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Abstract - Parkinson's Disease (PD) is a chronic neurological disorder that advances gradually, with signs often resembling 

those of other conditions. Timely detection and diagnosis of PD are crucial for giving the appropriate treatment, assisting 

patients in maintaining their health and improving their quality of life. These disease signs have been described as slowness in 

activities, muscle rigidity, tremors, and balancing with other psychiatric signs. Handwritten heath records are the main devices 

that support PD recognition and evaluation. Many Machine Learning (ML) methodologies have been discovered for the early 

recognition of PD. However, many handcrafted feature extractor techniques mainly suffer from lower-performance accuracy 

problems. Therefore, Deep Learning (DL) models are widely used to analyse medical data. In this view, this study presents a 

Hybrid Meta-heuristics with DL Assisted PD Detection and Classification (HMDL-PDDC) technique. The HMDL-PDDC 

technique follows the hybrid metaheuristics-based Feature Selection (FS) design with an optimum DL method for recognizing 

and identifying PD. In the HMDL-PDDC technique, feature subsets are selected using an Improved Salp Swarm Algorithm 

(ISSA). Besides, the Kernel-based Deep Elman Neural Networks (KDENNs) technique is exploited to detect and identify PD. 

Moreover, the hyperparameter selection of the KDENN model is performed by an Object‐Oriented Programming Optimization 

Algorithm (OOPOA) technique. The experimentation outcomes of the HMDL-PDDC model are examined under four datasets 

using a set of measures. The experimental assessment of the HMDL-PDDC technique illustrated superior accuracy values of 

93.98%, 94.97%, 98.71% and 97.10% over existing models. 

Keywords - Parkinson’s Disease, Metaheuristics, Deep learning, Hyperparameter tuning, Salp Swarm algorithm. 

1. Introduction 
PD is a progressive neurological condition that has 

worsened over time, instigated by the early degeneration of 

dopamine-generating neurons in the substantia nigra region 

[1]. This degeneration primarily arises in the dorsal striatum 

and develops to the ventral part due to the spreading of such 

disease. The caudate and putamen nucleus that built the 

striatum is accountable for controlling numerous cognitive 

and motor functions. In PD, dopamine metabolism creates a 

higher level of reactive-oxygen contents, resulting in 

improved iron contents that will damage the cell constituents 

and harm the cerebral functions [2]. The degradation in 

dopaminergic paths is related to PD signs, with the reduction 

of dopaminergic neurons inducing non-motor and motor 

indications. Motor signs comprise slow movement, trouble 

walking, tremors, and stiffness, whereas the non-motor 

indications include examples such as sleep disorders, 

psychosis, depression, genitourinary problems, and accidents 

[3]. If 60% of dopaminergic neurons exist, these indications 

will be evident, and these are related to ageing factors, leading 

to reduced life quality. For the recognition of PD at an earlier 

phase, most medical specialists must depend upon significant 

signs, namely complex walking, keeping bodily balancing, 

and shaking [4]. Accordingly, the research workers are 

considering approaches to recognize these non-motor 

indications as soon as possible to decrease the disease’s 

growth. This is where ML determines the advantages [5]. 

 

Recently, developments in ML methods and the 

accessibility of large-scale databases have initiated novel 

possibilities for the automatic recognition of PD by employing 

different types of data comprising voice recordings [6]. ML-

based PD recognition techniques can also be non-invasive, 

inexpensive, and simply scalable. A voice recording is 

gathered by employing normally obtainable devices like 

smartphones, which creates an accessible and suitable tool for 

monitoring and screening PD [7]. Various researchers have 

explored the field of PD identification, attaching voice data as 

an analytic indicator. However, a prominent gap is the 

restricted sizes and variety of the databases utilized in several 

previous kinds of research. This limitation complicates the 

consistency and applicability of the resulting classification 
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techniques [8]. This research work builds an essential 

involvement in the field by decidedly overcoming this 

problem over the application. Another gap is the lack of all-

inclusive FS techniques utilized in PD classification. 

Although a few efforts have been made to implement FS 

methods, this consideration proceeds by presenting a new 

integration of filter FS with genetic selection and ensemble 

learning [9]. PD is a progressive neurological disorder with 

varied symptoms, making early detection challenging. 

Conventional diagnostic methods often depend on expert 

interpretation and invasive procedures, leading to delays in 

treatment. There is a growing requirement for effectual tools 

that enable early detection. By incorporating hybrid 

metaheuristics and DL, this study aims to enhance the 

accuracy and speed of PD detection, improving patient 

outcomes and healthcare efficiency [10]. 

 

This study presents a Hybrid Meta-heuristics with DL 

Assisted PD Detection and Classification (HMDL-PDDC) 

technique. The HMDL-PDDC technique follows the hybrid 

metaheuristics-based Feature Selection (FS) design with an 

optimum DL method for recognizing and identifying PD. In 

the HMDL-PDDC technique, feature subsets are selected 

using an Improved Salp Swarm Algorithm (ISSA). Besides, 

the Kernel-based Deep Elman Neural Networks (KDENNs) 

technique is exploited to detect and identify PD. Moreover, the 

hyperparameter selection of the KDENN model is performed 

by an Object‐Oriented Programming Optimization Algorithm 

(OOPOA) technique. The experimentation outcomes of the 

HMDL-PDDC model are tested using a set of measures. The 

key contribution of the HMDL-PDDC model is given below. 

