses have identified critical biological 

processes and key prognostic genes that influence cancer 

progression and patient outcomes. These findings underscore 

the transformative potential of multi-omics and machine 

learning in advancing personalized medicine, improving risk 

stratification, and enhancing therapeutic strategies for lung 

cancer patients [4, 11].  

Lung cancer prognosis and research face multifaceted 

challenges stemming from delayed detection, limited 

screening programs, and the complex nature of tumor 

biology. Late-stage diagnosis often hinders effective 

intervention and accurate survival predictions. The 

heterogeneity of Non-Small-Cell Lung Cancer (NSCLC) 

further complicates prognostic modeling due to the 

variability in tumor characteristics and patient-specific 

factors. Additionally, data-related challenges, such as 

missing values, high dimensionality, and noise, impact gene 

expression analysis and feature selection reliability. The lack 

of standardized datasets, insufficient clinical variables, and 

small sample sizes also limit the development and validation 

of robust predictive models across diverse populations [1, 2, 

5, 8, 11-13]. 

Multi-omics integration offers significant promise but 

comes with its own difficulties, including incomplete 

datasets, redundancy in features, and the inability to fully 

capture relationships among various omics layers. Existing 

models often lack generalizability, as they are trained on 

limited or single institution datasets. Traditional machine 

learning methods struggle to handle the complexity of high 

dimensional omics data, which often contain noise and 

imbalanced features. Further challenges arise from the need 

for experimental validation, limited understanding of the role 

of epigenetic and metabolic factors, and insufficient 

consideration of comorbidities in prognostic models. 

Addressing these issues requires improved data integration 

methods, larger and more diverse datasets, and the 

development of more reliable and interpretable prediction 

frameworks [5-7, 13, 14]. Multi-omics approaches 

integrating genomics, transcriptomics, epigenomics, and 

proteomics have emerged as promising tools to enhance our 

understanding of LUAD and improve survival predictions. 

These methods offer a more comprehensive view of tumor 

biology by capturing diverse molecular alterations. However, 

challenges such as high-dimensional data, sparsity, class 

imbalance, and the lack of standardization across studies 

hinder the translation of multi-omics insights into clinical 

applications. Additionally, while Machine Learning (ML) 

and Deep Learning (DL) techniques have shown potential in 

analyzing complex omics data, issues related to model 

interpretability, overfitting, and reproducibility remain 

unresolved. 

This review aims to comprehensively evaluate recent 

advancements in multi-omics data integration for LUAD 

prognosis. We critically assess various feature selection 

methods, ML/DL models, and their contributions to survival 

prediction, highlighting their strengths and limitations. 

Furthermore, we explore the role of the tumor 

microenvironment, epigenetic modifications, and molecular 

interactions in shaping patient outcomes. This review aims to 

offer insights into future directions for developing more 

robust and clinically relevant prognostic models by 

addressing the challenges associated with multi-omics 

analysis. 

2. Multiomic Data Types in Lung Cancer 

Detection  
Multiomic data integrates various biological datasets 

that capture information at different molecular levels, 

providing a comprehensive view of cellular processes and 

disease mechanisms. Genomic data, such as somatic 

mutations obtained from Whole-Exome Sequencing (WES) 

and Copy Number Variations (CNV), highlight DNA 

alterations and mutational landscapes critical to cancer 

development. DNA methylation data, a key component of 

epigenomics, identifies changes in gene regulation through 

methylation profiling. Transcriptomic data, including gene 

expression levels derived from total RNA sequencing (RNA-

seq) and microRNA expression from miRNA sequencing, 

provides insights into transcriptional and post-transcriptional 

processes. These datasets collectively uncover variations in 

genetic and epigenetic mechanisms that influence disease 

progression and therapeutic responses [1, 4, 6, 8, 9, 11, 14, 

16]. Additionally, multiomic data encompasses proteomics, 

metabolomics, and chromatin accessibility profiling, offering 

deeper functional and regulatory insights. Proteomics 

examines the entire protein landscape, analyzing protein 

expression, modifications, and interactions, while 

metabolomics investigates metabolic profiles, capturing 

biochemical alterations in cellular activity. Chromatin 

accessibility and histone modification analyses contribute to 

understanding transcriptional regulation and epigenetic 
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changes. Integrating these diverse omic data types, including 

post-transcriptional modifications and microbiome data, 

allows for a more robust understanding of complex diseases 

like cancer. This holistic approach bridges the gaps between 

genetic alterations, gene expression, and cellular 

functionality, enabling improved predictive models and 

biomarker discovery for diagnosis and prognosis [8, 10, 11]. 

