
SSRG International Journal of Electronics and Communication Engineering Volume 12 Issue 4, 119-131, April 2025

ISSN: 2348-8549/ https://doi.org/10.14445/23488549/IJECE-V12I4P111 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Scaling Graph Partitioning Techniques for Information

Retrieval: A Methodological Exploration

Ibrahim Atoum1, Tarek Kanan2, Maraw Fayiz Hamza3

1Department of Artificial Intelligence, Faculty of Science and Information Technology, Al-Zaytoonah University of Jordan,

Amman, Jordan.
2University of Jordan, Amman, Jordan.

3Department of Computer Science, Faculty of Science and Information Technology, Al-Zaytoonah University of Jordan,

Amman, Jordan.

1Corresponding Author : i.atoum@zuj.edu.jo

Received: 08 February 2025 Revised: 10 March 2025 Accepted: 11 April 2025 Published: 29 April 2025

Abstract - This article examines scaling graph partitioning techniques through traditional and Machine Learning (ML)

approaches while discussing challenges and solutions. Effective partitioning of large Information Retrieval (IR) datasets

requires examining critical factors, including 𝑘 selection choices alongside eigenvector selection and initial strategies while

managing data uncertainty. The research strongly emphasizes integrating ML to allow systems to dynamically adapt and

improve indexing, query processing, and clustering within large document collections and knowledge graphs. The article

examines multiple methods based on their performance with large graphs, their community detection capabilities,

parallelization convenience, and the flexibility derived from ML. Through Graph Neural Networks (GNNs) and

Reinforcement Learning (RL), ML optimizes partitions by learning from evolving relationships and retrieving performance

feedback. The research addresses conventional issues, including computational complexity and workload prediction, while

examining ML limitations, which depend on labeled data and face interpretability concerns. The analysis covers several

mitigation strategies that boost scalability, adaptive learning systems, and online learning approaches. The examination

highlights the essential function of Graph Partitioning (GP) for IR system improvement and the growing influence of ML in

this area. The discussion examines applications like social network analysis and fraud detection while exploring the potential

advancements in dynamic GP for IR and the expected expansion of ML-based solutions. Through the discussions, it becomes

clear that hybrid techniques combining ML methods with traditional approaches lead to better partitioning performance,

which creates more resilient and scalable IR systems.

Keywords - Scaling, Graph partitioning, Machine learning, Information retrieval, Dynamic graph partitioning.

1. Introduction
The explosion of digital data has revolutionized IR

systems, demanding efficient management of massive

repositories. Graph theory offers a powerful approach to

represent entities (e.g., documents, users) and their

interrelationships, modelling complex connections often

missed by traditional linear IR models like Boolean

Retrieval Model (BRM), Vector Space Model (VSM), and

Latent Semantic Analysis (LSA) [1]. While these models

provide a foundation for IR, their scalability limitations

become apparent with modern dataset sizes and

complexities [2]. GP Methods offer a promising solution [3].

By partitioning a graph G(V,E). They enhance IR efficiency

in balanced subsets while minimizing edge cuts, particularly

in distributed environments. These methods fall into

deterministic (fixed algorithms) and stochastic

(incorporating randomness) categories.

However, the sheer scale of modern graphs poses

significant challenges [4]. The computational cost of

partitioning massive graphs can create performance

bottlenecks in large-scale IR systems [5]. Efficient strategies

are crucial, as partitioning enables parallel processing,

reduces memory consumption, and improves query

performance. The historical use of graph representations in

IR underscores their potential for capturing complex

relationships for enhanced search and question answering.

As graph-based IR systems grow, efficient GP becomes

essential. Techniques like multilevel partitioning [6],

spectral partitioning [1], and recursive bisection [2] address

minimizing edge cuts and balancing subgraph sizes. Scaling

these algorithms presents challenges, with traditional

methods often reaching computational limits. Research

efforts have explored parallel algorithms [3], distributed

frameworks [5], and approximation techniques [1, 2] to

mitigate computational costs while maintaining partition

quality.

Utilizing ML presents effective solutions, especially for

dynamic graphs. GNNs [6] facilitate adaptive partitioning

techniques, whereas RL [7] describes partitioning as a

http://creativecommons.org/licenses/by-nc-nd/4.0/

Ibrahim Atoum et al. / IJECE, 12(4), 119-131, 2025

120

sequential decision process that optimizes retrieval

performance. Enhanced clustering algorithms also show

potential.

The evolving features of IR data require partitioning

approaches to demonstrate adaptability. ML-based methods

deliver adaptable solutions but require frequent model

retraining and face interpretability problems while needing

labelled data to avoid overfitting and high computational

demands. Researchers in academia today examine the

potential for online learning systems to create effective

measurement tools for dynamic GP techniques. Traditional

and ML methods require careful evaluation of 𝑘 selection,

eigenvector choices, initial partitioning strategies, and data

uncertainty management.

This research thoroughly evaluates traditional and ML-

based GP approaches by assessing their performance

abilities, scalability, and suitability for large-scale dynamic

IR systems. The study demonstrates the effects of dataset

features on partitioning methods by thoroughly examining

important metrics like partition quality, computational

expenses, and IR-specific results, including precision and

query response time. The study identifies effective methods

to overcome ML challenges through adaptive strategies and

online learning needs.

The spectral partitioning techniques, alongside

recursive bisection, achieve a dependable reduction of edge

cuts while maintaining balanced partitions. Dynamic

datasets present a significant challenge for these methods,

showing limited effectiveness when processing extensive

data volumes. We developed an innovative methodology

integrating GNNs with RL techniques to facilitate dynamic

partition adjustments when graph structures evolve. GNNs

use node embeddings to detect the real-time formation of

new community patterns. Through retrieval feedback, IR

systems gain effective scalability with dynamic large-scale

datasets such as knowledge graphs and social networks by

continuously utilizing the RL component to refine

partitions.

The framework successfully tackles scalability

challenges by employing advanced strategies like

parallelized multilevel coarsening and adaptive online

learning methods. According to published research findings,

empirical studies demonstrate that these combined

approaches surpass conventional single-method techniques.

Transfer learning addresses ML challenges by diminishing

the need for labeled data and enhancing system robustness

throughout multiple IR contexts. Graph-based IR systems

achieve greater capability through the validated

combination of deterministic efficiency with ML flexibility

across large-scale datasets. According to the research,

hybrid methodologies present transformative opportunities

to expand GP scalability.

The paper is organized as follows: Section 2 examines

how deterministic methods affect scalability in GP. Section

3 provides insights into Spectral Partitioning along with

community structures in networks. Section 4 further

examines Spectral Partitioning’s implications. Section 5

provides a detailed comparison of Recursive Bisection

techniques. The sixth section examines the application of

stochastic models in data analysis. The paper presents its

findings in Section 7 and offers the final conclusion in

Section 8.

2. Scalability in Graph Partitioning:

Deterministic Approaches
Deterministic GP [8] offers an efficient solution to

graph partition scalability problems because it is

deterministic. Structured methods produce replicable

outcomes by using predefined algorithms that remove

randomness.

The partitioning process divides a graph into separate

divisions while optimizing specific criteria, minimizing

edge cuts between partitions, and ensuring balanced

partition sizes and consistent node connectivity [9].

K-way Partitioning represents a deterministic GP

method that segments the graph into k partitions to minimize

edge cuts between partitions and achieve balanced sizes

across partitions. The Balanced Partitioning method

generates equal-sized partitions so different workloads can

be distributed efficiently across various situations.

Additionally, Multilevel Partitioning employs a hierarchical

strategy: The approach involves reducing the graph size

through coarsening, partitioning the smaller graph, and

refining these partitions to match the original graph’s scale.

Deterministic methods provide stable performance for

applications through their reliable and predictable nature.

Users can obtain predictions through the use of designated

parameters with these methods. Researchers and

practitioners achieve efficient graph analyses by

implementing these methods to tackle the scalability issues

found in GP. The following sections present each technique,

explaining its methods and benefits while showing how it

works in real-world scenarios.

All three partitioning methods share a common goal:

Partitioning methods aim to break down graphs or datasets

into smaller manageable units. Optimizing performance and

resource utilization across partitioning methods requires

balanced partition sizes. Balanced partition sizes help

eliminate bottlenecks while improving partitioning strategy

efficiency.

Partitioning techniques are widely used across multiple

areas of application. Parallel computing involves

distributing tasks to minimize idle periods while

maximizing throughput performance. Database

management performance improves through data sharding

as it divides databases into smaller, more manageable

segments. Cloud computing uses these partitioning

techniques to achieve efficient load balancing and resource

allocation [5, 10, 11].

Ibrahim Atoum et al. / IJECE, 12(4), 119-131, 2025

121

The Kernighan-Lin algorithm and spectral partitioning

represent two key partitioning algorithms. The two methods

ensure balanced partitions and reduce edge cuts effectively.

All partitioning methods present specific challenges,

especially regarding computational complexity. Balanced

partitions become particularly challenging to sustain when

dealing with irregular graph structures or vast amounts of

data, which adds complexity to the partitioning task.

Multiple strategies can be implemented to overcome

these challenges. Heuristic methods enable faster

partitioning, and adaptive strategies provide flexibility in

adapting to workload changes. The multilevel approach

reduces the complexity of the problem while improving

performance by dividing it into manageable steps.

