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Abstract - Households should use good and efficient energy management practices to minimize energy consumption and 

maximize the use of renewable energy sources. This paper describes a novel approach to regulating household energy 

consumption that combines solar panels and machine learning approaches. The suggested system estimates energy demand 

and solar power generation with high accuracy using past data on energy consumption and weather forecasts. The machine 

learning model dynamically adjusts energy usage patterns and storage solutions, thereby maximizing solar energy utilization 

and minimizing grid dependency. In addition, the local grid tariff cost is compared to determine the time required in which the 

implemented system becomes self-sufficient. Simulation results demonstrate significant improvements in energy efficiency and 

cost savings for residential users. 
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1. Introduction 
Interest in renewable energy sources has grown 

dramatically as a result of the global movement towards 

sustainability. Since solar panels can generate clean energy 

directly from sunlight, their popularity in domestic 

environments has increased. Integrating solar energy into 

Home Energy Management Systems (HEMS) is challenging 

due to its intermittent nature, changing household energy 

consumption patterns, and the need for sufficient energy 

storage options. To solve these problems, sophisticated 

management techniques are needed to harness solar energy 

and optimize its use [1]. 

Machine learning has become a powerful tool in various 

fields, including energy management, due to its ability to 

analyze large data sets, identify patterns, and make accurate 

predictions. Machine learning algorithms can be applied to 

HEMS to estimate solar power generation, anticipate 

household energy consumption and improve the performance 

of energy storage systems. These capabilities enable more 

efficient use of resources by reducing grid dependence and 

improving overall household energy efficiency [2, 3]. 

Applying machine learning to energy management systems 

has been the subject of numerous studies. For instance, 

predictive models that forecast solar energy production using 

weather data have been created to manage energy storage 

and consumption better [4]. In addition, machine learning 

algorithms have been used to categorize and forecast 

household energy consumption patterns, enabling real-time 

adjustments that reduce energy waste and increase efficiency 

[5]. These advances demonstrate how machine learning 

could make energy management systems smarter and more 

flexible, allowing them to independently regulate energy 

flow and reduce overall costs [6]. 

Despite these advances, there are still large gaps in fully 

integrating solar energy systems in residential environments. 

Without sufficiently addressing the complex interactions 

between these components, much of the current research 

focuses on individual aspects of energy management, such as 

demand forecasting or storage optimization [7]. In addition, 

extensive testing in real-world environments is needed to 

validate the scalability and efficiency of ML-based HEMS 

[8, 9]. 

This research seeks to address these shortcomings and 

provide efficient energy management for homes with solar 

panels through a unique machine learning-based home 

energy management system and an embedded system. The 

proposed system forecasts household energy consumption, 

predicts solar power generation and maximizes the use of 

energy storage devices by integrating machine learning 

models previously trained with data obtained from sensors. 

Considering the interdependencies among these components, 

the system may dynamically adjust energy flows, reducing 

grid dependency and optimizing solar energy consumption at 

the lowest feasible cost. The rest of the document is 

organized as follows: Related work in the area of energy 
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management with solar energy and machine learning is 

presented in Section 2. The methodology for this work, 

including the machine learning techniques, is presented in 

Section 3.  
 

Section 4 presents an explanation of the experimental 

development of the problem. Section 5 presents the 

simulation and analysis results, demonstrating the 

effectiveness of the proposed system. Finally, Section 6 

concludes the article with a discussion of the results and 

future lines of research. 

2. Related Works 
In recent years, there has been a significant increase in 

research focused on integrating renewable energy sources, 

especially solar energy, into Home Energy Management 

Systems (HEMS) due to serious pollution problems. 

Numerous strategies using machine learning have been 

proposed to improve the reliability and efficiency of these 

proposed systems integrating solar energy in the home. 

Several studies can be found in the state of the art that 

focuses on solar energy forecasting, energy consumption 

prediction, energy storage optimization, and the development 

of comprehensive energy management frameworks. 

Accurate prediction of solar energy production is 

essential to maximize the efficiency of HEMS systems, 

especially in homes with photovoltaic (PV) systems, one of 

the most widely used methods of obtaining renewable 

energy. Applying machine learning techniques to improve 

solar energy forecasting has been the subject of numerous 

studies. For example, Alvarez-Alvarado et al. [10] created a 

model to predict solar irradiance based on past 

meteorological data using support vector machines (SVM).  

