
SSRG International Journal of Electronics and Communication Engineering                                              Volume 12 Issue 4, 8-18, April 2025 

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12I4P102                                                         © 2025 Seventh Sense Research Group®           

 

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article 

Robust Epileptic Seizure Recognition using 

Dimensionality Reduction with Deep Learning on EEG 

Signals 
 

R. Selvam1, R. Mahalakshmi2 

1Department of Computer Science, School of Computing Sciences, Vels Institute of Science, 

 Technology and Advanced Studies, Chennai, Tamilnadu, India. 
2Department of Computer Applications, School of Computing Sciences, Vels Institute of Science, Technology and Advanced 

Studies, Chennai, Tamilnadu, India. 

1Corresponding Author : selvam78@gmail.com  

  

Received: 01 February 2025 Revised: 03 March 2025 Accepted: 04 April 2025 Published: 29 April 2025 

 

Abstract - An epileptic seizure is a sudden surge of electrical activity in the brain, disrupting normal brain function and often 

resulting in loss of consciousness or convulsions. The most important diagnostic test for epilepsy is the Electroencephalogram 

(EEG). Usually, the recognition of epileptic activity is based on finding specific patterns in the multimodal EEG and is done by 

the human expert. This is a time-consuming and difficult process; therefore, numerous attempts have been made to automate it 

using both Deep Learning (DL) and conventional methods. Epileptic seizure detection using DL includes training neural 

networks for analyzing the EEG signal and detecting patterns indicative of seizures with a high level of accuracy for earlier 

diagnosis and treatment. This study introduces a Robust Epileptic Seizure Recognition using Metaheuristics-based 

Dimensionality Reduction with Deep Learning (RESR-MDRDL) technique on EEG signals. The RESR-MDRDL technique 

concentrates on accurately identifying epileptic seizures utilizing EEG signals. In a preliminary stage, the RESR-MDRDL 

technique performs data pre-processing to standardize the input data. Also, a Salp Swarm Algorithm (SSA)-based technique is 

utilized for optimum Feature Selection (FS). For seizure recognition, the RESR-MDRDL technique employs a Deep Autoencoder 

(DAE) model, and its efficiency is improved using a Tunicate Swarm Algorithm (TSA). The simulation of the RESR-MDRDL 

methodology is examined by using an EEG dataset. The experimental validation of the RESR-MDRDL methodology indicated a 

superior accuracy value of 94.14% over existing techniques. 

Keywords - Epileptic seizure, Metaheuristics,  EEG signals,  Tunicate Swarm Algorithm, Feature selection,  Deep learning.

1. Introduction 
There are numerous kinds of neurological disorders, 

namely degenerative, neurogenetic disorders, and convulsive 

diseases. Many convulsive disorders arise due to unequal 

electrical activity in the brain, which results in intense body 

shivering [1]. Even though seizures are fragments of epilepsy, 

not every seizure is an outcome of epilepsy. Worldwide, 

approximately 1% of the population suffers from epilepsy [2]. 

It is the most prevalent neurological condition, which is fatal, 

occurs repeatedly and is unpredictable. However, with the aid 

of medicines, epilepsy is prevented and surgical treatment 

when a patient doesn’t react to medicine [3]. EEG is a brain 

signal processing method that perceives the compound inner 

device of abnormal and normal brain waves. It is employed to 

analyze brain disease [4]. Almost epileptic seizures are an 

anomalous, automatic drive or modification of consciousness 

allied to anomalous EEG changes. Since epilepsy illustrates 

anomalous EEG signal variations, intra-cranial EEGs are 

employed to analyze, distinguish and categorize epileptic 

seizures [5]. Visual assessment for seizure recognition in EEG 

signals is time-consuming and leads to error. Therefore, a 

more accurate automatic structure for seizure recognition is 

vital. Machine Learning (ML) techniques are employed to 

predict epileptic seizures. On the other hand, DL methods 

become more general and have been discovered to be 

beneficial in assorted applications [6]. 

 

The FS task involves the exploration of an optimum 

feature sub-set, which signifies an assumed set of data and 

enlarges the classifiers' performance. FS technique provides 

numerous attractive benefits. Besides removing the irrelevant 

and redundant features, the developed feature sub-set, with 

fewer features, will not directly cut down computation time 

and cost [7]. Furthermore, the featured features are beneficial 

for data analysis and mining. The concluding output of the FS 

model will specify which features are significant in describing 
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the complete dataset. Noticeably, the word FS denotes the 

models that yield input features subset. In contrast, the word 

feature extraction involves the methods employed to originate 

novel features from the novel dataset [8]. This pre-processing 

stage is generally achieved over numerical changes. The dual 

above-mentioned words, FS and feature extraction are binarily 

allied but dissimilar study areas. This work attention to the 

prior algorithm [9]. Epileptic seizures pose a major health risk, 

mitigating accurate and timely detection for effective 

management. Conventional methods mainly rely on manual 

observation, which is error-prone. Automated systems 

utilizing advanced techniques like DL can provide reliable, 

real-time seizure detection, improving patient care and 

outcomes [10]. 

