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Abstract - Precision agriculture is a globally growing practice that requires accurate soil health assessment. The health of the 

soil is characterized by parameters such as pH and nutrients like NPK. Soil testing is very important to predict crop yield and 

manage fertilizers and pesticides. Traditionally, soil testing methods were time and resource-intensive, often leading to delays. 

This discouraged farmers from conducting regular soil tests. We propose a machine learning-based application for rapid soil 

analysis. We have utilized 7000 soil images paired with their corresponding laboratory-tested results. These samples were used 

to train our CNN (Convolutional Neural Network) model to identify soil properties from images. The machine learning model 

ensures accuracy and robustness as it has been trained under various lighting conditions. Preliminary evaluations indicate an 

average prediction variance of 0.02 pH units, 1.5 kg/ha for N, 0.8 kg/ha for P, and 1.2kg/ha for K measured as the Mean Squared 

Error normalized by the range of actual nutrient values. This innovation aims to contribute to sustainable agricultural practices 

by making soil testing in real-time possible without the need for any extra equipment or expertise. 

Keywords - Feature extraction, Image processing, Pattern recognition, Remote sensing, Segmentation.  

1. Introduction  
In Permanent farmland, soil nutrients deplete gradually 

due to continuous cropping. One approach to restoring the soil 

nutrients is to leave the soil fallow, allowing organic matter 

from previous harvests to decompose and naturally replenish 

nutrient levels. However, this method is time-consuming and 

impractical for modern agricultural systems, which demand 

higher productivity. A more commonly practised approach is 

the application of fertilizers, and with the increasing demand 

for higher crop yields and declining soil quality, fertilization 

has become widespread. [1] Applying the correct amount of 

fertilizer is crucial for crop yield, and evaluating what 

fertilizer needs to be applied and what amount of soil fertility 

must be thoroughly checked. [2, 3] Excessive or improper use 

can lead to soil toxicity, reduced fertility, and environmental 

pollution [4]. Historically, farmers relied on traditional 

knowledge passed down through generations, but scientific 

advancements have revolutionized soil management. 

Nowadays, various methods for soil testing are available, one 

of which is a Soil Testing Kit (STK), which is easily available 

in the market or can be purchased online. This approach relies 

on color matching after the chemical treatment of soil to 

identify soil pH and macronutrients (NPK). The accuracy of 

the result depends on the user’s ability to interpret the color 

change in such cases [5]. Other methods for soil testing 

involve optical sensing and electrochemical sensing. Optical 

methods measure reflected wavelengths after light is reflected 

from the soil. The electrochemical method uses changes in 

electrical signals by ion concentrations in the soil to measure 

soil properties [6]. Near Infrared Spectroscopy, Diffuse 

Reflectance Spectroscopy and Attenuated Total Reflectance 

Spectroscopy are some spectroscopy techniques utilized for 

soil nutrient detection [7-9]. Electrochemical spectroscopy, on 

the other hand, uses ion-selective field effect transistors or ion-

selective electrodes [10-12]. Soil testing has become an 

essential tool for assessing soil health.  
 

To address the need for even quicker and more accessible 

soil testing, we propose a technology-driven solution using 

image processing and machine learning. This method offers a 

free, accurate, and user-friendly approach that delivers real-

time results [13]. Such solutions can motivate farmers to test 

their soil before applying fertilizers, saving time and reducing 

costs while minimizing environmental impact.  
 

Key nutrients to test include pH and NPK (Nitrogen, 

Phosphorus, and Potassium). Soil pH measures the hydrogen 

ion concentration and determines the acidity, alkalinity or 

neutrality of soil. It is crucial for soil health, as the availability 

of essential nutrients depends on pH [14]. A pH range of 6.5 

to 7.5 is considered neutral, ideal for most crops. Values above 

7.5 indicate alkalinity, while values below 6.5 indicate acidity. 