 The HMDL-PDDC method utilizes a metaheuristics-

based feature selection approach to detect the most 

relevant features from extensive datasets. This process 

enhances the capability of the technique to concentrate on 

critical data points, improving both its accuracy and 

efficiency. Choosing only the most crucial features 

mitigates complexity while maintaining high 

performance. 

 The HMDL-PDDC technique employs the ISSA model to 

optimize feature subset selection, focusing on detecting 

the most crucial variables for PD detection. This results 

in mitigated dimensionality, improving computational 

efficiency while preserving critical data. The ISSA-based 

approach improves model performance by choosing only 

the most relevant features for accurate prediction. 

 The HMDL-PDDC approach integrates the KDENN 

method to enhance feature representation and enable DL-

based PD detection. By capturing intrinsic patterns and 

relationships in the data, KDENNs improve the accuracy 

of PD recognition. This approach effectually improves 

the capability of the method to detect PD with higher 

precision. 

 The HMDL-PDDC methodology implements the 

OOPOA model for fine-tuning the model's 

hyperparameters, ensuring optimal performance in PD 

detection. By efficiently adjusting key parameters, 

OOPOA assists in achieving improved accuracy and 

precision in predictions. This tuning process improves the 

overall efficiency of the method in recognizing PD. 

 The novelty of the HMDL-PDDC approach stems from 

its unique integration of advanced metaheuristic-based 

feature selection, DL, and optimization methods for 

model tuning. This incorporation not only improves the 

accuracy and efficiency of the method but also addresses 

the complexities of PD detection. By utilizing these 

innovative approaches, the model presents a more robust, 

adaptable, and precise solution for recognizing PD 

compared to conventional methods. 

 

2. Literature Works 
Dharani and Thamilselvan [11] developed a 

chronological smart sunflower optimizer algorithm 

(CSSFOA) model. The Gaussian Filter (GF) and CSFOA are 

utilized for pre-processing and FS. This regarded the features 

through the method of Bray-Curti’s distance. The ZF-Net 

architecture performs the PD classification. In [12], the 

Adaptive Crow Search Algorithm (ACSA) and DL-assisted 

optimum FS model were projected. This method was the 

hybrid of CSA and DL Stack Sparse Autoencoder (SSAE)-

NN. The ACSA method was utilized to determine the 

scrunched feature vectors. Besides, SSAE with seven hidden 

layers (HLs) produces the compacted feature vectors. The 

authors [13] presented an improved sailfish optimizer 

algorithm with DL (ISFO-DL) method. This method employs 

the metaheuristic ISFO and DL techniques. The ISFO method 

was mainly employed to develop optimum feature subsets 

with a Fitness Function (FF) of maximal identification 

accuracy. 

Furthermore, the Rat Swarm Optimizer (RSO) with the 

Bidirectional Gated Recurrent Unit (BiGRU) is used to 

classify. In [14], a method to classify PD by MRI brain 

imageries was developed. Initially, the min-max 

normalization technique, followed by noise elimination from 

the input imageries through a Median Filter (MF), is utilized. 

Also, the Dense-UNet is used for segmentation. The Deep 

Residual CNN (DRCNNs) with the Enhanced Whale 

Optimizer Algorithm (EWOA) model is used for 

classification. Chen et al. [15] utilized the DCNNs technique. 

The Chimp Optimizer Algorithm (ChOA) is used to choose 

the optimum structure of DCNN mechanically. Also, three 

ChOA-based models are used. An IPA-based encoding model 

for the DCNN layer utilizing Chimp Vectors (CVs) was 

initially made. Moreover, a layer of Enfeebled with definite 

CV sizes is used for variable-length DCNNs. 

 

Pragadeeswaran and Kannimuthu [16] proposed an 

Adaptive Intelligent Polar Bear (AIPB) Optimizer-Quantized 

Contempo Neural Networks (QCNNs) approach. Where the 

Determinate Haar Wavelet (DHW) transformer method is 

utilized for pre-processing. The Statistical Time Frequency 
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Renyi (STFR) method is employed for extraction. Then, the 

AIPB-optimized methodology is implemented for feature 

extraction. Then, the QCNN model is employed for a forecast. 

Sharanyaa et al. [17] develop a method to identify PD utilizing 

voice signals. After FS, an exponential Delta-Amplitude 

Modulation Spectrogram (AMS) is created by uniting 

Exponential Weighted Moving Average (EWMA) and delta-

AMS techniques. The FS is completed by utilizing the 

projected Squirrel Search Water Algorithm (SSWA), which 

was created by merging the Water Cycle Algorithm (WCA) 

with the Squirrel Search Algorithm (SSA). Lu et al. [18] 

propose a novel handwriting-based PD detection method by 

extracting kinematic, pressure, and angle dynamic features 

and optimizing classification performance utilizing the escape 

Coati Optimization Algorithm (eCOA). Majhi et al. [19] 

propose four DL models with a hybrid approach for early PD 

detection, utilizing Grey Wolf Optimization (GWO) for fine-

tuning. Jain and Srivastava [20] present an FLSNN framework 

to enhance the detection of neurological disorders from EEG 

signals by utilizing fuzzy logic to handle uncertainties and 

spiking neural networks for dynamic signal analysis. Hadadi 

and Arabani [21] introduce a DL-based disease diagnosis 

method utilizing handwritten samples optimized with the 

Harris Hawks Optimization (HHO) technique for improved 

performance. 