 

This study introduces a Robust Epileptic Seizure 

Recognition using Metaheuristics-based Dimensionality 

Reduction with Deep Learning (RESR-MDRDL) technique 

on EEG signals. The RESR-MDRDL technique concentrates 

on accurately identifying epileptic seizures utilizing EEG 

signals. In a preliminary stage, the RESR-MDRDL technique 

performs data pre-processing to standardize the input data. 

Also, a Salp Swarm Algorithm (SSA)-based technique is 

utilized for optimum Feature Selection (FS). For seizure 

recognition, the RESR-MDRDL technique employs a Deep 

Autoencoder (DAE) model, and its efficiency is improved 

using a Tunicate Swarm Algorithm (TSA). The simulation of 

the RESR-MDRDL methodology is examined by using an 

EEG dataset. The major contribution of the RESR-MDRDL 

method is listed below. 

 The RESR-MDRDL technique performs pre-processing 

by removing noise and irrelevant data, ensuring that the 

data is ready for additional analysis. This step improves 

the overall accuracy and efficiency of the seizure 

detection process. By refining the input data, the model 

can concentrate on more relevant patterns in the EEG 

signals. 

 The RESR-MDRDL model employs SSA-based feature 

selection to detect and prioritize the most crucial features 

from EEG signals. This method mitigates dimensionality 

and concentrates on relevant data, improving the model's 

processing speed and accuracy. By choosing the optimal 

features, the model improves its capability to detect 

seizures effectively. 

 The RESR-MDRDL method implements the DAE 

technique to recognize seizures by learning intrinsic 

patterns. This method improves the capability of the 

model to identify subtle and complex features within the 

signals. Capturing these patterns significantly enhances 

the accuracy of seizure classification. 

 The RESR-MDRDL methodology utilizes the TSA 

model for fine-tuning the hyperparameters of the 

technique, optimizing the learning process. This approach 

assists in improving the generalization capability of the 

model, resulting in more accurate and reliable results. 

Refining the hyperparameters enhances the overall 

performance of the system. 

 The RESR-MDRDL method's novelty stems from 

incorporating SSA-based feature selection, DAE-based 

seizure recognition, and TSA-based hyperparameter 

tuning into a unified framework. This integration 

optimizes the overall process, from feature extraction to 

classification, improving the model's efficiency and 

accuracy. By utilizing these advanced techniques, the 

method improves the performance of epileptic seizure 

detection. 

 

2. Related Works 
Pouryosef et al. [11] propose a pipeline built on genetic 

and Bat techniques for feature creation and size decrease of 

EEG signal. After the wavelet segmentation and extraction, 

the Bat model recognizes the most appropriate feature. This 

method employs these factors and a genetic model united with 

the neural networks model to mechanically categorize the 

parts of the EEG signal. In [12], the ensemble technique is 

measured for seizure identification and recognition. At first, 

Wavelet transform is utilized to remove the related feature. 

The factors are decreased utilizing Linear Discriminant 

Analysis (LDA). Divya and Devi [13] project a Hybrid Grey 

Wolf Optimizer-Improved Sine Cosine Algorithm with SVM 

(HGWOISCA-SVM) for classification. The EEG signal is 

mainly denoised by applying a more excellent wavelet 

threshold function. Next, three kinds of features are 

calculated. Then, the Enhanced Grasshopper Optimizer 

Algorithm (EGOA) was implemented to pick the optimum 

feature with a higher distinctive influence and decrease the 

dimensional. Lastly, the nominated features are sent to the 

model to distinguish the signals. In [14], a hyperparameter 

tuning with Zebra Optimizer Algorithm (ZOA) is presented to 

fine-tune features from EEG signals. Then, they are pre-

processed utilizing the swarm decomposition model. The 

removed features then experience hyperparameter tuning by 

employing ZOA tracked by FS utilizing Enhanced Spatial 

bound Whale Optimizer Algorithm (WOA) with the mixture 

of SSA hybridized with Lens Opposition-Based Learning 

(LOBL) device. The features attained from the selection 

model are then served to hyperparameter enhanced LSTM 

classifier. 