The significance of empirical testing remains

paramount throughout the process. Following established

guidelines and performing empirical testing are essential

steps to identify the best partition sizes and configurations

and validate the effectiveness of selected methods within

particular applications.

2.1. K-Way Partitioning: Techniques, Challenges, and

Solutions
The primary goal of 𝑘-way partitioning is to minimizes

edges between partitions, reducing communication costs in

distributed systems while maintaining balanced sizes [12,

13]. It is widely used in load balancing and resource

allocation and is essential for enhancing IR systems.

Although distinct from clustering, which groups similar data

points, clustering results often serve as input for k-way

partitioning to distribute data or workloads. These

applications are vital for improving IR systems through

parallel processing and efficient resource utilization [12].

While 𝑘-way partitioning offers significant advantages,

the method's effectiveness hinges on selecting an

appropriate value for 𝑘. The choice of 𝑘 is influenced by

several factors, such as application requirements, available

resources, and graph size larger graphs may require a higher

𝑘 to create manageable partitions.

While increasing 𝑘 can enhance load balancing, lower

communication costs, and introduce greater management

overhead. Therefore, empirical testing and adherence to

domain-specific guidelines are vital for determining the

optimal value of k[14].

Finding the optimal 𝑘 involves balancing various

factors and ensuring that the resulting partitions meet formal

criteria. These criteria guarantee both the completeness and

correctness of the partitioning. Specifically, the conditions

for this partitioning, where V represents the set of all

vertices (nodes) in the graph and can be expressed in two

ways. First, the union of all partitions must equal the

original vertex set; 𝑉1 ∪ 𝑉2 ∪ … .∪ 𝑉𝑘 = 𝑉 (Completeness).

Second, the partitions must be mutually exclusive; 𝑉1 ∩
𝑉2=∅ for 𝑖 ≠ 𝑗 (Correctness) [15, 16].

While the completeness and correctness conditions

ensure valid partitions, the effectiveness of partitioning is

measured by the number of edges cut. The objective

function captures this, 𝑐𝑢𝑡(𝑉1, 𝑉2,…..𝑉𝑘) =

∑ ∑ |𝐸(𝑉𝑖 , 𝑉𝑗)|𝑗≠𝑖
𝑘
𝑖=1 , where |𝐸(𝑉𝑖 , 𝑉𝑗)| denotes the number

of edges connecting vertices in partitions 𝑉𝑖 and 𝑉𝑗. This

formula calculates the number of edges crossing between all

pairs of distinct partitions. Additionally, to ensure balanced

partition sizes, the sizes of the partitions should ideally be

close to
|𝑉|

𝑘
, meaning that the number of vertices in each

partition should be approximately equal [10, 12, 15].

The objective function creates a standard to gauge

partition quality. Achieving good partitioning outcomes

depends on the availability of efficient algorithms. The KL

algorithm represents a vital approach through its local

search process that employs greedy vertex swapping

between partitions to reduce edge cuts iteratively. Spectral

partitioning applies eigenvalues and eigenvectors of the

Laplacian matrix to map the graph into a lower dimensional

space, facilitating segmentation. Despite their superior

performance with large graphs, spectral methods face

greater computational complexity than the KL algorithm

[15]. This section provides an extensive explanation of

spectral partitioning methods.

Researchers identify that 𝐾-way partitioning offers

many benefits but presents numerous challenges, according

to sources [5, 12, 13]. Optimal solution discovery faces

obstacles because the number of partitions in expanding

graphs grows exponentially alongside computational

complexity. Balanced partitioning becomes challenging

with irregular graphs since their uneven vertex degrees lead

to significant size differences. The dynamic nature of graphs

presents challenges for 𝐾-way partitioning because

structural modifications require costly re-partitioning tasks.

The objective function minimizes edge cuts but overlooks

important aspects like data locality and communication

patterns. Appropriate partition count k needs experimental

determination and a deep understanding of application-

specific requirements.

K-way partitioning finds applications across multiple

domains, including IR and cloud computing, besides data

mining and parallel computing, which demonstrates its

significance in terms of scalability and computational cost

efficiency and precision [12]. Large graph management

demands scalable algorithms that balance partition quality

and resource use. Graph coarsening and distributed

computing techniques provide benefits yet require accuracy

tradeoffs. The level of accuracy shows how the partitions

fulfill application requirements appropriately. While the

edge-cut reduction is standard, it does not always indicate

actual performance because specific application goals take

precedence. Heuristic accuracy also varies. Determining

optimal partitioning presents a significant computational

challenge because it falls into the NP-hard category.

Algorithms must balance speed and accuracy. Parallel and

distributed computing lowers expenses yet creates

Ibrahim Atoum et al. / IJECE, 12(4), 119-131, 2025

122

communication overhead challenges. Algorithm design

relies heavily on balancing cost efficiency, accuracy levels,

and scalable performance.

2.2. Balanced Partitioning: Strategies for Scalability and

Efficiency in Graphs
The balanced partitioning method in GP handles

scalability through dataset division into equally sized

smaller workloads or tasks [17]. Effective performance

optimization and resource utilization require this balance

because it decreases execution time across distributed

systems while improving overall efficiency. Balanced

partitioning protects large-scale computations and data

analysis from the drawback of overloaded partitions [18].

Multiple techniques exist to accomplish balanced

partitioning. GP algorithms like KL and spectral partitioning

work to reduce edge connections between subgraphs,

achieving better balance in partitioning processes [19, 20].

The KL algorithm employs an iterative local search method

to reduce edge cuts by swapping vertices between partitions.

Load-balancing algorithms used in server management

stand alongside graph-specific algorithms as essential

components. The algorithms evenly distribute incoming

requests to servers, which helps avoid bottlenecks and

maintains balanced resource usage [21].

To formally define balanced partitioning, consider a

graph G that is to be partitioned into k subsets 𝑃1, 𝑃1, …,𝑃𝑘,

The following conditions must be met:: ⋃ 𝑃𝑖 = 𝑉𝑘
𝑖=1 (all

vertices are included) and 𝑃𝑖 ∩ 𝑃𝑗 = ∅ for all 𝑖 ≠ 𝑗

(partitions are mutually exclusive) [12, 15]. To maintain

balance, the sizes of the partitions should satisfy ||𝑃𝑖| −

|𝑉|

𝑘
| ≤ 𝜀 for a small tolerance 𝜀. Furthermore, to enhance

efficiency, minimizing the number of edges that cut across

the partitions, expressed as minimizing ∑ |𝐸(𝑃𝑖 , 𝑃𝑗)|𝑖≠𝑗 , is

often desirable [18].

Despite its importance, balanced partitioning faces

several inherent challenges. One significant challenge is

accurately predicting workloads, which can lead to

imbalances [12]. Another challenge lies in the

computational complexity of some partitioning algorithms,

particularly with larger datasets, which can significantly

limit efficiency [18, 22]. These challenges necessitate the

use of sophisticated strategies.

Several effective solutions have been developed to

address these challenges. For instance, heuristic methods

can provide quick partitions, while adaptive strategies can

respond to real-time workload changes [12]. ML techniques

can be used for workload estimation [23].

Multilevel partitioning can simplify complex GP

problems [15]. For example, multilevel partitioning has

been explored for GNN processing [24]. Parallel processing

can distribute tasks to reduce computation times [21]. For

instance, parallel processing has been used in graph signal

processing [25].

Balanced partitioning is essential for effectively

operating multiple applications [12, 15]. Balanced workload

distribution in cloud computing systems prevents

bottlenecks from occurring. This approach divides graphs

into equal-sized subgraphs while minimizing edge cuts

during network analysis and community detection. Parallel

computing systems distribute tasks across several

processors, reducing idle time and enhancing throughput

capacity. The implementation of sharding in database

management systems leads to better query performance.

Applications include distributing resources among virtual

machines while using image segmentation to detect objects

and optimizing code execution by sharing memory

resources evenly. Balanced GP becomes computationally

complex with uneven distributions because precise

algorithms are required.

Scalability problems in balanced GP intensify as graphs

grow in size [5, 13]. Splitting large graphs into equally sized

subsets becomes more complex, leading to higher

computational expenses. A GP algorithm must achieve both

balanced partitions and high-quality cuts to be efficient [12].

GP scalability issues are generally resolved through the

utilization of heuristic algorithms along with parallel

computing techniques.

2.3. Multilevel Partitioning: Enhancing Graph Efficiency

through Structured Approaches
Multilevel partitioning is an advanced method for GP

that improves efficiency through a three-phase process:

coarsening, partitioning, and refining [12, 16]. Graph

coarsening reduces the original graph into a more

straightforward version by merging vertices and edges and

repeating them to create a more manageable representation.

The fundamental structure of the original graph remains

present in the coarsened graph, which allows for quicker

calculations and efficient partitioning of large datasets.

