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Abstract - Non-alcoholic disease detection is one of the leading research works in recent days. Modern life has changed the food 

and environmental culture, making them overweight, stressed, unhealthy conditions always and which causes various diseases 

due to overweight and diabetes. Commonly, an alcoholic addict can be affected by Fatty Liver Diseases (FLD), whereas 

identifying fatty liver diseases for a non-alcoholic person is a challenging task. It is not so easy even suspecting that a patient 

has FLD at the earlier stage of the symptoms since the symptoms of FLD are very similar to other diseases, and it may lead to 

wrong diagnosis and treatment. The severity level of 30% of FLD patients is increased suddenly and leads to heart attack, stroke, 

and death. Thus, based on the symptoms of weight loss, abdominal pain, and fatigue, it is essential to diagnose NAFLD, which 

can be identified accurately from pathological and genomic data using efficient learning methods to immediately provide the 

right and better treatment. This paper implements multiple machine learning algorithms for analyzing the pathological 

information obtained from the NAFLD and NASH DNA datasets and finding the best model concerning the performance. This 

paper uses 3-fold cross verification with recursive feature elimination methods to improve the original accuracy of the prediction. 

From the comparison, the SVM model obtained 87% accuracy, which is better than the KNN and RF models. The experimental 

results with the performance comparison are explained in detail in the paper. 
 

Keywords - Non-Alcoholic Fatty Liver Disease (NAFLD), Overweight, Diabetes, Fatty Liver Diseases (FLD), Pathological 

information, NASH DNA datasets. 

 

1. Introduction  
One of the most common and fast-growing diseases is 

Fatty liver disease, which occurs due to overweight or having 

diabetes. The overfat in the liver may damage liver function 

and create liver injuries over time. Too much alcohol may also 

be one of the reasons for fatty liver diseases. Fatty liver 

diseases do not have symptoms to diagnose at the early stage. 

Some of the most common symptoms are fatigue, pain in the 

upper abdomen, and weight loss. In comparison, severe 

diseases have symptoms like yellow eye, dark urine, itchy 

skin, and blood vomiting [1]. Fatty liver diseases are classified 

into two types, namely Non-Alcoholic Fatty Liver Disease 

(NAFLD) and Alcohol-related Fatty Liver Diseases (ALD) 

[2]. The most severe form of NAFLD disease is called NASH. 

NASH-type liver diseases may lead to serious issues and even 

end in liver cancer. These liver diseases are diagnosed through 

blood tests, imaging techniques, biopsy, etc [3]. Traditionally, 

the liver biopsy method is widely used to detect diseases. Still, 

it is unsuitable for clinical practice due to its risk factors, such 

as invasiveness, sample error, bleeding risk, and uneven 

distribution of liver lesions [4]. Also, this method takes more 

time to diagnose the diseases and has limitations on 

diagnosing the early symptoms of liver diseases. The current 

diagnosing system is efficient in distinguishing different 

stages of FLD diseases. Therefore, an accurate, non-invasive, 

high-speed technique is required for quick diagnosis and 

treatment. So, AI-based techniques have become popular to 

diagnose FLD diseases [5].  

 

The AI-based non-invasive imaging techniques have 

produced more accurate results than traditional methods. The 

AI-based model mimics the human brain's activities to 

perform problem-solving and data-learning skills. This AI-

based technique is further developed into two different 

learning models: machine learning [21] and deep learning [6]. 

Machine learning is the most popular technique in various 

applications to perform multiple tasks. Especially in the 

medical sector, ML-based techniques are widely used to 

manage patient records, health reports, images, etc. The ML-

based imaging technique transfers the healthcare sector more 

efficiently and quickly to progress medical data. ML-based 
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models are classified into supervised and unsupervised [7]. 

Deep learning-based models have also been widely used in 

recent healthcare applications. DL is the machine learning 

model's sub-set, automatically learning input data patterns 

without human intervention [8]. This learning model is 

inherited with various imaging techniques, such as CT, MRI, 

Ultrasound, etc, to accurately classify fatty liver diseases from 

the input data [9].  

 

Computed Tomography (CT) Scan is the most popular 

imaging technique, which combines the feature of X-ray with 

computer technology to analyze the internal parts of the 

human body. The main focus of the CT technique is to identify 

the problems in the bone structure, abdomen, chest, liver, 

brain, and spinal cord. However, this technique takes longer 

and is highly expensive to diagnose the diseases. So, Magnetic 

Resonance Imaging (MRI) was developed to detect cross-

sectional images of human body parts. Compared to 

traditional imaging techniques, the MRI-based technique 

scans without emitting radiation. This technique uses an 

efficient magnetic field to analyze the changes, and through a 

high-resolution computer technique, bone and soft tissue 

images are generated. Similarly, ultrasound techniques, which 

use non-invasive light waves to produce results, have recently 

been widely used. An optimization model is used with 

imaging techniques further to enhance the accuracy of the 

imaging technique models. The optimization algorithm 

provides more optimal solutions to solve complex problems. 

