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Abstract - Cloud Computing (CC) is allocating resources flexibly to deliver services to end users via the Internet. To implement 

CC, it is necessary to tackle various obstacles, including resource finding, security, scheduling, and Load Balancing (LB). LB 

is the most difficult of these research problems. LB aims to allocate workloads to optimize resource usage and boost 

performance. This research paper proposes an efficient LB model for CC using a two-stage optimal meta-heuristic algorithm 

called TSOVM_LB. In the first stage, the Virtual Machine (VM) is chosen based on the Minimum Utilization and Migration 

(MUM) time. In the second stage, a multi-objective optimization algorithm, Modified Fish Swarm Optimization (MFSO), is used 

for VM allocation. This model allows the VM to the Physical Machine (PM). The proposed method was assessed using CloudSim, 

incorporating massive VMs and workload traces from the PlanetLab platform. The outcomes showed that the proposed technique 

attained much higher levels of energy efficiency, SLA compliance, and fewer VM migrations related to other modern techniques. 

The results presented here provide evidence of the efficacy of the proposed technique in optimizing the allocation of VMs in a 

cloud environment. 

Keywords - Load Balancing, Optimization, Fish Swarm, Cloud Computing, Virtual Machine.

1. Introduction 
CC describes the provision of resources via the Internet. 

The resources encompass computers, storage, databases, and 

networking [1]. Implementing a cloud environment has 

encountered numerous challenges. These include resource 

discovery, scheduling, security, and privacy. LB is a critical 

topic among these challenges. Distributed LB is the process of 

dispersing the workload among numerous machines. LB is 

distributing the workload across multiple computer platforms 

[2]. LB aims to optimize the efficiency, resource usage, and 

performance of VMs. Workload balancing is a crucial aspect 

of CC architecture as it effectively distributes computing 

resources. Each VM in the cloud has a diverse processing 

speed, memory, and capacity [3]. LB matches workloads with 

VMs to prevent overload, while dynamic web computing can 

cause request overload in CC. LB is the most complex and 

important area of research in CC, as it comprises allocating 

workloads among VMs in data centres. LB is significant for 

optimal resource consumption and service quality in 

heterogeneous CC environments [4]. Load balancers are vital 

in allocating resources equitably and efficiently to workloads, 

ensuring customer satisfaction while minimizing costs. 

However, existing LB methods face various challenges that 

require immediate attention. This has prompted researchers to 

develop improved LB policies to address these difficulties [5]. 

In CC, workload balancing within the architecture is a 

critical factor in resource allocation. To optimize resource use, 

the cloud system utilizes a range of LB methods [6]. However, 

high computational costs, energy usage, additional burdens, 

limited scalability, and time limits plague most conventional 

LB methods. The use of meta-heuristics-based approaches [7] 

for LB has gained significant popularity in recent times due to 

their superiority in handling discontinuous problems through 

intensification (exploitation), diversification (exploration), 

flexibility, multimodal optimization, efficient randomization, 

and so on [8].  

 

Different kinds of meta-heuristics-based approaches like 

nature-inspired (cuckoo search, flower pollination) [9], bio-

simulated (grey wolf), evolutionary (genetic), and swarm 

(PSO, Ant colony) based approaches are used in a CC for LB 

[10]. The efficient management of resources in CC 

environments remains a significant challenge, specifically as 

cloud infrastructures continue to grow in scale and 

complexity. Optimizing resource distribution across VMs is 

crucial for maximizing overall performance and minimizing 

response times [11]. As cloud systems handle diverse 

workloads with varying requirements, it is significant to 

ensure that resources are allotted dynamically and effectively 

to prevent overloading or underutilization. This motivates the 
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need for advanced strategies that can intelligently balance the 

computational load across distributed systems, improving 

both efficiency and scalability [12]. 

 

This research study presents an effectual LB technique for 

CC. The approach utilizes a two-stage optimum meta-

heuristic method known as TSOVM_LB. A threshold-based 

technique determines the current consumption of PM. The 

PMs are categorized into three states: typically loaded, 

underutilized, and overwhelmed. The first stage involves 

selecting a VM based on the MUM time. The process's second 

stage uses a multi-objective optimization technique called 

Modified Fish Swarm Optimization (MFSO) for VM 

allocation. This method effectively assigns the VM to the PM. 

The primary research contribution is outlined as follows: 

 A two-stage optimal VM allocation is proposed to 

achieve effective LB. 

 A method based on thresholds is employed to determine 

the current utilization of PMs. The PMs are divided into 

three states: normally loaded, underloaded, and 

overloaded. 

 Formulate a VM state-based algorithm to identify suitable 

VMs for host migration using VM MUM time.  

 A VM placement technique utilizing MFSO is suggested 

to distribute migrated VMs evenly and achieve optimal 

service performance.  

 The suggested technique's effectiveness is evaluated 

using CloudSim and Planet Lab workload. The 

investigative outcome highlights that the proposed 

methodology minimizes EC and SLA violations. 

2. Related Works 
Sayadnavard et al. [13] provide a Discrete-Time Markov 

Chain (DTMC) method, which utilizes the reliability 

technique of PMs. The e-dominance-based Multi-Objective 

Artificial Bee Colony (e-MOABC) approach effectively 

meets SLA and QoS requirements. Dubey et al. [14] expanded 

upon the intelligent water drop method. The technology 

reduces energy usage in the cloud data centre and improves 

overall system performance. The Water Drop VM Allocation 

(WDVMA) approach distinguishes between low-and high-

utilization hosts. It then migrates VMs to increase server 

utilization. Radi et al. [15] present a Modified Genetic-based 

VM Consolidation (MGVMC) technique. This approach 

employs a Genetic Algorithm (GA) to transfer VMs to suitable 

PMs to limit the occurrence of over- and under-utilized PMs 

to the greatest extent possible. It explicitly highlights 

workloads that require a significant amount of CPU 

processing power. 

 

A cloud environment that accurately simulates real-world 

conditions is necessary to evaluate the method. Kanagaraj et 

al. [16] suggest using Uniform Distribution Elephant Herding 

Optimization (UDEHO) to maximize resources by spotting 

hosts that are too busy or not busy enough. The UDEHO 

technique accurately forecasts future resource utilization. To 

detect under-loaded hosts, it is recommended to use a power-

saving value based on power usage and migration numbers. 

Thakur et al. [17] propose a VM consolidation strategy for CC 

using the Cuckoo Search Algorithm. Optimizing energy 

conservation without affecting system performance or cloud 

service quality is unattainable. Most existing methods for VM 

consolidation rely on load and threshold concepts. 

 

Alsadie et al. [18] propose the Modified Feeding Birds 

Algorithm (ModAFBA) methodology. Madhusudhan et al. 

[19] suggest a VM placement strategy for cloud data centres 

based on the Harris Hawk Optimization model. Durairaj et al. 

