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Abstract - Lower Gastrointestinal (GI) problems rely heavily on medical imaging for diagnosis and therapy. The Kvasir 

dataset is useful for medical imaging research, particularly in gastroenterology. The dataset comprises high-quality movies 

and pictures captured during endoscopic operations, which depict the gastrointestinal tract, including the stomach, duodenum, 

colon, and oesophagus. The data was collected through Kaggle. The frequent susceptibility of these pictures to noise and 

distortions may hinder accurate analysis. In this article, we report a new method using sophisticated mathematical analysis 

to improve and brighten pictures of the Lower Gastrointestinal (GI) tract, such as pylorus, normal-cecum, and ulcerative 

colitis images. Our goal was to enhance the picture quality through the use of various statistical filters, Gaussian functions, 

the Fast Fourier Transform (FFT), and the Inverse Fast Fourier Transform (IFFT). This would enable more precise 

classification and detection. According to our investigation, adaptive mean filtering plus Gaussian correction performed 

noticeably better than conventional bi-cubic filtering. On the other hand, the bi-cubic filter had a PSNR of 42.06 and an MSE 

of 4.04. The combined filter technique, on the other hand, had a PSNR of 49.44 and an MSE of 0.73. The results show that 

using both the adaptive mean filter and the Gaussian correction approach together is the best way to improve images for lower 

GI tract exams. This makes the images clearer and more detailed. Additionally, the combined filter’s improved image 

processing makes lower GI structures easier to see and understand, which helps doctors diagnose patients and plan treatments. 

Overall, our results highlight the value of using sophisticated filter approaches to improve image processing in lower 

gastrointestinal imaging, with the combined filter showing itself to be the best option for raising diagnostic precision and 

picture quality. 

Keywords - Computer Vision, Deep Learning, Image Analysis, Partial Differential Equation, Python. 

1. Introduction  
Diagnostic medicine has radically transformed in recent 

years because of developments in medical imaging 

technology and the strength of deep learning algorithms. 

These developments have been very beneficial for some 

fields, such as Lower Gastrointestinal (GI) image processing. 

When it comes to the detection and treatment of a variety of 

gastrointestinal conditions, including gastrointestinal 

bleeding, inflammatory bowel disease, and colorectal cancer, 

lower GI imaging is essential [1]. However, clinician 

judgment has always played a major role in interpreting lower 

GI pictures, which can be laborious and subjective. To 

overcome these issues, it is necessary to develop automated 

and improved image analysis tools for lower GI pictures that 

utilize deep learning techniques and other computational 

methodologies. These methods take advantage of deep 

learning models’ capacity to extract significant 

characteristics and patterns from complicated pictures [2] and 

the enormous volumes of data accessible from medical 

imaging archives. In this study, we thoroughly evaluate and 

analyze the most recent methods for improved image 

processing of lower gastrointestinal pictures. We delve into 

various deep learning architectures, such as Convolutional 

Neural Networks (CNNs) [3], tailoring them to the distinct 

characteristics of lower gravity photos. To further improve 

the precision and effectiveness of lower GI image analysis, 

we also investigate integrating other cutting-edge 

computational methods, such as image segmentation, feature 

extraction, and image registration. We also draw attention to 

the intriguing directions that remain for further study and 

development, including the introduction of real-time 

feedback mechanisms for clinical decision support and the 

integration of multimodal imaging data. All things 

considered, combining deep learning with other computer 

methods can completely transform the interpretation of lower 

gastrointestinal pictures, ultimately resulting in more precise 
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diagnoses, individualized treatment plans, and better patient 

outcomes. Our goal in writing this work is to stimulate more 

research in this vital field of medicine by offering insights 

into the state of improved image analysis in lower GI imaging 

today. 

2. About the Data  
2.1. Second-Order Heading 

We conducted our computational studies using Google 

Colab, a cloud-based platform that provides robust 

computational capabilities. More specifically, we utilized the 

NVIDIA Tesla T4 GPU available in the Colab environment 

to accelerate our data-intensive workloads and deep learning 

models [4]. The Colab environment’s 16 GB of RAM and 

100 GB of disk space allowed us to handle large datasets 

effectively. 

 

3. Analysis on Kvasir  
3.1. Image Smoothening 

3.1.1. Average Filter 

One popular image processing method for reducing 

noise and producing a more aesthetically attractive outcome 

is picture smoothing. Smoothening can improve picture 

clarity for analysis or diagnosis when used on medical 

imaging datasets such as Kvasir, which includes 

gastrointestinal endoscopic images. 

