
SSRG International Journal of Electronics and Communication Engineering                           Volume 12 Issue 3, 171-178, March 2025 

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12I3P117                                                © 2025 Seventh Sense Research Group®           

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article 

 

CNN Based Multi-Feature Fusion with Metaheuristic 

Algorithms for Effective Feature Extraction and 

Classification OF 2D Echo Cardiovascular Diseases 
 

K. Deepthi Reddy1, N. Pushpalatha2, Venkata Ramana M.3, Pallapati Ravi Kumar4, J. Manoranjini5,    

E. Gurumoorthi6, Puligilla Sridevi7 

 
1Department of Computer Science and Engineering, CVR College of Engineering, Hyderabad, Telangana, India. 

2Department of Data Science, Marri Laxman Reddy Institute of Technology and Management, Dindigul, Hyderabad, 

India. 
3Department of Computer Science and Engineering. GITAM School of Technology, Visakhapatnam, Andhra Pradesh, 

India.  
4Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Andhra Pradesh, 

India. 
5Department of Artificial Intelligence and Data Science, Rajalakshmi Engineering College, Chennai, India. 

6Dept of CSE (Cyber Security), Swami Vivekananda Institute of Technology Telangana, India. 
7Dept of Information Technology CMR College of Engineering & Technology Telangana, India. 

 
1Corresponding Author : deepthiminnam509@gmail.com 

Received: 11 January 2025  Revised: 12 February 2025  Accepted: 16 March 2025 Published: 29 March 2025 

 

Abstract - Deep learning offers enormous potential to improve ultrasound quality through real-time heart anatomy and 

function analysis for clinical echocardiography and point-of-care diagnostics. Machine learning makes automating 

processes like echocardiography analysis, quality rating, view categorization, heart area segmentation, and diagnostic 

index computation easier. By extracting characteristics through data augmentation, existing approaches effectively 

categorize 2D echo data using high-performance deep neural networks. Using the Multi-Feature-Fusion (MFF) model, 

which combines wavelet packet energy, fuzzy entropy, and optimization algorithms for feature extraction, our system 

presents an innovative and efficient approach for analyzing and quantifying echocardiogram in real time. Using learned 

representations to improve target echo task learning, a Convolution Neural Network (CNN) has been trained on a large 

public dataset. The CNN integrates optimization techniques such as squirrel and crow meta-heuristics for efficient 2D 

echocardiography feature extraction, boundary identification, and image classification. A module locates regions of 

interest, and three thin routes extract high-level attributes and low-level texture. The model demonstrates its strong 

performance in reaching an accuracy of 98.2% for anomaly recognition, as evidenced by evaluation measures such as 

accuracy, specificity, sensitivity, precision, and AUC. This highlights the efficiency of our deep learning method, Multi-

Feature Fusion, for the interpretation and quantification of Echocardiography in real-time. 
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1. Introduction 
To implement feature extraction using the Multi-

Feature Fusion MFF model by combining wavelet packet 

energy, fuzzy entropy, and optimization methods. Apply 

optimization methods such as squirrel and crow meta-

heuristic algorithms for effective feature extraction in 2D 

Echocardiography by identifying the boundaries and 

classifying the images. Bedside echocardiography is 

becoming more common in emergency departments to 

expedite the triage of patients suffering from chest 

discomfort. In contrast with conventional equipment, poor 

image quality using equipment for bedside use could result 

in an incorrect diagnosis. To circumvent these constraints, 

we created a model with the convolution neural network 

CNN to train publicly available large-scale datasets with 

optimization methods such as squirrel and crow meta-

heuristic algorithms. We collected data from Stanford 

University School of Medicine, which provides the 

internal test and training dataset, along with 2,811 tests 

from other hospitals, to form an external test collection. 

We utilized a DL model to detect three apical pictures and 

to segment the ventricle anterior during the preprocessing 

of data. A 3D Convolution Neural Network (CNN) was 

used for detection. In the end, the DL model computed the 

dimensions of the chambers in the heart and the left 

ventricular ejection by itself. Overall, with an accuracy of 

96.2 percent, the view-choosing model chose the three 

apical perspectives. The model for segmentation was in 

good agreement regarding hand segmentation, with the 

average Dice being 0.89. In the internal assessment study, 

the model identified bedside and standard ultrasonography 

as having AUCs of 0.91 and 0.88, respectively. The AUCs 

on the outside test data ranged from 0.90 in both cases to 

0.85. The assessments of cardiac function by computers 
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were in agreement with the echocardiography report 