[20] introduce a meta-heuristic optimization technique called 

the Multi-Objective Mayfly VMP (MOM-VMP), which 

utilizes a vast CDC (Computation and Data Centre) with 

diverse and multi-dimensional resources. An integrated 

approach is used through a multi-objective dynamic VMP 

technique. Pandey et al. [21] introduce the Energy-Efficient 

Particle Swarm Optimization algorithm (EEVMPSO) model, 

which aims to optimize LB while minimizing energy 

consumption. The Particle Swarm Optimization (PSO) model 

is utilized for energy-aware VM migration to achieve dynamic 

VM placement.  Medara et al. [22] present a dynamic VMC 

model. The Modified Water Wave Optimization (MWWO) 

technique is utilized. Studies have shown that a host under 

excessive load uses more energy in a given period than a host 

operating at normal capacity. Lu, Zhou, and Zou [23] propose 

a two-stage optimization strategy: a Greedy Algorithm (GA) 

for Coarse-Grained LB across VMs and a GA for fine-grained 

resource allocation within each VM. Gabhane, Pathak, and 

Thakare [24] introduce EAGLE modified approach for 

optimal VM placement in CC. Li et al. [25] present a novel 

Multi-Objective Flower Pollination Algorithm (MOFPA/D) 

method, integrating a discrete FPA. 

 

Menaka and Kumar [26] propose a strategy-based mixed 

support and LB for task scheduling in cloud computing. The 

Time-Conscious Scheduling with Supportive PSO (SPSO-

TCS) technique to reduce make-span time and achieve LB. Ma 

et al. [27] introduce a two-stage-VNS approach for effectual 

discrete variable search and Sigmoid activation support, 

ensuring global optimality. Qora, implemented on 

Kubernetes, automates resource provisioning in a serverless 

system. Kaur et al. [28] propose an Enhanced K-means 

Clustering (EKCLB) approach for task and VM allocation at 

the fog layer in smart cities by clustering tasks and VMs based 

on priority, burst time, and capacity. Bano et al. [29] present 

the Levelized Multi-workflow Heterogeneous Earliest Finish 

time (LMHEFT) methodology. It features task prioritization 

utilizing level attributes and upward rank, followed by task 

allocation to the best-suited VM for minimizing completion 

time. Li et al. [30] introduce the Lyapunov and Multi-agent 

Deep Deterministic Policy Gradient (LAMETO) approach, a 

distributed two-stage task offloading architecture based on 

Lyapunov and MADDPG. It optimizes offloading delays and 
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RSU energy consumption in VEC subsystems. Zhang [31] 

proposes an automated container arrangement and resource 

optimization algorithm that predicts and adjusts resources 

based on real-time and historical data, ensuring effective 

utilization and optimal application performance. Zhu et al. 

[32] propose SA2CTS, a containerized task scheduling 

framework based on reinforcement learning and cross-modal 

contrastive learning. It utilizes a two-stage pipeline: 

pretraining on image-text pairs for extracting scheduling 

features, followed by fine-tuning with multisource cluster 

feedback for task-oriented, semantic-aware scheduling. 

 

The limitations of the existing studies comprise a lack of 

comprehensive approaches that incorporate both energy 

efficiency and real-time optimization for VM placement and 

task scheduling across multiple cloud environments. Many 

existing methods concentrate on either resource utilization or 

LB, neglecting the interdependency of energy consumption 

and system performance. Moreover, the scalability of these 

algorithms in large-scale cloud or fog computing 

environments remains a challenge, with few studies 

addressing dynamic task allocation in real-world, 

heterogeneous settings. Further research is required to 

integrate these strategies into more adaptive and energy-

efficient frameworks while ensuring improved handling of 

variable workloads and resources in large-scale cloud 

infrastructures. 

 

3. Proposed TSOVM_LB 
This section describes the proposed VM LB in CC. This 

methodology comprises two stages: MUM-based VM 

selection and MFSO-based VM allocation. Figure 1 illustrates 

the working flow of the TSOVM_LB method. 

 

 

 
Fig. 1 TSOVM_LB workflow 

3.1. PM State Identification 

Let's assume that the CDC consists of m PMs, denoted as 

PM = {pm1, pm2, pm3,..., pmm}, and n VMs, denoted as VM = 

{vm1, vm2, vm3,..., vmn}. Every machine possesses various 

resources, including CPU, memory, and bandwidth. The 

system's Energy Consumption (EC) metric directly influences 

a data centre's PM load status. A widely used host will have a 

negative effect on response times and service quality, whereas 

a less utilized host will consume additional energy. Hence, the 

state detection of PMs is a crucial determinant for allocation. 

This research employs a threshold-based technique [33] to 

determine the status of the PM. There are three states of power 

management: high utilization, medium usage, and low usage. 

The two threshold values, Tup and Tlow, are utilized to 

determine the current PM state. Farahnakian et al. [34] 

established threshold values of 0.5 and 1.0; Li et al. [35] 

placed them at 0.1 and 0.9; and Liu et al. [36] determined 

lower and higher threshold values of 0.3 and 0.8, respectively. 

A higher Tup will lead to persistent overloading and significant 

SLA violations, whereas a lower Tup will lead to inefficient 

resource utilization. Many VMs will relocate if the Tlow 

exceeds a certain level. Setting the Tlow value too low could 

lead to the insufficient shutdown of minimally used hosts. This 

study calculates the Tlow and Tup values in real time, 

considering the current level of resource usage. A detailed 

explanation of the algorithm is found in [33]. 
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3.2. MUM-Based VM Selection 

To prevent any adverse effects on the migration 

procedure and to promptly restore the host to its original load 

status, it is essential to efficiently choose the VM to migrate 

when the server host becomes overloaded. In cases where 

hosts are overloaded, it is necessary to move certain VMs until 

the host's utilization level falls below the high threshold. 

Every VM on the host needs to migrate if it is underloaded. 

The host enters sleep mode when all VMs migrate. Adjusting 

the lower threshold reduces excessive consolidation, 

minimizing migrations and SLAVs. This paper suggests 

MUM-based VM selection. The CPU and RAM utilization of 

the VM is computed as, 

 

𝑈𝑣𝑚𝑗
𝐶𝑃𝑈 =

𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑀𝐼𝑃𝑆 𝑜𝑓 𝑣𝑚𝑗

𝑣𝑚𝑗
𝑀𝐼𝑃𝑆                                          (1) 

𝑈𝑣𝑚𝑗
𝑅𝐴𝑀 =

𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑚𝑒𝑚𝑜𝑟𝑦 𝑜𝑓 𝑣𝑚𝑗

𝑣𝑚𝑗
𝑅𝐴𝑀                                   (2) 

 

𝑈𝑣𝑚𝑗
𝐶𝑃𝑈 and 𝑈𝑣𝑚𝑗

𝑅𝐴𝑀  represent the CPU and RAM utilization 

of jth VM (vmj). 𝑣𝑚𝑗
𝑀𝐼𝑃𝑆 and 𝑣𝑚𝑗

𝑅𝐴𝑀  indicate the MIPS of 

memory of vmj.  