 

(m-1, n-1) (m-1, n) (m-1, n+1) 

(m, n-1) (m, n) (m, n+1) 

(m+1, n-1) (m+1, n) (m+1, n+1) 
 

𝑷𝒊𝒙𝒆𝒍(𝒎, 𝒏) = 𝒅𝒂𝒕𝒂(𝒎 ∗ 𝒘𝒊𝒅𝒕𝒉 + 𝒏) 

𝑷𝒊𝒙𝒆𝒍 (𝒊, 𝒋) =  ∑ ∑ 𝒊𝒏𝒊𝒕𝒊𝒂𝒍𝑷𝒊𝒙𝒆𝒍(𝒎 + 𝒙, 𝒏

𝟏

𝒚=−𝟏

𝟏

𝒙=−𝟏

+ 𝒚)/𝟗                          

𝑷𝒊𝒙𝒆𝒍 (𝒊, 𝒋) =  ∑ ∑ 𝒊𝒏𝒊𝒕𝒊𝒂𝒍𝑷𝒊𝒙𝒆𝒍(𝒎 + 𝒙, 𝒏

𝟏

𝒚=−𝟏

𝟏

𝒙=−𝟏
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Eight pixels encircle every pixel in the image, except the 

pixels at the margins, which are disregarded. Then using, the 

average of the nine pixels in the figure is used to recalculate 

each pixel’s value. 

 

 
1 Image smoothening along with different filters 

To reduce the disparities between each pixel and 

improve the image’s smoothness, we substitute the average 

value [5] of the surrounding eight pixels and the pixel itself 

for the values shown in Figure 1 on the cantered picture. 

However, the denoising process not only fails to protect the 

picture details but also erodes them, resulting in a blurred 

image. Since the right-side image now averages each pixel 

over the 24 surrounding pixels, the difference in pixel density 

over the entire image is lower. As a result, the 5x5 mask’s 

processed picture is visibly smoother and more blurry than 

the 3x3 mask. Additionally, we obtained mostly unique 

pixels. 

 

3.1.2. Median Filter 

In this section, the median filter substitutes the median 

value of the intensities within a specified neighborhood for 

each pixel’s value. We replace each pixel’s value with the 

median of the next eight pixels, thereby reducing disparities 

among all pixels and smoothing the image. After noise 

reduction, the objects’ edges are sharper in the median filter 

than in the average filter shown in Figure 2. Furthermore, 

because it only processes the target pixel once, there is a 

greater variation between pixels. 

 

 
Fig. 2 Median filter applied on the kvasir data 

 

In medical photographs, the use of median and average 

filters might cause undesired distortion or blurring of 

important features, which could jeopardize the accuracy of 

the diagnosis. These filters might introduce artifacts or 

smooth down significant characteristics, which could lead to 

physicians making inaccurate evaluations.  

 

Rather, medical imaging usually uses more advanced 

techniques designed to guarantee diagnostic accuracy and 

preserve minute features. Improper use of filters on medical 

photos might have detrimental effects on patient care and 

diagnosis precision. 

 

3.2. Image Reduction 
In this filter, the scale to be reduced is and the original 

picture size is m*n, and the scale to reduce is 

𝒇(𝒙) 𝒘𝒉𝒆𝒓𝒆 (𝟎 < 𝒇(𝒙) < 𝟏, and the output size will be 

(𝒎 ∗ 𝒇(𝒙)) ∗ (𝒏 ∗ 𝒇(𝒙)) shown in Figure 3. 
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Fig. 3 Image reduction applied on pylorus data 

 

Because of their lower resolution, medical photographs 

that have undergone image reduction may lose important 

diagnostic information. The accuracy of medical diagnosis 

may be impacted by the reduction process [6], which may 

result in the loss of minute information and minor anomalies. 

Maintaining high picture resolution is essential for accurate 

analysis and interpretation in medical imaging. 

 

3.3. Image Sharpening 
3.3.1. Median Filter 

In the laplacian operator, picture sharpening is a widely 

used method in image processing. To calculate the local 

fluctuation of intensity in a picture, one can utilize the  

 

Laplacian operator, a second-order differential operator. 

Enhancing these differences makes the image look crisper, as 

shown in Figure 4. 

𝑳𝒂𝒑𝒍𝒂𝒄𝒆 =
𝝏𝟐𝒇

𝝏𝒙𝟐
+

𝝏𝟐𝒇

𝝏𝒚𝟐
 

 

We get the difference from the Laplace Operator. 

𝛁𝟐𝒇(𝒙, 𝒚) = 𝟒𝒇(𝒙, 𝒚) − 𝒇(𝒙 + 𝟏, 𝒚) − 𝒇(𝒙 − 𝟏, 𝒚)
− 𝒇(𝒙, 𝒚 + 𝟏) − 𝒇(𝒙, 𝒚 − 𝟏) 

 

 
Fig. 4 Sharpening the edges using the laplace operator 

 

The Laplacian filter draws attention to sharp contrasts in 

a picture, such as borders and edges. This may improve the 

visibility of anatomical features, lesions, polyps, or other 

anomalies in endoscopic images from the KVASIR dataset.  