When soil is too acidic, the availability of nutrients like 

Phosphorus (P) decreases, while toxic elements such as 

Aluminum (Al) and Manganese (Mn) increase, adversely 

affecting plant growth. Similarly, nutrients become less 

available in highly alkaline soils, impacting crop yields. Thus, 

maintaining a neutral pH is critical for optimal plant growth 

and nutrient uptake [15]. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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1.1. Literature Review 

To address the challenges of soil testing in 2020, Rahman 

et al. used various IoT sensors to read moisture, water levels, 

pH, temperature, and humidity. They display this information 

on a cloud-based dashboard that the farmer can use to make 

decisions related to farming. They additionally provided 

security by using a laser shield on the farm [16]. However, the 

system is effective, but it does not provide macro nutrient 

information. Integrating Convolutional Neural Networks 

(CNNs) in soil testing has significantly advanced the precision 

and efficiency of soil property analysis. Fernandez et al. also 

conducted a study to improve farming in 2020, wherein they 

developed a system to conserve water. The system developed 

was an energy-efficient system that used low-power sensors 

and solar energy to supply only the needed amount of water 

[17]. This system also does not provide soil testing results 

required to decide optimal crop and fertilizer requirements.  

 

In 2021, Montanez et al. developed a prototype for soil 

testing that provided NPK results. They also provided crop 

and fertilizer recommendations based on results [13]. The 

system we have proposed, however, reduces the need for any 

soil testing device and makes soil testing even more 

convenient. Other studies conducted in the field of smart 

farming were related to optimizing irrigation using big data 

analytics, remote sensing and neural networks, like work done 

by Rabhi et al. in 2021 [18]. Varsitha et al. also conducted a 

study emphasizing the need to provide farmers with Artificial 

Intelligence powered solutions. Using IoT and deep learning, 

they predicted soil fertility based on features like NPK, pH, 

organic carbon, and moisture. They further suggested crops 

and nutrients based on the analysis done. They also compared 

the accuracy of various machine learning classifiers [19]. In 

2022, Varshitha et al. further improved their work using 

bootstrap aggregation regression and ensemble machine 

learning techniques to check soil fertility [20]. The study also 

compared various regression methods that could be useful to 

future researchers. In 2023, Shanmugan et al. used historical 

information to forecast yield using LSTM time series analysis. 

To make predictions, they analyzed a large dataset comprising 

weather data, soil nutrient information, and season and past 

yield information [21]. Later, in 2023, Karthikeyan et al. 

proposed a system to monitor soil pH and irrigation by 

combining drones with multispectral imaging and IoT sensors. 

They also integrated a triboelectric nanogenerator for a 

sustainable energy source [22]. Rahim et al. 2023 proposed a 

system for soil monitoring and automated irrigation using IoT, 

and their proposed system effectively reduces 35% water need 

[23]. Rumiche-Cardenas et al. 2025 used IoT to monitor the 

weather for small to medium-scale farms. It was a very 

efficient system that provided alerts to farmers depending on 

the weather to optimize farming [24]. According to the 

literature, previous studies require expensive equipment, 

focus on specific soil properties, and do not provide image-

based soil analysis. Our approach reduces the need for costly 

equipment and makes it likely to be adopted by farmers.  

 

Our paper is divided into an introduction, which discusses 

the background of the research. The research gap and section 

cover the methodology, which discusses our research method, 

results, and discussion. Lastly, a conclusion that discusses the 

limitations and future scope in this field of research is 

presented. 

 

 

2. Methodology 
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2.1. Data Collection 

The data collection was done in two parts: firstly, we 

collected soil samples; secondly, we collected soil images and 

soil test results (NPK and pH) from the laboratory. Below is a 

detailed description of both.  

 

2.1.1. Soil Sampling  
Table 1. Soil sampling locations of Dehradun Uttarakhand and area 

type 

Area type Location 

Agricultural land 

Doiwala, Rishikesh 

outskirts, Vikasnagar, 

Harrawala, Sahaspur. 

Forest areas 

Rajaji National Park, 

Mussoorie forest division, 

Lachhiwala Nature Park. 