Their results showed that SVM could perform better 

than conventional statistical techniques, providing more 

accurate projections necessary to organize energy storage 

and consumption. Similarly, the detailed analysis of solar 

radiation prediction models by Diagne et al. [11] showed 

how well machine learning (ML) algorithms, such as 

ensemble approaches and neural networks, capture nonlinear 

correlations between rainfall and solar energy output. These 

techniques have been particularly effective in short-term 

forecasting when accurate estimates are required for real-

time energy management.  

Hybrid models, which combine machine learning and 

physical models to increase forecast accuracy, have been the 

focus of recent advances. Voyant et al. [12] proposed a 

hybrid strategy combining machine learning techniques with 

a physical solar model to increase forecast accuracy under 

various meteorological circumstances. By combining the best 

features of the two methodologies, this hybrid methodology 

provides a reliable solution for solar energy prediction in 

solar energy management systems. 

Another essential component of HEMS is its ability to 

forecast household energy consumption, which improves the 

match between energy supply and demand. Several 

researchers have modeled and predicted trends in residential 

energy consumption using machine learning methods. For 

example, in the paper by Zhang et al., they employed 

Artificial Neural Networks (ANNs) to predict short-term 

household energy demand [13]. This demonstrated that 

complex usage patterns that depend on various factors, such 

as occupancy, weather, power grid, and time of day, could be 

captured by Machine Learning (ML) models. In a related 

study, Tahereh and Alireza [14] developed a model to 

forecast the long-term energy use of residential structures 

using deep learning techniques. Their method performed 

better than more conventional models, such as 

Autoregressive Integrated Moving Averages (ARIMA), 

especially when consumption patterns were highly varied. 

Deep learning algorithms are particularly well suited for 

estimating energy consumption in electric power metering 

systems, as they can learn from large data sets and adapt to 

changing conditions. In addition, to improve forecasting 

accuracy, this and other studies have analyzed the integration 

of machine learning with smart meter data. In their study, 

Wang et al. [4] created a system that forecasts energy 

consumption at the appliance level by combining data from 

smart meters with machine learning methods, including 

decision trees and random forests. This incredibly exact level 

of prediction allows for the use of more focused energy-

saving strategies, which boosts the system's overall 

efficiency. 

Efficient management of Energy Storage Systems (ESS) 

is necessary to use solar energy in HEMS best. The 

application of ML techniques to improve the performance of 

ESSs has been the subject of numerous studies. For example, 

Yingchun et al. [8] described an optimal method to 

dynamically control battery storage in PV-equipped homes 

using Reinforcement Learning (RL). Based on real-time data, 

this approach discovered the optimal charging and 

discharging patterns, resulting in remarkable improvements 

in cost and energy efficiency. Another notable addition is the 

work of Siva et al. [15], who developed a model using 

machine learning (ML) to predict the battery state of charge 

(SOC) and maximize energy storage in a microgrid 

environment. Their results showed that ML-based 

predictions could improve battery lifetime and reliability by 

preventing deep drain and overcharging, which are common 

problems with traditional monitoring methods.  

Machine learning has been used to optimize the 

integration of various energy storage systems and manage 

batteries. Riffonneau et al. [16] presented a hybrid Energy 

Storage System (ESS) combining supercapacitors and 

batteries in another study. The appropriate distribution of 

energy storage tasks between the two technologies is decided 

by machine learning. 
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Researchers have created comprehensive HEMS 

frameworks that combine solar forecasting, consumption 

prediction and storage optimization into a single cohesive 

system, going beyond discrete ML applications in these 

areas. These frameworks aim to optimize energy 

management at all levels (generation, consumption, and 

storage). Recalde et al. [17], for example, presented a 

complete HEMS architecture that combines machine learning 

(ML)-based solar forecasting, demand prediction, and energy 

storage system management. To ensure efficient energy use 

and minimize costs, their system combines supervised and 

unsupervised learning algorithms to adapt to changing 

household conditions, which achieves good results. Real 

scenarios were used to test the framework's ability to reduce 

energy costs and improve the reliability of the system they 

proposed in their work.  

Another significant addition is the work of Li et al. [18], 

who developed a cloud-based HEMS for real-time energy 

management in smart homes using machine learning and the 

Internet of Things. In addition, the study by Muhammad et 

al. [19] presents an intelligent energy management system 

that combines the Internet of Things (IoT) and machine 

learning (ML). Their technology uses machine learning to 

predict energy consumption and improve the performance of 

networked devices, such as smart appliances and HVAC 

systems. The efficiency and responsiveness of the system are 

further improved by integrating IoT, which enables real-time 

monitoring and control of household energy consumption. 