 

The Laplacian filter may enhance noise in the pictures, 

such as speckle noise or artifacts from the endoscopic 

technique, which might result in a loss of image quality or the 

introduction of misleading features. 

3.3.2. Median Filter 

In this session, edge detection is the main use of the 

Sobel operator. It computes the image’s gradient at each pixel 

to find edges in both the horizontal and vertical axes. 
 

𝛁𝒇 = 𝒈𝒓𝒂𝒅𝒊𝒆𝒏𝒕(𝒇) =  [
𝒈𝒙

𝒈𝒚

] 

𝛁𝒇 =  [

𝝏𝒇
𝝏𝒙

⁄

𝝏𝒇
𝝏𝒚⁄

] 

 

Then, combining the Horizontal and the Vertical 

Gradient, 

𝑮 =  √𝑮𝒙
𝟐 + 𝑮𝒚

𝟐𝟐
 

 

 
Fig. 5 Edge detection using the sobel operator 

 

Following differentiation, the edge place’s absolute 

value is quite big, whereas the flat place’s value is nearly 

zero. However, the recovered picture contours are not always 

sufficient since the Sobel operator does not strictly separate 

the image’s main body from its backdrop [7]. Regarding 

noise, the Sobel operator is less sensitive than the Laplacian 

operator, as shown in Figure 5. It can deliver edge detection 

findings that are more dependable and fluid. 

 

The application’s particular needs will determine 

whether Laplace or Sobel operators are best for image 

sharpening in medical photos. The Sobel operator computes 

gradients to highlight edges, but the Laplace operator 

effectively improves edges and fine details. However, small 

features must be preserved in medical imaging, which is why 

the Laplace operator is more appropriate since it can highlight 

minute structures without drawing attention to noise. Because 

of its gradient calculation, the Sobel operator may amplify 

noise, compromising the diagnostic precision of medical 

pictures. 

 

3.4. Gamma Correction 
In this part, Gamma correction, often referred to as 

gamma adjustment or gamma transformation, is a nonlinear 

process used to alter the brightness or luminance levels in 

digital photographs. To account for the nonlinear reaction, 

the pixel values of the pylorus must be changed. The 

properties of the Cathode-Ray Tube (CRT) monitor [8], 

which have a nonlinear connection between the input voltage 
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and the brightness of the projected picture, are where the idea 

of gamma correction originated. The power-law function is 

frequently used to characterize the relationship: 

 

Converting the pixel into the real number and 

normalizing it (𝒇 + 𝟎. 𝟓)/𝟐𝟓𝟓 where f is the original pixel 

value. 

 

𝑮𝒂𝒎𝒎𝒂 𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒊𝒐𝒏 = 𝒇𝒄
𝜸

,
𝑾𝒉𝒆𝒓𝒆 𝒄 & 𝜸 𝒂𝒓𝒆 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 

 

Finally, deformalize the corrected value by taking the 

inverse value. 

 

 
Fig. 6 Gamma correction along with different gamma value 

 

Metrics like PSNR (Peak Signal-to-Noise Ratio) and 

MSE (Mean Squared Error) are frequently used to assess how 

well processed or reconstructed pictures compare to their 

originals. 

 

The Mean Squared Error (MSE) calculates the difference 

between the original image and the processed (or 

reconstructed) picture. It is computed by averaging the 

respective pixel values of the two pictures over all pixels and 

then computing the square of the difference between those 

values. In terms of math, MSE is computed as follows: 
 

𝑴𝑺𝑬 =
𝟏

𝒎𝒏
∑ ∑(𝑶𝒓𝒊𝒋𝒊𝒏𝒂𝒍(𝒊, 𝒋)

𝒏−𝟏

𝒋=𝟎

𝒎−𝟏

𝒊=𝟎

− 𝑷𝒓𝒐𝒄𝒆𝒔𝒔𝒆𝒅(𝒊, 𝒋))𝟐 

The ratio of a signal’s maximal potential strength to the 

amount of corrupting noise that degrades the representational 

fidelity is called PSNR. PSNR is frequently used in image 

processing to assess the effectiveness of compression or 

reconstruction techniques. The formula for PSNR is as 

follows: 

𝑷𝑺𝑵𝑹 = 𝟏𝟎 ∗  𝐥𝐨𝐠𝟏𝟎 (
𝑴𝑨𝑿𝟐

𝑴𝑺𝑬
) 

 