 

Thakare et al. [15] projected a novel hybrid technique to 

pick the optimum features that contain the PSO model, the 

recently Proposed Probabilistic PSO (PPSO) model and the 

Sequential Differential Evolution (SDE) method. The EEG 

data were employed to assess the model. Then, the features are 

removed by Discrete Wavelength Transform (DWT). Sharma 

and Meena [16] projected a new real model to enhance the 

recognition of attacks utilizing the spectral feature of non-

stationary signals. The DWT-based feature does not reflect the 

inter-relationship between modules of EEG signals. This 

inter-relationship was seized by the new EEG sign using the 

graph signal method. Next, GFT-based features were 

nominated and served into dissimilar classification algorithms 
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for analysis. Gowda et al. [17] presented an effectual 

identification of epileptic EEG signals utilizing the Improved 

Atomic Search Optimizer (IASO) model and the Random 

Search Strategy (RSS). The IASO is employed to pick suitable 

features, but it is more likely to improve the convergence rate. 

The RSS is presented to enhance the solution and create 

exploration skills. The raw data is pre-processed utilizing an 

adaptive filtering model. The IASO is applied to pick the 

related features, a simple identification procedure utilizing 

LSTM. Guhdar, Mstafa, and Mohammed [18] developed an 

automatic framework in order to improve patient care and 

address employment challenges faced by individuals with 

epilepsy. 

 

Ahmad et al. [19] introduce the Advanced Multi-View 

Deep Feature Learning (AMV-DFL) model by integrating 

FFT-based frequency domain features, raw time domain 

features, and 1D CNN-extracted deep features for improved 

EEG signal analysis. A multi-view forest classifier and SHAP 

explainability are utilized for robust classification and 

interpretation. Qin et al. [20] present an Adaptive Dual-

Modality Learning Model (ADML) method by incorporating 

time series imageries with a Transformer-based model. Prasad 

and Ramkumar [21] propose the Deep Neural Optimum 

Transformation (DNOT) method for epileptic seizure 

prediction, incorporating CNN for spatial feature extraction, 

LSTM for temporal modelling, and AutoEncoder for 

dimensionality reduction. Mekruksavanich, Phaphan, and 

Jitpattanakul [22] present a hybrid DL methodology by 

integrating DL models for optimized EEG pattern recognition. 

Kode, Elleithy, and Almazedah [23] present a novel approach 

to epileptic seizure detection by utilizing ML and DL methods 

on EEG signals, focusing on classifying time-series data with 

1D CNN and parameter tuning. Ghasemloo and Gholami [24] 

introduce a method for modelling preictal periods utilizing 

probabilistic dispersions and autoencoders, detecting change 

points in EEG signals. Mallick and Baths [25] introduce a 

novel epileptic seizure detection method using 1D 

Convolutional layers, Bidirectional LSTM, GRU, and 

Average pooling layers for extracting features, which are then 

passed through Dense layers for classification. Kumar and 

Upadhyay [26] propose a DL model integrating 1D-ResCNN 

with LAMB and AdamW optimization approaches to extract 

features from EEG data and accelerate convergence 

efficiently. Nikoupour, Keyvanpour, and Shojaedini [27] 

present a multi-label classification approach for epileptic 

seizures utilizing DL methods. 

 

Despite the progress in epileptic seizure detection 

utilizing various ML and DL methods, multiple challenges 

remain. Many approaches still face difficulty handling noisy 

or incomplete EEG data, restricting their generalization to 

real-world scenarios. Moreover, most models depend heavily 

on handcrafted features or fixed parameters, making them less 

adaptable to varying patient conditions. There is also a need 

for more effectual techniques to capture long-term 

dependencies in EEG signals and more robust methods for 

handling imbalanced datasets in seizure classification. 

Additionally, integrating real-time monitoring and 

personalized prediction remains an area for additional 

improvement. 

 

3. Methodology 
This work presents a new RESR-MDRDL approach to 

EEG signals. The technique concentrates on accurately 

identifying epileptic seizures utilizing EEG signals. Figure 1 

demonstrates the overall workflow of the RESR-MDRDL 

methodology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Overall workflow of the RESR-MDRDL methodology 
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3.1. Pre-Processing 

Initially, the RESR-MDRDL method employs a data pre-

processing stage to transform the input information into useful 

formats. Here, high—and low-level values are considered. 

Each piece of information is standardized in zero-to-one order. 

The leading cause simplifies the lowest value to zero and the 

highest values to one; however, it permits the values from zero 

to one. The Z-score normalization model is utilized for 

simplification purposes. 

3.2. FS Using SSA 

Next, the RESR-MDRDL technique designs an SSA-

based FS technique for selecting an optimum feature set. 