However, the system remains to be enhanced to predict solar 

patterns. 

3. Methodology 
The methodology section presents the proposed 

framework for home energy management using machine 

learning (ML) and solar panels, detailing the system 

architecture, data preprocessing techniques, ML models 

employed, and evaluation metrics used to assess system 

performance. With an emphasis on projecting household 

energy usage, anticipating solar power generation, and 

maximizing the efficiency of energy storage devices, the 

methodology is intended to maximize energy use in homes 

with solar energy systems. Figure 1 displays the entire 

system. 

 

 

 

 

 

Fig. 1 Methodology of the proposed system 

3.1.  System Architecture 
The architecture of the proposed system consists of three 

main components: solar energy forecasting, domestic energy 

consumption prediction, and energy storage optimization. A 

centralized Home Energy Management System (HEMS) that 

incorporates all of these elements dynamically modifies 

energy flows in response to real-time data.  

 Solar power forecasting module: This module predicts 

the amount of solar power generated based on historical 

solar data, weather forecasts and environmental 

conditions. The forecast plans the optimal use of solar 

energy and storage. 

 Household energy consumption forecasting module: 

Based on occupancy statistics, weather, time of day, and 

past consumption trends, this component predicts the 

energy demand of households. In order to balance the 

supply and demand for energy, these forecasts are 

crucial. 

 Energy storage optimization module: Using predictions 

from the first two modules, this module determines 

when to charge or discharge batteries in order to 

maximize battery storage system performance. By 

storing excess solar energy during peak generation hours 

and employing it during times of low solar generation or 

high demand, it seeks to reduce the cost of power. 

Each module relies on machine learning algorithms to 

provide accurate predictions and optimizations. Combining 

these elements allows the system to dynamically control 

energy flows, optimizing solar energy utilization and 

reducing grid reliance. 

3.2.  Data Collection and Pre-Processing 
The system requires several data sets to operate 

effectively, including solar energy data, weather data, and 

household energy consumption data. Below is a description 

of the preprocessing procedures for each kind of data: 

3.2.1.  Solar Energy Data and Weather Data 

Historical solar energy data are obtained from solar 

panel production records.  To increase the precision of solar 

energy estimates, this data is paired with meteorological data, 

including temperature, cloud cover, and sunshine hours. 

Local weather services or open APIs are the sources of 

weather data. To guarantee consistency, the data set is 

cleaned by eliminating outliers, adding missing values, and 

normalizing the data. 

3.2.2.  Household Energy Consumption Data 

Household energy use history is provided by smart 

meters, which collect precise and thorough readings on a 

regular basis.  This data collection offers a thorough grasp of 

household energy consumption trends, including patterns of 

use of individual appliances when applicable, as well as 

overall household energy consumption.  To guarantee 
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consistency and dependability of analysis, the data is pooled 

at hourly intervals during a pre-processing step.  This makes 

a clearer examination of consumption patterns throughout the 

day possible.  Furthermore, normalization techniques are 

employed to take into consideration variations in home size, 

appliance kinds, and consumption habits. 

3.2.3.  Division of the Data 

Training, validation, and test sets are created from the 

gathered data. Machine learning models are trained on the 

training set, hyperparameters are fitted on the validation set, 

and model performance is assessed on the test set. The 

models were split into 70% training, 15% validation, and 

15% testing to ensure they generalize well to unknown data. 

3.3.  Machine Learning Models 
The following machine learning models are used to 

perform key system tasks: solar energy forecasting, energy 

consumption prediction and energy storage optimization. 

3.3.1.  Solar Energy Forecasting Model 

A neural short-term memory (LSTM) network was used 

to forecast solar energy due to its ability to capture temporal 

dependencies in time series data. Meteorological factors, 

such as temperature, solar irradiance, and historical solar 

production statistics, are examples of input features. The 

model is trained to forecast solar power generation over the 

next 24 hours to provide information on expected energy 

availability for the next day. 

3.3.2.  Household Energy Consumption Prediction Model 

A Random Forest (RF) regression model predicts 

household energy consumption. The model inputs historical 

consumption patterns, time of day, weather conditions, and 

occupancy data. The RF model was chosen for its robustness 

to overfitting and its ability to handle complex, nonlinear 

relationships in the data. 