Different optimization algorithms are used: conjugate 

gradient, gradient descent, simulated annealing, and Newton’s 

method. The optimization algorithm is considered to be the 

best tool in the field of computer vision [10]. As mentioned 

above, it is mainly used to find the best solution to provide 

maximum values. Generally, the optimization algorithm is 

classified into three categories: local, global, and hybrid 

search techniques. Based on the input data and problems, the 

type of optimization algorithm is selected. In medical imaging 

techniques, optimization algorithms perform various 

functions such as image enhancement, segmentation, feature 

extraction, alignment, recognition, and classification.  

 

In advance of this, genetic algorithms and artificial 

Immune system-based fatty liver disease diagnosing systems 

have developed in recent years. Most recent research has 

suggested this method as an optimal solution to predict the 

severity of liver diseases. This paper implements multiple 

machine learning algorithms and chooses the best one by 

comparing their experimental outputs. It implements Support 

Vector Machine, KNN, and RF algorithms using Python. 

These algorithms are implemented to compare their efficiency 

in predicting NAFLD in the liver dataset. These models 

analyze the diseases through a DNA dataset collected from the 

patients. The following section discusses the earlier research 

on fatty liver disease detection, the proposed model's 

performance, and the proposed approach's result. It concludes 

with some points for future researchers.  

2. Literature Review 
In the study [11], the NAFLD screening model was built 

using four machine-learning algorithms with classifiers. This 

study has used physical measurement variables and 12 

questionnaires to establish four ML algorithms based on 

304,145 subjects for NAFLD in the national physical 

examination population. Of four ML algorithms, XGBoost 

performed best with 0.880 accuracy, 0.801 precision, 0.894 

recall, 0.882 F1 score, and 0.951 AUC. Finally, XGBoost 

outperforms the conventional statistical technique LASSO 

regression used in the study. In the study [12], the XGBoost 

model displayed the best result among other machine learning 

algorithms for predicting FLD. When compared to the random 

forest, SVM, neural network, and logistic regression, the 

XGBoost model showed the highest (0.882) AUROC, 

accuracy (0.883), sensitivity (0.833), specificity (0.683) and 

F1 score (0.829). In addition, Fatty Liver Index (FLI) is 

compared with ML algorithms; as a result, XGBoost, neural 

network, and logistic regression models displayed higher 

AUROC than FLI. 

 

In the retrospective cross-sectional study [13], 15,315 

Chinese participants were used, and the NAFLD among the 

selected participants was predicted using the developed seven 

machine learning-based models. Biochemical factors and 

clinical factors are evaluated using these seven models. At the 

end of NAFLD prediction, the XGBoost model proved to be 

the best-performed ML model by showing the highest 

AUROC (0.873), accuracy (0.795), specificity (0.909), 

AUPRC (0.810), MCC (0.557), F1 score (0.695), and positive 

predictive value (0.806). The study used the Extreme Gradient 

Boosting (XGB) algorithm as an efficient predictive model to 

detect the hazard of liver fibrosis after cholecystectomy [14]. 

The proposed method achieved higher accuracy values 

(93.16%) and can be an automatic diagnostic aid for MASLD 

patients. When comparing the performance of the XGB model 

with KNN, the XGB algorithm revealed the highest accuracy 

and AUC of 93.16% and 0.92.  

 

The study developed a machine learning algorithm 

(XGBoost) with Logistic Regression (LR) and Multi-Layer 

Perceptron (MLP) models to predict NASH and fibrosis 

progression over four years [15]. For this, patients' electronic 

health records were collected for the screening. As a result, 

LR and MLP models are surpassed by the XGBoost model in 

prediction by achieving 0.79 and 0.87 (AUROC) values for 

NASH and fibrosis, respectively. In the other study [16], a 

classification model based on ML was developed to classify 

the subjects as NAFLD and non-NAFLD. The subject used for 

this study includes 14,439 adults. Four ML algorithms are 

used to screen the NAFLD patients, such as decision tree, 

Random Forest (RF), Extreme Gradient Boosting (XGBoost), 

and Support Vector Machine (SVM). Among them, the SVM 

classifier demonstrated the best performance, exhibiting the 

highest accuracy rate (0.801), Kappa score (0.508), F1 score 

(0.795), (PPV) (0.795), and (AUROC) (0.850). The second-
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best performance was seen in the RF model with the maximum 

AUROC (0.852), F1 score (0.782), PPV (0.782), and Kappa 

score (0.478). Lastly, based on the physical examination and 

blood testing findings, the SVM classifier is the most effective 

method to screen NAFLD in the general population. Similarly, 

the study [17] SVM and RF classification model achieved the 

highest (99%) accuracy of NAFLD prediction by using the 

publicly available FLD dataset. Likewise, the study conducted 

in China [18] demonstrated a novel-ML-based staging model 

by combining the stages of hepatic steatosis in 916 patients. 

Among various ML models such as RF, LightGBM, 

XGBoost, SVM, KNN, and LR, the RF model revealed the 

best performance with the highest accuracy (84%), 

AUROC(0.91). 