 

Algorithm-1: MUM-Based VM Selection 

Input: High usage host list (PMhu) 

Output: Selected VM list (VMsel) 

Step01: For each pmi  in PMhu, do 

Step02:    vmList = get list of VM in pmi  

Step03     minUM =MaxValue 

Step04:    For every vm in vmList do 

Step05:       Compute CPU utilization of vm (Uvmj
CPU ) using 

Equation (1) 

Step06:       Compute Memory utilization of vm (Uvmj
RAM) 

using Equation (2) 

Step07:       Compute migration time Tvmj

mig
 using Equation 

(3) 

Step08:       cUM = Tvmj

mig
 × (1 − Uvmj

CPU) × (1 − Uvmj
RAM) 

Step09:       If cUM < minUM   then 

Step10:          minUM = cUM  

Step11:          Add vm to VMsel  

Step12:       EndIf 

Step13:       Find the pmi current state 

Step14:       If pmi is high usage, then 

Step15:           break; 

Step16:       EndIf 

Step17:    EndFor 

Step18: EndFor 

Step19: Return VMsel 

 

The VM migration time is computed as, 

𝑇𝑣𝑚𝑗

𝑚𝑖𝑔
=

𝑣𝑚𝑗
𝑅𝐴𝑀

𝑝𝑚𝑖
𝐵𝑎𝑛𝑑

                                                        (3) 

Where 𝑇𝑣𝑚𝑗

𝑚𝑖𝑔
 represents the duration needed for the 

migration of vmj. 𝑝𝑚𝑖
𝐵𝑎𝑛𝑑 indicates the bandwidth of ith PM 

(pmi). The VMs are selected based on the MUM time. 

Algorithm 1 explains the proposed VM selection algorithm. 

Algorithm 1 takes the high-consumption hosts as input 

and produces the chosen VMs that must be migrated as output. 

The first step involves obtaining the list of VMs on the host 

with high consumption, as indicated in line 2. Subsequently, 

the utilization of each VM and the time required for migration 

are computed using Equations (1), (2), and (3), as described in 

lines 4-7. The VMs with the lowest consumption and shortest 

migration time are added to the selected VMs (lines 8–12). 

Following each stage of the VM selection process, assessing 

whether host overload persists after VM migration is essential. 

If the host is experiencing excessive load, the process of 

selecting a VM continues; otherwise, the process of VM 

selection stops (lines 13-16). 

3.3. MFSO-Based VM Allocation 

Selecting target hosts is identical to the VM initialization 

placement, requiring a mapping between the VM and the 

appropriate host that meets resource needs while optimizing 

energy, LB, and resource usage. Finding suitable destinations 

for the moved VMs is the next crucial task after identifying 

overloaded and underloaded servers and selecting certain 

VMs for migration. This section presents a VM placement 

technique that relies on multi-objective MFSO.  

 

FSO is a metaheuristic algorithm for solving optimization 

problems. The algorithm utilizes the actions of fish swarms, 

including preying, swarming, and following (chasing). Figure 

2 shows the vision concept of artificial fish [37]. Let Xi be the 

current position of an artificial fish, Xv its view at a given 

moment, and Visual its scope. Xa and Xb are fish within Xi's 

visual range. Step is the fish's maximum step, and δ is the 

congestion factor. The food concentration is directly related to 

the fitness function f(X). The behaviour patterns exhibited by 

fish swarms are shown below:  

 

Fig. 2 Vision concept of artificial fish [37] 
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Swarming behaviour is triggered when the value of f(Xc) 

is greater than that of f(Xi), where Xc represents the central 

point within the visual range of point Xi. Let Xc be denoted as 

Xv. The fish at Xi will get closer to the location at Xc by taking 

a step. 

 

Chasing behavior occurs when the objective function 

value at Xmax, the best point in the Visual, exceeds that at Xi, 

and Xi's Visual is not congested. In this case, the chasing 

behaviour is executed. Let Xmax be denoted as Xv. The fish at 

Xi will move closer to point Xmax. 

 

Preying behaviour occurs in two situations: (1) when 

f(Xc) < f(Xi), f(Xmax) < f(Xi), and the Visual is not crowded, 

and (2) when the Visual is crowded. 

 

This model randomly selects a point Xj within the visual 

range of point Xi. The technique executes the preying 

behaviour if the objective function value at Xj exceeds the 

value at Xi. The fish at Xi then moves towards Xj, taking Xj as 

its new position. If the objective function value at Xj is not 

greater than Xi's, the fish at Xi moves randomly within its 

visual range. Each iteration marks the best-obtained solution 

as a "board." After a set of iterations, the search ends, and the 

"board" solution is final. For artificial-preying fish, the 

position update is as follows:  

 

𝑋𝑛𝑒𝑥𝑡 = 𝑋𝑖 + 𝑟𝑎𝑛𝑑 ×
𝑠𝑡𝑒𝑝 × (𝑋𝑗 − 𝑋𝑖)

𝑛𝑜𝑟𝑚(𝑋𝑗 − 𝑋𝑖)
                              (4) 

 

Xnext is the next fish position; Xi and Xj are the current and 

better positions; rand is an arbitrary value between -1 and 1, 

and norm (Xj - Xi) is the distance between the positions.  

 

The position update for artificial swarming fish and 

artificial chasing fish is expressed in Equations (5) and (6).  

 

𝑋𝑛𝑒𝑥𝑡 = 𝑋𝑖 + 𝑟𝑎𝑛𝑑 ×
𝑠𝑡𝑒𝑝 × (𝑋𝑐 − 𝑋𝑖)

𝑛𝑜𝑟𝑚(𝑋𝑐 − 𝑋𝑖)
                              (5) 

 

𝑋𝑛𝑒𝑥𝑡 = 𝑋𝑖 + 𝑟𝑎𝑛𝑑 ×
𝑠𝑡𝑒𝑝 × (𝑋𝑚𝑎𝑥 − 𝑋𝑖)

𝑛𝑜𝑟𝑚(𝑋𝑚𝑎𝑥 − 𝑋𝑖)
                         (6) 

 

In this work, the FSO method is used for VM allocation. 

When hosts are underloaded, assign all VMs that require 

relocation to new hosts. Initially, the VMs chosen from the 

hosts experiencing excessive demand are transferred, 

followed by the migration of the VMs from the hosts 

experiencing insufficient load. If VMs are evenly dispersed 

across hosts, the likelihood of SLAVs at a host decreases. This 

work suggests a balanced placement approach for VMs to 

optimize LB and resource utilization in a data center following 

VM consolidation. The technique is based on the MFSO. The 

following is the objective function of the VM placement 

approach: 

𝐹 = min(𝐸𝐶 ∗ 𝑆𝐿𝐴𝑉 + 𝑉𝑀𝑀𝐶)                   (7) 

 

The main objective of the placement approach is to 

mitigate the objective function value. Algorithm 2 shows the 

algorithm of the proposed MFSO. 