 

Mallidi and Ramisetty [22] introduce Bowerbird 

Courtship-Inspired Feature Selection (BBFS), a meta-

heuristic methodology that optimizes feature selection by 

balancing exploration and exploitation. Cuk et al. [23] use 

Long Short-Term Memory (LSTM) with attention 

mechanisms to detect PD from dual-task walking data, 

proposing a modified Crayfish Optimization Algorithm 

(COA) model to improve the performance of the model. 

Ekinci et al. [24] utilize the Sinh Cosh Optimizer (SCHO) 

technique, enhancing tuning by overcoming local minima and 

exhibiting convergence issues in conventional methods. 

Cincovic et al. [25] integrate Artificial Intelligence (AI) and 

ML techniques for early PD from finger-tapping 

accelerometer data, using RNNs, and extreme gradient 

boosting. Metaheuristics, comprising a modified Sinh cosh 

optimizer, are employed to optimize performance. KV and 

Selvakumar [26] present a Personalized Recommendation 

System for Early-Stage Skin Cancer Detection (PRSSCHM) 

approach using a hybrid model. It comprises preprocessing, 

deep joint segmentation, feature extraction (MBP, GLCM, 

ILDTP), and Improved Bi-LSTM and DBN classification. The 

IBEASO method optimizes model weights for accurate 

classification. Sawan et al. [27] propose a hybrid DL method 

combining CNN and BiGRU for stroke classification from 

EEG data, optimized with Harmony Search (HS) and 

Multiverse Optimization (MVO)-based extraction and tuning. 

Despite improvements in PD detection using various 

approaches such as CSSFOA, ACSA, ISFO-DL, etc., 

challenges remain in optimizing performance across diverse 

datasets and ensuring real-time applicability. Many models 

face difficulty with overfitting, computational complexity, 

and limited generalizability across various populations. 

Additionally, there is a requirement for better integration of 

hybrid models (e.g., DL + metaheuristics) for enhanced 

accuracy and efficiency in real-world applications. Future 

research may optimise hybrid models and reduce the 

computational burden for practical deployment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Workflow of HMDL-PDDC technique 
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3. The Proposed Methodology 
In this paper, a new HMDL-PDDC technique is proposed. 

The method follows the design of a hybrid metaheuristics-

based FS with an optimum DL technique for recognizing and 

identifying PD. To accomplish that, the HMDL-PDDC 

technique involves three main sub-processes: ISSA-based 

feature subset selection, KDENN-based classification, and 

OOPOA-based tuning. Figure 1 illustrates the flow of the 

HMDL-PDDC model. 

 

3.1. FS Using ISSA 

Initially, the HMDL-PDDC technique undergoes the 

selection of feature subsets using ISSA. Salps are sea 

invertebrates that look identical to jellyfish and show swarm 

behaviour when looking for prey, which is recognized as a 

salp chain [28]. The SSA has prominent benefits like fast 

convergence to the optimum value and the least desire to alter 

its limits. These effects create this meta-heuristic process 

appropriate for a swarm of optimizer issues exact to 

engineering areas like power systems. SSA is used to 

proficiently allocate single-phase load among three phases of 

a distribution system, whereas the authors present an SSA-

based technique for Maximum Power Point Tracking (MPPT). 

SSA can attain the optimum transient response through 

dissimilar operating conditions. In a salp chain populace, there 

is a cluster and elected leader. The leader is highly in charge 

of searching, while the groups energetically alter their 

locations and so in closeness to the leader.  At every iteration 

𝑝, the leader location in the salp‐chain 𝑋1
(𝑝)

 has been upgraded 

by the position of the food source 𝐹(𝑝) utilizing the formula: 

𝑋1
(𝑝)

= {
𝐹(𝑝) + 𝑐1((𝑋max − 𝑋min)𝑐2 + 𝑋min), 𝑐3 > 0.5

𝐹(𝑝) − 𝑐1((𝑋𝑚𝛼𝑥 − 𝑋min)𝑐2 + 𝑋min), 𝑐3 ≤ 0.5
           (1) 

 

Where 𝑋max and 𝑋min represent the lower and upper 

limits, 𝐶3 and 𝐶2 are randomly produced in [0,1]. To calculate 

parameter 𝐶1, the following formula has been used: 

 

𝑐1 = 2𝑒
−(

4𝑡
𝑡𝑀𝐴𝑋

)
2

                                       (2) 
 

Whereas 𝑡 signifies the present iteration step, 𝑡𝑀𝐴𝑋 

denotes the total iteration count measured. 

 

As the location of a leader is upgraded, every follower 

alters its place 𝑋𝑘
(𝑝)

 dependent on the preceding salp in the 

chain 𝑋𝑘−1
(𝑝)

: 

𝑋𝑘
(𝑝)

=
1

2
(𝑋𝑘

(𝑝)
+ 𝑋𝑘−1

(𝑝)
)                              (3) 

 

The conventional SSA presents many benefits, such as a 

chance for alterations to improve convergence rapidity while 

upholding stability amid the exploitation and exploration 

stages. So, many enhanced types of SSA were developed in 

the study. A hybrid among an SSA and SCA has been 

presented, whereas the author projects an operator of sine 

cosine and Levy flight to enhance the performance of the SSA. 