Mirjalili et al., 2017, proposed SSA, a nature-inspired 

approach that emulates the swarm behaviours of salps in the 

Deep Ocean [28]. Similar to jellyfish, salps form a group 

known as a salp chain. 

 

The salp chain has a leader and followers. 

Step 1: Randomly produce the initial salp in the search space 

between the bounds of the variable: 

 

𝑆(𝑗, 𝑖) = 𝑟𝑎𝑛𝑑(𝑗, 1) ∗ (𝑈𝑃−𝑖 − 𝐿𝑃−𝑖) + 𝐿𝑃−𝑖         (1) 

 

In Equation (1), 𝑖 and 𝑗 are correspondingly variable numbers. 

 

Step 2: The location of the salp represents the problem 

solution that is formulated as follows: 

 

𝑆 = [

𝑆11 𝑆12 ⋯ 𝑆1𝑖

𝑆21 𝑆22 ⋯ 𝑆2𝑖

 ⋮ ⋮ ⋱ ⋮
𝑆𝑚1 𝑆𝑚2 ⋯ 𝑆𝑚𝑖

]                              (2) 

 

Step 3: Assess the fitness for every location of salps:  

 

𝑂𝑆 = [𝑂𝑆1𝑂𝑆2𝑂𝑆3 ⋯ ⋯ ⋯ 𝑂𝑆𝑚]                    (3) 

 

Step 4: Sort the salp location based on the fitness value: 

𝐿 = {

𝐿11 𝐿12 ⋯ 𝐿1𝑑

𝐿21 𝐿22 ⋯ 𝐿21

⋮ ⋮ ⋱ ⋮
𝐿𝑛1 𝐿𝑛2 ⋯ 𝐿𝑛𝑑

}                            (4) 

 

Step 5: Arrange the objective function of the salp location: 

 

𝑂𝐿 = [𝑂𝐿1𝑂𝐿2𝑂𝐿3 ⋯ ⋯ ⋯ 𝑂𝐿𝔪]                   (5) 

 

Step 6: Upgrade the leading salp location based on the 

swarm’s target as follows: 

 

𝑆1,𝑗−𝑛𝑒𝑤 = {
𝐹𝑗 + 𝑐1((𝑈𝑝𝑗 − 𝐿𝑝𝑗)𝑐2 + 𝐿𝑝𝑗) 𝑐3 ≥ 0

𝐹𝑗 − 𝑐1((𝑈𝑝𝑗 − 𝐿𝑝𝑗)𝑐2 + 𝐿𝑝𝑗) 𝑐3 < 0
        (6) 

 

𝑐1 = 2𝑒−(
4𝑙
𝐿

)
2

                                       (7) 

Where 𝑐2 and 𝑐3 are random values amongst [0,1], 𝐹𝑟 is 

the swarm’s target, 𝑎𝑛𝑑 𝑚 and 𝑀 are the existing and 

optimum iteration values.  

 

Step 7: Update the follower salp location based on Equation 

(8): 

𝑠𝑖,𝑗_new =
1

2
(𝑠𝑖,𝑗_new + 𝑠𝑖−1,𝑗−𝑛𝑒𝑤)                  (8) 

 

The fitness function considers the classifier outputs and 

the chosen attribute quantity. It improves the classifier 

outcomes and lessens the chosen attribute size. Therefore, the 

FF is applied to compute the outcomes. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼 ∗  𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 + (1 − 𝛼) ∗
#𝑆𝐹

#𝐴𝑙𝑙_𝐹
       (9) 

 

Error Rate infers the classifier error rate by utilizing the 

attributes chosen and assessed as the proportion of incorrect 

classification to the amount of classifier made within the range 

[0,1]. (𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 shows the complement of classifier 

accuracy), #𝑆𝐹 specifies the chosen attribute number, and 

#𝐴𝑙𝑙_𝐹 shows the comprehensive number of attributes in the 

original data. 𝛼 controls the prominence of classifier quality 

and subset length and is fixed at 0.9. 

3.3. Seizure Recognition Using DAE 

For seizure recognition, the RESR-MDRDL technique 

employs the DAE model. An AE is a kind of NN that encrypts 

input information for reconstructing as resultant data [29]. The 

AE must acquire and collect the vital input features to 

implement this method. An instance of AE with input, output, 

and hidden layer (HL). For training set {𝑥(1), 𝑥(2), … 𝑥(𝑛)} 

so that 𝑥(𝑖)𝑅𝑑, the primary step of the AE methodology is to 

encrypt the input 𝑥(𝑖) to HL 𝑦(𝑥(𝑖)) based on Equation (10), 

this state is decoder as resultant state 𝑧(𝑥(𝑖)) based on 

Equation (11) as: 

 

𝑦(𝑥) = 𝑓(𝑊1𝑥 + 𝑏)                               (10) 
 

𝑧(𝑥) = 𝑔(𝑊2𝑥 + 𝑐)                               (11) 

 

𝑊1 denotes the weighted matrix for the optimizer method, 

𝑏 signifies the encoded bias vector, 𝑊2 implies the decoded 

matrix of the resultant layer, and 𝑐 represents the decoded bias 

vector. During this case, the logistic sigmoid function 1/(1 +
exp (𝑥)) is executed to 𝑓(𝑥) and 𝑔(𝑥). 