Urban and semi-urban areas 

Dehradun city (Race 

Course, Rajpur Road), 

FRI campus and local 

parks like Gandhi Park. 

Hilly and sloped regions 
Mussoorie, Maldevta, and 

Chakrata region. 

Riverbanks and floodplains 
Banks of River Ganga, 

Song River, Tons River. 

Industrial zones 
Selaqui industrial area, 

Bhagwanpur. 

Degraded and barren lands 

Areas near Raipur and 

regions affected by 

deforestation or mining. 

 

Different soil locations were gathered to ensure a 

comprehensive analysis of soil conditions across the 

Dehradun region in Uttarakhand, India. It is a state situated 

near the Himalayas. We collected samples from these 

locations, including agricultural lands, particularly farms 

growing common crops such as wheat, rice, and sugarcane, to 

study cultivated soil characteristics.  
 

Samples from forest areas were included to analyze 

natural, undisturbed soil conditions, providing a baseline for 

comparison. Samples were collected from urban and semi-

urban areas to understand the impact of urbanization. Soil 

from hilly and sloped terrains and high altitudes were sampled 

to examine erosion and nutrient leaching.  
 

Sampling near rivers provided insights into nutrient 

deposition and sedimentation processes. Soil from industrial 

zones was collected to assess the influence of industrial 

activities, while barren lands were sampled to evaluate soil 

restoration needs.  
 

All samples were collected following the sampling 

guidelines provided by the Indian Agricultural Research 

Institute. Each soil sample was labelled with a unique number, 

including details of the location of the collection site and date. 

The labelled samples were securely packed and transported to 

the soil testing laboratory for further analysis. 

 
Fig. 2 Collection of soil samples and testing in the lab 

 

2.1.2. Images and Soil Test Results 

The dataset for image processing was created to enable 

the identification of soil macronutrients and pH using image 

processing. High-resolution images of the prepared soil 

samples were captured using a digital camera under controlled 

lighting conditions to maintain uniformity. Consistent lighting 

and background settings are critical for reducing noise in 

image-based data collection. The images were taken against a 

neutral background to minimize interference, and multiple 

angles were captured for each sample to account for texture 

variability, as suggested in a similar study on soil texture 

analysis. Each image was assigned a unique identification 

number. We created a CSV to store the location, unique 

identification number, and corresponding pH and NPK values 

obtained from laboratory analysis of the soil sample. This 

mapping ensures a clear association between the visual data 

and the chemical properties of the soil. The labelled dataset 

was organized systematically, with directories categorizing 

the images based on soil type, nutrient levels, and pH values. 

This comprehensive dataset, containing unique image 

identifiers and corresponding laboratory-tested values, serves 

as the foundation for training, validating, and testing machine 

learning models designed for soil nutrient and pH prediction. 

 

2.2. Data Preprocessing 

2.2.1. Image Data Preprocessing 

To standardize the input size for the model, pictures were 

resized to a dimension of 224 x 224 pixels. Pixels were scaled 

to a range of [0, 1] by dividing each value by 255 for 

normalizing. This normalization improved training efficiency. 

Data was augmented using random rotations (e.g., ±20 

degrees), horizontal and vertical flips, random zoom-in and 

zoom-out and adjustments in brightness and contrast. 

 

2.2.2. CSV Dataset Preprocessing 

The CSV dataset contained structured data, including soil 

properties and labels. The preprocessing involved handling 

missing values, data cleaning and feature scaling. Handling 

missing values for numerical values (e.g., NPK levels and pH) 

was done by imputing using mean or median values; for 

categorical labels (e.g., soil type), imputing using the mode 

was done. For data cleaning, duplicates were removed to 

ensure each sample was represented only once. After that, 

outliers in continuous variables (NPK levels, pH) were 

handled using statistical methods like z-score or IQR 

(interquartile range). For feature scaling, continuous features 

(NPK and pH values) were scaled using z-score 

normalization: 
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𝑧 =
𝑥 − 𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