Algorithm-2: MFSO Based VM allocation 

Input: PM = {pm1,pm2,pm3,…,pmm}, VM = 

{vm1,vm2,vm3,…,vmn}, List of PMhu, PMmu, PMlu 

Output: Allocated VMs 

Step01: Initialize algorithm parameters (Visual, Step, 

Crowd Factor, MaxIter) 

Step02: Initialize the random population  

Step03: While the stop condition is not attained, do  

Step04:    For each p ϵ pop, do 

Step05:       F1 = Compute F(p) using Equation (7) 

Step06:       Apply Prey behavior  

Step07:       Update p based on prey behavior (p_pb) 

using Equation (8) 

Step08:       F2 = Compute F(p_pb) using Equation (7) 

Step09:       Apply Swarm behaviour 

Step10:       Update p based on swarm behavior(p_sb) 

using Equation (9) 

Step11:        F3 = Compute F(p_sb) using Equation (7) 

Step12:        Apply Chase's behaviour 

Step13:        Update p based on chase behavior(p_cb) 

using Equation (10) 

Step14:        F4 = Compute F(p_cb) using Equation (7) 

Step15:        Find the minimum (F1, F2, F3, F4) 

Step16:        Update the board 

Step17:    EndFor 

Step18: EndWhile 

Step19: Return Optimal Solution 

 

In Algorithm 2, the parameters Visual (1.5), Step (0.3), 

Crowd Factor (0.61), and MaxIter (50) are initialized and 

randomly generated based on the hosts and VM numbers 

(Steps 1 and 2). In the subsequent steps, the objective function 

for the initial population (Step 5) is computed, and the 

behaviours of prey, swarm, and chase are applied. The 

objective function for the updated population (Steps 6-14) is 

calculated, and the minimum objective is found. Finally, the 

board is updated (Step 16).  

 

In this algorithm, for artificial preying fish, the position 

update is expressed as follows:  

𝑋𝑛𝑒𝑥𝑡 = 𝑋𝑖 + (𝑟𝑎𝑛𝑑 − 0.5) × 𝑠𝑡𝑒𝑝 × (𝑋𝑗 − 𝑋𝑖)

× 𝐷𝑖𝑠𝑡(𝑋𝑗 , 𝑋𝑖)                                            (8) 

 

For artificial swarming fish, the position update is 

expressed as follows:  

𝑋𝑛𝑒𝑥𝑡 = 𝑋𝑖 + (𝑟𝑎𝑛𝑑 − 0.5) × 𝑠𝑡𝑒𝑝 × (𝑋𝑐 − 𝑋𝑖)
× 𝐷𝑖𝑠𝑡(𝑋𝑐 , 𝑋𝑖) × 𝜔                                   (9) 



E. Suganthi & F. Kurus Malai Selvi / IJECE, 12(3), 179-189, 2025 

184 

For artificial chasing fish, the position update is expressed 

as follows: 

𝑋𝑛𝑒𝑥𝑡 = 𝑋𝑖 + (𝑟𝑎𝑛𝑑 − 0.5) × 𝑠𝑡𝑒𝑝 × (𝑋𝑚𝑎𝑥 − 𝑋𝑖)
× 𝐷𝑖𝑠𝑡(𝑋𝑚𝑎𝑥 , 𝑋𝑖) × 𝜔                           (10) 

 

Where 𝐷𝑖𝑠𝑡(𝑋𝑗 , 𝑋𝑖) represents the distance between 

positions, and ω is the weight factor. 

4. Experimental Results 
This section gives an elaborate description of the 

experimental design. It presents experimental results 

evaluating a two-stage optimal LB strategy for enhancing 

energy efficiency and reducing SLA violations. The suggested 

method was simulated using CloudSim 4.0, a popular CC 

platform offering virtualization technology, virtual cloud 

modelling, and simulation capabilities. CloudSim represents 

several components of a cloud data centre, including hosts, 

VMs, brokers, and power models, as simulated entities. Both 

the hosts and VMs have their computing capabilities. 

 

The study utilized a cloud data centre of 800 servers with 

varying specifications. Table 1 shows the physical and VM 

configuration. 

 

The model's performance was evaluated using workload 

data from the PlanetLab project [38], a global computer cluster 

collecting CPU utilization data from VMs across over 500 

locations. From March 3 to April 20, 2011, data includes 288 

CPU utilization records per VM, taken every 5 minutes, 

covering various VM counts and resource utilization metrics 

like average CPU consumption and Standard Deviation (SD). 

Table 2 demonstrates the workload dataset characteristics.

Table 1. PM and VM configuration 

 Type MIPS Core 
RAM 

(MB) 

Bandwidth 

(Gbps) 

 

PM 

HP ProLiant ML110 G4 - Xeon 3040 1860 2 4096 1 

HP ProLiant ML110 G5 – Xeon 3075 2660 2 4096 1 

 

 

VM 

High 2500 1 870 100 

Extra Large 2000 1 1740 100 

Small 1000 1 1740 100 

Micro 500 1 613 100 

 

Table 2. PlanetLab workload characteristics [39] 

Workload Date # VM Mean (%) SD (%) 

1 03-03-2011 1052 12.31 17.09 

2 06-03-2011 898 11.44 16.83 

3 09-03-2011 1061 10.70 15.57 

4 22-03-2011 1516 9.26 12.78 

5 25-03-2011 1078 10.56 14.14 

6 03-04-2011 1463 12.39 16.55 

7 09-04-2011 1358 11.12 15.09 

8 11-04-2011 1233 11.56 15.07 

9 12-04-2011 1054 11.54 15.15 

10 20-04-2011 1033 10.43 15.21 

 

This study uses the following measures to analyze the 

model's performance: EC, number of migrations required to 

finish the workload, SLAV, and SLA Time per Active Host 

(SLATAH). EC refers to the aggregate number of energy 

processing equipment utilized to accomplish a specific task. 

Minimizing EC is desirable, as it is the primary consideration 

for developing effectual allocation strategies. Power 

consumption varies with CPU usage, and different host types 

have different power demands at the same utilization level. 

VM migration uses network bandwidth, affecting 

performance and increasing SLAVs with excessive 

migrations. Minimizing migrations is crucial for service 

quality. SLATAH shows the percentage of time hosts' CPU is 

at 100%, indicating possible VM capacity issues. The 

SLATAH is defined as, 

𝑆𝐿𝐴𝑇𝐴𝐻 =
1

𝑀
∑

𝑇𝑜𝑖

𝑇𝑟𝑖

𝑀

𝑖=1
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M represents the overall PMs, Toi is the overload 

duration, and Tri is the host's running time. PDM refers to the 

decline in the performance of VMs caused by migration. It is 

computed as, 

𝑃𝐷𝑀 =
1

𝑁
∑

𝐶𝑑𝑗

𝐶𝑟𝑗

 

𝑁

𝑗=1

    

 

Where Crj is the entire resource the VM has requested, 

Cdj is the expected performance value deterioration caused by 

migrations, and N is the overall VMs. 

 

SLAVs, linked to SLATAH and PDM, signal reduced 

service quality due to host overload and VM migration. The 

SLAV is computed as, 

𝑆𝐿𝐴𝑉 = 𝑆𝐿𝐴𝑇𝐴𝐻 × 𝑃𝐷𝑀            

ESV, based on EC and SLAVs, measures the overall 

performance of the VM consolidation strategy. It is defined as, 

 

𝐸𝑆𝑉 = 𝐸𝐶 × 𝑆𝐿𝐴𝑉    
 

An increase in either of these metrics will raise the ESV 

value because it results from both. A lower ESV score 

signifies a higher trade-off between EC and the SLAV. Table 

3 presents the performance metrics under different workloads. 