values (for instance, the average error for the left 

ventricular ejection was 4%). We've created an automated 

echocardiography process for bedside and conventional 

ultrasonography. It handles tasks like view selection, 

quality assessment, segmentation, wall motion 

abnormality identification, and heart function 

measurement. Quickly diagnosis is crucial for individuals 

with chest discomfort in emergency cases, aiding acute 

coronary syndrome detection. Echocardiography is cost-

effective for assessing heart shape and function, although 

manual assessment is subjective and time-consuming. Our 

Multi-Feature Fusion (MFF) model integrates wavelet 

packet energy, fuzzy entropy, and optimization for feature 

extraction. Our deep learning model excels in image 

analysis, outperforming expert-based classification, 

segmentation, and quantification methods. Demonstrated 

with Stanford University echo datasets, our framework 

holds promise for clinical applications. 

 

1.1. Motivation 

Two-dimensional echocardiography, often known as 

2D echo, produces intricate pictures that provide vital 

insights into the anatomy and functioning of the heart. The 

photos possess several dimensions and exhibit diverse 

textures, forms, and patterns, necessitating advanced 

analysis. Echo pictures may exhibit substantial variations 

in terms of quality, patient location, and imaging 

parameters. Convolution Neural Networks (CNNs) have 

the capacity to acquire resilience to variations by 

identifying features that are unaffected by certain 

transformations or amounts of noise. Utilizing 

Convolution Neural Networks (CNNs) for multi-feature 

categorization enables incorporating varied information 

from several areas of interest in echo pictures, possibly 

enhancing diagnostic precision. Utilizing CNNs for 2D 

echo pictures provides opportunities for investigating new 

image-based biomarkers, prediction models, and 

personalized medicine techniques in the field of 

cardiology. The rationale for using CNN-based multi-

feature categorization of 2D echo cardiovascular disorders 

arises from the need to use sophisticated machine learning 

approaches to boost diagnostic precision, automate image 

processing, and improve clinical decision support in the 

field of cardiology. These techniques have the dual 

purpose of optimizing healthcare processes and enhancing 

our comprehension and treatment of cardiovascular 

illnesses. 

 

1.2. Research Gaps 
The study of categorizing cardiovascular disorders in 

2D echo using machine learning, specifically Convolution 

Neural Networks (CNNs), encounters many significant 

gaps and problems that provide potential for future 

exploration and enhancement. These are the primary areas 

where the study is lacking in this field: The issue lies in 

obtaining extensive, varied, and well-annotated datasets 

that may be used to train classification models with strong 

reliability. The quality of echo pictures might vary owing 

to variables such as imaging parameters, patient 

characteristics, and variations in operator performance. 

Research is necessary to create techniques that can 

effectively handle such unpredictability. The issue lies in 

obtaining extensive, varied, and well-annotated datasets 

that may be used to train classification models with strong 

performance. The quality of echo pictures might vary 

owing to variables such as imaging parameters, patient 

characteristics, and variations in operator performance. 

Research is necessary to create techniques that can 

effectively handle such unpredictability. Although deep 

learning models, such as CNNs, are very efficient, they are 

typically seen as opaque, which poses difficulties in 

understanding the decision-making process. Although 2D 

echo is informative, including data from other modalities 

like 3D echo, MRI, or clinical data (such as patient history 

and biomarkers) can improve classification accuracy and 

increase diagnostic confidence. It is essential to ensure that 

CNN-based models have good generalization capabilities 

across various patient demographics, imaging techniques, 

and healthcare environments to effectively deploy them in 

real-world scenarios. Establishing standardized processes 

for data gathering, preprocessing, and model assessment 

has the potential to enhance the reproducibility and 

comparability of research outputs. Investigation 

investigates integrating AI models into current clinical 

processes to assist decision-making without compromising 

workflow efficiency or increasing the cognitive load on 

healthcare practitioners. By addressing these research 

gaps, we may not only make progress in the area of AI-

driven categorization of 2D echo cardiovascular disorders 

but also open up opportunities for more precise, 

understandable, and clinically significant uses of machine 

learning in cardiology. 

 

1.3. Contributions 

 This work introduces a technique for predicting the 

probability of plaque rupture by combining many 

features.  

 The approach used a combination of global 

characteristics extracted from carotid ultrasound 

pictures, echo features from the Region of Interest 

(ROI), and expert information derived from 

ultrasound reports. This self-supervised technique 

enhanced the learning process for the target echo tasks 

by generating echo-specific representations.  