A chaotic map is given to enhance the performance of SSAs 

and suggests an operator of mutation to improve the SSA's 

search abilities. The preceding work is extended for the ISSO 

by developing two novel social classes: Rogue Salp (RS) and 

Pioneer Salp (PS). 

 

The PS improves the search phase by operating 

independently of the Leader Salp. For this reason, every PS 

will arbitrarily select an equivalent possibility. In the first 

case, the PS location is defined by including a random 

difference to a salp X and described in Equation (4). The 

second PS location upgrade device contains a random linear 

mixture among two nominated salps 𝑋𝑅,1 and 𝑋𝑅,2. In contrast, 

the third choice embodies producing a novel random location, 

as defined in Equation (5) and (6). The fourth substitute for 

determining the PS location depends on the opposition-based 

learning standard. Therefore, the present location of the PS is 

defined as opposed to its preceding location, as assumed in 

Equation (7). It must be stated that 𝑟1 and 𝑟2 from Equation 

(4)-(7) are random facts within the interval [0,1], whereas 

𝑋min and 𝑋max represent the lower and upper bounds. 

 

𝑋𝑘
(𝑝)

= 𝑋𝑅
(𝑝−1)

+ 𝑟1 ⋅ [𝑟2 ⋅ (𝑋max − 𝑋min) + 𝑋min]               (4) 

 

𝑥𝑘
(𝑝)

= 𝑟1 ⋅ 𝑋𝑅,1
(𝑝−1)

+ (1 − 𝑟1) ⋅ 𝑥𝑅.2
(𝑝−1)

               (5) 

 

𝑋𝑘
(𝑝)

= 𝑟1 ⋅ (𝑋max − 𝑋min) + 𝑋min               (6) 

 

𝑋𝑘
(𝑝)

= 𝑋max + 𝑋min − 𝑋𝑘
(𝑝−1)

               (7) 

 

The RS is proposed to expand the performance of ISSAs 

in the exploitation stage. The RS also travel near the prey, but 

they refuse to obey Leader Salp’s rules and define their future 

location, relying on their real location and food source. 

 

𝑥𝑘
(𝑝)

= 𝐹𝑘
(𝑝−1)

+ 𝑟1 ⋅ [𝑟2 ⋅ 𝐹𝑘
(𝑝−1)

− (1 − 𝑟2) ⋅ 𝑥𝑘
(𝑝−1)

]          (8) 

 

𝑟1 and 𝑟2 denote a random amount within the range of 
[−0.5,0.5] and [0,1], respectively. The [−0.5,0.5] interval is 

selected for the 𝑟1 values to guarantee discrepancies in both 

increase (𝑟1 > 0) and decrease (𝑟1 < 0) the values of the 

salp location. 

 

The traditional SSA location upgrade device for the 

Follower Salps, assumed in Equation (3), has been adapted in 

enhanced form by producing a random linear mixture among 

the binary successive salps. 

 

𝑥𝑘
(𝑝)

= 𝑟1 ⋅ 𝑥𝑘−1
(𝑝−1)

+ (1 − 𝑟1) ⋅ 𝑥𝑘
(𝑝−1)

                  (9) 
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For every salp, excluding the leader, an arbitrary amount 

𝑟 ∈ [0,1] is produced. At first, there is a 𝑝𝑓𝑜𝑙𝑙, or possibility 

of becoming a Follower Salp (𝑖𝑓 𝑟 < 𝑝𝑓𝑜𝑙𝑙). If the existing 

salp is not a follower, then a novel number of random 𝑟 ∈
[0,1] has been produced. The 𝑝𝑝𝑖𝑜𝑛  possibility of being a PS 

(𝑖𝑓 𝑟 < p𝑝𝑖𝑜𝑛) or (𝑖𝑓 𝑟 ≥ p𝑝𝑖𝑜𝑛), it will become an RS. The 

probability 𝑝𝑓𝑜𝑙𝑙 rises linearly from 𝑝𝑓𝑜𝑙𝑙
𝑚𝑖𝑛  to 𝑝𝑓𝑜𝑙𝑙

𝑚𝑎𝑥  throughout 

the iterations, whereas the 𝑝𝑝𝑖𝑜𝑛  probability reduces linearly 

from 𝑝𝑝𝑖𝑜𝑛
max  to 𝑝𝑝𝑖𝑜𝑛

min  as iterations grow: 

 

𝑝𝑓𝑜𝑙𝑙 =
𝑝

𝑝max

. (𝑝𝑓𝑜𝑙𝑙
max − 𝑝𝑓𝑜𝑙𝑙

min) + 𝑝𝑝𝑖𝑜𝑛
min                 (10) 

 

𝑝𝑝𝑖𝑜𝑛 = (1 −
𝑝

𝑝max

) ⋅ (𝑝𝑝𝑖𝑜𝑛
max − 𝑝𝑝𝑖𝑜𝑛

min ) + 𝑝𝑝𝑖𝑜𝑛
min        (11) 

 

The ISSA model integrates the objectives into a single 

unified formulation, where each current weight defines the 

importance of every objective [29]. In this study, an FF is 

used, which incorporates both FS as presented in (12). 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋) = 𝛼 ⋅ 𝐸(𝑋) + 𝛽 ∗ (1 −
|𝑅|

|𝑁|
)          (12) 

 

Here, 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋) depicts the fitness value of a subset 𝑋; 
|𝑅| and |𝑁| is the number of nominated and original features, 

correspondingly; 𝐸(𝑋) depicts the classification error rate by 

employing the chosen features in the X subset; 𝛽 and 𝛼 

denotes the reduction ratio weight and classification error, 

𝛽 = (1 − 𝛼) and 𝛼 ∈ [0,1]. 