 

The proposed TSOVM_LB is compared with MOABC-

VMC [13], VMS-EDMVM [40], GM-DPSO [41], and ADT-

CAU-IEABF [39]. Table 4 illustrates the average results of 

diverse approaches for different metrics. Compared to existing 

approaches, the proposed method reduces EC, VM migration, 

SLAV, and ESV.

 

 Table 3. PlanetLab workload performance 

Workload Number of VMs EC 
Number of 

Migrated VMs 
SLAV ESV 

03-03-2011 1052 46.68 889 0.0002 0.00093 

06-03-2011 898 42.42 792 0.00025 0.00106 

09-03-2011 1061 46.02 875 0.0002 0.00092 

22-03-2011 1516 56.24 1099 0.00012 0.00067 

25-03-2011 1078 47.20 886 0.00014 0.00066 

03-04-2011 1463 52.72 1043 0.00014 0.00074 

09-04-2011 1358 51.45 1014 0.00013 0.00067 

11-04-2011 1233 52.24 941 0.00011 0.00057 

12-04-2011 1054 46.08 857 0.00017 0.00078 

20-04-2011 1033 45.03 870 0.00019 0.00086 

 

Table 4. Average results comparison 

Approach EC Number of Migrated VMs SLAV ESV 

MOABC-VMC 105.24 6717 0.08635 9.0875 

VMS-EDMVM 104.45 2202 0.00091 0.09504 

GM-DPSO 110.2 2303 0.0019 0.20938 

ADT-CAU-

IEABF 
129.96 2841 0.00048 0.06238 

TSOVM_LB 48.608 926 0.000165 0.000786 

 

Figure 3 portrays the comparison of EC. The average EC 

of the proposed approach is 48.608. The proposed method 

reduces EC by 53.81%, 53.46%, 55.89%, and 55.89% for 

MOABC-VMC, VMS-EDMVM, GM-DPSO and ADT-CAU-

IEABF, respectively. The suggested approach efficiently 

decreases the active host number and appropriately distributes 

resources among hosts, minimizing the frequency of host 

switching. Hence, the approach possesses certain benefits in 

diminishing energy use.
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Fig. 3 EC comparison 

 

Fig. 4 VM migration comparison 

Figure 4 compares the migrated VM numbers. The 

average number of VM migrations is 926. This method 

reduces VM migration by 86.21%, 57.95%, 59.79%, and 

67.41% for MOABC-VMC, VMS-EDMVM, GM-DPSO, and 

ADT-CAU-IEABF, respectively. The LB-based placement 

technique minimizes the likelihood of a host becoming 

overwhelmed and reduces the frequency of successive 

migrations. 

Figure 5 compares SLA violations. The proposed 

approach's average SLAV is 0.000165. The approach reduces 

SLA violations by 99.81%, 81.87%, 91.32%, and 65.63% for 

MOABC-VMC, VMS-EDMVM, GM-DPSO, and ADT-

CAU-IEABF, respectively. It can effectively prevent 

excessive consolidation and decrease the likelihood of 

resource shortages. 

Figure 6 shows the comparison of ESV. The proposed 

approach's average ESV is 0.000786. The proposed method 

reduces ESV by 99.99%, 99.17%, 99.62%, and 98.74% for 

MOABC-VMC, VMS-EDMVM, GM-DPSO, and ADT-

CAU-IEABF, respectively.  
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Fig. 5 SLAV comparison 

 

Fig. 6 ESV comparison 

The ESV metric reflects the total energy consumed and 

the level of service quality provided. Compared to other 

tactics, the proposed strategy outperforms them in terms of the 

ESV result, regardless of the load conditions. Therefore, it 

may efficiently ensure the QoS in a datacenter while 

minimizing energy usage. The proposed technique enhances 

the efficiency of CC and ensures equitable allocation of 

resources to each computer unit, strengthening the system's 

scalability. 

5. Conclusion and Future Enhancement 
LB is crucial in CC to optimize resource use and improve 

load distribution. Various tactics and procedures are proposed 

to tackle issues connected to LB. This research study presents 

a very effective LB model for CC. The approach utilizes a 

two-stage optimum meta-heuristic method named 

TSOVM_LB. During the initial phase, the VM selection is 

determined by considering the least consumption and 

migration time. The second stage involves utilizing an MFSO 

method to allocate VMs in a multi-objective optimization 

environment. The proposed approach reduced VM migration 

energy usage and host numbers, lowering the system's overall 

EC-the experiments conducted on an extensive scale utilized 

real-world data obtained from execution traces of PlanetLab 

VMs. The outputs indicated that the suggested technique 

outperforms existing strategies in optimizing energy usage, 

VM migration frequency, and SLA violations, providing 

significant improvements.

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.08635

0.00091 0.0019 0.00048 0.000165

S
L

A
V

SLAV

0
1
2
3
4
5
6
7
8
9

10
9.0875

0.09504 0.20938 0.06238 0.000786

E
S

V

ESV



E. Suganthi & F. Kurus Malai Selvi / IJECE, 12(3), 179-189, 2025 

188 

References 
[1] Bhagyalakshmi Magotra, Deepti Malhotra, and Amit K. Dogra, “Adaptive Computational Solutions to Energy Efficiency in Cloud 

Computing Environment Using VM Consolidation,” Archives of Computational Methods in Engineering, vol. 30, pp. 1789-1818, 2023. 

[CrossRef] [Google Scholar] [Publisher Link] 

[2] Mana Saleh Al Reshan et al., “A Fast Converging and Globally Optimized Approach for Load Balancing in Cloud Computing,” IEEE 

Access, vol. 11, pp. 11390-11404, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[3] Arunkumar Gopu, and Neela Narayanan Venkataraman, “Virtual Machine Placement using Multi-objective Bat Algorithm with 

Decomposition in Distributed Cloud: MOBA/D for VMP,” International Journal of Applied Metaheuristic Computing, vol. 12, no. 4, pp. 

62-77, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[4] Soumen Swarnakar, Souvik Bhattacharya, and Chandan Banerjee, “A Bio-inspired and Heuristic-based Hybrid Algorithm for Effective 

Performance with Load Balancing in Cloud Environment,” International Journal of Cloud Applications and Computing, vol. 11, no. 4, pp. 

59-79, 2021. [CrossRef] [Google Scholar] [Publisher Link] 

[5] Harvinder Singh et al., “Metaheuristics for Scheduling of Heterogeneous Tasks in Cloud Computing Environments: Analysis, Performance 

Evaluation, and Future Directions,” Simulation Modelling Practice and Theory, vol. 111, 2021. [CrossRef] [Google Scholar] [Publisher 

Link] 

[6] Dalia Abdulkareem Shafiq, N.Z. Jhanjhi, and Azween Abdullah, “Load Balancing Techniques in Cloud Computing Environment: A 

Review,” Journal of King Saud University-Computer and Information Sciences, vol. 34, no. 7, pp. 3910-3933, 2022. [CrossRef] [Google 

Scholar] [Publisher Link] 

[7] Jincheng Zhou et al., “Comparative Analysis of Metaheuristic Load Balancing Algorithms for Efficient Load Balancing in Cloud 

Computing,” Journal of Cloud Computing, vol. 12, pp. 1-21, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[8] Muhammad Junaid et al., “Modeling an Optimized Approach for Load Balancing in Cloud,” IEEE Access, vol. 8, pp. 173208-173226, 2020. 