3.3.3.  Storage Optimization Model 

A reinforcement learning (RL) algorithm is used to 

optimize the charging and discharging of the battery storage 

system. Through interaction with the environment, including 

anticipated solar generation and family consumption, the RL 

agent learns the best course of action (i.e., when to charge or 

discharge). By effectively using the stored energy and 

lowering reliance on the grid, the RL agent seeks to decrease 

energy expenses. 

3.3.4.  Model Training and Validation 

The solar energy consumption prediction and forecasting 

models are trained using the training datasets described 

above. Cross-validation is used to fit hyperparameters such 

as the number of trees in the random forest and the number 

of layers in the LSTM model. The reinforcement learning 

model is trained using the simulation and iteratively adjusts 

its policy in response to energy-saving incentives. 

3.4.  Energy Management Strategy 
This system's global energy management strategy 

merges solar production and home use projections with 

sophisticated storage optimization through Reinforcement 

Learning (RL). This system is structured in different levels 

of operation. In daily scheduling, the solar energy projection 

model projects the expected production for the next 24 hours, 

while a predictive model calculates the household energy 

need for the same time frame. To maximize the home's 

energy efficiency, the RL agent uses these calculations to 

configure the battery charge and discharge cycles, 

prioritizing minimizing dependence on the grid and 

maximizing the use of stored energy. The device 

continuously monitors household consumption and solar 

production throughout the day and makes changes in real-

time. If initial projections differ, the RL agent modifies its 

approach to ensure efficient energy consumption. The 

technology also effectively controls peak demand by using 

stored energy during periods of high demand, reducing costs 

and pressure on the grid. When solar production exceeds 

storage capacity and demand, the system sends additional 

energy to the grid, allowing households to borrow or reduce 

their energy costs. 

4. Experimental Development 
In this development, an experimental home environment 

was used to build the proposed home energy management 

system (HEMS), allowing for real-world condition 

simulation. The system incorporated smart meters, solar 

panels, batteries for storage, and machine learning algorithms 

to manage energy flow efficiently. A virtual 5 kW 

photovoltaic (PV) system was designed to replicate a 

standard household installation. The power generated by 

these solar panels was based on real weather data, including 

temperature, cloud cover, and hours of sunshine, ensuring 

realistic solar power generation patterns. The experimental 

setup also included a 10-kWh virtual battery, which was 

designed to store excess energy during periods of high solar 

generation and supply power to the home when demand was 

high or solar production was low. A reinforcement learning 

(RL)-based optimization model was implemented to regulate 

battery charge and discharge processes, with the objective of 

maximizing solar energy utilization while minimizing grid 

energy dependency. Household energy consumption was 

simulated using energy profiling data from real smart homes. 

These datasets collected energy usage from various 

appliances, including lighting, HVAC systems, and 

household devices. The energy consumption patterns were 

structured to vary throughout the day, with higher usage in 

the mornings and evenings. 

4.1.  System Architecture 
Figure 2 presents the flowchart of the complete 

algorithm for the proposed HEMS. The system operates in 

the following stages: 
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Fig. 2 Flowchart of the proposed system 

 
The datasets were preprocessed, including cleaning, 

normalization, and partitioning into training, validation, and 

test sets (80/10/10 split) to ensure the models were trained 

and evaluated on separate data for accurate performance 

assessment. 

4.2. Hardware Description 
The system's hardware infrastructure included an ESP32 

microcontroller, which served as the central unit for data 

acquisition and wireless communication. SCT-013 current 

sensors were deployed to measure real-time household 

energy consumption, providing accurate, current flow 

readings that enabled precise power calculation. Smart 

meters also tracked the import and export of energy from the 

grid and measured overall energy use.  A virtual 10 kWh 

battery was integrated to control energy storage and ensure 

power availability during times of low solar generation, 

while a 5 kW photovoltaic (PV) system replicated actual 

solar generating patterns. The ESP32 microcontroller 

interfaced with the SCT-013 sensors, continuously collecting 

energy consumption data from the devices comprising the 

system hardware. Figure 3(a) shows the system installed on 

the household sockets to monitor and regulate energy 

consumption, while Figure 3(b) presents the installation of 

solar panels on the roof of the test house. 