3.2. DENN-Based Classification 

In this work, the KDENN technique is exploited to detect 

and classifyto detect and classify PD. As a partial recurrent 

network model, the classical ENN includes the context, HL, 

and input and output layers [30].  

 

The deviation between the feedforward neural network 

and ENN is the presence of a context layer that memorizes the 

HL's output as an operator of step delay.  

 

The presented model intensely studies the data by 

clarifying the data through 𝑡ℎ𝑒 𝑛‐number of HLs to decrease 

the training error higher than 𝑡ℎ𝑒 𝑛‐amount of HLs.  

 

This DL technique provides an accurate classification. 

The feature extracted is fed into the KDENN classifier. Figure 

2 shows the KDENN framework. 

 

 
Fig. 2 Architecture of KDENN 
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The input layer has 𝑁‐dimension external input vector 

𝑍𝑓,𝑁. The weight value for the inputted feature value is 

arbitrarily produced. Then, these values are transmitted to the 

HL as follows: 

𝑂𝐻𝐼𝐷,𝑡 = 𝜅𝐻 (𝑊𝐼𝐻𝑂𝐶𝑂𝑁,𝑡 + 𝑊𝐻𝐶(𝑍𝑓,𝑁))              (13) 

 

In Equation (13), 𝑂𝐻𝐼𝐷,𝑡 shows the output HLs at �̃� 

iteration; 𝑂𝐻𝐼𝐷,𝑡 indicates the output HL unit at �̃� iteration; 

𝑂𝐶𝑂𝑁,𝑡 refers to the output context layer unit at �̃� iteration, 

correspondingly. The output context layer is represented as 

follows: 

 

𝑂𝐶𝑂𝑁,𝑡 = 𝑂𝐻𝐼𝐷𝐷,𝑡−1                                 (14) 

 

In Equation (14), 𝑊𝐼𝐻 implies the weight of the input 

layer to HL;  𝑂𝐻𝐼𝐷𝐷,𝑡−1 signifies the output HLs at �̃� − 1 

iteration; 𝜅𝐻 implies the kernel activation function; 𝑊𝐻𝐶 

symbolizes the weight of HL. Rather than the Gaussian 

activation function, 𝜅𝐻 is applied in the KDENN. 𝜅𝐻 has a 

robust performance in the DL-NN model. The 𝜅𝐻 is expressed 

as 
 

𝜅(𝛼) = ∑𝛽𝑁

 

𝑁

𝑘(𝛼, 𝑑𝑁)                             (15) 

 

In Equation (15), 𝜅(𝛼) implies the 𝜅𝐻 aimed at input 𝛼; 

𝛽𝑁 signifies the mixed coefficients; 𝑑𝑁 denotes the dictionary 

element; 𝑘 indicates the kernel coefficient. Before 𝜅𝐻, the HL 

provides output 𝑂𝐻𝐼𝐷,𝑡 as input to the output layer. Gr on 

output HLs, the output layer produces the final output as 

follows: 

𝑂𝑂𝑈𝑇,𝑡 = 𝜅𝑂(𝑊𝐻𝑂𝑂𝐻𝐼𝐷,𝑡)                         (16) 

 

In Equation (16), 𝑂𝑂𝑈𝑇,𝑡 shows the output layer unit; 𝜅𝑂 

depicts the activation function of the output layer; 𝑊𝐻𝑂 

suggests the weight of HL to the output layer. 

3.3. Hyperparameter Tuning by Utilizing the OOPOA 

Finally, OOPOA executes the selection of the KDENN 

hyperparameter technique. OOPOA is a new meta-heuristic 

that imitates the instructions through which features are 

exchanged among objects of various classes in OOP [31]. 

These instructions have been called access modifiers that find 

where the class elements will be retrieved. In an OOPOA, the 

outcomes of the early populace signify diverse classes in the 

application, and the elements describe the feature to be 

transferred amongst classes. Such features have been 

exchanged based on the access modifier instructions. 

Distribution features among solutions can offer the production 

of an upgraded population. Subsequently, the population 

could be improved repetitively up to the maximum number of 

iterations that will be gained. The phases of OOPOA are given 

below: Initially, 2 vectors must be arbitrarily initialized. The 

1st vector signifies the initial population 𝑋 is given 

 

𝑋 =

[
 
 
 
 
 
𝑋𝑙,𝑙 𝑋𝑙,2 𝑋𝑙,𝐷−𝑙 𝑋𝑙,𝐷

𝑋2,𝑙 𝑋2,2 𝑋2,𝐷−𝑙 𝑋2𝑖𝐷

⋮ ⋮ ⋮ ⋮
𝑋𝑁−𝑙𝑖𝑙

𝑋𝑁−𝑙,2 𝑋𝑁−𝑙,𝐷−𝑙 𝑋𝑁−𝑙𝑖𝐷

𝑋𝑁,𝑙 𝑋𝑁,2 𝑋𝑁𝑖𝐷−𝑙 𝑋𝑁,𝐷 ]
 
 
 