[CrossRef] [Google Scholar] [Publisher Link] 

[9] Kethavath Prem Kumar et al., “An Efficient Load Balancing Technique Based on Cuckoo Search and Firefly Algorithm in Cloud,” 

International Journal of Intelligent Engineering and Systems, vol. 13, no. 3, pp. 422-432, 2020. [CrossRef] [Google Scholar] [Publisher 

Link] 

[10] Bhavesh N. Gohil, and Dhiren R. Patel, “Load Balancing in Cloud Using Improved Gray Wolf Optimizer,” Concurrency and Computation: 

Practice and Experience, vol. 34, no. 11, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[11] Insha Naz et al., “A Genetic Algorithm-Based Virtual Machine Allocation Policy for Load Balancing Using Actual Asymmetric Workload 

Traces,” Symmetry, vol. 15, no. 5, pp. 1-22, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[12] Yogita Yashveer Raghav, and Vaibhav Vyas, “ACBSO: A Hybrid Solution for Load Balancing Using Ant Colony and Bird Swarm 

Optimization Algorithms,” International Journal of Information Technology, vol. 15, pp. 2847-2857, 2023. [CrossRef] [Google Scholar] 

[Publisher Link] 

[13] Monireh H. Sayadnavard, Abolfazl Toroghi Haghighat, and Amir Masoud Rahmani, “A Multi-Objective Approach for Energy-Efficient 

and Reliable Dynamic VM Consolidation in Cloud Data Centers,” Engineering Science and Technology, an International Journal, vol. 26, 

pp. 1-13, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[14] Kalka Dubey, and S.C. Sharma, “An Extended Intelligent Water Drop Approach for Efficient VM Allocation in Secure Cloud Computing 

Framework,” Journal of King Saud University-Computer and Information Sciences, vol. 34, no. 7, pp. 3948-3958, 2022. [CrossRef] [Google 

Scholar] [Publisher Link] 

[15] Mohammed Radi, Ali A. Alwan, and Yonis Gulzar, “Genetic-Based Virtual Machines Consolidation Strategy with Efficient Energy 

Consumption in Cloud Environment,” IEEE Access, vol. 11, pp. 48022-48032, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[16] G. Kanagaraj, and G. Subashini, “Uniform Distribution Elephant Herding Optimization (UDEHO) Based Virtual Machine Consolidation 

for Energy-Efficient Cloud Data Centres,” Automatika: Časopis za Automatiku, Mjerenje, Elektroniku, Računarstvo i Komunikacije, vol. 

64, no. 3, pp. 529-539, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[17] Puja Thakur, Jagapreet Sidhu, and Kushal Kanwar, “Dynamic Virtual Machine Consolidation in the Cloud: A Cuckoo Search Approach,” 

Procedia Computer Science, vol. 230, pp. 769-779, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[18] Deafallah Alsadie, and Musleh Alsulami, “Efficient Resource Management in Cloud Environments: A Modified Feeding Birds Algorithm 

for VM Consolidation,” Mathematics, vol. 12, no. 12, pp. 1-20, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[19] H.S. Madhusudhan et al., “A Harris Hawk Optimisation System for Energy and Resource Efficient Virtual Machine Placement in Cloud 

Data Centers,” Plos one, vol. 18, no. 8, pp. 1-27, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[20] Selvam Durairaj, and Rajeswari Sridhar, “MOM-VMP: Multi-Objective Mayfly Optimization Algorithm for VM Placement Supported by 

Principal Component Analysis (PCA) in Cloud Data Center,” Cluster Computing, vol. 27, pp. 1733-1751, 2024. [CrossRef] [Google 

Scholar] [Publisher Link] 

 

 

https://doi.org/10.1007/s11831-022-09852-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Adaptive+computational+solutions+to+energy+efficiency+in+cloud+computing+environment+using+VM+consolidation&btnG=
https://link.springer.com/article/10.1007/s11831-022-09852-2
https://doi.org/10.1109/ACCESS.2023.3241279
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+fast+converging+and+globally+optimized+approach+for+load+balancing+in+cloud+computing&btnG=
https://ieeexplore.ieee.org/abstract/document/10034760
https://doi.org/10.4018/IJAMC.2021100104
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Virtual+machine+placement+using+multi-objective+bat+algorithm+with+decomposition+in+distributed+cloud%3A+Moba%2Fd+for+vmp&btnG=
https://www.igi-global.com/article/virtual-machine-placement-using-multi-objective-bat-algorithm-with-decomposition-in-distributed-cloud/288737
https://doi.org/10.4018/IJCAC.2021100104
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+bio-inspired+and+heuristic-based+hybrid+algorithm+for+effective+performance+with+load+balancing+in+cloud+environment&btnG=
https://www.igi-global.com/article/a-bio-inspired-and-heuristic-based-hybrid-algorithm-for-effective-performance-with-load-balancing-in-cloud-environment/288774
https://doi.org/10.1016/j.simpat.2021.102353
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Metaheuristics+for+scheduling+of+heterogeneous+tasks+in+cloud+computing+environments%3A+Analysis%2C+performance+evaluation%2C+and+future+directions&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1569190X21000678
https://www.sciencedirect.com/science/article/abs/pii/S1569190X21000678
https://doi.org/10.1016/j.jksuci.2021.02.007
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Load+balancing+techniques+in+cloud+computing+environment%3A+A+review.&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Load+balancing+techniques+in+cloud+computing+environment%3A+A+review.&btnG=
https://www.sciencedirect.com/science/article/pii/S131915782100046X
https://doi.org/10.1186/s13677-023-00453-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparative+analysis+of+metaheuristic+load+balancing+algorithms+for+efficient+load+balancing+in+cloud+computing&btnG=
https://link.springer.com/article/10.1186/s13677-023-00453-3
https://doi.org/10.1109/ACCESS.2020.3024113
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modeling+an+optimized+approach+for+load+balancing+in+cloud&btnG=
https://ieeexplore.ieee.org/abstract/document/9195873
https://doi.org/10.22266/ijies2020.0630.38
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+efficient+load+balancing+technique+based+on+cuckoo+search+and+firefly+algorithm+in+cloud&btnG=
https://inass.org/2020/2020063038.pdf
https://inass.org/2020/2020063038.pdf
https://doi.org/10.1002/cpe.6888
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Load+balancing+in+cloud+using+improved+gray+wolf+optimizer&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6888
https://doi.org/10.3390/sym15051025
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+genetic+algorithm-based+virtual+machine+allocation+policy+for+load+balancing+using+actual+asymmetric+workload+traces&btnG=
https://www.mdpi.com/2073-8994/15/5/1025
https://doi.org/10.1007/s41870-023-01340-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ACBSO%3A+a+hybrid+solution+for+load+balancing+using+ant+colony+and+bird+swarm+optimization+algorithms&btnG=
https://link.springer.com/article/10.1007/s41870-023-01340-5
https://doi.org/10.1016/j.jestch.2021.04.014
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+multi-objective+approach+for+energy-efficient+and+reliable+dynamic+VM+consolidation+in+cloud+data+centers&btnG=
https://www.sciencedirect.com/science/article/pii/S221509862100104X
https://doi.org/10.1016/j.jksuci.2020.11.001
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+extended+intelligent+water+drop+approach+for+efficient+VM+allocation+in+secure+cloud+computing+framework&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+extended+intelligent+water+drop+approach+for+efficient+VM+allocation+in+secure+cloud+computing+framework&btnG=
https://www.sciencedirect.com/science/article/pii/S1319157820305267
https://doi.org/10.1109/ACCESS.2023.3276292
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Genetic-based+virtual+machines+consolidation+strategy+with+efficient+energy+consumption+in+cloud+environment&btnG=
https://ieeexplore.ieee.org/abstract/document/10124190
https://doi.org/10.1080/00051144.2023.2196116
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Uniform+distribution+elephant+herding+optimization+%28UDEHO%29+based+virtual+machine+consolidation+for+energy-efficient+cloud+data+centres&btnG=
https://hrcak.srce.hr/315770
https://doi.org/10.1016/j.procs.2023.12.131
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dynamic+virtual+machine+consolidation+in+the+cloud%3A+A+cuckoo+search+approach&btnG=
https://www.sciencedirect.com/science/article/pii/S1877050923021361
https://doi.org/10.3390/math12121845
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+Resource+Management+in+Cloud+Environments%3A+A+Modified+Feeding+Birds+Algorithm+for+VM+Consolidation&btnG=
https://www.mdpi.com/2227-7390/12/12/1845
https://doi.org/10.1371/journal.pone.0289156
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Harris+Hawk+Optimisation+system+for+energy+and+resource+efficient+virtual+machine+placement+in+cloud+data+centers&btnG=
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0289156
https://doi.org/10.1007/s10586-023-04040-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MOM-VMP%3A+multi-objective+mayfly+optimization+algorithm+for+VM+placement+supported+by+principal+component+analysis+%28PCA%29+in+cloud+data+center&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MOM-VMP%3A+multi-objective+mayfly+optimization+algorithm+for+VM+placement+supported+by+principal+component+analysis+%28PCA%29+in+cloud+data+center&btnG=
https://link.springer.com/article/10.1007/s10586-023-04040-8