 

 
(a) 

 
(b) 

Fig. 3 System installed on the home. (a) installation on the outlet. (b) 

installation of the solar panel on the roof. 

4.3. Experimental Evaluation 
Once the models were trained, the complete system was 

tested in a simulated home environment. The evaluation 

focused on three key aspects: 

 Grid Energy Reduction: The system’s ability to 

minimize dependence on grid electricity was analyzed. 
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 Energy Cost Optimization: The impact of ML-based 

decision-making on reducing electricity expenses was 

assessed. 

 Battery Storage Efficiency: The effectiveness of 

reinforcement learning-based charge/discharge control 

was evaluated. 

 

For performance comparison, the proposed system was 

tested against a rule-based benchmark system that operated 

without machine learning. This comparison demonstrated the 

advantages of ML-based optimization over traditional rule-

based energy management methods.  

5. Results and Discussion 
This section provides details on the results of the 

proposed Home Energy Management System (HEMS), 

emphasizing the impact of incorporating ML models on a 

number of key performance metrics, such as prediction 

accuracy, battery consumption, energy cost savings, and 

reduced grid dependency. Each section discusses these 

findings by assessing the implications for efficient energy 

management in residential environments, emphasizing the 

direct gains achieved. The advantages of the recommended 

approach to improving the energy sustainability of homes are 

further demonstrated by comparing these results with those 

of other model standards. 

5.1. Prediction Accuracy 
The system's capacity to estimate household power 

consumption using the Random Forest model and solar 

power output using the LSTM model was crucial to its 

operating efficiency. The LSTM model demonstrated good 

accuracy in capturing fluctuations in solar power production 

across various weather conditions and times of day, with a 

mean absolute error (MAE) of 0.15 kW and a root mean 

square error (RMSE) of 0.25 kW. The models' prediction 

comparison is displayed in Table 1. 

Table 1. Prediction accuracy of the energy forecasting models analyzed 

in the system 

Model Metric Forecast 

LSTM MAE (kW) 0.15 

LSTM RMSE (kW) 0.25 

Random Forest R2 0.87 

Random Forest RMSE (kW) 0.3 

 

Table 2 shows that the LSTM model predictions match 

the actual data when comparing predicted and actual solar 

power generation. This accuracy is essential for battery 

storage design and energy efficiency since it allows the 

system to use solar energy more efficiently and reduce grid 

dependence. Compared to the rule-based reference model, 

which was based on historical averages, the LSTM model 

drastically reduced prediction errors by almost 30%, 

suggesting an improvement in the accuracy of the developed 

system. 

Table 2. Comparison of Real and Predicted Solar Energy Generation 

Using LSTM Model 

Time 

(Hour) 

Real Generation 

(kW) 

Predicted 

Generation (kW) 

Error 

(kW) 

08:00 1.5 1.45 0.05 

10:00 3.2 3.10 0.10 

12:.00 4.8 4.75 0.05 

14:00 5.0 5.10 0.10 

16:00 3.6 3.65 0.05 

18:00 1.8 1.85 0.05 

Similarly, based on data such as temperature, 

occupancy, and time of day, the Random Forest model 

demonstrated an excellent match for predicting residential 

energy usage, with an R-squared value of 0.87 and an RMSE 

of 0.3 kW.   

Table 3 shows a visualization of the model's forecast 

accuracy versus the actual consumption of a family on a 

normal day.  By accurately anticipating consumption, the 

device dynamically adjusted the energy supply to residential 

demand, optimizing the value of stored solar energy during 

peak consumption hours.   

In addition to helping the system optimize home energy 

flows, the model's improved accuracy over rule-based 

approaches that solely utilized averages to estimate demand 

highlights the importance of machine learning models for 

real-time energy management and boosts the created system's 

efficiency. 