 
2.1. Integration and Fusion of Multiomic Data for a 

Comprehensive View  
Integrating and fusing multiomic data combine diverse 

datasets, such as genomics, transcriptomics, proteomics, and 

metabolomics, to provide a holistic understanding of 

complex biological systems and diseases. This process 

enhances predictive model accuracy by leveraging 
complementary features from different omics layers, 

addressing the limitations of single omic analyses. Fusion 

strategies, including early fusion (combining raw data) and 

late fusion (integrating processed features), are employed to 

optimize data integration. Machine learning methods, such as 

Convolutional Neural Networks (CNNs), Autoencoders 

(AEs), and Graph Neural Networks (GNNs), facilitate the 

discovery of intricate correlations between datasets, 

improving outcomes like cancer classification, survival 

prediction, and treatment response accuracy. Challenges such 

as missing data, varying dataset comparability, and high 

dimensionality are mitigated using Generative Adversarial 

Networks (GANs) and dimensionality reduction techniques. 

Furthermore, integrating multiomic data with 

histopathological images or microbiome profiles has 

improved staging prediction and prognostic models, 

enhancing cancer diagnosis's clinical relevance and accuracy 

[1, 4, 6, 8, 11].  

 

3. Machine Learning Algorithms for Lung 

Cancer Detection  
Machine learning algorithms are crucial in leveraging 

multiomic data for lung cancer detection. This section 

reviews various machine learning algorithms commonly 

employed in lung cancer detection and their applications in 

the field. These algorithms enable the identification of 

patterns and relationships within multiomic data, facilitating 

accurate prediction and classification of lung cancer 

subtypes. The materials and methods section should contain 

sufficient detail so that all procedures can be repeated. It may 

be divided into headed subsections if several methods are 

described.  

3.1. Supervised Learning Algorithms 

Random Forest, a widely-used supervised learning 

model, is effective for classification and predictive modeling 

tasks. It works by constructing multiple decision trees using 

random subsets of the training dataset, combining their 

predictions to produce the final output via majority voting. 

This ensemble approach helps mitigate overfitting and 

improves the model’s generalization ability on unseen data. 

For instance, in studies involving the TCGA dataset, 

Random Forest demonstrated superior performance in terms 

of the Area Under the Curve (AUC) when compared to other 

methods such as SVM, LDA, GLM, and PLS. Additionally, 

nested cross-validation and independent dataset validation 

were used to ensure the robustness and reliability of the 

model. Random Survival Forest (RSF), a variation of 

Random Forest, has also been employed for survival data 

analysis, improving prognosis prediction accuracy for LUAD 

patients by handling censored data effectively [1, 11, 15, 16]. 

In comparative analyses, Random Forest often 

outperforms traditional machine learning algorithms like 

Logistic Regression (LR), Support Vector Machines (SVM), 

and K-Nearest Neighbors (KNN), particularly in high 

dimensional omic datasets. For cancer prediction tasks, 

supervised algorithms such as neural networks, SVM, and 

decision trees are evaluated based on performance metrics 

like accuracy, F1 macro, and F1 weighted scores. Random 

Forest’s ability to handle complex, multifeatured data makes 

it particularly valuable in gene expression analysis, where 

traditional methods may struggle. Studies have also 

highlighted using fivefold cross-validation to validate model 

performance and address data sparsity and variability issues. 

Overall, the combination of Random Forest’s interpretability 

and accuracy makes it a strong choice for supervised learning 

tasks in biomedical and cancer research domains [3, 5-7, 10]. 

3.2. Supervised Learning Algorithms 

Unsupervised learning methods are pivotal in clustering 

and analyzing multi-omics data, particularly when labelled 

data is unavailable. These methods identify inherent patterns 

and relationships within datasets, making them ideal for 

exploratory data analysis and feature extraction. Techniques 

such as K-means clustering are widely employed for 

grouping multi-omics embeddings, enabling the discovery of 

biologically relevant clusters.  

Autoencoders, a type of unsupervised artificial neural 

network, are commonly used to learn efficient 

representations of data by minimizing reconstruction errors. 