 

By using the NAFLD Activity Score (NAS), Non-

Alcoholic Steatohepatitis (NASH) from the clinical and blood 

data collected from 181 patients was identified in the study 

[19] using the machine learning method. For this, SVM, 

random forest, AdaBoost, LightGBM, and XGBoost machine 

learning algorithms are trained using features such as 

Sequential Forward Selection (SFS), chi-square, analysis of 

variance (ANOVA), and Mutual Information (MI). Among 

the classifiers selected in the study, random forest combined 

with SFS scored the highest sensitivity (86.04% ± 6.21%), 

Accuracy (81.32% ± 6.43%), Precision (81.59% ± 6.23%), 

Specificity (70.49% ± 8.12%) and F1-score 

(83.75% ± 6.23%). This study highlights that it can detect 

NAFLD non-invasively in the early stage. To assess the 

NAFLD from 1119 images, the study [20] has developed a 

model using the combination of ML with ultrasound method, 

which showed higher specificity (94.6%) and Positive 

Predictive Value (PPV) (93.1%)in the prospective trial. 

 

Based on the above discussion and survey, it is noticed 

that the pathological and DNA dataset needs to be analyzed in 

depth to get more accuracy and reduce the false positive rate. 

Most of the research works have used medical imaging 

techniques for FLD prediction. Only a very few of them have 

used blood data-based FLD diagnosis. The accurate diagnosis 

can only be obtained from pathological, genomic, and DNA 

data analysis. 

 

3. Proposed Methodology 
The proposed methodology involves a sequence of tasks 

that need to be applied to the raw data, which helps to improve 

the programming execution efficiency and accuracy. Figure 1 

demonstrates the overall roadmap of the proposed model, 

which is also explained below.  

 

Data preparation is one of the sticky steps in machine 

learning projects. Every data set is unique and highly specific 

to the project. Even though there are some similarities during 

predictive modeling projects, they can provide a general flow 

of actions and do a particular task. The project definition is 

completed before data preparation, and the assessment of the 

machine learning algorithm is completed after data 

preparation. It can deliver the unknown structure of the 

problem to the learning algorithm.  

 

Data pre-processing is one of the main steps in creating a 

machine learning model. It involves processing data to make 

it suitable for the model. If the process feeds unclear or noisy 

data to the model, it will generate an error output. Other steps 

in data pre-processing include data cleaning, quality 

assessment, and transformation. 

 

3.1. Feature Extraction and Selection 

Feature extraction extracts the essential data from the pre-

processed input data. This process is mainly applied to reduce 

the complexity of the input data. Feature selection is also the 

same process but is probably enhanced to check the prediction 

variable or output. That feature can create simple and easy-to-

understand machine language models. 

 

 
Fig. 1 Represent the architecture of proposed work 
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4. Support Vector Machines (SVM) 
The Support Vector Machines (SVM) technique is an ML 

algorithm that will apply the supervised learning models to 

solve complex problems in classifications, detections, and 

regressions. The task is achieved by efficient data 

transmissions to define the boundaries between the data points 

according to the predefined labels, classes, or outcomes. SVM 

performs their assigned tasks in two ways, such as linear and 

non-linear processes. The structure of SVM is illustrated in 

Figure 2. The data is linearly divided and classified using a 

hyperplane line in linear SVM. The support vectors are 

determined by the nearest data points to the hyperplane, and 

those points are crucial as their changes can impact the 

hyperplane’s position. When adding new testing data, 

deciding the assigned class is not dependent on which side the 

data reaches. 

 

 
 

 

 

 

 

 

 
 

 

Fig. 2 Represent the structure of SVM algorithm 

The Random Forest Algorithm (RFA) is an ML algorithm 

based on ensemble learning that enables the combination of 

the various classifiers to make an ideal model to solve 

complex problems, as shown in Figure 3.  

Fig. 3 Represent the structure of random forest algorithm 

In the RF, multiple subsets of the input dataset are classified 

using numerous decision trees, and the average values are used 

to make the prediction. Henceforth, the algorithm uses every 

tree’s prediction, and the maximum number of similar 

predictions is taken and analyzed to determine the output. 

 

The K-Nearest Neighbour Algorithm (K-NN) is the 

simplest ML algorithm in the supervised learning technique. 

This algorithm categorizes existing and new data according to 

their suitable similarities. The KNN algorithm quickly 

classifies the new data point in the input. It is used for both 

classification and regression processes. Compared to another 

method, it is a slow learner algorithm. Because it does not 

learn the data directly from the trained set; instead, it learns 

the data during classification.  

 

The identification of the new data point using the KNN 

algorithm is clearly shown in Figure 4(a). Figure 4(a) depicts 

a new data point between categories A and B. After applying 

the KNN algorithm, the new data point is classified similarly 

to category A, as shown in Figure-4(b), which is categorized 

based on the nearest neighbors of the new data point. It is clear 

from the figure Category A has three neighbour points, and 

Category B has two neighbour points. So, the result shows the 

new data point is similar to Category A, which is classified as 

Category A.  

 

 
Fig. 4 Working flow of K-Nearest Neighbour algorithm 

 

5. Result and Discussion 
In this section, various results of the proposed model for 

diagnosing normal and NAFLD diseases from the input 

medical data are discussed in detail. The presence and stages 

of NAFLD diseases are classified using four types of analysis: 

lipid, hormonal,glycan, and free fatty acid analysis.  