 

This ensured all features were on a comparable scale, 

improving model performance; for label encoding, Soil type 

labels were encoded as integers for classification models (e.g., 

0 for alluvial, 1 for black, etc.). For multiclass classification, 

one-hot encoding was applied to generate binary vectors for 

each class. For feature engineering additional features, such as 

categorical labels for nutrient levels (e.g., "low," "medium," 

"high"), were derived from the continuous NPK values using 

predefined thresholds. The dataset was divided into three sets, 

70%, 15%, and 15%, in train test and validate subsets while 

ensuring a balanced distribution of labels. For the integration 

of image and CSV data, the processed images and pre-

processed CSV data were merged into a unified dataset using 

the unique sample identifiers as keys. This integration enabled 

machine learning models to leverage both structured (NPK, 

pH) and unstructured (image features) data.  

 
Table 2. The final dataset ready for training, consisted of the following 

Image Features 
Representing visual patterns in soil 

samples. 

Structured 

Features 

Scaled NPK and pH values, along 

with encoded categorical labels. 

Target Labels 
Soil classification labels for 

supervised learning. 

 

This preprocessing cleaned the data and made it 

consistent and suitable for soil classification and nutrient 

prediction. 

 

2.2.3. Machine Learning Algorithm 

A CNN-based machine learning model was designed to 

predict the four target variables (pH, N, P, K). CNNs are 

suitable for image-based learning as they are good at 

extracting hierarchical spatial features efficiently. The 

architecture comprised:  

1. Three convolutional layers with ReLU activation and 

batch normalization to extract spatial features from soil 

images. 

2. MaxPooling layers to reduce the spatial dimensions and 

prevent overfitting. 

3. Dropout layers for regularization, ensuring better 

generalization. 

4. A GlobalAveragePooling2D layer to reduce parameters 

before the fully connected layer. 

5. Dense layers for prediction, with the final output layer 

designed for four continuous variables (N, P, K, and pH). 

 

2.2.4. Model Training and Validation 

After the model training was done, the model was 

evaluated based on the mean squared error loss function and 

mean absolute error metric. Model optimization using Adam 

optimizer. For validation we have compared the results of pH 

and NPK obtained by our model with those that came from the 

laboratory. The average difference between both was minimal, 

indicating high model accuracy. For pH, the average 

difference was approximately 0.02 units, with a predicted 

range of 6.40–7.20 compared to the laboratory range of 6.42–

7.22. Similarly, the average deviation for Nitrogen (N) was 1.5 

kg/ha, with predicted values ranging from 140–150 kg/ha 

compared to laboratory values of 141.5–151.5 kg/ha. For 

Phosphorus (P), the average deviation was 0.8 kg/ha, and for 

Potassium (K), it was 1.2 kg/ha. The model generates accurate 

predictions that are close to laboratory findings as per the 

results. 

 

3. Results and Discussion  
3.1. Comparison with Existing Methods 

The performance of the CNN model was compared 

against other machine learning approaches, including Linear 

Regression, which is a baseline model to establish simple 

relationships between image-derived features and nutrient 

values, Support Vector Regression (SVR), which is used for 

its ability to model complex relationships with kernel-based 

transformations, Random Forest Regressor which does not 

rely on specific parameters ensemble method that is capable 

of managing complex non-linear relationships, Gradient 

Boosting Machines (GBM) which is an advanced ensemble 

method known for its predictive accuracy and lastly 

Convolutional Neural Network (CNN) which outperformed 

all other tested approaches. The results in Table 2 demonstrate 

CNN's superior capability in leveraging spatial features from 

soil images. 