 

The AE approach utilizes a vector input state (𝑥) and 

encoded function ℘) to estimate another vector (𝑦); in the 

reconstruction, the decoded function (𝑔) is executed to vector 

𝑦 to restructure vector 𝑥; the ensuing resultant state in the use 

of (𝑔) is vector 𝑧. Reconstruction error is defined by scaling 

with loss function 𝐿𝐻(𝑥, 𝑧); this function can minimalize as 

𝐿(𝑋, 𝑍) to find optimum parameter rates as: 
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𝜃 = 𝑎𝑟𝑔𝜃min𝐿(𝑋, 𝑍)

= 𝑎𝑟𝑔𝜃min
1

2
∑‖𝑥(𝑖) − 𝑧(𝑥(𝑖))‖

2
𝑁

𝑖=1

 (12) 

One crucial difficulty in applying AE approaches is the 

dimensional of HL, which is fixed as equivalent to or superior 

to the resultant state. In this case, a non-linear AE with HL that 

is one unit superior to the input state is utilized by executing 

the sparsity restriction approach, such that the AE technique 

is changed into a sparse AE. To attain sparse representation, it 

is executed sparsity restriction for minimizing reconstruction 

error as: 

 

𝑆𝐴𝑂 = 𝐿(𝑋, 𝑍) + 𝛾 ∑ 𝐾𝐿(𝜌||�̂�)

𝐻𝐷

𝑖=1

                  (13) 

 

�̂�𝑗 = (
1

𝑁
) ∑ 𝑦𝑗

𝑁

𝑖=1

(𝑥(𝑖))                              (14) 

 

In which 𝛾 implies the weight, 𝐻𝐷 signifies the count of 

hidden units, 𝜌 denotes the sparsity parameter, and 𝐻𝐷 defines 

the count of hidden units. In Equation (14), the average rate of 

activation function for hidden unit 𝑗 under the train set is the 

KullbackLeibler (KL) divergence for ML that 𝐾𝐿(𝜌||�̂�) is 

measured as: 

 

𝐾𝐿(𝜌||�̂�𝑗) = 𝜌log
𝜌

�̂�𝑖

+ (1 − 𝜌)log
1 − 𝜌

1 − �̂�𝑖

.          (15) 

 

KL divergence determines the parameter 𝐾𝐿(𝜌||�̂�𝑗) = 0 

if = �̂�𝑗. To modify this task, the sparsity restriction on the 

input model and the backpropagation (BP) approach is 

executed. Figure 2 represents the DAE structure. 

 
Fig. 2 Architecture of DAE 

Deep or stacked AE approaches are among the most 

influential NN structures. The DAE approach starts from the 

pre‐training input state and then HLs, so the result of 𝑘𝑡ℎ HL 

is utilized as input for (𝑘 + 1)𝑡ℎ HL. Therefore, HLs are 

stacked hierarchically in the DAE; thus, the last HL is a high-

level representation of each input state and is utilized in 

predicting. 

 

A DAE approach is sufficiently executed in this case by 

adding a typical forecaster at the maximum model state. The 

forecast is then executed using the LR method. The DAE 

approach is integrated with a dropout procedure to manage 

numerous faults in the presented approach.  

3.4. Parameter Selection 

Finally, the parameter selection is enhanced by the TSA 

design. The authors proposed a new metaheuristic model 

named the TSA, which imitates the social hunting nature of 

bioluminescent tunicates [30]. Every tunicate is tubular and 

displays a jellylike tunic, which helps link every other 

tunicate. On the other hand, TSA was stimulated by dual 

different behavioural designs of tunicates in the deep ocean. 

To convey the computation term of the jet propulsion model, 

it is highly essential to fulfil the below-mentioned restrictions: 

 Averting crashes among the search individuals. 

 Moving to the Finest Search Individuals (FSI).  

 Unite in the area near the FSI. 

 

The swarm intellect device helps upgrade the location of 

tunicates, which depends on the finest optimum solution. The 

calculations are defined in the following subsections. 