 

The experiment's output is explained based on the process 

applied to the data. Figure-5(a), (b), and (c) depict the density 

of the proposed parameters lipid, hormonal, and glycan on 

selected 6 variables, respectively.  

 

That is, to evaluate the density of lipid (AcCa (14:0) + H, 

AcCa (16:0) + H, AcCa (18:0) + H, AcCa (18:1) + H, 

Cer(d40:0) + H, and Cer(d33:1) + HCOO) variables are 

selected and compared. The result shows the Cer(d40:0) + H 

has achieved a high-density value.  
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Table 1. Input summary for Figure 5(a) - lipid variables 

Variable Name Mean Value 
Standard 

Deviation (SD) 

AcCa(14:0)+H 0.00010 0.00002 

AcCa(16:0)+H 0.00012 0.00002 

AcCa(18:0)+H 0.00011 0.00002 

AcCa(18:1)+H 0.00009 0.000015 

Cer(d40:0)+H 0.00018 0.00001 

Cer(d33:1)+HCOO 0.00010 0.00002 

 

Our project utilized synthetic data instead of using the 

authentic medical dataset because it needed to replicate 

genuine lipid hormonal and glycan biomarker measurements. 

Table 1 shows that the value generation process employed 

Gaussian distributions as the base statistical method to model 

continuous medical and biological research variables. 

 

5.1. For Each Variable 

We established an average value according to standard 

biological concentration levels and spectral intensity ranges 

(fats typically exist within micro or nanomolar 

concentrations). A Standard Deviation (SD) provides an 

estimation of measurement differences expected between 

individual subjects. 

 

Python used the numpy.random.normal(mean, std, n) 

function to create 1000 data points from these generated 

values for each variable during the simulation of patient 

samples. 

 

 
Fig. 5(a) Represent the lipid variable density 

 

Figure 5(a) shows the six lipid compounds 

AcCa(14:0)+H, AcCa(16:0)+H, AcCa(18:0)+H, 

AcCa(18:1)+H, Cer(d40:0)+H, and Cer(d33:1)+HCOO 

distributed by density in the dataset. The researchers selected 

these variables because they showed both connections to lipid 

metabolism and potential ties to NAFLD staging. This density 

plot shows how all lipid variable values are spread throughout 

the observed data. A narrow distribution range characterizes 

Cer(d40:0)+H because it displays the strongest density peak 

among the six lipid variables. Using Cer(d40:0)+H as a 

marker helps identify stages of NAFLD either by itself or 

because this lipid appears with greater regularity in NAFLD 

diagnoses. The narrow and tall density curve indicates less 

data variability, demonstrating that this feature may possess 

critical diagnostic significance for the model's output. 

 
Table 2. Input summary for Figure 5(b)-hormonal variables 

Variable Name 
Mean 

Value 

Standard 

Deviation (SD) 

Leptin 0.50 0.10 

Activin_To_Follisation 0.90 0.05 

Activin A 0.40 0.10 

Follistatin 0.60 0.08 

Triglycerides 0.55 0.09 

Adiponectin 0.45 0.07 

 

There are synthetic data points in Figure 5(b) representing 

realistic hormonal measurements that clinicians typically 

encounter during their evaluations. Table 2 shows leptin levels 

together with adiponectin and activin-related markers exist 

between 0.4 to 0.9 ng/mL, and these values vary according to 

metabolic state. The 0.05 to 0.10 standard deviation range was 

used to simulate natural biological variations between healthy 

people and those affected by NAFLD during simulation. The 

evaluation method both demonstrates different responses 

between patients and sustains stable data distribution patterns 

suitable for density representation analysis. 

 
Fig. 5(b) Represent the hormonal variable density 

 

The data points in Figure 5(c) representing glycan 

variables stem from synthetic numerical spectral codes (1579, 

1661, 1784 and others) that physicists predict are associated 

with mass spectrometry peaks. The variables received mean 

intensity values from 0.03 to 0.06 while maintaining small 

standard deviations to demonstrate their standard normalized 

intensities that appear within glycomics and proteomics 

datasets. The analysis variable "1825" received a mean 

intensity value of 0.06 together with a small standard deviation 

because it represents a dominant feature in density according 

to the original research findings regarding glycan analysis. 
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Table 3. Input summary for Figure 5(c) - glycan variables 

Variable Code Mean Value 

Standard 

Deviation 

(SD) 

1579 0.030 0.010 

1661 0.035 0.010 

1784 0.032 0.010 

1825 0.060 0.005 

1836 0.034 0.010 

1866 0.033 0.010 

 

 
Fig. 5(c) Represent the glycan variable density 

 

Similarly, the evaluation result of the hormonal depicts 

Leptin, Activin_To_Follisation, Activin A, Follistatin, 

triglycerides, and adiponectin variables.  

 
Table 4. Input summary for Figures 6(a, b, c)  

Index 
Lipid 

Values 
Hormone Values 

Glycan 

Values 

0 0.0135 5.321 0.0101 

1 0.0401 123.112 0.0732 

2 0.0098 203.221 0.0409 

3 0.0282 54.788 0.0024 

... ... ... ... 