Variants like convolutional autoencoders enhance feature 

extraction capabilities and accelerate training, while 

advanced models such as efmmdVAE and lfAE have 

demonstrated superior clustering performance in multiomics 

analyses. Evaluation metrics like clustering indices ensure 

rigorous assessment of these methods, highlighting their 

ability to uncover hidden structures in complex datasets and 

provide meaningful insights into biological systems [9, 10, 

16].  

3.3. Deep Learning Models 

Deep learning models are highly effective in predicting 

tumor types and subtypes, leveraging their ability to extract 

meaningful patterns from high-dimensional multi-omics 
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data. Techniques such as Mutation-Attention (MuAt) learn 

representations of somatic alterations, though local mutations 

often struggle to capture complex structural variants. Models 

like Autoencoders, Convolutional Neural Networks (CNNs), 

Graph Neural Networks (GNNs), and Generative Adversarial 

Networks (GANs) are used to classify, cluster, and interpret 

biological data. Early and late fusion approaches combine 

diverse data sources, improving the accuracy and 

interpretability of results. Performance metrics such as 

accuracy, F1 score, and silhouette index are utilized for 

evaluation, with models like Autoencoders achieving 

significant survival differentiation and outperforming 

traditional single-omics methods. Despite challenges such as 

computational costs and the need for large datasets, deep 

learning methods, particularly those incorporating attention 

mechanisms and generative adversarial learning, show 

promise in enhancing precision and robustness in cancer 

diagnosis and prognosis [1, 2, 7, 11, 16].  

4. Feature Selection and Dimensionality 

Reduction 
Feature selection and dimensionality reduction are 

fundamental steps in processing multi-omics data for lung 

cancer detection, as they help manage the complexity of 

high-dimensional datasets. Feature selection focuses on 

identifying the most informative features contributing to 

predictive accuracy while discarding irrelevant or redundant 

variables. Techniques like Recursive Feature Elimination 

(RFE) systematically remove less significant features. 

LASSO regression imposes penalties to shrink coefficients of 

less relevant predictors to zero, ensuring a compact and 

meaningful feature set. Other methods, such as mutual 

information-based selection and genetic algorithms, capture 

non-linear dependencies, providing a comprehensive 

approach to isolating critical biomarkers in lung cancer. 

These methods not only improve computational efficiency 

but also enhance model interpretability, offering valuable 

insights into the biological mechanisms underlying lung 

cancer progression [1, 3, 14]. 

 

Dimensionality reduction, on the other hand, aims to 

transform high-dimensional data into a lower-dimensional 

space while preserving essential structures and patterns. 

Techniques like Principal Component Analysis (PCA) [13] 

reduce dimensionality by identifying orthogonal components 

that capture maximum variance in the data. Advanced 

methods like t-Distributed Stochastic Neighbour Embedding 

(t-SNE) and Uniform Manifold Approximation and 

Projection (UMAP) are particularly effective for visualizing 

complex datasets by preserving local and global data 

relationships. In the realm of deep learning, autoencoders 

leverage neural networks to learn compressed representations 

of data. These techniques address the challenges of the curse 

of dimensionality, reducing the risk of overfitting and 

improving model generalization. By enabling the integration 

of multiple omics data types, such as genomic, 

transcriptomic, and proteomic datasets, feature selection and 

dimensionality reduction techniques empower researchers to 

uncover novel biomarkers and achieve more accurate lung 

cancer classification and subtype identification. 

 

5. Comparative Analysis of different Machine 

Learning Models 

Performance evaluation metrics assess the quality and 

effectiveness of machine learning models, classifiers, or 

algorithms in solving specific tasks, such as classification, 

regression, clustering, or recommendation. The choice of 

evaluation metric depends on the nature of the problem you 

are trying to solve. 