 
Table 3. Model comparison 

1. MODEL 2. MSE 3. R² 

4. Linear Regression 5. 7.45 6. 0.72 

7. Support Vector 

Regression (SVR) 

8. 6.20 9. 0.78 

10. Random Forest 

Regressor 

11. 5.12 12. 0.85 

13. Gradient 

Boosting 

Machines (GBM) 

14. 5.34 15. 0.83 

16. Convolutional 

Neural Network 

(CNN) 

17. 4.67 18. 0.89 

 

3.2. Model Performance  

Each model was assessed using MSE, which determines 

the average squared values among predicted and actual values, 

and (R²) Score, which determines how well the model 

accounts for variability in the target data. 

 

The CNN model outperformed all the other tested 

approaches, achieving the lowest Mean Squared Error and the 

highest R squared value. This demonstrates the effectiveness 

of CNNs in leveraging information from soil images for 

accurate nutrient prediction. Ensemble methods like Random 
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Forest and GBM showed competitive performance but were 

less effective in capturing intricate patterns compared to CNN. 

 

The relationships between the features and soil nutrient 

levels are analyzed through correlation analysis. Figure 3 

displays the heatmap as evidence of strong or weak 

correlations. Correlation heatmaps highlight any surprising 

insights or confirmatory findings. 

 

 
Fig. 3 Correlation heatmap for soil features and nutrients 

 

The heatmap in Figure 1 to visualize how strongly the 

actual and predicted values are related for each parameter (N, 

P, K, and pH). The heatmap shows a high correlation (values 

close to 1), indicating that the model predictions are closely 

aligned with actual values. This demonstrates the model’s 

effectiveness in capturing the patterns in data. 

 

Figure 4 presents the scatter plot to show the relationship 

between actual and predicted values. It mentions how well the 

forecasts match with the ground truth for N, P, K, and pH. It 

also discusses R2 values for each nutrient and the model’s 

overall accuracy.  

 
Fig. 4 Scatter plot of actual vs Predicted values for soil nutrients 

The purpose of this scatter plot in Figure 4 is to compare 

actual values with predicted values. Accurate predictions are 

indicated by data points near the diagonal line y=x. Each 

parameter (N, P, K, pH) is represented by a distinct color, and 

the tight clustering of points around the line confirms high 

prediction accuracy. 

 

Figure 5 uses the residual distribution to discuss the error 

distribution and how closely the actual values match the 

predicted values. It emphasizes minimal residuals, if 

applicable, indicating high performance. 

 

The purpose of Figure 5 is to analyze the error (residuals) 

between actual and predicted values. A residual cantered 

around zero with minimal spread indicates that the model has 

minimal bias and low prediction errors. The smooth, narrow 

distribution confirms good model calibration. 

 

Fig. 5 Residual distribution of model predictions 

 

Figure 6 summarizes the model’s performance using the 

bar chart. It discusses each nutrient's metrics, such as MSE, 

MAE, and R². It also highlights the model's strengths in 

nutrient prediction. 

 

 
Fig. 6 Performance metrics for soil nutrient prediction model 
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The purpose of Figure 6 is to summarize model 

assessment criteria. For MSE, a low value (25.10) shows that 

the mean squared error between predicted and actual values is 

small. For R squared, a high value (0.97) signifies that the 

model explains 97% of the variance in the target variables (N, 

P, K, pH), demonstrating strong predictive power. 

 

This research demonstrates the feasibility of using image 

processing and CNN models for accurate soil nutrient and pH 

detection, enabling precision agriculture practices. 

 

4. Conclusion  
As a result of our study, we have created a machine 

learning model that can test soil in real time. Our model was 

compared with various other models to check its performance. 

This model offers real-time soil testing results for practical 

applications. Our model is evaluated against two studies, and 

the results show that the ML method used can deliver a better 

accuracy from 2.88 to 12.67 %.  

 

Even though we ran a number of tests, there is still an 

opportunity for more research and development using a 

variety of deep learning models. We will also work with 

datasets from other cities and states in the future to expand our 

research. 

 

The study was limited to the soil of Dehradun 

Uttarakhand, but we can expand our research to other areas; 

we can also add more features to our model like prediction of 

other soil macro and micronutrients along with fertilizer 

recommendation, crop recommendation, irrigation-related 

information and much more.  
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