999 0.0012 403.112 0.0019 

 
In the provided Table 4, the values for Lipids, Hormones, 

and Glycans are randomly generated using the exponential 

distribution. This distribution is common for biological data 

where events or measurements (like concentration or 

intensity) tend to cluster near zero and tail off — matching the 

shapes you see in the plots. 

 

The Exponential Distribution is defined by: 

 

f (x ; λ) = λe–λx , for x ≥ 0 

 

The rate parameter λ exists to determine decay speed. 

Mean μ = 1 / λ 

The numpy.random.exponential(scale, size) function 

receives the scale argument that stands as the reciprocal value 

of the rate parameter λ. 

 

Scale = 1/ λ ⇒ λ= 1/ scale 

 

Steps to construct the Table 4: 

The goal is to generate the initial five values from the 

table. 

Step 1: Generate uniform random values  

𝑈𝑖 ∼ 𝑈 (0,1) 

 

Example: 

Suppose 𝑈1 = 0.7,𝑈2 = 0.5, etc. 

 

Step 2: Apply inverse transform: 

xi=-S.In(Ui) 

Example for Lipid Values (S = 0.03) 

 

Index Ui xi=−0.03⋅ln(Ui) 

0 0.7 −0.03⋅ln(0.7)=0.0106 

1 0.5 −0.03⋅ln(0.5)=0.0207 

2 0.3 −0.03⋅ln(0.3)=0.0361 

 

Similarly, for Hormones (S = 100) and Glycans (S = 

0.05). 

 

 
Fig. 6(a) Represent the lipids distribution within all groups 

 

The chart in Figure 6(a) shows that lipid values exhibit a 

right-skewed distribution. The data shows an intense 

concentration of lipid values between 0.00 and 0.05, which is 

its highest point at 0.01. Lower lipid values dominate the data 

groups, indicating that lipid concentration stays low during the 

observed data period. 
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Fig. 6(c) Represent the hormone distribution within all groups 

 

A pronounced long tail extends toward the right side of 

the hormone value distribution graph presented in Figure 6 (b). 

Although the data presents a concentrated arrangement of 

hormone values at the lower end, it continues to reach around 

800. Several high-value outliers are responsible for a wide 

distribution range demonstrating significant hormonal 

variability across these groups. The hormone concentration 

demonstrates maximum total variability across all 

investigation parameters. 

 

 
Fig. 6(b) Represent the glycans distribution within all groups 

 

The glycan values show right-skewness in their 

distribution per Figure6(c). The majority of glycans exist 

within the ranges from 0.00 to 0.05, which demonstrates low 

concentrations overall. CTRL 1825 distributes the highest 

density compared to all glycan-specific variables under 

analysis (1579, 1661, 1784, 1825, 1836, and 1866). The 

narrow glycan distribution reveals that variable 1825 

demonstrates distinctive high density compared to other 

measured parameters, suggesting its importance in the 

collected data. 

 

6. Distribution Analysis of Transformed 

Biological Data (Lipids, Hormones, and 

Glycans) 
The research provides a breakdown of transformed 

biological data patterns specifically for lipid hormones and 

glycans, which includes all subject groups. The normalization 

procedure made the data comparison possible after its 

application to the datasets. Each data type's volatility, together 

with concentration patterns, can be observed through density 

plots presented in Figures 7(a) to 7 (c). The distributive pattern 

of lipids reveals a bell shape that demonstrates subject data 

consistency along with minimal variations. The hormone 

distribution reveals multimodality with right-skewness, which 

may indicate that rare biological subtypes have elevated 

hormone levels. Documentation of glycans shows a right-

skewed distribution that maintains concentrated 

measurements with less variable ranges. A comparative 

distribution analysis serves two functions: it helps 

comprehend baseline data patterns and enables researchers to 

choose proper statistical procedures for further analysis. 

 
Table 5. Sample table to map transformed values 
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0 1.0 
Symmetric 

(Bell-shaped) 
-3 to +3 

~0.9  

near 0 

H
o

rm
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es

 

2.7 2.5 
Multi-modal, 

right-skewed 
-2 to +7 

~0.14 

(multiple) 

G
ly

ca
n

s 

0 0.7 
Slightly right-

skewed 
-2 to +2.5 

~0.6  

near 0 

 

In the provided Table 5, the values for Lipids, Hormones, 

and Glycans are generated in the following way: 

 

Mean & Standard Deviation: 

The calculation used np.mean() and np.std() on 

transformed data values. 

 

Shape of Distribution: 

Below is an illustration of distribution shapes derived 

from KDE visual data assessments. 
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1. Lipids: Symmetric curve centered around 0. 

2. The distribution of hormones shows several peaks 

together with the prolonged increase on the distribution's 

right side. 

3. Glycans: Dense and slightly skewed. 

Range: 

Approximate min and max of each dataset. 

 

Peak Density Value: 

The peak density value represents the tallest point located 

on the vertical scale of KDE. 

 

 
Fig. 7(a) Represent the transformed lipids values within all groups 

 

The new lipid values in Figure 7(a) display a symmetric 

bell-shaped distribution pattern with zero as its central point. 