      

In recent studies of multi-omics-based feature extraction 

and selection for predicting lung cancer survival, various 

machine-learning approaches have been employed to ensure 

robust evaluation and prediction accuracy. Jaksik et al. [1] 

utilized several machine learning methods, including 

Random Forest, Support Vector Machine (SVM), Linear 

Discriminant Analysis (LDA), Generalized Linear Model 

(GLM), and Partial Least Squares (PLS), with nested cross-

validation for a more reliable assessment. Feature importance 

was further analyzed using SHAP values, which provided 

insight into the contribution of each feature. They employed 

TCGA and CPTAC-3 datasets, encompassing 267 and 96 

cases, respectively, and integrated multiple data types such as 

gene expression, methylation, mutations, and Copy Number 

Variations (CNVs). Notably, their study demonstrated an 

impressive AUC of 0.839 for TCGA and 0.815 for CPTAC-3 

using Random Forest, where gene set aggregation showed 

the best feature extraction performance. The study 

highlighted key predictive features like gene expression, 

methylation, and mutations, supported by feature selection 

methods like Boruta, Lasso, and non-negative matrix 

factorization. Despite the promising results, challenges such 

as integrating clinical data, addressing batch effects, and 

overcoming limitations due to small sample sizes and 

structural variant data were noted. These issues stress the 

importance of enhancing feature extraction techniques and 

incorporating diverse datasets to improve prediction accuracy 

and better stratify patients for more precise survival 

outcomes. 

 

Wang et al. [2] introduced LungDWM, a deep learning-

based model for lung cancer subtype diagnosis using weakly-

paired multi-omics data. Their method integrates attention-

based encoders for feature extraction, Generative Adversarial 

Networks (GANs) for imputing missing omics data, and a 

fusion strategy for combining features to classify cancer 

subtypes. This approach achieved remarkable performance 

metrics, including an accuracy of 0.942, AUROC of 0.961, 

F1-score of 0.937, and AUPRC of 0.958. These results 

highlight the model’s robustness, particularly under 
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conditions with missing data, and demonstrate its superiority 

over existing methods in lung cancer diagnosis. Additionally, 

LungDWM offers excellent interpretability, which can aid in 

identifying therapeutic sites, making it a powerful tool for 

precision medicine. Furthermore, the model’s ability to 

handle incomplete data and maintain high diagnostic 

accuracy positions it as a promising approach for clinical 

applications where missing data is common. 

 

Dessie et al. [3] proposed the PRPML model, which 

utilizes a nine-gene signature to predict the risk of Lung 

Adenocarcinoma (LUAD) patients, demonstrating robust 

prognostic capability. Through differential analysis and 

Adaptive LASSO for feature selection, the model was 

validated on three datasets-TCGA, GSE30219, and CMUH-

covering a total of 865 samples. It achieved strong AUC 

scores of 0.812 and 0.863, effectively stratifying patients into 

high- and low-risk groups. Functional analysis revealed that 

high-risk groups were associated with critical biological 

pathways linked to poor survival outcomes. This work 

underscores the potential of the PRPML model for clinical 

applications, suggesting that further validation through 

alternative feature selection methods and functional 

experiments could improve its predictive accuracy and 

enhance its clinical utility. 

 

Zhang et al. [4] developed a seven-gene signature for 

predicting the survival of Lung Adenocarcinoma (LUAD) 

patients by integrating multi-omics data. The approach 

employed a Random Survival Forest to filter prognostic 

genes, GISTIC 2.0 for identifying Copy Number Variations 

(CNV), and Cox regression for survival analysis. Validated 

across multiple datasets, including 516 SNP 6.0 samples, 576 

RNA-Seq samples, and 226 GSE31210 samples, the 

signature demonstrated superior AUC performance over 

clinical features. Notably, MAGEL2, SMIM4, BCKDHB, 

and GANC were identified as novel prognostic markers, and 

gene set enrichment analysis highlights key biological 

pathways. The study stresses the need for experimental 

validation and the inclusion of additional clinical features to 

refine predictive models and further investigate the 

biological roles of these markers. 

 

Anil Kumar et al. [5] applied Support Vector Machines 

(SVM) with SMOTE to classify lung cancer from text 

datasets, achieving an impressive 98.8% accuracy across five 

cancer datasets. The study employed neural networks with 

backpropagation and utilized 10-fold cross-validation for 

model evaluation. Key preprocessing techniques included 

addressing missing values using KNN, transforming data 

into binary format, and normalizing attributes for prediction. 

Random Forest was incorporated to further improve model 

performance, enhancing the accuracy and validation metrics 

such as f-measure and specificity. The authors suggest 

integrating real-time data, improving preprocessing steps, 

expanding the datasets to include more diverse 

demographics, and conducting longitudinal studies in clinical 

settings for practical validation and application of the model. 