E. Suganthi & F. Kurus Malai Selvi / IJECE, 12(3), 179-189, 2025 

189 

[21] Abhishek Kumar Pandey, and Sarvpal Singh, “An Energy Efficient Particle Swarm Optimization Based VM Allocation for Cloud Data 

Centre: EEVMPSO,” EAI Endorsed Transactions on Scalable Information Systems, vol. 10, no. 5, pp. 1-15, 2023. [CrossRef] [Google 

Scholar] [Publisher Link] 

[22] Rsmbabu Medara, and Ravi Shankar Singh, “Dynamic Virtual Machine Consolidation in a Cloud Data Center Using Modified Water Wave 

Optimization,” Wireless Personal Communications, vol. 130, pp. 1005-1023, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[23] Chaoze Lu, Jianchao Zhou, and Qifeng Zou, “An Optimized Approach for Container Deployment Driven by a Two-Stage Load Balancing 

Mechanism,” PloS One, vol. 20, no. 1, pp. 1-32, 2025. [CrossRef] [Google Scholar] [Publisher Link] 

[24] Jyotsna P. Gabhane, Sunil Pathak, and Nita Thakare, “An Improved Multi-Objective Eagle Algorithm for Virtual Machine Placement in 

Cloud Environment,” Microsystem Technologies, vol. 30, pp. 489-501, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[25] Zhihua Li et al., “Resource-Efficient and Quality-Aware Virtual Machine Consolidation Method,” Journal of Grid Computing, vol. 23, 

2025. [CrossRef] [Google Scholar] [Publisher Link] 

[26] M. Menaka, and K.S. Senthil Kumar, “Supportive Particle Swarm Optimization with Time-Conscious Scheduling (SPSO-TCS) Algorithm 

in Cloud Computing for Optimized Load Balancing,” International Journal of Cognitive Computing in Engineering, vol. 5, pp. 192-198, 

2024. [CrossRef] [Google Scholar] [Publisher Link] 

[27] Ruifeng Ma et al., “Qora: Neural-Enhanced Interference-Aware Resource Provisioning for Serverless Computing,” IEEE Transactions on 

Automation Science and Engineering, pp. 1-16, 2025. [CrossRef] [Google Scholar] [Publisher Link] 

[28] Harpreet Kaur et al., “Enhanced K-Means Clustering of Tasks and Virtual Machines for Load Balancing in Fog Environment,” 13th 

International Conference on System Modeling & Advancement in Research Trends (SMART), Moradabad, India, pp. 565-570, 2024. 

[CrossRef] [Google Scholar] [Publisher Link] 

[29] Farheen Bano et al., “A Levelized Multiple Workflow Heterogeneous Earliest Finish Time Allocation Model for Infrastructure as a Service 

(IaaS) Cloud Environment,” Algorithms, vol. 18, no. 2, pp. 1-31, 2025. [CrossRef] [Google Scholar] [Publisher Link] 

[30] Xuehan Li et al., “Two-Stage Offloading for an Enhancing Distributed Vehicular Edge Computing and Networks: Model and Algorithm,” 

IEEE Transactions on Intelligent Transportation Systems, vol. 25, no. 11, pp. 17744-17761, 2024. [CrossRef] [Google Scholar] [Publisher 

Link] 

[31] Feng Zhang, “Design of Automated Container Layout and Resource Optimization Algorithm Based on Cloud Computing Technology,” 

International Conference on Mechatronics and Intelligent Control, Wuhan, China, vol. 13447, 2025. [CrossRef] [Google Scholar] 

[Publisher Link] 

[32] Lilu Zhu et al., “Two-Stage Learning Approach for Semantic-Aware Task Scheduling in Container-Based Clouds,” IEEE Transactions on 

Cloud Computing, vol. 13, no. 1, pp. 148-165, 2025. [CrossRef] [Google Scholar] [Publisher Link] 

[33] Peisong Li et al., “Reinforcement Learning Based Edge-End Collaboration for Multi-Task Scheduling in 6G Enabled Intelligent 

Autonomous Transport Systems,” IEEE Transactions on Intelligent Transportation Systems, pp. 1-14, 2025. [CrossRef] [Google Scholar] 

[Publisher Link] 

[34] Fahimeh Farahnakian et al., “Using Ant Colony System to Consolidate VMs for Green Cloud Computing,” IEEE Transactions on Services 

Computing, vol. 8, no. 2, pp. 187-198, 2015. [CrossRef] [Google Scholar] [Publisher Link] 

[35] Lianpeng Li et al., “SLA-Aware and Energy-Efficient VM Consolidation in Cloud Data Centers Using Robust Linear Regression Prediction 

Model,” IEEE Access, vol. 7, pp. 9490-9500, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[36] Fagui Liu et al., “A Virtual Machine Consolidation Algorithm Based on Ant Colony System and Extreme Learning Machine for Cloud Data 

Center,” IEEE Access, vol. 8, pp. 53-67, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[37] Zhenrui Peng et al., “Modification of Fish Swarm Algorithm based on Levy Flight and Firefly Behavior,” Computational Intelligence and 

Neuroscience, vol. 2018, no. 1, pp. 1-13, 2018. [CrossRef] [Google Scholar] [Publisher Link] 

[38] Zoltan Adam Mann, and Mate Szabó, “Which is the Best Algorithm for Virtual Machine Placement Optimization?,” Concurrency and 

Computation: Practice and Experience, vol. 29, no. 10, 2017. [CrossRef] [Google Scholar] [Publisher Link] 

[39] Zhoujun Ma et al., “Virtual Machine Migration Techniques for Optimizing Energy Consumption in Cloud Data Centers,” IEEE Access, vol. 