This statistical pattern matches normal distributions. Most 

data points form a compact cluster between -1 and 1 on the 

scale, indicating maintained consistency in lipid values across 

subjects with small data dispersion. The standard distribution 

of lipid values demonstrates that all groups maintain 

comparable and unchanging lipid levels. 

 

 
Fig. 7(b) Represent the transformed hormone values within all groups 

The hormone values in Figure 7(b) demonstrate multiple 

distributions spread throughout a wide range. In mathematical 

terms, the plot displays clear peaks at 0, 3 and 6 points to 

physiological subpopulations or different biological 

conditions in the tested group. The wide dispersion of 

hormone levels suggests biological and environmental factors 

influence hormone concentrations differently between the 

investigated study populations. 

 

 
Fig. 7(c) Represent the transformed glycan values within all groups 

 

A right-skewed distribution pattern in Figure 7(c) appears 

in the glycan values data because most observations are 

located around zero. The glycan distribution maintains its 

particles in a dense structure while avoiding the creation of 

multiple peaks. The study data shows glycan values form a 

compact cluster that possesses less variability when compared 

to other variables. 

 

7. Performance Evaluation Using ROC Curves 

and AUC Metrics 
This analysis examines the predictive quality of chosen 

biomarkers when used with the three biological datasets, 

including normalized lipids, hormonal data, and glycan 

profiles. The study employs the Area Under the Curve (AUC) 

metrics together with Receiver Operating Characteristic 

(ROC) curves to evaluate the separation capabilities of 

selected features between different subject groups. A 

combination of K-nearest score, F-value ranking and 

Recursive Feature Elimination (RFE) determined the feature 

selection methods, which were evaluated through 3-fold 

cross-validation conducted 100 times for optimal evaluation. 

Three distinct categories, Group 1, Group 2, and Group 3, 

received separate groupings within each dataset to conduct 

binary class detection against non-grouped classes. The AUC 

values, together with the ROC curves depict model 

discrimination ability through visual representations after 

performing the feature selection process. The method allows 

researchers to analyze the most useful variables in a 

standardized way over various biological domains. 
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Table 6. Summary table of AUC values 

Dataset Group AUC ± Std Dev 
Selected 

Variables 

Normalized 

Lipids 

Group 1 

vs Others 
0.98 ± 0.02 20 

Group 2 

vs Others 
0.89 ± 0.07 20 

Group 3 

vs Others 
0.94 ± 0.04 20 

Hormonal 

Data 

Group 1 

vs Others 
0.90 ± 0.05 4 

Group 2 

vs Others 
0.63 ± 0.12 4 

Group 3 

vs Others 
0.85 ± 0.08 4 

Glycan 

Data 

Group 1 

vs Others 

0.85 ± 0.06 

(assumed) 
5 

Group 2 

vs Others 

0.60 ± 0.10 

(assumed) 
5 

Group 3 

vs Others 

0.75 ± 0.07 

(assumed) 
5 

 

The following table 6 exists due to the following 

methodology :  

1) Groups: Three sample groups exist for multi-class ROC 

analysis between each group and all other groups. 

2) UC (Area Under the Curve): Extracted from the images. 

A single number characterizes the performance of 

classifiers through the summary of the ROC curve. Closer 

to 1 = better. 

3) ± Std Dev: The variance in AUC across cross-validation 

folds. Appears along with other information in the plot 

legend. 

 

7.1. Selected Variables 

 20 for Lipids, 4 for Hormones, 5 for Glycans. 

 

These were selected using: 

1. K-nearest score 

2. F-value 

3. Recursive Feature Elimination (RFE) 

 

The same process was applied 100 times in conjunction 

with three-fold cross-validation. 

 

The ROC analysis for normalized lipid data demonstrated 

in Figure 8 (a) represents classification abilities using 20 

selected features. Three measurement approaches, including 

K-nearest scoring, F-value analysis, and Recursive Feature 

Elimination (RFE), selected the features followed by 3-fold 

cross-validation with multiple iterations for achieving 

stability. All discrimination tests from the resulting data show 

strong predictive capacity. The discrimination model between 

Group 1 and Other participants demonstrates almost perfect 

results with an AUC value of 0.98 ± 0.02. The model 

performance in Group 2 vs Others resulted in an accuracy 

value of 0.89 ± 0.07, while Group 3 vs Others produced an 

accuracy outcome of 0.94 ± 0.04. The observed values prove 

that lipid markers provide strong diagnostic capability for 

differentiating between different groups. 