Multilevel partitioning is an advanced method for GP

that improves efficiency through a three-phase process:

coarsening, partitioning, and refining [12, 16]. The graph

coarsening process begins by merging vertices and edges in

multiple iterations to transform the original graph into a

compact and manageable version. The coarsened graph

preserves the original structure while improving

computational speed and partitioning efficiency for large-

scale datasets. The partitioning algorithm starts on the

reduced graph that has been minimized to an optimal size

using deterministic methods such as spectral partitioning or

recursive bisection to achieve efficient and balanced

partitions. These algorithms aim to decrease the number of

edge connections between distinct partitions, which are

known as edge cuts [15]. During the refinement phase,

partitions get applied to the original graph through local

optimization techniques such as the Kernighan-Lin

algorithm and simulated annealing, which help minimize

edge cuts and enhance balance.

The multilevel partitioning process can be summarized

as follows: When you coarsen the original graph 𝐺 = (𝑉, 𝐸)

Ibrahim Atoum et al. / IJECE, 12(4), 119-131, 2025

123

to obtain 𝐺′ = (𝑉′, 𝐸′), the result will always contain fewer

vertices and edges. Computational efficiency and scalability

benefits arise from this method [5, 12, 13] while it

encounters challenges, including managing detail loss

during coarsening to maintain partition quality [15].

Algorithms achieve different levels of effectiveness

depending on graph characteristics, while computational

complexity restricts efficiency, particularly with large

graphs [5].

Multiple approaches exist which can be used to solve

these challenges. Adaptive coarsening methods dynamically

modify detail levels according to graph properties to

safeguard key structural elements [26]. Multiple partitioning

levels become possible through a hierarchical approach

[26], and spectral methods provide insights for efficient

coarsening [27]. Specialized algorithms help improve

performance and lessen complexity, while quality metrics

balance detail loss and simplification.

Multilevel partitioning finds applications across

various domains. The method effectively reduces the

complexity of large social network graphs to enable

community analysis [28, 29]. Finite element analysis (FEA)

uses more minor elements to divide complex structures,

enabling efficient engineering simulation [30]. The

approach functions as an essential component of parallel

computing [31], network design [32], and data clustering

[33] because it enhances task scheduling and load balancing

in matrix operations while enabling effective segmentation

of large data sets. Data management systems improve

storage and retrieval capabilities [12], and image processing

techniques gain accuracy when images are segmented into

larger groups before processing [33].

Graph efficiency in large-scale applications requires

scalable multilevel partitioning methods [5, 13]. The

method begins with coarsening the graph for simplification.

Then, it is divided into evenly distributed partitions that

minimize edge cuts before optimizing these partitions as the

graph returns to its full original scale. The method enhances

graph organization while efficiently minimizing

communication costs to control larger graphs [12, 13].

Selecting appropriate algorithms guarantees that the

computational workload remains manageable while

maximizing performance benefits to achieve effective

results in large-scale applications.

3. Spectral Partitioning: Unveiling Community

Structures in Graphs
Spectral Partitioning (SP) is a technique in graph theory

that utilizes the spectral properties of a graph’s Laplacian

matrix to minimize edge cuts, often revealing natural

community structures within the graph [27]. This method is

widely applicable in fields such as social network analysis,

image segmentation, and clustering, making it essential for

understanding complex relationships in data.

Let 𝐺 = (𝑉, 𝐸) be a graph consisting of 𝑛 vertices. The

Laplacian matrix 𝐿 is defined as 𝐿 = 𝐷 − 𝐴 where D is the

degree matrix (a diagonal matrix where each entry 𝐷𝑖𝑖D

reflects the degree of the vertex 𝑖), and 𝐴 is the graph’s

adjacency matrix [34]. The eigenvalues 𝜆1,𝜆2,…,𝜆𝑛, and

corresponding eigenvectors 𝑣1,𝑣2,…,𝑣𝑛 of the Laplacian

matrix 𝐿 are computed. The goal of spectral partitioning is

to minimize the edge cut [35], which can be represented as:

𝐶𝑢𝑡(𝑆, 𝑆̅) = ∑ 𝐴𝔦𝔧

𝔦𝜖𝑆,𝔧𝜖�̅�

Where 𝑆 and 𝑆′ (often denoted as 𝑆̅) are two disjoint

subsets of vertices. The partitioning is often achieved by

selecting a subset of the eigenvectors corresponding to the

smallest eigenvalues (excluding the first eigenvalue, zero).

This approach effectively identifies natural community

structures within the graph, leading to high-quality

partitions. Thus, the spectral partitioning can be summarized

as 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝐺) → 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝑢𝑡(𝑆, 𝑆̅) Using 𝐿

and its eigenvalues/eigenvectors [36].

While spectral partitioning is effective for dense

graphs, yielding high-quality partitions [12], it presents

challenges. Its computational intensity makes it less suitable

for huge graphs [3, 4], and it may struggle with graphs

lacking clear community structures, potentially resulting in

less meaningful partitions [5, 6].

The primary limitation of spectral partitioning is its

computational demand [4, 5]. To address this,

approximation algorithms or multilevel techniques can be

employed to reduce computational burdens while preserving

the advantages of spectral analysis [6, 30]. Preprocessing the

graph to create coarser representations allows faster

computations without significantly compromising partition

quality [3, 4]. Additionally, integrating parallel computing

can enhance efficiency by distributing the computational

load across multiple processors [12, 26].

Spectral partitioning finds application across various

domains. Social networks benefit from spectral methods,

which identify user groups with similar interests in targeted

marketing through clustering analysis of user preferences

and interactions [2]. Medical image segmentation benefits

from spectral methods, which distinguish tissues or tumors,

thereby improving diagnostic accuracy by separating tissue

types based on their distinct characteristics [1]. ML applies

clustering techniques to high-dimensional datasets,

improving marketing strategies by enabling more precise

targeting of consumer segments. The field of computer

vision supports object recognition through image

segmentation into relevant regions, which facilitates object

identification and classification of digital images [2]. The

approach enhances parallel computing performance by

optimizing GP to distribute processing tasks across multiple

processors. Network structure robustness and efficient data

routing benefit from node organization through spectral

partitioning methods. Bioinformatics uses gene expression

profiles to group genes together, providing critical

information for diagnosing and treating diseases by

Ibrahim Atoum et al. / IJECE, 12(4), 119-131, 2025

124

highlighting gene activity patterns corresponding to specific

conditions.

Effective management of large datasets alongside

complex graphs demands scalable spectral partitioning

techniques. Preserving algorithm efficiency through

approximations [5, 7] along with enabling parallelization for

concurrent processing [12, 26] and implementing

dimensionality reduction methods to simplify problem

complexity [4, 8] stand out as the key aspects.

The system demands efficient memory management to

prevent overload [5, 13] and adaptability to dynamic graph

changes to sustain real-time application effectiveness [3,

31]. Spectral partitioning delivers scalable performance

within social networks, bioinformatics, and computer vision

applications.

4. Optimizing Graph Structures: The Role of

Recursive Bisection
In both computer science and engineering fields,

researchers commonly use recursive bisection as a basic GP

technique [37]. The recursive bisection method creates

equal-sized subsets called “bisections” from a graph at every

stage while constructing a hierarchical partition structure.

Parallel computing circuit design and network optimization

applications depend on this method, necessitating efficient

data organization [38].

The recursive bisection process, beginning with the

original graph G, can be described as follows: During each

recursion level, the original graph splits into two distinct

subgraphs. 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2), where node

sets 𝑉1 and 𝑉2 together make up the entire node set V without

any overlap [39]. The goal is to find partitions that ensure

the size difference between 𝑉1 and 𝑉2 remains below a small

tolerance value ϵ, as given by the condition |(|𝑉1 | −
|𝑉2 |)| ≤ 𝜖. The essential task is to reduce the number of

edges crossing between partitions, which can be formulated

as minimizing |E (𝐺1, 𝐺2 |.

This technique enables multiple processors in parallel

computing environments to share tasks efficiently.

Recursive bisection achieves reduced communication

overhead and better processing efficiency through equal

partition sizes and minimized inter-partition edges. This

approach strengthens network design through performance

enhancement and reliability improvements when

component connections are reduced.

Recursive bisection has multiple advantages but also

has substantial drawbacks [40]. The quality of results for

irregular and complex graphs depends heavily on the initial

partitioning strategy because it is crucial in determining the

outcome. Their recursive algorithm structure increases the

computational overhead in processing massive graphs.

Smart initialization methods using heuristics produce better

initial partitions that address these issues. Refinement

algorithms improve partition quality by redistributing

workload, while parallel processing implementation reduces

computational overhead [41].

The recursive bisection method has applications in

numerous scientific and engineering fields. Optimal task

division by parallel computing load balancing enhances the

performance of processors during matrix multiplication

operations. FEA helps engineers transform complex

geometries into essential elements, which allows for more

efficient structural calculations. Network analysis enables

large graph structures to split into more minor elements by

making minimal edge cuts, which helps identify community

structures in social networks [42].

Medical imaging requires precise structure delineation,

achieved through recursive bisection techniques that

segment images based on color or texture criteria by

continuous division. The method partitions large databases

into smaller segments using database attributes to improve

query speed and overall system performance [18]. Using

recursive bisection methods in geographical information

systems enables spatial data to be segmented, improving

query performance and analytical capabilities and assisting

in resource management and planning tasks [43, 44]. Signal

processing utilizes this algorithm to process audio signals by

reducing noise and extracting key features during

segmentation tasks.