11, pp. 86739-86753, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[40] S. Supreeth, and Kirankumari Patil, “VM Scheduling for Efficient Dynamically Migrated Virtual Machines (VMS-EDMVM) in Cloud 

Computing Environment,” KSII Transactions on Internet and Information Systems (TIIS), vol. 16, no. 6, pp. 1892-1912, 2022. [CrossRef] 

[Google Scholar] [Publisher Link] 

[41] Yifan Shao et al., “A Dynamic Virtual Machine Resource Consolidation Strategy Based on a Gray Model and Improved Discrete Particle 

Swarm Optimization,” IEEE Access, vol. 8, pp. 228639-228654, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

 

https://doi.org/10.4108/eetsis.3254
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Energy+Efficient+Particle+Swarm+Optimization+based+VM+Allocation+for+Cloud+Data+Centre%3A+EEVMPSO&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Energy+Efficient+Particle+Swarm+Optimization+based+VM+Allocation+for+Cloud+Data+Centre%3A+EEVMPSO&btnG=
https://publications.eai.eu/index.php/sis/article/view/3254
https://doi.org/10.1007/s11277-023-10317-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dynamic+virtual+machine+consolidation+in+a+cloud+data+center+using+modified+water+wave+optimization&btnG=
https://link.springer.com/article/10.1007/s11277-023-10317-3
https://doi.org/10.1371/journal.pone.0317039
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+optimized+approach+for+container+deployment+driven+by+a+two-stage+load+balancing+mechanism&btnG=
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0317039
https://doi.org/10.1007/s00542-023-05422-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+improved+multi-objective+eagle+algorithm+for+virtual+machine+placement+in+cloud+environment&btnG=
https://link.springer.com/article/10.1007/s00542-023-05422-z
https://doi.org/10.1007/s10723-024-09793-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Resource-Efficient+and+Quality-Aware+Virtual+Machine+Consolidation+Method&btnG=
https://link.springer.com/article/10.1007/s10723-024-09793-z
https://doi.org/10.1016/j.ijcce.2024.05.002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Supportive+particle+swarm+optimization+with+time-conscious+scheduling+%28SPSO-TCS%29+algorithm+in+cloud+computing+for+optimized+load+balancing&btnG=
https://www.sciencedirect.com/science/article/pii/S2666307424000160
https://doi.org/10.1109/TASE.2025.3526197
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Qora%3A+Neural-Enhanced+Interference-Aware+Resource+Provisioning+for+Serverless+Computing&btnG=
https://ieeexplore.ieee.org/abstract/document/10843098
https://doi.org/10.1109/SMART63812.2024.10882480
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhanced+K-means+Clustering+of+Tasks+and+Virtual+Machines+for+Load+Balancing+in+Fog+Environment&btnG=
https://ieeexplore.ieee.org/abstract/document/10882480
https://doi.org/10.3390/a18020099
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Levelized+Multiple+Workflow+Heterogeneous+Earliest+Finish+Time+Allocation+Model+for+Infrastructure+as+a+Service+%28IaaS%29+Cloud+Environment&btnG=
https://www.mdpi.com/1999-4893/18/2/99
https://doi.org/10.1109/TITS.2024.3424852
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Two-Stage+Offloading+for+an+Enhancing+Distributed+Vehicular+Edge+Computing+and+Networks%3A+Model+and+Algorithm&btnG=
https://ieeexplore.ieee.org/abstract/document/10599096
https://ieeexplore.ieee.org/abstract/document/10599096
https://doi.org/10.1117/12.3045930
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+of+automated+container+layout+and+resource+optimization+algorithm+based+on+cloud+computing+technology&btnG=
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/13447/1344708/Design-of-automated-container-layout-and-resource-optimization-algorithm-based/10.1117/12.3045930.short
https://doi.org/10.1109/TCC.2024.3520101
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Two-Stage+Learning+Approach+for+Semantic-Aware+Task+Scheduling+in+Container-Based+Clouds&btnG=
https://ieeexplore.ieee.org/abstract/document/10810299
https://doi.org/10.1109/TITS.2024.3525356
https://scholar.google.com/scholar?q=Reinforcement+Learning+Based+Edge-End+Collaboration+for+Multi-Task+Scheduling+in+6G+Enabled+Intelligent+Autonomous+Transport+Systems&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/abstract/document/10843979
https://doi.org/10.1109/TSC.2014.2382555
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Using+ant+colony+system+to+consolidate+VMs+for+green+cloud+computing&btnG=
https://ieeexplore.ieee.org/abstract/document/6998956
https://doi.org/10.1109/ACCESS.2019.2891567
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SLA-aware+and+energy-efficient+VM+consolidation+in+cloud+data+centers+using+robust+linear+regression+prediction+model&btnG=
https://ieeexplore.ieee.org/abstract/document/8606094
https://doi.org/10.1109/ACCESS.2019.2961786
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+virtual+machine+consolidation+algorithm+based+on+ant+colony+system+and+extreme+learning+machine+for+cloud+data+center&btnG=
https://ieeexplore.ieee.org/abstract/document/8939445
https://doi.org/10.1155/2018/9827372
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modification+of+fish+swarm+algorithm+based+on+levy+flight+and+firefly+behavior&btnG=
https://onlinelibrary.wiley.com/doi/full/10.1155/2018/9827372
https://doi.org/10.1002/cpe.4083
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Which+is+the+best+algorithm+for+virtual+machine+placement+optimization%3F&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4083
https://doi.org/10.1109/ACCESS.2023.3305268
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Virtual+machine+migration+techniques+for+optimizing+energy+consumption+in+cloud+data+centers&btnG=
https://ieeexplore.ieee.org/abstract/document/10216971
https://doi.org/10.3837/tiis.2022.06.007
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=VM+scheduling+for+efficient+dynamically+migrated+virtual+machines+%28VMS-EDMVM%29+in+cloud+computing+environment&btnG=
https://koreascience.kr/article/JAKO202219957315248.page
https://doi.org/10.1109/ACCESS.2020.3046318
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+dynamic+virtual+machine+resource+consolidation+strategy+based+on+a+gray+model+and+improved+discrete+particle+swarm+optimization&btnG=
https://ieeexplore.ieee.org/abstract/document/9301299