 
 

           (17) 

 

The 2nd vector will be named the status vector 𝑆, with a 

similar dimension as the populace vector as expressed below: 

𝑆 =

[
 
 
 
 
𝑆𝑙,𝑙 𝑆𝑙,2 𝑆𝑙,𝐷−𝑙 𝑆𝑙,𝐷

𝑆2,𝑙 𝑆2,2 𝑆2,𝐷−𝑙 𝑆2,𝐷

⋮ ⋮ ⋮ ⋮
𝑆𝑁−𝑙,𝑙 𝑆𝑁−𝑙,2 𝑆𝑁−𝑙,𝐷−𝑙 𝑆𝑁−𝑙,𝐷

𝑆𝑁,𝑙 𝑆𝑁,2 𝑆𝑁,𝐷−𝑙 𝑆𝑁,𝐷 ]
 
 
 
 

             (18) 

 

𝑆𝑖𝑖  represents the prominence of the feature. 𝑆𝑖𝑖  refers to 

a value from 0, 1and 2 that denotes three common access 

modifiers: protected, public, and private. 

 

1. To upgrade the population, a parent decision (solution 

with maximum fitness) was chosen for exchanging its 

features with alternative solutions at a population as 

stated in the value of its features as given: 

 The variable resultant position value is 𝑧𝑒𝑟𝑜, a public 

variable that describes every solution at population can 

get variable: 

𝑋𝑘𝑖𝑙
= {

𝑃𝑙 𝑖𝑓 𝑆𝑙 = 0

𝑋𝑘,𝑙 𝑖𝑓 𝑆𝑙 = 1

𝑋𝑘,𝑙 𝑖𝑓 𝑆𝑙 = 2
                             (19) 

Whereas 𝑃1 is the lh component in the parent 𝑃, 𝑆1 is the 

𝑙-th constituent in the status vector for the parent 𝑃, 𝑋𝑘,𝑙 

signifies the 𝑙-th element in the 𝑘𝑡ℎ solution. The values 

of 0,1 and 2 correspondingly describe private, public, and 

protected status. 

 A child solution has been randomly set and assumes each 

protected and public feature in the parent solution given 

below: 

𝐶ℎ𝑙 = {

𝑃𝑙  𝑖𝑓 𝑆𝑙 = 0,
𝑃𝑙  𝑖𝑓 𝑆𝑙 = 1

𝑟𝑎𝑛𝑑 (𝑙𝑏, 𝑢𝑏) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
         (20) 

 

Here, 𝑙𝑏 and 𝑢𝑏 depict the lower and upper limits and 𝐶ℎ𝑙  

represents the 𝑙ℎ component in the child 𝐶ℎ. 

 Once the newly generated child is more suitable than the 

parent, it replaces the parent; otherwise, the parent is 

retained for the next generation. 

2. A mutation procedure must be implemented to the 

position vector to upsurge the variety of decisions and 

prevent the problem of getting stuck at local minima, s: 

 

𝑆𝑗(𝑢) = {
𝑟𝑖𝑓𝑟𝑎𝑛𝑑(𝑂, 1) < 𝑀𝑅               
𝑆𝑢𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (21) 

 

Where  𝑆𝑖(𝑢) denotes the variable in position 𝑢 in the 

vector 𝑆𝑖 , 𝑢𝑚 = 1,2, …, 𝐷; 𝑆𝑖  refers to the status vector of the 
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𝑖𝑡ℎ the solution, 𝑖 = 1,2, …, 𝑁 and MR refers to the mutation 

rate, obtaining a value in the interval [0.1, 0.99]. The OOPOA 

method, derived from an FF, improves classification 

performance by defining an optimistic value to represent the 

optimal candidate output. In this study, the error minimization 

rate of the classifier is treated as the FF, as shown in Equation 

(22). 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 

=
𝑁𝑜. 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 100     (22) 

4. Result Analysis 
In this part, the simulation values of the HMDL-PDDC 

model are accomplished by utilizing four datasets, namely 

HandPD Spiral (HandPDS), HandPD Meander (HandPDM), 

Voice PD (VPD) datasets and Speech PD (SPD).  

 

The technique is simulated by utilizing the Python 3.6.5 

tool on PC i5-8600k, 250GB SSD, GeForce 1050Ti 4GB, 

16GB RAM, and 1TB HDD. The parameter settings are 

provided in the following: learning rate: 0.01, activation: 

ReLU, epoch count: 50, dropout: 0.5, and batch size: 5.  

 

Table 1 and Figure 3 signify the FS outcomes of the 

HMDL-PDDC method on four datasets. The outcomes 

implied that the HMDL-PDDC technique selected a minimum 

feature number equated to other approaches. It is noticeable 

that the HMDL-PDDC method has nominated 5, 8, 11, and 8 

features below the four datasets, correspondingly.