Recursive bisection achieves balance, minimizes edge

cuts, and produces unbalanced partitions when vertex

degrees vary. As graph sizes expand, computational

resources become more necessary, which requires exact

optimization throughout each bisection step. Heuristics and

parallel processing algorithms achieve balanced partition

quality and efficiency by scaling to match unique graph

properties.

The effectiveness of recursive bisection scalability in

GP depends on various determining factors. The quest for

optimal bisection cuts continues to be crucial, while spectral

methods have demonstrated performance enhancements for

large-scale graphs. Parallel processing enables simultaneous

processing of multiple partitions, maintaining balance and

preventing bottleneck formation. Managing sparse

representation is vital for large graphs, and real-time

application performance depends on system flexibility

through changes to nodes and edges. When these factors are

addressed, recursive bisection scales across multiple

applications, including parallel computing and social

network analysis.

5. Stochastic Models in Data Analysis:

Navigating Uncertainty and Complexity
Analyzing complex networks that exhibit uncertainty

demands implementing probabilistic and statistical methods

throughout GP tasks [45]. Stochastic models integrate

randomness into their framework for scenarios where

outcomes rely on probabilistic events [46]. By employing

these models, analysts create partitions that reflect the

inherent variability in graph structures, leading to improved

partitioning techniques [47]. Stochastic models enhance

decision-making processes across multiple domains, such as

Ibrahim Atoum et al. / IJECE, 12(4), 119-131, 2025

125

ML and operations research, using statistical characteristics

like expected values and variances.

Stochastic models serve as mathematical frameworks

incorporating random elements, allowing them to accurately

represent complex systems that depend on probabilistic

events [48]. The models create partitions based on data

points’ probabilistic distributions, which enables them to

handle both variability and uncertainty in the data.

Stochastic partitioning methods rely on random sampling

techniques or probabilistic algorithms that enhance

partitions through improvements in iterative data

observation. These models demonstrate effective

performance in dynamic environments through their

capability to adjust to changing data patterns.

A stochastic model can be represented using probability

distributions and random variables. Let 𝑋 be a random

variable representing the data points to be partitioned, drawn

from a probability distribution 𝑃(𝑋). The goal is to partition

the data into 𝑘 subsets 𝑃1, 𝑃2,…,𝑃𝑘 such that specific criteria

are met. The union of all partitions must cover the entire data

space, expressed as ⋃ 𝑃𝑖 = 𝑋𝑘
𝑖1 and 𝑃𝑖 ∩ 𝑃𝑗 = ∅ for all 𝑖 ≠

𝑗. The objective function can be defined based on a cost or

similarity measure; for instance, if 𝐶(𝑃𝑖) represents the cost

associated with the partition 𝑃𝑖 , the overall cost may be

minimized as ∑ 𝐶(𝑃𝑖)𝑘
𝑖=1 . This cost could depend on factors

such as intra-partition variance or the number of inter-

partition edges in a graph [46].

Probabilistic methods enable partition refinement

through adjustments derived from random samples taken

from the distribution. Markov Chain Monte Carlo

techniques investigate partition spaces by iterating partition

adjustments using acceptance mechanisms that evaluate

configuration cost and likelihood probabilities. Calculating

the expected value of costs for each partition offers valuable

support for making informed decisions.

Stochastic models handle data variability and

uncertainty, making them ideal for applications in dynamic

environments experiencing changing data distribution

patterns over time [48]. Robust partitioning strategies

benefit from random elements that help optimization

processes escape local optima. These models offer statistical

insights into data, which allow people to make better

decisions.

The main drawback of stochastic models lies in their

computational demands, which become especially

noticeable with Markov Chain Monte Carlo (MCMC)

methods because they need numerous iterations to reach

convergence. Using variational inference techniques with

approximate Bayesian approaches leads to quicker

convergence alongside lower computational requirements

[48]. Ensemble methods combine results from several runs

to maintain consistency, whereas initial analyses boost

accuracy by elucidating underlying probability distributions

[22]. Stochastic models become more accessible through

intuitive tools and visualization techniques [5].

Stochastic models play an essential role in handling

uncertainty in numerous disciplines. The Black-Scholes

model demonstrates how stochastic models aid finance by

enabling option pricing and risk evaluation. Queueing

theory allows the prediction of customer wait times in call

centers, which helps optimize staff allocation and improve

customer satisfaction [44]. Ecological models use stochastic

approaches to examine species population changes and the

influence of random events. Healthcare uses the SIR model

to simulate how diseases spread, which supports the

evaluation of public health responses [49]. The

manufacturing sector uses stochastic modeling to align

production and inventory levels to fluctuating demand

patterns. ML depends on stochastic models for algorithm

training, while sports analytics applies these models to

assess player performance and team tactics.

Stochastic models use random probabilistic approaches

to separate graphs into balanced subsets while minimizing

edge cuts during partitioning. The algorithm rapidly finds

effective partitions but produces variable results because of

built-in randomness [18]. Stochastic models are typically

less demanding regarding computational resources than

deterministic methods. Still, they need numerous iterations

to produce dependable results, which impacts their

performance stability for extensive applications.

The results generated by stochastic partitioning

methods vary according to the probabilistic model utilized.

Well-designed systems achieve high accuracy with complex

graph structures where traditional methods encounter

difficulties. The model’s inherent randomness introduces

variability across different runs, which requires assessing its

robustness and performing multiple iterations to guarantee

reliable results [22].

The scalability of stochastic partitioning leverages

randomization to manage large graphs efficiently.

Probabilistic models use random sampling techniques to

explore different configurations, which accelerates finding

the best cuts.

The significance of computational complexity

management grows with graph size expansion, which

typically involves adopting sampling methods and parallel

processing to improve performance. Larger graphs require

precise tuning of model parameters to maintain accuracy

and quality because they present structural challenges.

6. ML Techniques for Dynamic Graph

Partitioning in IR
ML improves dynamic GP within IR systems through

adaptive responses to graph structure changes, which

optimize partition performance for retrieval tasks [50].

GNNs excel at this task because their learning process

creates node and edge representations, allowing dynamic

partitioning adjustments in response to changing graph

relationships [51]. These learned embeddings enable GNNs

to discover related documents or user clusters and enhance

IR effectiveness.

Ibrahim Atoum et al. / IJECE, 12(4), 119-131, 2025

126

RL enables dynamic partition adjustment by treating

partitioning as a sequence of decisions [52]. Through this

method, agents use feedback from metrics like query

response time or document relevance to learn how to

optimize partitions. This adaptive strategy enables ongoing

enhancements to partitioning methods.

ML techniques enhance traditional clustering

algorithms like K-means and hierarchical clustering [53].

Supervised learning can generate partitions that better align

with retrieval objectives, while semi-supervised learning

proves helpful when access to fully labeled data is limited.

Community detection algorithms such as spectral clustering

and modularity optimization combined with ML techniques

work to identify community changes over time so that

partitions stay applicable for IR tasks [6]. ML systems can

merge with dynamic programming methodologies to

enhance partitioning choices throughout graph evolution

[54]. The system gains the ability to develop optimal

partition update strategies in real-time by preserving

historical data of past partitions and retrieval performance

while balancing efficiency and accuracy.

Adaptive GP techniques apply ML to analyze the

unique features of a graph during real-time evaluation.

Adjusting clustering techniques according to user

interactions, such as frequently accessed documents and

user queries, enhances IR relevance [50]. Ensemble learning

methods play a role in dynamic GP as well. These methods

merge multiple ML models, which results in more resilient

partitioning strategies. Ensemble methods combine outputs

from different partitioning algorithms to help the system

dynamically select the optimal approach based on the

graph’s current state and retrieval needs.

Dynamic GP powered by ML algorithms keeps

partitions updated alongside the evolving data landscape.

The ability to adapt to changing conditions plays a key role

in preserving IR quality, tailoring partitions to fit specialized

tasks, and accelerating query response times. GNNs assist

in the discovery of document and user clusters that enhance

search result relevance [53].

The scalability of these methods enables them to

process large datasets while automatically learning from

past data and user behavior to advance partitioning

techniques without human intervention. GNNs stand out for

their ability to capture node relationships within graphs,

which proves helpful in detecting clusters among related

documents or users.

The structural information of graphs enables GNNs to

develop representations for nodes and their connections,

which suitably match their relevance to particular queries

and tasks. The dynamic adjustment capability of GNNs to

modify partitions according to data changes results in

improved search relevance. GNNs exhibit superior

scalability that allows them to manage huge datasets

efficiently. The system automates learning while

persistently refining partitioning strategies through analysis

of historical data and user interactions.

While these benefits exist, we must acknowledge some

critical limitations. Some ML models, intense learning

approaches, demand substantial computational resources

because of their high complexity. These methods’

effectiveness heavily depends on obtaining high-quality

labelled data for training. Third, overfitting is another

concern. According to literature references, understanding

complex ML models presents interpretability challenges [6,

12]. The partitioning process becomes complex due to fast

changes in the underlying graph, which require continuous

model retraining.

Despite their advantages, there remain limitations that

should be evaluated. Because of their high complexity, some

ML models and intense learning methods need substantial

computational resources. The success of these techniques

relies heavily on access to high-quality labeled data for

model training purposes [52]. Third, overfitting is another

concern. The ability to interpret complex ML models

remains a significant challenge. Frequent alterations to the

base graph structure increase partitioning complexity,

requiring continuous model retraining [58].