 The importance of detecting high-risk plaque was 

highlighted, focusing on essential aspects. A 

comprehensive collection of features was developed 

to properly and fully assess the risk of carotid plaque.  

 Our experimental findings demonstrate the 

performance of echo tasks when computing 

insufficiency is improved, indicating a potential for 

application in clinical practice. 

 

2. Literature Review 
A multi-stream structure with regression models was 

suggested for cardiac view recognition, outperforming 

conventional techniques with 85% accuracy. A deep 

learning algorithm involves three networks: an initial 

network for rough view recognition, an advanced CNN for 

refinement, and a final aggregated retinal block for 

anatomical identification. However, prior methods often 

neglected model speed and complexity. Anisotropic 

diffused filters and alternative de-speckling filters were 

evaluated for automated image processing. A personalized 
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multi-head model with echo-specific representation 

achieved greater accuracy and real-time processing. 

Algorithms for computer vision. The LV segmentation 

challenge is seen as a problem of smoothing. Therefore, 

the researchers introduced a front mitral leaflet into 

segments. 

 

The suggested method involves sampling echo 

cardiographic movies over time using a partially 

automated assessment of a scanning line. Nevertheless, the 

suggested approach was limited by segmentation 

oversizing, mostly due to inadequate scanning techniques. 

 

2.1. Traditional Machine Learning Algorithms  
This study proposes a system that combines to identify 

the posterior wall of the Left Ventricle (LV) from 

echocardiogram pictures, specifically focusing on the 

Parasternal Long-Axis (PLAX) view. They attained a 

sensitivity of 67% and a specificity of 98%. Li et al. (2016) 

introduced a technique for accurately segmenting the 

myocardium in echocardiography. This approach used a 

combination of border detection. It was designed to apply 

to nonmedical pictures that exhibit significant changes in 

intensity. 

 

3. Materials and Methods 
3.1. Dataset 

The dataset for Echo Net-Dynamic originates from 

Stanford University School of Medicine's echo net-

dynamic study, featuring 10,030 deidentified 

echocardiography images. OpenCV and Pydicom 

preprocess the data by de-identification and format 

conversion. Echocardiography is a widely used imaging 

technique for assessing heart function. Echo Net-Dynamic 

provides a substantial echocardiogram video dataset for 

computer vision research, including expert annotations for 

cardiac motion and chamber sizes.  

 

3.2. Wavelet Packet Energy  
Wavelet analysis of packets is an innovative method 

based on the analysis of wavelets [15] to precisely split the 

signal's high-frequency and low-frequency components 

and provide a more thorough analysis of signals [16]. 

Every wavelet decomposition creates two sub-bands with 

high and low frequencies. Three-layer wavelet 

decomposition. 2n sub-bands are produced for the process 

of decomposing a signal using an n-layer wavelet packet. 

Here is the calculation for decomposition. Wavelet 

analysis of packets is an innovative method based on the 

analysis of wavelets [15] to precisely split the signal's 

high-frequency and low-frequency components and 

provide a more thorough analysis of signals [16].  
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The wavelet packet reconstruction calculation 

formula is: 
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Fig. 1 Proposed workflow 

 

The approach to wavelet packet energy seeks to 

determine the energy of signals on different scales of 

decomposition and then organize the energy levels into 

eigenvectors based on the scale ordering for recognizing 

[6, 18]. Wavelet packets have a wealth of characteristics, 

and the final result from the decomposition of a wavelet 

packet is called Ei,j(k), the energy within diverse 

frequency bands. Calculating formulas are according to: 
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N denotes the initial signal length. 

 

The wavelet packet power spectrum is made up of all 

Ei,j. The calculation formula for the fraction of wavelet 

packet energy Pi,j is as follows: 
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3.3. Fuzzy Entropy 
Both our minds and objects are prone to fuzzy 

thinking. It is possible to characterize fuzzy set theory as 

an effective technique for researching and understanding 

fuzzy real-world occurrences. Because fuzzy sets can 

precisely identify fuzzy items and are increasingly relevant 

in modelling systems and creating systems, this indicates 

that one of the main problems is analyzing the fuzziness 

that is quantitatively produced from the fuzzy set's context 

[6].  

 

In Shannon's information, entropy is a crucial concept. 

It's a metric for determining how much freedom stochastic 

vectors have. The entropy is used to quantify the degree of 

fuzziness in a collection metric according to fuzzy set 

theory.  