Table 3. Comparison of Real and Predicted Household Energy 

Consumption 

Time 

(Hour) 

Real 

Consumptio

n (kW) 

Predicted 

Consumpti

on (kW) 

Error 

(kW) 

06:00 0.8 0.78 0.02 

09:00 1.2 1.15 0.05 

12:00 1.5 1.52 0.02 

15:00 1.7 1.65 0.05 

18:00 2.3 2.28 0.02 

21:00 1.9 1.88 0.02 

5.2.  Energy Cost Savings 
The energy cost savings were assessed by comparing the 

ML-based HEMS's energy expenses to those of the rule-

based reference system. The results showed that by 

dynamically altering battery utilization to favor stored solar 

energy during peak charging hours, the ML-based HEMS 

reduced energy consumption by almost 25%. In Figure 4, the 

graph compares the energy costs of a Baseline System and a 

machine learning-based home energy management system 

(ML-based HEMS). 
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Fig. 4 Comparison of energy cost between baseline system and ML-

based HEMS 

The RL model's real-time response to changing 

conditions allowed the system to limit exposure to high 

electricity costs by reducing the need to draw power from the 

grid during peak hours. The flexibility and variable pricing 

are a major advance over the baseline system, which relied 

on set battery usage plans. By reducing reliance on the grid 

during peak hours, the RL-based approach generated 

significant cost savings and improved the system's resilience 

to variations in electricity prices.  

Furthermore, it is observed that over the months, the ML 

system maintains consistently lower costs compared to the 

baseline system, reflecting significant savings that support 

the effectiveness of implementing machine learning in 

residential energy management. 

5.3. Grid Dependency Reduction 
Grid reliance is defined as the proportion of a 

household's total energy use that can be satisfied by solar 

energy.  According to the results, the machine learning-based 

HEMS system was able to satisfy 60% of the household's 

energy demands using solar energy and battery storage, 

compared to 45% for the reference system.   

Figure 5 illustrates how the ML-based approach reduced 

grid reliance by breaking out the energy sources for both 

systems.  Through precise forecasting of solar energy output 

and effective battery storage management, HEMS could 

handle fluctuations in both generation and demand.   

Because the system stored surplus solar energy and 

purposefully discharged the battery at peak hours, it 

decreased reliance on the grid even during moments of high 

demand. The advantages of incorporating machine learning 

into home energy management systems are evident in this 

greater self-sufficiency, which enables homes to depend less 

on outside energy sources while fostering resilience and 

sustainability. 
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Fig. 5 Breakdown of energy sources for baseline and ML-based HEMS 

5.4. Battery Utilization Efficiency 
Thanks to the ML-based approach, the battery 

consumption efficiency was 20% higher than the reference 

system. The RL model's optimized charging and discharging 

method made the more efficient battery usage possible, 

which successfully reduced unnecessary charge cycles and 

increased battery life. Figure 6, which illustrates the ideal 

consumption patterns that the RL model was able to attain in 

comparison to the reference system, shows the battery's state 

of charge (SOC) over the course of a normal day. 
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Fig. 6 Comparison of battery SOC - baseline vs RL model 

The long-term sustainability of renewable energy 

systems depends on proper battery management, as frequent 

and inefficient charging cycles can gradually deplete battery 

capacity. The battery was able to maintain ideal SOC levels 

thanks to the adaptive management strategy of the RL model, 

which guaranteed effective use of stored energy. Since 

decreasing battery wear and tear prolongs battery life, which 

reduces replacement costs and improves system 

sustainability, this efficiency also has long-term financial 

ramifications. The capacity of machine learning to maximize 

the efficiency of renewable energy supplies is further 
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demonstrated by increased battery efficiency, which raises 

the practicality and financial sustainability of renewable 

energy systems for houses. 

6. Conclusion                                                                                            
The implementation of a machine learning (ML)-based 

home energy management system (HEMS) demonstrates 

significant advances in efficient residential energy 

management, especially by integrating renewable sources 

such as solar energy through photovoltaic (PV) panels. The 

proposed method effectively reduces energy prices, 

minimizes grid dependence, and maximizes battery usage by 

using predictive models, such as LSTM for solar generation 

and Random Forest for domestic demand, along with 

reinforcement learning for battery usage optimization. The 

findings demonstrate the advantages of predictive analytics 

and adaptive management over traditional rule-based 

systems, enabling higher solar energy consumption, notable 

cost reductions, and greater energy self-sufficiency. These 

results suggest that ML-based HEMS systems could be 

highly beneficial for improving sustainability and resilience 

in home energy management using ML to predict and 

improve the system. 

The system's ability to adapt to changing conditions not 

only helps households reduce their dependence on the grid 

but also encourages the deployment of decentralized 

renewable energy sources and reduces pressure on the grid. 

This paradigm can be expanded in future studies to 

investigate the scalability and integration of more renewable 

resources into larger community energy grids, which will 

spur further innovation in cost-effective and sustainable 

energy solutions. 
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