Despite these limitations, the applications of ML

techniques in dynamic GP for IR remain varied. The

applications of ML techniques for dynamic GP in IR extend

to social network analysis, recommender systems, fraud

detection in financial institutions, biomedical research, and

IR itself [52]. Dynamic partitioning on e-learning platforms

enables better resource retrieval and delivers personalized

content to users [58]. IoT systems that monitor

environmental conditions use adaptive partitioning to

handle real-time data from sensors in forest fire detection

networks [59]. Partitioning refers to data distribution in ML

processes into separate training, validation, and testing

groups. Good partitioning practices improve model results,

yet inadequate partitioning can cause models to overfit or

underfit [53]. Adaptive learning of features and

relationships enables ML to achieve high accuracy when

applied to dynamic graphs. The effectiveness of this method

depends significantly on both the training data quality and

the algorithms’ suitability. ML scalability for GP seeks to

improve partitioning quality through effective algorithm

utilization. While parallel processing and scalable

architectures enhance effectiveness, high-quality

partitioning requires models to adapt specifically to graph

data features while scaling.

7. Discussions
GP presents key challenges: computational complexity,

dependence on initial conditions, and the tradeoff between

simplification and accuracy. Table 1 summarizes various

GP techniques’ characteristics, strengths, weaknesses, and

suitable applications.

Computational complexity measures the time and

memory resources required to resolve a problem according

to the size of its input. The extensive search spaces present

significant challenges when employing Balanced,

Multilevel, and K-Way methods. The computational cost of

Ibrahim Atoum et al. / IJECE, 12(4), 119-131, 2025

127

solving large datasets for optimal solutions demands using

heuristics or approximations and parallel computing

techniques. Spectral partitioning requires substantial

resources due to its dependence on eigenvalue

computations. Stochastic techniques, including MCMC,

incur high computational costs through their iterative

methods, which restricts their utility on large datasets unless

approximations or parallel processing are applied.

In optimization problems, the search space can grow

significantly; for n items, the number of possible

combinations is 2𝑛, complicating the search for optimal

solutions. Balanced methods aim for equal-sized partitions,

increasing complexity through numerous combinations.

Multilevel methods simplify problems and refine solutions

but escalate complexity due to multiple transformation

levels.

K-Way methods partition input into k groups, where

increasing k can lead to factorial growth in partitions, thus

expanding the search space. The number of possible

partitions is approximated by 𝑃(𝑛) ≈ 𝑛!
𝑘! (𝑛 − 𝑘)!⁄ . Time

complexity is expressed as 𝑇(𝑛) = 𝑂(𝑓(𝑛) ⋅ 𝑔(𝑛)), with

𝑓(𝑛) for generating partitions and 𝑔(𝑛) for evaluation costs.

Space complexity is often represented as 𝑆(𝑛) = 𝑂(𝑛 ⋅ 𝑘).

Dependence on initial conditions significantly impacts

partition quality, particularly for Recursive Bisection and

Balanced partitioning. Poor starting strategies or inaccurate

workload predictions can produce suboptimal or unbalanced

results. Iterative algorithms are particularly sensitive, with

poor starts causing suboptimal partitions, imbalances, and

convergence issues. Mitigation strategies include smart

initialization (e.g., spectral methods), multiple runs, and

adaptive algorithms.

While various techniques address computational

complexity, smart initialization also helps mitigate the

impact of initial conditions if the starting point is

represented as a vector. 𝑥0 and the final solution as

𝑥∗=𝑓(𝑥0), a poorly chosen 𝑥0 Can yield suboptimal results.

 For Recursive Bisection, if the initial partition 𝑃0 is

unbalanced, subsequent partitions 𝑃1, 𝑃2, …., may also be

imbalanced. The imbalance of a partition can be expressed

as 𝐼(𝑃) = |
𝑊1−𝑊2

𝑊1+𝑊2
|, where 𝑊1 and 𝑊2 are the weights of the

partitions. A high 𝐼(𝑃) propagates through recursive splits,

leading to poor outcomes. The convergence rate 𝑅 can be

defined as 𝑅(𝑃0) =
1

1+𝐼(𝑃0)
, A high initial imbalance results

in a low convergence rate, making the algorithm slower or

unstable.

Several strategies can be employed to mitigate issues

related to initial conditions in partitioning algorithms. Smart

Initialization uses methods like spectral techniques to

provide better starting points, represented as 𝑥0 =

𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐴𝑖𝑗 ∙ (𝑥𝑖 − 𝑥𝑗)
2

𝑖,𝑗 . Multiple Runs involve

executing the algorithm multiple times and selecting the best

result, expressed as 𝑅∗ = min (𝑅1, 𝑅2, … . , 𝑅𝑛).

Additionally, Adaptive Algorithms adjust parameters based

on performance feedback, enabling dynamic improvements.

Together, these strategies enhance partition quality by

addressing the effects of initial conditions.

The tradeoff between simplification and accuracy in GP

can be expressed mathematically. Let 𝑆 represent

simplification (or efficiency), and 𝐴 denote accuracy. The

equation can define this tradeoff 𝑇(𝑆, 𝐴) = 𝛼𝑆 − 𝛽𝐴, where

𝛼 and 𝛽 are weights indicating the importance of each

aspect.

In multilevel partitioning, detail 𝐷 can be affected by

coarsening. As efficiency 𝑆 increases, detail 𝐷 decreases,

represented as 𝐷 = 𝐷0 − 𝑘𝑆, with 𝐷0 as the initial detail and

𝑘 as a constant. For stochastic methods, variability 𝑉

impacts accuracy, expressed as 𝐴 = 𝐴0 − 𝑐𝑉, where 𝐴0 is

the baseline accuracy, and 𝑐 indicates the effect of

variability.

To achieve consistent outcomes, ensemble methods can

be employed, defined as 𝐴𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 =
1

𝑛
∑ 𝐴𝑖

𝑛
𝑖=1 , where 𝐴𝑖 is

the accuracy of each model, and 𝑛 is the number of models.

As detailed in Table 1, GP techniques vary.

Deterministic methods are efficient for large graphs but can

be complex. Spectral methods are effective for community

detection but computationally expensive.

The recursive bisection is simple but may lose details.

Stochastic methods handle uncertainty but require

significant computational resources. ML methods adapt to

dynamic graphs and offer high performance but often

require labeled data. The table further compares

computational efficiency, scalability, and accuracy

techniques.

Combining conventional GP with ML techniques

markedly boosts performance efficiency and accuracy. The

hybrid technique utilizes the advantages of both

methodologies to tackle important issues like scalability and

computational complexity.

Efficiency improves when traditional methods merge

with adaptive ML techniques because algorithms optimize

starting parameters, decreasing the time required to

determine optimal partitions. Hybrid methods achieve better

outcomes by refining traditional results through learned

patterns, ensuring both simplification and precision.

Hybrid techniques demonstrate strong robustness and

scalability while effectively processing multiple data types.

The partitioning strategies improve because ML

components learn from new data continuously during graph

evolution. ML insights generate smart initialization methods

that enhance starting points during partitioning and reduce

the likelihood of suboptimal outcomes. Adapting to multiple

domains allows practitioners to create effective and

customized solutions for different challenges.

Ibrahim Atoum et al. / IJECE, 12(4), 119-131, 2025

128

Table 1. characteristics of different graph partitioning techniques

Feature Deterministic Spectral
Recursive

Bisection
Stochastic ML

Definition
𝑘-subset

partitioning.

Spectral

Laplacian

partitioning.

Recursive two-

subset division.

Probabilistic

partitioning.

Adaptive, learning-based

partitioning.

Objective
Minimize cuts

and balance.

Minimize cuts

and find

communities.

Minimize cuts,

balanced

partitions,

Robust,

flexible

partitions.

Optimize IR effectiveness on

dynamic graphs.

Applications
Load

balancing.

Social networks,

images.

Parallel

computing.

Data

analysis.

Dynamic IR

recommendations.

Considerations
𝑘 selection,

balance.
Eigenvectors. Initial strategy.

Model,

uncertainty.
Features, model, data, drift.

Strengths
Efficient large

graphs.

Good

communities.
Simple.

Handles

uncertainty.
Adapts, high IR performance.

Challenges Complexity.
Workload

prediction.
Detail loss. Intensity. Labelled data, overfitting.

Solutions
Heuristics,

parallel.
Approximations.

Adaptive

coarsening.

Smart

initialization

Online learning, transfer

learning.

Computational

Efficiency

Generally

high,

depending on

a specific

algorithm.

Computationally

intensive

(eigenvalue

decomposition).

Relatively

efficient.

It varies

greatly; it

can be very

intensive.

It can be computationally

expensive, especially training.

Scalability

Good,

especially with

parallelization.

It can be

challenging for

huge graphs.

Moderate;

recursion can

become

expensive.

Highly

variable;

some scale

well, others

don’t.

Can scale well with

appropriate techniques (e.g.,

distributed training).

Accuracy

Varies can be

suboptimal if

the structure is

ignored.

High for

community

detection but

computationally

costly.

It can be good,

but it may be

unbalanced.