3.4.1. Averting Crashes among Search Individuals 

To avert crashes among the search individuals, the 𝐴 

vector was utilized to describe the upgraded location of the 

searched individual, which was demonstrated as follows: 

𝐴 =
�⃗�

�⃗⃗⃗�
                                         (16) 

 

�⃗� = 𝑟2 + 𝑟3 − �⃗�                                 (17) 

 

�⃗� = 2 ∗ 𝑟1                                      (18) 

 

�⃗⃗⃗� = ⌊𝑃min + 𝑟1. (𝑃max − 𝑃min )⌋                (19) 
 

Meanwhile, the vectors �⃗� and �⃗� correspondingly signify 

the deep ocean's gravitational force and water flow rate. 𝑟1, 𝑟2 

and 𝑟3 are evenly distributed randomly produced integers 

within the interval of [0 𝑎𝑛𝑑 1]. Similarly, �⃗⃗⃗� specifies the 

collective forces among the searched individual. Here, 

𝑃min and 𝑃max are fixed to one and four correspondingly, and 

the initial and second velocities of the searched individual are 

designated. 

 3.4.2. Moving Towards the FSI Direction 

After averting the crash, everyone must continue near the 

track of the FSI. The numerical formula for impending the 

optimum search individual was definite below: 
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𝑆→𝐷 = |𝐹𝑏𝑒𝑠𝑡 − 𝑟𝑎𝑛𝑑 ∗ 𝑋(𝑡)|                 (20) 

 

Here, 𝑆→𝐷 depicts the spatial distance from the tunicate 

to its prey, 𝑋(𝑡) denotes the tunicate location, 𝐹𝑏𝑒𝑠𝑡 portrays 

the food location, and 𝑟𝑎𝑛𝑑 ∈ [𝑂, 1]. 

3.4.3. Unite with the FSI Surrounding Area 

The tunicates meet near the location of the finest 

individual, defined as follows: 

 

𝑋(𝑡) = 𝐹𝑏𝑒𝑠𝑡 + 𝐴. 𝑆→𝐷, 𝑖𝑓 𝑟𝑎𝑛𝑑 ≥ 0.5        (21) 

 

𝑋(𝑡) = 𝐹𝑏𝑒𝑠𝑡 − 𝐴. 𝑆→𝐷, 𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.5        (22) 

 

Here, 𝑋(𝑡) specifies the upgraded location of every 

tunicate relative to the food location 𝐹𝑏𝑒𝑠𝑡 . 

3.4.4. Tunicate Swarming Behaviour 

During the swarm intellect device, the tunicates' locations 

are upgraded depending upon the locations of the primary dual 

finest tunicates. The mathematical calculation is mentioned 

below.   

 

𝑋𝑖(𝑡 + 1) = {

𝑋𝑖(𝑡) + 𝑋𝑖‐1(𝑡 + 1)

2 + 𝑟1

𝑋𝑖(𝑡)

 𝑖𝑓𝑖 = 1𝑖𝑓𝑖 > 1    (23) 

 

Whereas 𝑖 = 1,2, … 𝑁, 𝑁 denotes the size of the 

population, 𝑋𝑖(𝑡 + 1) and 𝑋𝑖−1(𝑡 + 1) refer to the upgraded 

present and prior search individual location of the subsequent 

iteration, respectively, and 𝑋𝑖() is defined by Equation (21) 

and (22). 

 

The FS is the key factor affecting the TSA's performance. 

The hyperparameter selection technique has a solution 

encoding methodology for assessing the effectiveness of the 

solution candidate. Now, the TSA considers performance a 

primary criterion for developing the FF.  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  max (𝑃)                           (24) 

 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                   (25) 

 

Where TP and FP are the true and false positive values. 

4. Results and Discussion 
The RESR-MDRDL model's simulation validation is 

examined under epileptic seizure recognition and UCI datasets 

[31]. The dataset description is illustrated in Table 1. The 

simulation is performed by employing the Python 3.6.5 tool 

on a PC with an i5-8600k, 250GB SSD, GeForce 1050Ti 4GB, 

16GB RAM, and 1TB HDD. The parameter settings are as 

follows: learning rate: 0.01, activation: ReLU, epoch count: 

50, dropout: 0.5, and batch size: 5. 

Table 1. Dataset description 

Classes 
Class 

Label 

Instance 

Numbers 

“Recording of seizure 

activities” 
Class 1 2300 

“Recording of EEG from the 

area where the tumour is 

located during a non-seizure 

period” 

Class 2 2300 

“Recording of EEG from a 

healthy part of the brain during 

a non-seizure period” 

Class 3 2300 

“Recording of EEG with the 

patients' eyes closed during a 

non-seizure period” 

Class 4 2300 

“Recording of EEG with the 

patients' eyes open during a 

non-seizure period” 

Class 5 2300 

Overall Instances 11500 

 

Figure 3 illustrates the performance of the RESR-

MDRDL method on 80:20 of TRAS/TESS. Figures 3(a)-3(b) 

represents the confusion matrices presented by the RESR-

MDRDL method. The figure indicates that the RESR-

MDRDL method recognizes and classifies each class. Also, 

Figures 3(c)-3(d) depict that the RESR-MDRDL methodology 

attained the highest PR and ROC under diverse classes. 