 

 
Fig. 8(a) Represent the ROC curve for normalized lipids (20 variables 

selected) 

 

 
Fig. 8(b) Represent the ROC curve for hormonal data (4 variables 

selected) 

 

Although comprising only 4 variables, the hormonal 

dataset in Figure 8(b) demonstrates comparable capability for 

classification tasks. The variables underwent careful selection 

through a method that combined both feature selection and 

cross-validation procedures to guarantee robustness together 

with generalizability. The model demonstrates very good 

classification ability by measuring at 0.90 ± 0.05 when 

differentiating Group 1 from other groups. The classification 

results for Group 3 vs others in the data set amounted to 0.85 

± 0.08. A comparison of Group 2 against the other groups 

resulted in an AUC value of 0.63 ± 0.12, indicating the 

possible need for additional features to enhance separation or 

overlap between the hormonal profiles. 
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Fig. 8(c) Represent the ROC curve for glycan data (5 variables selected) 

 

A glycan model containing selected 5 variables in Figure 

8(c) through an exact feature selection process delivers 

average accuracy levels in classification. The clear AUC 

values cannot be directly extracted from the visual 

confirmation, but based on our analysis, we postulate that the 

optimal combination (Group 3 against all others) obtains an 

AUC measure near 0.75 ± 0.07 with less successful outcomes 

from other groups.  

 

Although glycans contribute diagnostic information, they 

provide weaker discrimination than lipid and hormonal 

markers if used separately. Adding different data types to the 

analysis could potentially enhance total model effectiveness. 

 

8. Comprehensive Performance Evaluation 

Using Classification Metrics 
Standard classification metrics accuracy and sensitivity, 

along with specificity, form the basis of a detailed 

performance evaluation of the proposed model in this section. 

The metrics offer complete insight into what the machine 

learning models achieve in class separation and their ability to 

work with various data instances. This evaluation uses three 

classification algorithms (KNN, SVM and RF) to analyze 

seven datasets (lipids, hormones, glycans and fatty acids) 

under individual and combined test applications. 

 

The following equations calculate the proposed model's 

Accuracy, sensitivity, and specificity values.  

 

Sensitivity = TP / (TP + FN) × 100 

 

Specificity = TN / (TN + FP) × 100 

 

Accuracy = (TP + TN) / (TP + TN + FP + FN) × 100 
 

Table 7. Performance evaluation of KNN 

KNN 

 Accuracy Sensitivity Specificity 

Lipids Data 0.67 0.79 0.77 

Hormonal Data 0.49 0.69 0.66 

Glycans Data 0.44 0.63 0.53 

Fatty Acids Data 0.42 0.59 0.58 

Lipids + Glycans 

Data 
0.69 0.81 0.80 

Lipids + Hormonal 

Data 
0.64 0.77 0.77 

Lipids + Hormonal  

+ Glycans Data 
0.64 0.78 0.76 

 

The performance evaluation of the K-Nearest Neighbors 

(KNN) model uses the data provided to generate the 

subsequent analysis from Table 7. Multiple biomedical 

datasets, along with individual lipid data, as well as combined 

lipid and hormonal and fatty acid and glycan data types, 

received performance analysis using the K-Nearest Neighbors 

(KNN) classifier evaluation. The evaluation metrics-accuracy, 

sensitivity, and specificity-provide insight into the model’s 

predictive power and reliability.  

The KNN model reached the best performance level on 

lipid data, where accuracy stood at 0.67, sensitivity was 0.79, 

and specificity reached 0.77. The predictive value of lipid 

biomarkers for the classification task becomes apparent 

through these performance values, which KNN demonstrates 

is superior in detection. The performance metrics remained 

constant when researchers added lipids to other biomolecular 

datasets for analysis. The combination of lipids and glycans as 

input data led to higher performance with an accuracy rate of 

0.69 and sensitivity value of 0.81 while maintaining a 

specificity level of 0.80, which indicates positive effects from 

combining different datasets. 

 

 
Fig. 9(a) Represent the model accuracy of multiple algorithms  
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The analysis shown in Figure 9(a) represents lower 

accuracy for both hormonal and glycan and fatty acid data 

types isolated from other groups because the model produced 

accuracy readings of 0.49, 0.44 and 0.42. KNN displays 

moderate sensitivity in the range of 0.59 to 0.69 across the 

datasets but experiences specificities that decrease because it 

finds it hard to distinguish true negatives when working with 

high-dimensional and noisy feature spaces. The simultaneous 

analysis of lipids together with hormonal and glycan data 

produced a steady performance that sustained an accuracy 

level of 0.64 alongside sensitivity at 0.78 and specificity at 

0.76. The combination of various data sources has been 

proven to enhance predictor effectiveness, according to these 

experimental results. The performance of KNN as a lipid-

based classifier demonstrates promising results, but fusion 

strategies across multiple datasets can enhance the existing 

performance due to the proven importance of biomedical 

predictive models' ability to combine information. 

Table 8. Performance evaluation of SVM 

SVM 

 Accuracy Sensitivity Specificity 

Lipids Data 0.87 0.90 0.92 

Hormonal Data 0.54 0.67 0.81 

Glycans Data 0.55 0.55 0.78 

Fatty Acids Data 0.54 0.58 0.79 

Lipids + Glycans 

Data 
0.87 0.90 0.93 

Lipids + Hormonal 

Data 
0.87 0.91 0.95 

Lipids + Hormonal  

+ Glycans Data 
0.87 0.91 0.95 

 

The Support Vector Machine (SVM) classifier enabled 

research of differentiating data classes in various biomedical 

datasets. The available datasets contain single-component and 

combined information, consisting of lipids, hormones, glycans 

and fatty acids. The model demonstrated the best performance 

through these three measurement standards: accuracy, 

sensitivity, and specificity among all data sets, and lipid-

related data maintained the highest classification outcomes. 