Table 1. FS analysis of the HMDL-PDDC technique on four datasets 

Dataset Overall Features MGOA MGWO OCFA IFSO-DL ISSA-FS 

Hand PDS 13 5 7 8 4 3 

Hand PDM 13 8 8 7 6 5 

SPD 23 11 12 13 10 6 

VPD 26 8 9 17 7 5 

 
Fig. 3 FS analysis of HMDL-PDDC technique on four datasets 

Table 2. Comparative analysis of the HMDL-PDDC method on the 

HandPDM dataset   

HandPDM Dataset 

Methods Accuracy DR (Recall) FAR 

MGOA-KNN 74.80 85.80 47.60 

MGOA-RF 93.70 97.89 19.10 

MGOA-DT 89.00 91.80 16.70 

MGWO-KNN 72.80 85.80 60.00 

MGWO-RF 93.00 98.10 22.20 

MGWO-DT 88.00 92.00 22.20 

IFSO-DL 94.00 95.23 13.50 

HMDL-PDDC 94.97 98.31 08.87 

Table 2 highlights the comparative results of the HMDL-

PDDC technique on the HandPDM dataset [13]. The outputs 

imply that the MGOA-KNN and MGWO-KNN methods have 

portrayed the least results. Followed by the MGOA-DT and 

MGWO-DT models have managed to reach closer results. 

Likewise, the MGOA-RF, MGWO-RF, and IFSO-DL models 

attained reasonable performance. Finally, the HMDL-PDDC 

method gains maximum performance with 𝑎𝑐𝑐𝑢𝑦 of 94.97%, 

Detection Rate (DR) of 98.31%, and FAR of 8.87%. 

 

Figure 4 depicts the Training Accuracy (TRAA) and 

Validation Accuracy (VALA) curves of the HMDL-PDDC 

method. The figure provides insights into the model's 

behaviour over various epochs, emphasizing its learning and 
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generalization abilities. The results show significant 

improvement as the epochs grow, confirming the adaptability 

of the HMDL-PDDC approach in detecting patterns in both 

TRA/TES data. The rise in VALA indicates the model's 

capability to generalize well, effectively identifying unseen 

data. Figure 5 illustrates the Training Loss (TRLA) and 

Validation Loss (VALL) of the HMDL-PDDC approach on 

the HandPDM dataset across diverse epochs. The decrease in 

TRLA shows that the HMDL-PDDC method effectually 

optimizes weights and reduces classification errors in 

TRA/TES data. The figure highlights its capability to identify 

patterns in both datasets while refining parameters to 

minimize discrepancies between predicted and actual TRA 

classes. 

 

 
Fig. 4 𝑨𝒄𝒄𝒖𝒚 the curve of the HMDL-PDDC method on the Handpdm 

dataset 

 
Fig. 5 Loss curve of HMDL-PDDC method on HandPDM dataset 

Table 3 highlights the comparison outputs of the HMDL-

PDDC method on the HandPDS dataset. The results show that 

the HMDL-PDDC technique outperforms others with an 

𝑎𝑐𝑐𝑢𝑦 of 93.98%, DR of 98.57%, and FAR of 6.61%, 

achieving the highest performance compared to alternative 

methods, whereas other models exhibited lesser performance. 

Table 3. Comparative evaluation of the HMDL-PDDC method on the 

HandPDS dataset 

HandPDS Dataset 

Methodologies Accuracy DR (Recall) FAR 

MGOA-KNN 75.60 85.30 53.10 

MGOA-RF 92.90 97.90 21.90 

MGOA-DT 89.00 94.70 28.10 

MGWO-KNN 73.40 81.90 50.00 

MGWO-RF 92.40 94.00 11.90 

MGWO-DT 92.40 94.00 11.90 

IFSO-DL 93.30 98.20 8.00 

HMDL-PDDC 93.98 98.57 6.61 

 

The accomplishment of the HMDL-PDDC technique on 

the HandPDS dataset is shown in Figure 6 through the 

TRAA/VALA curves. The figure illustrates the performance 

of the HMDL-PDDC approach across epochs, showing a 

steady increase in both TRAA and VALA.  

 

This underscores the capability of the method to adapt and 

generalize, effectually detect patterns in both TRA and TES 

data, and demonstrate robust performance on unseen data. 

 

Figure 7 represents the TRLA/VALL results of the 

HMDL-PDDC approach on the HandPDS dataset over 

separate epochs. The decrease in TRLA demonstrates the 

HMDL-PDDC approach, optimizing weights and mitigating 

TRA/TES data classification errors. The figure emphasizes 

the capability of the model to capture patterns in both datasets, 

improving parameters and minimizing discrepancies between 

anticipated and actual TRA classes. 

 
Fig. 6 𝑨𝒄𝒄𝒖𝒚 the curve of the HMDL-PDDC method on the HandPDS 

dataset 
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Table 4 highlights the comparative outputs of the HMDL-

PDDC technique on the SPD dataset. The HMDL-PDDC 

methodology demonstrated the greatest output with 𝑎𝑐𝑐𝑢𝑦 of 

97.10%, DR of 98.73%, and FAR of 10.00%, whereas other 

techniques illustrated lesser outputs. 

 
Fig. 7 Loss curve of HMDL-PDDC method on HandPDS dataset 

Table 4. Comparative analysis of HMDL-PDDC technique on SPD 

dataset 

SPD Dataset 

Methods Accuracy DR (Recall) FAR 

MGOA-KNN 89.70 96.70 30.00 

MGOA-RF 94.90 97.67 22.20 

MGOA-DT 84.60 90.00 30.00 

MGWO-KNN 91.80 97.40 30.00 

MGWO-RF 93.90 98.56 30.00 

MGWO-DT 89.80 94.90 30.00 

IFSO-DL 95.30 96.32 18.50 

HMDL-PDDC 97.10 98.73 10.00 

 

Figure 9 provides the TRLA/VALL results of the HMDL-

PDDC method on the SPD dataset across diverse epochs. The 

mitigation in TRLA shows the capability of the HMDL-

PDDC method to refine weights and minimize classification 

errors on both TRA/TES data. The figure depicts the HMDL-

PDDC alignment of the model with the TRA data, showing its 

capability to comprehend patterns in both datasets. The 

HMDL-PDDC technique steadily grows its parameters to 

mitigate the discrepancies between anticipated and actual 

TRA classes. 