 

Fuzzy theories of entropy are the name given to this 

[18]. The degree of fuzziness within an unstructured 

collection is measured by fuzzy entropy. It is a crucial 

component of fuzzy systems that use algorithms to find 

patterns in fuzzy systems. 

 

The entropy of a system, according to information 

theory, is a measure of the quantity of information in the 

system. 

 xi, i= (1......N) represent the potential outputs of 

source A with the probability p(xi). 
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To differentiate from fuzzy entropy, the subscript "no 

fuzzy" is utilized. Higher entropy indicates a greater 

quantity of information.  
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The probability P(xi) of the histogram distribution 

represents the quantity of information for a set within a 

fuzzy domain. 

3.4. Metaheuristic Algorithm 

Metaheuristic algorithms are search methods designed 

to find good solutions for complex optimization problems. 

This project aims to create an efficient algorithm that 

produces high-quality results consistently. Meta heuristics 

balance local search and global exploration, often using 

randomization to transition between them. They're 

effective for modelling nonlinear systems and global 

optimization. By employing trial and error, Metaheuristics 

offer quick solutions to intricate problems when finding a 

perfect solution is challenging. Intensification and 

diversification are vital aspects, focusing on targeted 

search and exploring solution diversity, respectively. 

 

3.5. Crow Search Algorithm CSA 

Crows hide food, remember its location, and alter 

hiding spots if followed by others to prevent theft. 

Step : 1 Provide the specific parameters for the CSA 

algorithm: the size of the population (n), the 

maximum number of iterations (Max), the step 

size of the flight (fl), and the probability of 

awareness (AP). 

Step : 2 Create each crow and memory matrix in d-

dimensional space. Each crow xi (Xi,1 to Xi,d) 

represents a solution. Initialize memory matrix. 

Step : 3 Evaluate fitness using the fitness function for 

each crow. 

Step : 4 Generate fresh locations for every crow located in 

a space with d dimensions. If crow i is tracking 

crow j, update i's position based on food location 

hidden by crow j, considering different scenarios. 

 

3.6. Squirrel Search Algorithm (SSA) 
Flying squirrels begin foraging in warm seasons, 

gliding between trees for food. In the fall, they gather 

acorns for quick energy and then seek nutritious winter 

food like hickory nuts. Storing nuts helps them survive 

extreme weather by reducing the need for energy-

expensive hunting. With fewer leaves, predation risk 

increases, slowing forest activity without full hibernation. 

Flying squirrels resume activity after winter. This constant 

lifecycle process forms the basis of the Seasonal Squirrel 

Algorithm (SSA). These factors guide a mathematically 

simplified model. 

 Flying squirrels are abundant in the deciduous forest, 

with each squirrel often occupying its own tree. 

 Every squirrel actively searches for food and 

efficiently utilizes the available food resources by 

engaging in energetic foraging behaviours. 

 There are three kinds of trees that can be found in the 

forests that are: normal trees the oak tree (acorn nuts 

source of food) as well as hickory trees (hickory nuts 

are a food source). 

 It is thought that the forest area being examined 

contains three oak trees and one hickory. 
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3.7. Segmentation 
Segmentation involves three pathways: Spatial (SP), 

Handcrafted (HP), and Context (CP). SP has 3 convolution 

layers with high channel capacity, extracting rich, low-

level data at low computation. HP uses custom kernels 

based on geometry, stats, or textures. CP focuses on 

receptive field size; the lightweight model (Exception) 

rapidly down samples for suitable fields while maintaining 

context. It's enhanced with global mean pooling for 

extensive receptive fields and global context information. 

 

3.8. Analyze and Identify Overarching Characteristics of 

Ultrasound Pictures on a Global Scale 
The ultrasound scans of the tissues may vary 

depending on the specific medical equipment, imaging 

settings, operator, and patients. Therefore, normalization 

and cropping of images are required before feature 

extraction. Three picture cropping techniques that we use 

in our system. In Figure 2, in the beginning, unnecessary 

details such as dates, machine type, and marks should be 

removed when cutting photographs. The second thing to 

remember is that all photos cropped should have the same 

size. In order to limit the loss of information and minimize 

information loss, the image cropped must be maintained at 

top quality. Following cropping, linear normalization can 

be used to normalize the image using the following method 

(1) [16]. IN is for the normalized value of a pixel, and I 

refer to the initial gray value. The phrases "Max" and 

"Min" are associated with the maximum and minimum 

gray levels of a picture. 