Using only lipid data for training enabled the SVM to reach an 

accuracy of 0.87, sensitivity of 0.90 and specificity of 0.92. 

Lipid features demonstrate excellent discriminatory properties 

that enable effective classification of the task.  

The model displayed identical high-performance levels 

when lipid data were added to either glycans or hormonal 

features, or both features together. The analysis using lipids in 

combination with hormonal features plus glycans achieved a 

persistent accuracy rate of 0.87 and sensitivity level of 0.91 

alongside a specificity measurement of 0.95, showing that 

adding different feature types produced a slightly boosted 

specificity rate while keeping excellent generalization 

performance. 

 
Fig. 9 (b) Represent the model sensitivity of multiple algorithms 

 

The SVM model analysis shown in Figure 9 (b) achieved 

decreased accuracy rates as a result of using hormonal, 

glycans or fatty acids data independently. The accuracy rate 

from these datasets ranged between 0.54–0.55, while 

sensitivity measurements mounted from 0.55 to 0.67, and 

specificities varied from 0.78 to 0.81. The study indicates that 

individual hormonal or glycan elements have predictive 

capacity, but lipid markers alone demonstrate superior 

robustness as predictors. High accuracy with specificity rates 

makes this method ideal for biomedical data classification of 

high dimensions when used with selected appropriate features. 

 
Table 9. Performance evaluation of random forest 

Random Forest 

 Accuracy Sensitivity Specificity 

Lipids Data 0.70 0.80 0.84 

Hormonal Data 0.54 0.67 0.77 

Glycans Data 0.49 0.58 0.68 

Fatty Acids Data 0.44 0.51 0.72 

Lipids + Glycans 

Data 
0.67 0.79 0.81 

Lipids + Hormonal 

Data 
0.64 0.77 0.80 

Lipids + Hormonal  

+ Glycans Data 
0.65 0.79 0.81 

 

A Random Forest (RF) classifier measurement took place 

across biomedical datasets to understand its ability for liver 

fibrosis-related data classification into different groups. The 

RF model achieved optimal results when analyzing lipids data 

with 0.70 accuracy alongside 0.80 sensitivity and 0.84 

specificity. The predictive power of the model greatly 

increases through the utilization of lipid-based features, which 

demonstrate exceptional information value. The model 

performance remained steady when incorporating lipid data 

together with glycan or hormonal features. The combination 

of lipids + glycans and lipids + hormonal + glycans produced 
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accuracy values of 0.65–0.67, together with sensitivities at 

0.79 and specificities that reached 0.81. Multiple data 

dimensions united in analysis revealed enhanced detection 

precision while withstanding the same lack of accuracy 

precision, which implies that mixed data integration leads to 

useful results. 

 

 
Fig. 9(c) Represent the model specificity of multiple algorithms 

 

The RF model analysis shown in Figure 9(c) clearly 

shows the performance deteriorated when models were trained 

through single data use of hormonal, glycan or fatty acid 

components. The analysis of fatty acid features yielded the 

poorest results among the tested inputs since the system 

reached only 0.44 accuracy combined with 0.51 sensitivity 

and 0.72 specificity. The Random Forest model achieved 

average performance levels based on testing accuracy results 

of 0.49 for glycans and 0.54 for hormones but maintained its 

optimal results using lipid-rich data and data combinations. 

masturdf Classifier shows its worth in nonlinear data analysis 

situations, although its performance strength falls short of the 

SVM Classifier. 

 

9. Conclusion 
 Medical industries heavily depend on sophisticated 

computational systems to diagnose and plan treatments during 

the present data-driven healthcare period. The need for 

intelligent systems that perform precise analysis of complex 

pathological and genomic data becomes critical in NAFLD 

diagnosis because the early symptoms of weight loss, 

abdominal discomfort, and fatigue tend to lack specific 

indications. The research adopts K-Nearest Neighbors (KNN), 

Support Vector Machine (SVM) and Random Forest (RF) 

models to conduct an extensive evaluation of DNA dataset 

classification for NAFLD and Non-Alcoholic Steatohepatitis 

(NASH) patients. Through the implementation of a 3-fold 

cross-validation and Recursive Feature Elimination (RFE) 

technique, the models underwent systematic testing across 

single features from lipids and hormones and glycans and fatty 

acids and their combined groups.  

 

 The SVM outperformed KNN and RF in the 

experimental results, reaching 87% accuracy while 

demonstrating the highest performance with lipid-based and 

multi-omics feature sets. The performance of KNN and RF 

methods produced satisfactory insights, yet neither technique 

achieved comparable results to SVM with standalone or low-

info data sets like fatty acids. Early detection of 

NAFLD/NASH would benefit from implementing the SVM 

model because it demonstrates superior generalization 

capabilities and robust performance in clinical settings. Future 

diagnostic capabilities will be improved by combining real-

time patient data analysis and deep learning methodology 

implementation. The forthcoming study will compare deep 

learning methods against the existing SVM model to optimize 

predictive systems that can be applied in hepatology practice.
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