 
Fig. 3 80:20 of TRAS/TESS (a-b) confusion matrices, and (c-d) PR and 

ROC curves. 

Table 2 and Figure 4 highlight the experimental results of 

the RESR-MDRDL methodology on 80:20 of TRAS/TESS. 

The outputs demonstrate that the RESR-MDRDL 

methodology precisely detected the classes. On 80%TRAS, 



R. Selvam & R. Mahalakshmi / IJECE, 12(4), 8-18, 2025 

 

14 

the RESR-MDRDL methodology reaches an average accuy of 

93.83%, sensy of 84.56%, specy of 96.14%, Fscore of 84.56%, 

and MCC of 80.74%. Additionally, on 20%TESS, the RESR-

MDRDL model attains an average accuy of 94.03%, sensy of 

85.09%, specy of 96.27%, Fscore of 85.16%, and MCC of 

81.48%. 

 
Table 2. Classifier output of RESR-MDRDL method on 80:20 of 

TRAS/TESS 

 Classes 𝑨𝒄𝒄𝒖𝒚 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝑺𝒄𝒐𝒓𝒆 MCC 

TRAS (80%) 

Class 1 94.57 83.25 97.40 86.00 82.70 

Class 2 92.86 82.14 95.50 81.99 77.53 

Class 3 94.37 89.60 95.56 86.40 82.94 

Class 4 94.18 83.61 96.84 85.25 81.65 

Class 5 93.15 84.22 95.40 83.18 78.89 

Average 93.83 84.56 96.14 84.56 80.74 

TESS (20%) 

Class 1 94.83 83.08 97.72 86.40 83.31 

Class 2 92.00 82.92 94.40 81.22 76.17 

Class 3 94.22 89.22 95.48 86.16 82.59 

Class 4 95.65 86.92 97.78 88.69 86.03 

Class 5 93.48 83.33 95.95 83.33 79.28 

Average 94.03 85.09 96.27 85.16 81.48 

 

 
Fig. 4 Average outcome of RESR-MDRDL method on 80:20 of 

TRAS/TESS 

In Figure 5, the Training (TR) and Validation (VL) 

accuracy outputs of the RESR-MDRDL methodology on 

80:20 of TRAS/TESS are demonstrated and analyzed within 

0-25 epochs. The figure showed that the values exhibited 

higher values over multiple iterations. Also, the accuracy 

increases over epochs, depicting reduced overfitting and 

enhancing the RESR-MDRDL method's accomplishment, 

exhibiting consistent prediction on unseen samples. 

 
Fig. 5 𝑨𝒄𝒄𝒖𝒚 curve of RESR-MDRDL method on 80:20 of TRAS/TESS 

Figure 6 depicts the TR/VL loss of the RESR-MDRDL 

technique on 80:20 of TRAS/TESS. The loss is computed 

within the range of 0-25 epochs. The TR/VL accuracy shows 

a lessening trend, highlighting the technique's ability to 

balance data fitting and generalization. The continuous 

decline in loss accentuated the superior accomplishment of the 

RESR-MDRDL method, progressively refining the prediction 

outputs. 

 
Fig. 6 Loss curve of RESR-MDRDL method on 80:20 of TRAS/TESS 

Figure 7 shows the performance of the RESR-MDRDL 

approach at 70:30 of TRAS/TESS. Figures 7(a)-7(b) depict 

the confusion matrices. The figure indicates that the RESR-

MDRDL approach detected and classified each class. Also, 

Figures 7(c) infers the PR inspection of the RESR-MDRDL 

approach.  

The figure showed that the RESR-MDRDL technique 

attained high PR under overall classes. Finally, Figure 7(d) 

exhibits the ROC of the RESR-MDRDL technique. The 

RESR-MDRDL technique exhibited a promising solution 

with high ROC under varying classes. 
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Fig. 7 70:30 of TRAS/TESS (a-b) confusion matrices and (c-d) PR and 

ROC curves 

Table 3 and Figure 8 highlight the experimental outputs 

of the RESR-MDRDL method on 70:30 of TRAS/TESS. The 

outputs establish that the RESR-MDRDL method precisely 

detected the classes. On 70%TRAS, the RESR-MDRDL 

approach attains average accuy of 94.08%, sensy of 85.22%, 

specy of 96.30%, Fscore of 85.21%, and MCC of 81.57%. 