 

The study by Li et al. [6] employed a random forest 

algorithm to predict lung cancer stages, achieving an 

accuracy of 0.809. The analysis integrated microbial and 

transcriptomic data from 189 lung cancer patients and 1524 

cases from prior studies. Through differential analysis, 291 

upregulated and 128 down-regulated genes were identified, 

and significant pathways were revealed through GO and 

KEGG enrichment. Key microbial genera, such as 

Ureaplasma (more prevalent in early stages), and genes like 

REG4, CALCA, PHOX2B (downregulated), along with 

FOXI1, CYP1A1, LGI1, DLK1 (upregulated) were 

highlighted. The study emphasizes combining metabolomics 

with microbiome analysis to explore microbial metabolic 

regulation, advocating for the use of advanced technologies 

to enhance precision medicine in lung cancer treatment. 

 

Liu and Wu [7] developed a deep neural network model 

for lung cancer prediction that integrates KL divergence for 

gene selection and focal loss as the loss function. This 

approach demonstrated remarkable performance, achieving 

an AUC of 0.99 on the validation set. The model was trained 

using RNAseq data from TCGA and ICGC datasets, which 

included 533 lung cancer and 59 normal samples, along with 

488 lung cancer and 55 normal samples, respectively. By 

identifying 194 lung cancer-related genes, the model 

effectively addressed issues of imbalanced data and high-

dimensional gene expression, enhancing both feature 

selection and overall model accuracy. Implemented in 

TensorFlow and validated through Kfold cross-validation, 

this model outperformed traditional algorithms such as SVM, 

LR, KNN, and RF in both accuracy and training speed. The 

study suggests future exploration into advanced feature 

selection techniques, integrating multi-omics data, improving 

interpretability for clinical applications, and reducing 

computational costs to enhance the model’s broader 

applicability. 

 

The CC2DT method, proposed by Rong et al. [9], 

combines Convolutional Neural Networks (CNN) for 

classification and Convolutional Autoencoders (CAE) for 

dimensionality reduction, offering a robust solution for lung 

cancer diagnosis using multi-omics datasets, including 

mRNA, miRNA, and DNA methylation. This method 

outperformed traditional models such as SVM, RF, LDA, 

ET, and MLP, achieving an accuracy of 0.824, an AUC of 

0.749, and an F1 score of 0.855. Using 10-fold cross-

validation and gradient descent effectively mitigated 

overfitting, improving performance on high-dimensional 

data. This approach shows significant potential for real-time 

diagnostics and precision medicine, with future opportunities 

to integrate additional omics data, explore alternative 

algorithms, and enhance clinical applicability. 
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The study by Xie et al. [10] utilizes advanced machine 

learning techniques, such as KNN, Naive Bayes, AdaBoost, 

SVM, Random Forest, and Neural Networks, trained with a 

10-fold cross-validation approach, to develop a diagnostic 

model for early lung cancer detection. Plasma metabolites 

from 110 lung cancer patients and 43 healthy individuals 

were analyzed using targeted metabolomic studies with LC-

MS/MS, measuring 61 metabolites. Six key metabolic 

biomarkers were identified, achieving an impressive AUC of 

0.989, with 98.1% sensitivity and 100% specificity, in 

distinguishing stage I lung cancer from healthy individuals. 

The study classified patients into stages I, II, and III, 

identifying tumor types such as adenocarcinomas and 

squamous carcinomas. Integrating these biomarkers 

significantly enhanced diagnostic performance, with Naïve 

Bayes identified as the most suitable model for early tumor 

prediction. The study highlights the potential of blood-based 

 screenings combined with machine learning to provide non-

invasive and accurate lung cancer detection, thereby 

improving survival rates through early diagnosis. Future 

work suggests combining plasma biomarkers with CT 

screening and conducting confirmatory studies across diverse 

patient groups while considering factors like age and 

smoking history. 

 

Chen et al. [11] employed advanced machine learning 

techniques to extract quantitative features from 

histopathological images and integrate them with multiomics 

data for predicting genetic aberrations and survival outcomes 

in LUAD patients. The study achieved high AUCs for 

genetic aberrations, including ALK (0.879), BRAF (0.847), 

and EGFR (0.855), while transcriptional subtype AUCs 

ranged from 0.861 to 0.897. Prognostic predictions for 

overall survival showed AUCs between 0.717 and 0.825, 

with the best multi-omics-integrated model achieving a 5-

year AUC of 0.908. Kaplan-Meier analysis revealed distinct 

survival outcomes between high-risk and low-risk groups, 

emphasizing the prognostic power of these models. The 

study utilized data from The Cancer Genome Atlas (TCGA) 

and tissue microarrays, with digital images scanned using the 

Aperio AT2 scanner. This research demonstrates the 

potential of histopathological features in prognosis 

prediction, although further training on more diverse samples 

and addressing dataset biases is recommended to enhance its 

clinical applicability. 