It depends

on the

model; it

can be high

with good

models.

Potentially very high,

especially for dynamic graphs.

Application

Suitability

Resource

allocation,

parallel

computing.

Community

detection and

image

segmentation.

Parallel

computing,

hierarchical

data.

Data

mining,

clustering.

Dynamic IR, personalized

recommendations, evolving

networks.

8. Conclusion
The article examines scaling techniques for graph

partitioning through classic and machine-learning

approaches. The increasing need for effective extensive

dataset partitioning within IR emphasizes critical factors,

including k-selection decisions and eigenvector options,

alongside data uncertainty control. Machine learning

techniques that utilize GNNs and RL provide enhanced

adaptability and optimized strategies for essential IR tasks

such as indexing and clustering. Traditional methods

encounter computational complexity issues, while ML

techniques present difficulties with labelled data

dependence and interpretability problems. Our analysis

shows significant variations in computational efficiency:

Spectral partitioning demands high computational

resources, but recursive bisection executes efficiently, while

stochastic methods show broad variations in their

computational requirements. Scalability is also a concern,

with general methods scaling well, while spectral

partitioning struggles with large graphs. Accuracy varies,

with spectral methods excelling in community detection at

a high cost and recursive bisection sometimes leading to

unbalanced partitions. Future research should focus on

developing hybrid approaches that combine traditional and

ML techniques, refining algorithms for better adaptability,

and exploring ML models needing less labeled data.

Understanding the tradeoffs between computational

efficiency and accuracy in real-world contexts is crucial for

advancing graph partitioning and improving data

management in complex information environments.

References
[1] Venkat N. Gudivada, Dhana L. Rao, and Amogh R. Gudivada, Information Retrieval: Concepts, Models, and Systems, Handbook of

Statistics, vol. 38, pp. 331-401, 2018. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1016/bs.host.2018.07.009
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Information+retrieval%3A+Concepts%2C+models%2C+and+systems&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0169716118300245

Ibrahim Atoum et al. / IJECE, 12(4), 119-131, 2025

129

[2] V. Gupta, D.K. Sharma, and A. Dixit, “Review of Information Retrieval: Models, Performance Evaluation Techniques and

Applications,” International Journal of Sensors Wireless Communications and Control, vol. 11, no. 9, pp. 896-909, 2021. [CrossRef]

[Google Scholar] [Publisher Link]

[3] José Devezas, and Sérgio Nunes, “A Review of Graph-Based Models for Entity-Oriented Search,” SN Computer Science, vol. 2, 2021.

[CrossRef] [Google Scholar] [Publisher Link]

[4] Jiakang Li et al., “A Comprehensive Review of Community Detection in Graphs,” Neurocomputing, vol. 600, 2024. [CrossRef]

[Google Scholar] [Publisher Link]

[5] Siddhartha Sahu et al., “The Ubiquity of Large Graphs and Surprising Challenges of Graph Processing: Extended Survey,” The VLDB

Journal, vol. 29, pp. 595-618, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[6] Bo-young Lim et al., “Multi-Level Graph Representation Learning Through Predictive Community-Based Partitioning,” Proceedings

of the ACM on Management of Data, vol. 3, no. 1, pp. 1-27, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[7] Qi Wang, Kenneth H. Lai, and Chunlei Tang, “Solving Combinatorial Optimization Problems Over Graphs with BERT-Based Deep

Reinforcement Learning,” Information Sciences, vol. 619, pp. 930-946, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[8] Rong Chen et al., “Powerlyra: Differentiated Graph Computation and Partitioning on Skewed Graphs,” ACM Transactions on Parallel

Computing, vol. 5, no. 3, pp. 1-39, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[9] Zhanzhe Li et al., “MDL: Maximum Density Label-Cut Graph Partitioning,” 10th International Conference on Big Data and

Information Analytics (BigDIA), Chiang Mai, Thailand, pp. 125-132, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[10] Rafael M.S. Siqueira et al., “Graph Partitioning Algorithms: A Comparative Study,” International Conference on Information

Technology-New Generations, pp. 513-520, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[11] Sivakumar Ponnusamy, and Pankaj Gupta, “Scalable Data Partitioning Techniques for Distributed Data Processing in Cloud

Environments: A Review,” IEEE Access, vol. 12, pp. 26735-26746, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[12] Tewodros Alemu Ayall et al., “Graph Computing Systems and Partitioning Techniques: A Survey,” IEEE Access, vol. 10, pp. 118523-

118550, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[13] Christian Mayer, “Scalable Graph Partitioning for Distributed Graph Processing,” Institute for Parallel and Distributed Systems

(IPVS), University of Stuttgart, pp. 1-161, 2019. [Google Scholar] [Publisher Link]

[14] Anil Pacaci, and M. Tamer Özsu, “Experimental Analysis of Streaming Algorithms for Graph Partitioning,” Proceedings of the 2019

International Conference on Management of Data, pp. 1375-1392, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[15] Charles-Edmond Bichot, and Patrick Siarry, Graph Partitioning, John Wiley & Sons, 2013. [Google Scholar] [Publisher Link]

[16] Reinhard Diestel, Graph Theory, Springer Berlin, Heidelberg, pp. 1-455, 2025. [CrossRef] [Publisher Link]

[17] Ravikant Diwakar et al., “Optimizing Load Distribution in Big Data Ecosystems: A Comprehensive Survey,” AI and the Revival of

Big Data, pp. 177-200, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[18] Ümit Çatalyürek et al., “More Recent Advances in (hyper) Graph Partitioning,” ACM Computing Surveys, vol. 55, no. 12, pp. 1-38,

2023. [CrossRef] [Google Scholar] [Publisher Link]

[19] J.T. Yan, “Fuzzy-Based Balanced Partitioning Under Capacity and Size-Tolerance Constraints in Distributed Quantum

Circuits,” IEEE Transactions on Quantum Engineering, vol. 4, pp. 1-15, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[20] Diego Recalde et al., “An Exact Approach for the Balanced K-Way Partitioning Problem with Weight Constraints and its Application

to Sports Team Realignment,” Journal of Combinatorial Optimization, vol. 36, pp. 916-936, 2018. [CrossRef] [Google Scholar]

[Publisher Link]

[21] Lingkai Meng et al., “A Survey of Distributed Graph Algorithms on Massive Graphs,” ACM Computing Surveys, vol. 57, no. 2, pp.

1-39, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[22] Hamid Hadian, and Mohsen Sharifi, “GT-Scheduler: A Hybrid Graph-Partitioning and Tabu-Search Based Task Scheduler for

Distributed Data Stream Processing Systems,” Cluster Computing, vol. 27, pp. 5815-5832, 2024. [CrossRef] [Google Scholar]

[Publisher Link]

[23] Kezhao Huang et al., “WiseGraph: Optimizing GNN with Joint Workload Partition of Graph and Operations,” Proceedings of the

Nineteenth European Conference on Computer Systems, Athens, Greece pp. 1-17, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[24] Christy Alex Panicker, and M. Geetha, “Exploring Graph Partitioning Techniques for GNN Processing on Large Graphs: A Survey,”

4th International Conference on Communication, Computing and Industry 6.0 (C216), Bangalore, India, pp. 1-7, 2023. [CrossRef]

[Google Scholar] [Publisher Link]

[25] Daniela Dapena, Daniel L. Lau, and Gonzalo R. Arce, “Parallel Graph Signal Processing: Sampling and Reconstruction,” IEEE

Transactions on Signal and Information Processing Over Networks, vol. 9, pp. 190-206, 2023. [CrossRef] [Google Scholar] [Publisher

Link]

[26] T. Heuer, “Scalable High-Quality Graph and Hypergraph Partitioning,” Doctoral Thesis, Department of Informatics of the Karlsruhe

Institute of Technology, pp. 1-254, 2022. [Google Scholar] [Publisher Link]

[27] George Karypis et al., “Recent Trends in Graph Decomposition,” Dagstuhl Reports, vol. 13, no. 8, pp. 1-45, 2024. [Google Scholar]

[Publisher Link]