 

The performance of the HMDL-PDDC methodology on 

the SPD dataset is depicted in Figure 8 through the 

TRAA/VALA curves. The figure highlights the HMDL-

PDDC methodology's learning and generalization across 

epochs, showing consistent improvement in TRAA/VALA. It 

emphasizes the model's adaptive behavior in detecting 

patterns in TRA/TES data and its ability to accurately classify 

unseen data, depicting robust generalization capabilities. 

 
Fig. 8 𝑨𝒄𝒄𝒖𝒚 curve of the HMDL-PDDC method on the SPD dataset 

 
Fig. 9 Loss curve of HMDL-PDDC method on SPD dataset 

Table 5. Comparative analysis of the HMDL-PDDC technique on the 

VPD dataset 

VPD Dataset 

Methodologies Accuracy DR (Recall) FAR 

MGOA-KNN 91.80 83.50 43.90 

MGOA-RF 95.70 95.40 32.00 

MGOA-DT 96.23 95.78 41.00 

MGWO-KNN 85.80 80.30 28.10 

MGWO-RF 95.89 96.39 21.50 

MGWO-DT 97.01 98.14 28.19 

IFSO-DL 98.24 97.80 17.31 

HMDL-PDDC 98.71 98.59 09.08 
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Fig. 10 𝑨𝒄𝒄𝒖𝒚 curve of the HMDL-PDDC method on the VPD dataset 

Table 5 highlights the comparison outputs of the HMDL-

PDDC method on the VPD dataset. The HMDL-PDDC 

method attained the greatest performance with 𝑎𝑐𝑐𝑢𝑦 of 

98.71%, DR of 98.59%, and FAR of 09.08%, whereas other 

methodologies exhibited lesser outcomes. The 

accomplishment of the HMDL-PDDC approach on the VPD 

dataset is shown in Figure 10 through the TRAA/VALA 

curves. The figure shows the progress of the HMDL-PDDC 

approach across epochs, with consistent improvements in 

TRAA and VALA.  

This accentuates its adaptability in detecting patterns in 

both TRA and TES data, illustrating robust generalization and 

accurate classification of unseen data. Figure 11 provides the 

TRLA/VALL results for the HMDL-PDDC technique on the 

VPD dataset across various epochs. The lessening in TRLA 

shows the efficiency of the HMDL-PDDC approach in 

optimizing weights and minimizing classification errors for 

both TRA/TES data. The figure clearly comprehends the 

HMDL-PDDC model's alignment with the TRA data, showing 

its capability to capture patterns in both datasets. Notably, the 

HMDL-PDDC technique consistently refines its parameters, 

mitigating the discrepancies between anticipated and actual 

TRA classes. Figure 12 illustrates a complete comparative 

study of the HMDL-PDDC model with recent techniques on 

four datasets regarding 𝑎𝑐𝑐𝑢𝑦. Experimentation showed that 

the HMDL-PDDC method outperformed existing approaches 

with the highest 𝑎𝑐𝑐𝑢𝑦 values under every database. Figure 13 

determines a general comparison evaluation of the HMDL-

PDDC approach with existing methods on four datasets 

regarding DR. The experimental outcomes indicate that the 

HMDL-PDDC method outperformed existing techniques with 

the highest DR values in every dataset. Figure 14 shows the 

comparison evaluation of the HMDL-PDDC approach with 

existing techniques on four databases regarding FAR. The 

outputs clearly show that the HMDL-PDDC method 

outperformed existing techniques, with the least FAR values 

below each dataset. These results showcase the effective 

ability of the HMDL-PDDC technique in the PD recognition 

process. 

 
Fig. 11 Loss curve of HMDL-PDDC method on VPD dataset 

 
Fig. 12 𝑨𝒄𝒄𝒖𝒚 analysis of the HMDL-PDDC technique under four datasets  
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Fig. 13 DR analysis of the HMDL-PDDC technique under four datasets 

 
Fig. 14 FAR analysis of HMDL-PDDC technique under four datasets

5. Conclusion 
In this paper, an innovative HMDL-PDDC approach is 

presented. The HMDL-PDDC approach follows the design of 

hybrid metaheuristics-based FS with an optimum DL 

technique for recognizing and identifying PD. To accomplish 

that, the HMDL-PDDC approaches contain three main sub-

processes: ISSA-based feature subset selection, KDENN-

based classification, and OOPOA-based tuning. Primarily, the 

HMDL-PDDC technique is used to select feature subsets 

using ISSA. Besides, the KDENN model is exploited to 

recognize and identify PD. Moreover, OOPOA selects the 

hyperparameter of the KDENN model. The experimentation 

outcomes of the HMDL-PDDC model are examined under 

four datasets using a set of measures. The experimental 

validation of the HMDL-PDDC technique portrayed superior 

accuracy values of 93.98%, 94.97%, 98.71% and 97.10% over 

existing models.
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