 

Luan et al. [14] developed a comprehensive survival risk 

model for lung adenocarcinoma by integrating multiomics 

data, including DNA methylation, RNA expression, 

microRNA profiles, and DNA copy number variations from 

439 cases. The study applied the LASSO regression 

algorithm to identify 21 CpG sites as prognostic markers, 

highlighting their association with survival risks, particularly 

in chromosomal regions 17q24.3 (amplification) and 11p15.5 

(deletion). Furthermore, Cox regression analysis and the 

iCluster algorithm revealed six molecular subtypes of lung 

adenocarcinoma, effectively distinguishing high-risk patients 

with lower survival rates. The model demonstrated strong 

prognostic capabilities, with AUCs surpassing 0.7 at 12, 36, 

and 60 months. Univariate Cox regression analysis also 

identified 29 mutant genes strongly correlated with survival, 

underlining the independent predictive power of methylation 

scores. Cross-validated time-dependent ROC curves 

confirmed the model’s reliability, emphasizing the value of 

multi-omics data integration in uncovering critical prognostic 

markers. This research sets the stage for further clinical 

investigations into gene-survival associations in lung cancer. 

 

Ma et al. [15] developed a lung adenocarcinoma survival 

risk model using a 16-gene signature identified through 

machine learning techniques. The model leveraged multi-

omics data, including RNA expression, DNA methylation, 

and microRNA profiles, to create a predictive framework. By 

applying a preprocessing step to exclude probes with missing 

values, the LASSO regression algorithm identified critical 

biomarkers associated with survival. The study identified 

molecular subtypes through Cox regression and the iCluster 

algorithm, significantly differentiating high-risk patients 

from low-risk groups. The model demonstrated strong 

prognostic capabilities and high AUC values at various 

times. These findings emphasize the importance of 

integrating multi-omics data for personalized cancer 

prognosis and provide a valuable tool for clinical use in 

predicting lung adenocarcinoma survival outcomes. 

 

A deep learning-based autoencoding model was 

developed for analyzing multi-omics data (mRNA, miRNA, 

DNA methylation, and CNV) to predict survival in Lung 

Adenocarcinoma (LUAD). This model incorporated feature 

selection techniques such as univariate Cox regression, Lasso 

regression, and K-means clustering. The survival prediction 

model, evaluated using random forest, achieved a C-index of 

0.65 and a significant Log-rank P value of 4.08e-09. The 

analysis, validated with 399 LUAD samples from TCGA and 

four independent datasets from GEO and TCGA, identified 

genes linked to survival-related biological processes. Lee et 

al. [16] suggest that future improvements could involve 

integrating additional omics and clinical data alongside 

expanding the dataset for more accurate predictions across 

various cancer types and populations. 
 

6. Discussion 
In the realm of lung cancer detection, particularly LUAD 

(lung adenocarcinoma), multiomic data has proven to be 

invaluable in improving prognostic prediction and survival 

outcomes. Studies have identified many genes, such as 

sixteen key genes, demonstrating the ability to enhance 

prognosis prediction for LUAD patients. These gene 

signatures, integrated with clinical features, offer higher 

accuracy in predicting survival and treatment responses than 

traditional clinical indexes. Notably, advanced models such 

as Random Forests, deep learning, and ensemble Machine 
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Learning (ML) techniques have shown remarkable 

performance in predicting outcomes. For example, the deep 

neural network model outperformed traditional classifiers, 

and feature selection strategies further enhanced model 

accuracy, convergence, and training efficiency. Integrating 

various omic layers, including genomics, transcriptomics, 

and epigenomics, into predictive models has provided a more 

nuanced understanding of lung cancer biology. Moreover, 

multiomic fusion approaches have significantly improved the 

accuracy of lung cancer staging, highlighting the growing 

importance of integrating diverse biological data types for 

effective prognosis [1, 2, 4, 7, 11, 14]. 