[28] Lars Gottesbüren et al., “Deep Multilevel Graph Partitioning,” Arxiv, pp. 1-19, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[29] Alan Valejo et al., “A Critical Survey of the Multilevel Method in Complex Networks,” ACM Computing Surveys (CSUR), vol. 53,

no. 2, pp. 1-35, 2020. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.2174/2210327911666210121161142
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Review+of+information+retrieval%3A+Models%2C+performance+evaluation+techniques+and+applications&btnG=
https://www.benthamdirect.com/content/journals/swcc/10.2174/2210327911666210121161142
https://doi.org/10.1007/s42979-021-00828-w
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+review+of+graph-based+models+for+entity-oriented+search&btnG=
https://link.springer.com/article/10.1007/S42979-021-00828-W
https://doi.org/10.1016/j.neucom.2024.128169
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+comprehensive+review+of+community+detection+in+graphs&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0925231224009408
https://doi.org/10.1007/s00778-019-00548-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+ubiquity+of+large+graphs+and+surprising+challenges+of+graph+processing%3A+Extended+survey&btnG=
https://link.springer.com/article/10.1007/s00778-019-00548-x
https://doi.org/10.1145/3711115
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multi-level+graph+representation+learning+through+predictive+community-based+partitioning&btnG=
https://dl.acm.org/doi/abs/10.1145/3711115
https://doi.org/10.1016/j.ins.2022.11.073
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Solving+combinatorial+optimization+problems+over+graphs+with+BERT-based+deep+reinforcement+learning&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0020025522013627
https://doi.org/10.1145/3298989
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Powerlyra%3A+Differentiated+graph+computation+and+partitioning+on+skewed+graphs&btnG=
https://dl.acm.org/doi/abs/10.1145/3298989
https://doi.org/10.1109/BigDIA63733.2024.10808524
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MDL%3A+Maximum+density+label-cut+graph+partitioning&btnG=
https://ieeexplore.ieee.org/abstract/document/10808524
https://doi.org/10.1007/978-3-031-56599-1_65
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Graph+partitioning+algorithms%3A+A+comparative+study&btnG=
https://link.springer.com/chapter/10.1007/978-3-031-56599-1_65
https://doi.org/10.1109/ACCESS.2024.3365810
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Scalable+data+partitioning+techniques+for+distributed+data+processing+in+cloud+environments%3A+A+review&btnG=
https://ieeexplore.ieee.org/abstract/document/10436080
https://doi.org/10.1109/ACCESS.2022.3219422
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Graph+computing+systems+and+partitioning+techniques%3A+A+survey&btnG=
https://ieeexplore.ieee.org/abstract/document/9938438
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Scalable+Graph+Partitioning+for+Distributed+Graph+Processing&btnG=
https://www2.informatik.uni-stuttgart.de/bibliothek/ftp/ncstrl.ustuttgart_fi/DIS-2019-03/DIS-2019-03.pdf
https://doi.org/10.1145/3299869.3300076
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Experimental+analysis+of+streaming+algorithms+for+graph+partitioning&btnG=
https://dl.acm.org/doi/abs/10.1145/3299869.3300076
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=C.+E.+Bichot+and+P.+Siarry%2C+Eds.%2C+Graph+Partitioning.+John+Wiley+%26+Sons&btnG=
https://books.google.co.in/books?hl=en&lr=&id=KUHLscW8D2cC&oi=fnd&pg=PT10&dq=C.+E.+Bichot+and+P.+Siarry,+Eds.,+Graph+Partitioning.+John+Wiley+%26+Sons&ots=pBkVCYjG2K&sig=_AbTgd_d9jBiZpDOMqX_g3gL59c&redir_esc=y#v=onepage&q&f=false
https://doi.org/10.1007/978-3-662-70107-2
https://link.springer.com/book/10.1007/978-3-662-70107-2
https://doi.org/10.4018/979-8-3693-8472-5.ch008
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimizing+load+distribution+in+big+data+ecosystems%3A+A+comprehensive+survey&btnG=
https://www.igi-global.com/chapter/optimizing-load-distribution-in-big-data-ecosystems/369500
https://doi.org/10.1145/3571808
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=More+recent+advances+in+%28hyper%29+graph+partitioning&btnG=
https://dl.acm.org/doi/full/10.1145/3571808
https://doi.org/10.1109/TQE.2023.3272023
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fuzzy-based+balanced+partitioning+under+capacity+and+size-tolerance+constraints+in+distributed+quantum+circuits&btnG=
https://ieeexplore.ieee.org/abstract/document/10113735
https://doi.org/10.1007/s10878-018-0254-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+exact+approach+for+the+balanced+k-way+partitioning+problem+with+weight+constraints+and+its+application+to+sports+team+realignment&btnG=
https://link.springer.com/article/10.1007/s10878-018-0254-1
https://doi.org/10.1145/3694966
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+of+distributed+graph+algorithms+on+massive+graphs&btnG=
https://dl.acm.org/doi/abs/10.1145/3694966
https://doi.org/10.1007/s10586-023-04260-y
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=GT-scheduler%3A+A+hybrid+graph-partitioning+and+tabu-search+based+task+scheduler+for+distributed+data+stream+processing+systems&btnG=
https://link.springer.com/article/10.1007/s10586-023-04260-y
https://doi.org/10.1145/3627703.3650063
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=WiseGraph%3A+Optimizing+GNN+with+joint+workload+partition+of+graph+and+operations&btnG=
https://dl.acm.org/doi/abs/10.1145/3627703.3650063
https://doi.org/10.1109/C2I659362.2023.10431185
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Exploring+graph+partitioning+techniques+for+GNN+processing+on+large+graphs%3A+A+survey&btnG=
https://ieeexplore.ieee.org/abstract/document/10431185
https://doi.org/10.1109/TSIPN.2023.3261504
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Parallel+graph+signal+processing%3A+Sampling+and+reconstruction&btnG=
https://ieeexplore.ieee.org/abstract/document/10081083
https://ieeexplore.ieee.org/abstract/document/10081083
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=T.+Heuer%2C+Scalable+High-Quality+Graph+and+Hypergraph+Partitioning%2C+&btnG=
https://d-nb.info/127482351X/34
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Recent+trends+in+graph+decomposition&btnG=
https://drops.dagstuhl.de/storage/04dagstuhl-reports/volume13/issue08/23331/DagRep.13.8.1/DagRep.13.8.1.pdf
https://doi.org/10.48550/arXiv.2105.02022
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+multilevel+graph+partitioning&btnG=
https://arxiv.org/abs/2105.02022
https://doi.org/10.1145/3379347
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+critical+survey+of+the+multilevel+method+in+complex+networks&btnG=
https://dl.acm.org/doi/abs/10.1145/3379347

Ibrahim Atoum et al. / IJECE, 12(4), 119-131, 2025

130

[30] Aman Garg et al., “A Review on Artificial Intelligence-Enabled Mechanical Analysis of 3D Printed and FEM-Modelled Auxetic

Metamaterials,” Virtual and Physical Prototyping, vol. 20, no. 1, pp. 1-50, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[31] Wan Luan Lee et al., “HyperG: Multilevel GPU-Accelerated K-Way Hypergraph Partitioner,” Proceedings of the 30th Asia and South

Pacific Design Automation Conference, Tokyo, Japan, pp. 1031-1040, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[32] Sheng Xiang et al., “Scalable Learning-Based Community-Preserving Graph Generation,” IEEE Transactions on Big Data, pp. 1-14,

2025. [CrossRef] [Google Scholar] [Publisher Link]

[33] Mohammad Amiriebrahimabadi, Zhina Rouhi, and Najme Mansouri, “A Comprehensive Survey of Multi-Level Thresholding

Segmentation Methods for Image Processing,” Archives of Computational Methods in Engineering, vol. 31, pp. 3647-3697, 2024.

[CrossRef] [Google Scholar] [Publisher Link]

[34] Ling Dingcet al., “Survey of Spectral Clustering Based on Graph Theory,” Pattern Recognition, vol. 51, 2024. [CrossRef] [Google

Scholar] [Publisher Link]

[35] Ji Wang et al., “Scalable Spectral Clustering with Group Fairness Constraints,” Proceedings of The 26th International Conference on

Artificial Intelligence and Statistics, pp. 6613-6629, 2023. [Google Scholar] [Publisher Link]

[36] Brahim Laassem et al., “A Spectral Method to Detect Community Structure Based on Coulomb’s Matrix,” Social Network Analysis

and Mining, vol. 13, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[37] Swati A. Bhavsar, Varsha H. Patil, and Aboli H. Patil, “Graph Partitioning and Visualization in Graph Mining: A Survey,” Multimedia

Tools and Applications, vol. 81, pp. 43315-43356, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[38] Joel Mackenzie, Matthias Petri, and Alistair Moffat, “Tradeoff Options for Bipartite Graph Partitioning,” IEEE Transactions on

Knowledge and Data Engineering, vol. 35, no. 8, pp. 8644-8657, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[39] Chao-Wei Ou, and S. Ranka, “Parallel Incremental Graph Partitioning,” IEEE Transactions on Parallel and Distributed Systems, vol.