 

IN = (I − Min)(newMax − newMin/Max − Min)+ newMin

                     (8) 
 

The original images were cropped, normalized, and 

then scaled down until they reached a particular size. To 

determine the characteristics of global carotid ultrasound 

images, A classic CNN model called AlexNet 18 uses 

model complexity and the results of an experimental study 

[8]. Then, the Alex Net model is developed in the manner 

that is the standard method. The parameters are adjusted 

until the learning and validation results are adjusted. In 

addition, in line with one of the global features, the second 

layer in the model is completely connected, will be 

duplicated, and reduced to d dimensions. In the course of 

our test and adjusting the d at 10. Then, we compared 

AlexNet's linked layers. The results showed that the first 

fully linked layer did the best. 

 

 
Fig. 2 EchoNet workflow for image selection, cleaning, and model training

Echocardiogram Study 
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4. Result and Discussion 
The research assesses the effectiveness of a suggested 

method for retrieving echoes, segmenting the cardiac area, 

and improving measuring efficiency. Performance is 

assessed using metrics such as precision, accuracy, recall, 

F-score, and index quantification, which are calculated 

using the Pearson correlation coefficient, which is shown 

using the Bland-Altman graph. The computational 

complexity, along with frames per second of the system, is 

also evaluated. Experiments were conducted using Pytorch 

and NVIDIA GTX1080Ti graphics cards. The model's 

efficacy was evaluated using advanced models and view 

categorization head. The study created a CNN model using 

over 2.6 million images from 2850 patients' 

echocardiography. The model was trained using three 

categorization tests and an over 2.6 million image 

database. The model underwent training to execute precise 

medical categorization or prediction tasks. 

 
Table 1. The baseline characteristics of the individuals in question were discovered by analyzing the data sets utilized for training and testing 

Characteristics Learning Set Experimental Data 

Number-of-Sufferer 2853 376 

Plurality-of-Images 1,624,790 169,680 

Sex-(%-Male) 51.4% 53.8% 

Span-Mean-Years-(std) 62.3-(16.2) 63.8-(17.8) 

Weight-Mean-Kg-(std) 77.8-(21.2) 79.9-(21.9) 

Height Point-Mean,-m-(std) 1.70-(0.12) 1.71-(0.12) 

BMI-Mean-(std) 28.3-(6.5) 29.5-(6.9) 

Bellwether-or- Implantable Cardioverter-

Defibrillator-Lead-(%-Present) 
14.2 15.7 

Highest-Left-Atrial-Enlargement-(%-Present) 18.2 21.3 

Hypertrophic Cardiomyopathy-(%-Present) 34.3 39.0 

Greater Distention -Volume-mL-Mean-(std) 95.3-(46.2) 96.9-(14.0) 

Stroke-Capacity,-mL:-Mean-(std)-- 46.7-(39.4) 48.3-(38.2) 

Discharge-Fraction:-Mean-(std) 54.2-(11.3) 53.7-(12.0) 

 

 

 
Fig. 3 AUC using MMF on 2D echo Data 

 

Table 2. Experimental findings are compared between the CNN and 

CNN+MMF approaches and the enhanced method 

Model 
Accuracy 

(%) 

Sensitivity 

(%) 

CNN 95 91 

CNN+MMF 98 98 

 

 
Fig. 4 Feature selection using MMF on 2D echo Data 
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Fig. 5 The models compared with CNN and CNN MMF with 

feature extraction 

 

The findings reveal that the CNN+MMF models 

performed better, having feature extraction along with 

using the metaheuristic approach to identify the area of the 

2D echo pictures with some ambiguity in the data.  

5. Conclusion 
Deep CNNs, trained on conventional 

echocardiography images using MMF extraction or meta-

heuristic methods, can detect local cardiac characteristics 

and interpretable indicators like age, gender, weight, and 

size. Our models achieve high precision for tasks 

interpreters handle, such as estimating ejection percentage, 

chamber volume and recognizing pacemaker leads. They 

excel at challenging tasks like predicting heart phenotypes 

from images.  

 

We propose a strategy utilizing collected phenotypes 

and interpreters from medical records, enabling external 

validation and quicker application to larger datasets. 

However, while superior to prior work, our approach 

doesn't uniformly outperform human evaluation in tasks 

involving clinical data like ESV, EDV, and EF, requiring 

deeper clinical understanding and context integration.
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