 

Despite the advances, challenges remain in the practical 

application of these multiomic models. High-dimensional 

data, such as gene expression data, is often complicated 

using machine learning techniques like SVMs, which 

struggle with the high-dimensionality of features. Data 

preprocessing and feature selection are essential for ensuring 

reliable analysis and reducing computational costs associated 

with deep learning models. Furthermore, while multiomic 

approaches have enhanced biomarker discovery, the 

complexity of integrating data from various sources (such as 

genetic mutations, methylation, and copy number variations) 

still presents technical hurdles. 

 

Additionally, the clinical applicability of these models is 

an ongoing challenge, as translating multiomic discoveries 

into actionable clinical tools requires extensive validation. 

Identifying specific genes such as REG4, CALCA, and 

PHOX2B, which show differential expression in lung cancer, 

can potentially develop targeted therapies. However, the 

continued development of computational strategies and the 

application of these models in diverse cancer types, as 

suggested by future work on expanding methods like 

LungDWM, will be critical to overcoming these challenges 

and improving early detection and treatment strategies [1, 2, 

4, 7, 11, 14]. 

 

The comparative analysis of recent studies underscores 

the growing impact of multi-omics integration and advanced 

machine learning techniques in lung cancer prognosis and 

classification. Traditional models, such as Random Forest 

and SVM, have demonstrated strong predictive capabilities, 

as seen in [1, 6], where AUC values ranged from 0.809 to 

0.839. However, deep learning approaches, particularly those 

incorporating attention mechanisms [2], Generative 

Adversarial Networks (GANs), and convolutional 

autoencoders [9], have shown significant improvements, 

achieving AUCs as high as 0.99 [7] while effectively 

handling missing data.  

Additionally, survival risk prediction models leveraging 

feature selection techniques such as LASSO and Cox 

regression [3, 14] have successfully stratified high-risk 

patients, reinforcing the importance of multi-omics 

biomarkers in prognosis. Despite these advances, challenges 

persist in integrating diverse data types, mitigating batch 

effects, and ensuring clinical applicability.  

Studies such as [11, 10] emphasize the need for 

improved interpretability and validation across larger, more 

diverse cohorts to enhance model generalizability. Future 

research should focus on refining feature extraction 

techniques, incorporating real-time clinical data, and 

exploring hybrid models that combine the strengths of 

traditional and deep learning approaches for more robust and 

interpretable predictions in lung cancer prognosis and 

diagnosis. 

 

7. Summary & Conclusion  
 Lung cancer, particularly Lung Adenocarcinoma 

(LUAD), remains a major cause of cancer-related mortality 

worldwide. Recent advancements in multi-omics analysis 

have significantly enhanced the ability to predict the 

prognosis and survival outcomes for LUAD patients. 

Identifying key prognostic genes, such as the sixteen-gene 

signature and thirteen novel LUAD-related genes, has shown 

promise in improving predictive accuracy.  

 Machine learning models, including the use of random 

forests and deep learning techniques, have outperformed 

traditional prognostic methods like Cox models. 

Additionally, the integration of multi-omics data, including 

genomics, transcriptomics, and histopathological features, 

has improved survival predictions and lung cancer staging 

accuracy. Innovations such as the LungDWM model, which 

utilizes Generative Adversarial Networks (GANs) and 

attention-based feature encoders, have further improved the 

diagnosis and stratification of lung cancer subtypes. These 

findings underscore the potential of multi-omics fusion in 

advancing lung cancer detection and prognosis [1, 11, 15]. 

 In conclusion, integrating multi-omics data has opened 

new avenues for improving the detection and prediction of 

LUAD. Significant strides have been made in highly accurate 

predicting survival and cancer subtypes by developing robust 

models, including those based on machine learning and deep 

learning techniques. The identification of genetic and 

epigenetic biomarkers, alongside the use of histopathological 

features, provides a more comprehensive approach to 

understanding LUAD biology and patient prognosis.  

 However, while these models demonstrate high 

potential, further validation and refinement are needed to 

ensure their clinical applicability. Future studies should focus 

on expanding multi-omics data integration across diverse 

populations, addressing the computational challenges of 

high-dimensional data, and validating these models in 

clinical settings to enhance early detection and personalized 

treatment strategies [1, 2, 11, 15]. 
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