8, no. 8, pp. 884-896, 1997. [CrossRef] [Google Scholar] [Publisher Link]

[40] Douglas O. Cardosoet al., “Greedy Recursive Spectral Bisection for Modularity-Bound Hierarchical Divisive Community

Detection,” Statistics and Computing, vol. 34, pp. 1-18, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[41] Teague Tomesh et al., “Quantum Divide and Conquer for Combinatorial Optimization and Distributed Computing,” arXiv, pp. 1-12,

2021. [CrossRef] [Google Scholar] [Publisher Link]

[42] Sung-eui Yoon et al., Real-Time Massive Model Rendering, Springer International Publishing, pp. 1-112, 2022. [Google Scholar]

[Publisher Link]

[43] D. Slavchev, S. Margenov, and I.G. Georgiev “On the Application of Recursive Bisection and Nested Dissection Reorderings for

Solving Fractional Diffusion Problems Using HSS Compression,” AIP Conference Proceedings, vol. 2302, no. 1, 2020. [CrossRef]

[Google Scholar] [Publisher Link]

[44] Rajit Nair, and Amit Bhagat, An Introduction to Clustering Algorithms in Big Data, Encyclopedia of Information Science and

Technology, 5th ed., pp. 559-576, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[45] Haixia Wu et al., “Link Prediction on Complex Networks: An Experimental Survey,” Data Science and Engineering, vol. 7, pp. 253-

278, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[46] Pierre Brémaud, Probability Theory and Stochastic Processes, Springer Cham, pp. 1-713, 2020. [CrossRef] [Google Scholar]

[Publisher Link]

[47] Abdul Samad, “Enhancing Community Detection and Data Clustering in Weighted Graphs using Gumbel Softmax-Based

Approaches,” 2024. [Google Scholar]

[48] Sifeng Bi et al., “Stochastic Model Updating with Uncertainty Quantification: An Overview and Tutorial,” Mechanical Systems and

Signal Processing, vol. 204, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[49] James Alexander Scott, “MCMC Methods: Graph Samplers, Invariance Tests and Epidemic Models,” Doctoral Thesis, Imperial

College London, pp. 1-186, 2023. [Google Scholar] [Publisher Link]

[50] Zehuan Hu et al., “Self-Learning Dynamic Graph Neural Network with Self-Attention Based on Historical Data and Future Data for

Multi-Task Multivariate Residential Air Conditioning Forecasting,” Applied Energy, vol. 364, 2024. [CrossRef] [Google Scholar]

[Publisher Link]

[51] Dilong Li et al., “Graph Neural Networks in Point Clouds: A Survey,” Remote Sensing, vol. 16, no. 14, pp. 1-44, 2024. [CrossRef]

[Google Scholar] [Publisher Link]

[52] Mohamed Massaoudi et al., “Advancing Coherent Power Grid Partitioning: A Review Embracing Machine and Deep Learning,” IEEE

Open Access Journal of Power and Energy, vol. 12, pp. 59-75, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[53] Jianwu Long, and Luping Liu, “K*-Means: An Efficient Clustering Algorithm with Adaptive Decision Boundaries,” International

Journal of Parallel Programming, vol. 53, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[54] Harley Wiltzer et al., “Foundations of Multivariate Distributional Reinforcement Learning,” Advances in Neural Information

Processing Systems, vol. 37, pp. 101297-101336, 2025. [Google Scholar] [Publisher Link]

[55] Mahmoud E. Farfoura et al., “A Novel Lightweight Machine Learning Framework for IoT Malware Classification Based on Matrix

Block Mean Downsampling,” Ain Shams Engineering Journal, vol. 16, no. 1, pp. 1-11, 2025. [CrossRef] [Google Scholar] [Publisher

Link]

https://doi.org/10.1080/17452759.2024.2445712
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+review+on+artificial+intelligence-enabled+mechanical+analysis+of+3D+printed+and+FEM-modelled+auxetic+metamaterials&btnG=
https://www.tandfonline.com/doi/full/10.1080/17452759.2024.2445712
https://doi.org/10.1145/3658617.3697551
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=HyperG%3A+Multilevel+GPU-accelerated+k-way+hypergraph+partitioner&btnG=
https://dl.acm.org/doi/abs/10.1145/3658617.3697551
https://doi.org/10.1109/TBDATA.2025.3533898
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Scalable+Learning-based+Community-Preserving+Graph+Generation&btnG=
https://ieeexplore.ieee.org/abstract/document/10854817
https://doi.org/10.1007/s11831-024-10093-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+comprehensive+survey+of+multi-level+thresholding+segmentation+methods+for+image+processing&btnG=
https://link.springer.com/article/10.1007/s11831-024-10093-8
https://doi.org/10.1016/j.patcog.2024.110366
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Survey+of+spectral+clustering+based+on+graph+theory&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Survey+of+spectral+clustering+based+on+graph+theory&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0031320324001171
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Scalable+spectral+clustering+with+group+fairness+constraints&btnG=
https://proceedings.mlr.press/v206/wang23h.html
https://doi.org/10.1007/s13278-022-01010-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+spectral+method+to+detect+community+structure+based+on+Coulomb%E2%80%99s+matrix&btnG=
https://link.springer.com/article/10.1007/s13278-022-01010-7
https://doi.org/10.1007/s11042-022-13017-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Graph+partitioning+and+visualization+in+graph+mining%3A+A+survey&btnG=
https://link.springer.com/article/10.1007/s11042-022-13017-5
https://doi.org/10.1109/TKDE.2022.3208902
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Tradeoff+options+for+bipartite+graph+partitioning&btnG=
https://ieeexplore.ieee.org/abstract/document/9900428
https://doi.org/10.1109/71.605773
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Parallel+incremental+graph+partitioning&btnG=
https://ieeexplore.ieee.org/abstract/document/605773
https://doi.org/10.1007/s11222-024-10451-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Greedy+recursive+spectral+bisection+for+modularity-bound+hierarchical+divisive+community+detection&btnG=
https://link.springer.com/article/10.1007/s11222-024-10451-3
https://doi.org/10.48550/arXiv.2107.07532
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Quantum+divide+and+conquer+for+combinatorial+optimization+and+distributed+computing&btnG=
https://arxiv.org/abs/2107.07532
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Real-Time+Massive+Model+Rendering&btnG=
https://www.google.co.in/books/edition/Real_Time_Massive_Model_Rendering/b4JyEAAAQBAJ?hl=en&gbpv=0
https://doi.org/10.1063/5.0034506
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+the+application+of+recursive+bisection+and+nested+dissection+reorderings+for+solving+fractional+diffusion+problems+using+HSS+compression&btnG=
https://pubs.aip.org/aip/acp/article-abstract/2302/1/120008/755102/On-the-application-of-recursive-bisection-and
https://doi.org/10.4018/978-1-7998-3479-3.ch040
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+introduction+to+clustering+algorithms+in+big+data&btnG=
https://www.igi-global.com/chapter/an-introduction-to-clustering-algorithms-in-big-data/260214
https://doi.org/10.1007/s41019-022-00188-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Link+prediction+on+complex+networks%3A+An+experimental+survey&btnG=
https://link.springer.com/article/10.1007/s41019-022-00188-2
https://doi.org/10.1007/978-3-030-40183-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Probability+Theory+and+Stochastic+Processes&btnG=
https://link.springer.com/book/10.1007/978-3-030-40183-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+community+detection+and+data+clustering+in+weighted+graphs+using+Gumbel+softmax-based+approaches&btnG=
https://doi.org/10.1016/j.ymssp.2023.110784
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Stochastic+model+updating+with+uncertainty+quantification%3A+An+overview+and+tutorial&btnG=
https://www.sciencedirect.com/science/article/pii/S0888327023006921
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MCMC+Methods%3A+Graph+Samplers%2C+Invariance+Tests+and+Epidemic+Models&btnG=
https://core.ac.uk/download/pdf/588147786.pdf
https://doi.org/10.1016/j.apenergy.2024.123156
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Self-learning+dynamic+graph+neural+network+with+self-attention+based+on+historical+data+and+future+data+for+multi-task+multivariate+residential+air+conditioning+forecasting&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0306261924005397
https://doi.org/10.3390/rs16142518
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Graph+neural+networks+in+point+clouds%3A+A+survey&btnG=
https://www.mdpi.com/2072-4292/16/14/2518
https://doi.org/10.1109/OAJPE.2025.3535709
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Advancing+coherent+power+grid+partitioning%3A+A+review+embracing+machine+and+deep+learning&btnG=
https://ieeexplore.ieee.org/abstract/document/10855832
https://doi.org/10.1007/s10766-024-00779-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=K*-Means%3A+An+efficient+clustering+algorithm+with+adaptive+decision+boundaries&btnG=
https://link.springer.com/article/10.1007/s10766-024-00779-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Foundations+of+multivariate+distributional+reinforcement+learning&btnG=
https://proceedings.neurips.cc/paper_files/paper/2024/hash/b76bec34ef5e0c0ceedff6edfbefc9f5-Abstract-Conference.html
https://doi.org/10.1016/j.asej.2024.103205
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+novel+lightweight+machine+learning+framework+for+IoT+malware+classification+based+on+matrix+block+mean+downsampling&btnG=
https://www.sciencedirect.com/science/article/pii/S2090447924005860
https://www.sciencedirect.com/science/article/pii/S2090447924005860

Ibrahim Atoum et al. / IJECE, 12(4), 119-131, 2025

131

[56] Mohammad Abdallah et al., “An E-Learning Portal Quality Model: From Al-Zaytoonah University Students’ Perspective,”

International Conference on Information Technology, Amman, Jordan, pp. 553-557, 2021. [CrossRef] [Google Scholar] [Publisher

Link]

[57] Ahmad A.A. Alkhatib, and Khalid Mohammad Jaber, “FDPA Internet of Things System for Forest Fire Detection, Prediction, and

Behavior Analysis,” IET Wireless Sensor Systems, vol. 14, no. 3, pp. 47-83, 2024. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/ICIT52682.2021.9491785
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+e-learning+portal+quality+model%3A+from+Al-Zaytoonah+University+students%E2%80%99+perspective&btnG=
https://ieeexplore.ieee.org/abstract/document/9491785
https://ieeexplore.ieee.org/abstract/document/9491785
https://doi.org/10.1049/wss2.12076
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FDPA+Internet+of+Things+system+for+forest+fire+detection%2C+prediction%2C+and+behavior+analysis&btnG=
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/wss2.12076