Moreover, on 30%TESS, the RESR-MDRDL approach 

reaches an average accuy of 94.14%, sensy of 85.34%, specy 

of 96.34%, Fscore of 85.36%, and MCC of 81.75%.   
 

Table 3. Classifier output of RESR-MDRDL methodology on 70:30 of 

TRAS/TESS 

Classes 𝑨𝒄𝒄𝒖𝒚 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝑺𝒄𝒐𝒓𝒆 MCC 

TRAS (70%) 

Class 1 95.78 89.84 97.25 89.45 86.81 

Class 2 93.19 82.01 96.07 83.12 78.87 

Class 3 92.46 84.88 94.31 81.56 76.92 

Class 4 94.82 88.32 96.44 87.20 83.97 

Class 5 94.16 81.06 97.44 84.74 81.27 

Average 94.08 85.22 96.30 85.21 81.57 

TESS (30%) 

Class 1 95.51 89.06 97.13 88.87 86.06 

Class 2 93.86 84.12 96.14 83.87 80.07 

Class 3 92.84 85.26 94.84 83.23 78.72 

Class 4 94.41 87.99 96.01 86.30 82.81 

Class 5 94.12 80.29 97.57 84.52 81.07 

Average 94.14 85.34 96.34 85.36 81.75 

 
Fig. 8 Average outcome of RESR-MDRDL methodology on 70:30 of 

TRAS/TESS 

In Figure 9, the TR/VL accuracy outputs of the RESR-

MDRDL methodology on 70:30 of TRAS/TESS are 

established and computed within 0-25 epochs. The figure also 

depicts growth, which represents the ability of the RESR-

MDRDL method to perform well over various iterations.  

 

Furthermore, the values enhance over epochs, portraying 

enhanced performance and minimal overfitting of the RESR-

MDRDL method, exhibiting consistent prediction on hidden 

samples. 

 

 
Fig. 9 𝑨𝒄𝒄𝒖𝒚 curve of RESR-MDRDL method on 70:30 of TRAS/TESS 

In Figure 10, the TR/VL loss of the RESR-MDRDL 

approach at 70:30 of TRAS/TESS is displayed. The loss is 

computed over 0-25 epochs, with accuracy decreasing, 

highlighting the RESR-MDRDL approach's balance between 

data fitting and generalization.  

The continuous mitigation of loss confirms the superior 

accomplishment of the RESR-MDRDL method, progressively 

fine-tuning the prediction outputs as the model gradually 

increases. 
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Fig. 10 Loss curve of RESR-MDRDL method on 70:30 of TRAS/TESS 

In Table 4 and Figure 11, the outputs of the RESR-

MDRDL method are compared with recent models. The 

outputs highlighted that the linear SVM, KNN, and MLP 

models accomplished poor performance with the least accuy 

values of 76.70%, 76.00%, and 78.00%, respectively. In the 

meantime, the KELM, SA-KELM, and M-Gaussian-SVM 

methods have reported nearer performance with accuy values 

of 80.53%, 82.49%, and 81.40%, subsequently. However, the 

RESR-MDRDL technique performs better with a maximum 

accuy of 94.14%. Thus, the RESR-MDRDL technique is 

applied for automated epilepsy detection on EEG signals. 

Table 4. 𝑨𝒄𝒄𝒖𝒚 the outcome of the RESR-MDRDL technique is 

compared with recent models 

Methods Accuracy (%) 

RESR-MDRDL 94.14 

KELM 80.53 

SA-KELM 82.49 

M-Gaussian-SVM 81.40 

Linear SVM 76.70 

KNN 76.00 

MLP 78.00 

 

 

 
Fig. 11 𝑨𝒄𝒄𝒖𝒚 the outcome of the RESR-MDRDL technique is compared with recent models 

5. Conclusion 
In this study, a new RESR-MDRDL approach to EEG 

signals is presented. The RESR-MDRDL approach 

concentrates on accurately identifying epileptic seizures using 

EEG signals. It contains various kinds of stages involved. In a 

preliminary stage, the RESR-MDRDL technique performed 

data pre-processing to normalize the input dataset. Besides, 

the RESR-MDRDL technique utilized an SSA-based FS 

approach for optimal feature sets. The RESR-MDRDL 

technique employed the DAE model for seizure recognition, 

and TSA improved its efficiency. The simulation of the 

RESR-MDRDL method is examined by using an EEG dataset. 

The experimental validation of the RESR-MDRDL 

methodology indicated a superior accuracy value of 94.14% 

over existing techniques.
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