With very little loss of picture quality, the processed 

pylorus image resembles the original with an MSE of 0.52 

and a PSNR of 50.99. These results indicate that, in the 

context of KVASIR (pylorus) pictures shown in Figure 6, the 

algorithm employed for gamma correction or any other image 

enhancement approach has successfully enhanced the image 

quality, making it appropriate for additional analysis and 

diagnosis. Gamma correction improves the visual quality of 

images by adjusting the brightness and contrast. In the Kvasir 

dataset, a gamma value 0.98 produced the maximum PSNR, 

suggesting better visual quality. Gamma correction, when 

applied consistently to all pictures, can improve overall 

perceptual quality and help with various image processing 

tasks without causing a noticeable loss in performance, even 

though it is computationally complex. Applying gamma 

correction with a value of 0.98 in the Kvasir dataset seems 

beneficial because it produced the highest PSNR. This 

implies it may improve diagnostic precision in medical 

imaging jobs and successfully maintain image quality. 

 

3.5. Interpolation Technique 
In this session, enlarging a picture is the process of 

making it larger than it is. This is frequently done to enhance 

an image’s visual quality. Boost details that the original 

image could have been too tiny on. Several frequently 

employed interpolation techniques for picture enlargement 

[7] include: 

 
Fig. 7 Structure of nearest neighbour of images 

 

In order to calculate the value of each new pixel in the 

expanded picture, this approach chooses the value of the 

closest pixel in the original image. While basic nearest-

neighbour interpolation, particularly when increasing photos 

by a significant ratio, might produce blocky or jagged edges, 

as shown in Figure 7. In medical pictures, enlarging the 

image may result in pixelation and interpolation artifacts that 

obscure diagnostic information. Images can become noisy 

and lose quality as they are enlarged, making it possible to 

miss important information needed for a diagnosis. 
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3.6. Histogram Enlargement 
 

 
Fig. 8 Histogram enlargement applied on the kvasir Data 

 

In this part, the goal of image processing was to enhance 

a picture’s interpretability and visual quality. Fundamentally, 

this technique works using an image’s histogram, which 

shows the distribution of pixel intensities [10]. Histogram 

enhancement extends an image’s intensity range to cover a 

greater range of values by dispersing these intensity values. 

Through the effective enhancement of contrast between 

various sections of the image, details previously hidden by 

excessive brightness, blackness, or low contrast are now 

more evident. A more balanced depiction of the image’s 

content is produced by adjusting the Cumulative Distribution 

Function (PDF) of the histogram using methods like 

histogram equalization. This produces a more consistent 

distribution of pixel intensities, as shown in Figure 8. 

 

Following the use of image enlargement, the pixels of 

the picture tend to occupy the grey level and are uniformly 

distributed; this results in rich, dynamic visuals. After 

processing, there is a noticeable improvement in image 

contrast. (MSE = 5942.82, PSNR = 10.3908). While 

histogram expansion can improve contrast, it can also make 

medical pictures more noisy and prone to artifacts, which 

might lead to inaccurate diagnostic interpretation. Other 

methods that minimize noise and selectively increase contrast 

could be more suitable for medical imaging in specific 

circumstances. 

 

3.7. Histogram Enlargement 
In this area, discussed about reconstruction and the 

Fourier transform are useful because they may reveal 

important information about the frequency composition and 

structure of signals and pictures. Fourier analysis breaks 

down signals and pictures into their frequency components 

[11], which makes it possible to extract pertinent 

characteristics, find patterns, and spot abnormalities. 

 

𝑭(𝒖, 𝒗) =
𝟏

√𝑴𝑵
∑ ∑ 𝒇(𝒙, 𝒚)𝒆𝒋𝟐𝝅(

𝒖𝒙
𝑴

+
𝒗𝒚
𝑵

)

𝑵−𝟏

𝒚=𝟎

𝑴−𝟏

𝒙=𝟎

 

𝒇(𝒙, 𝒚) 𝒊𝒔 𝒕𝒉𝒆 𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍 𝒑𝒊𝒙𝒆𝒍, 
𝑭(𝒖, 𝒗)𝒊𝒔 𝒕𝒉𝒆 𝒐𝒖𝒕𝒄𝒐𝒎𝒆𝒔 𝒐𝒇 𝒕𝒉𝒆 𝑭𝒐𝒖𝒓𝒊𝒆𝒓 𝑻𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎 

 

After the four frequencies, they will meet at the center of 

the image, as shown in Figure 9. 

𝑓(𝑥, 𝑦)(−1)𝑥+𝑦 = 𝐹 (𝑢 −
𝑀

2
, 𝑣 −

𝑁

2
) 

 
Fig. 9 Transform and reconstruction using fourier transform 

 

DFT draws attention to the image’s dominating 

frequencies, which are distinguished by large magnitudes in 

the frequency domain representation. The picture’s main 

patterns, textures, edges, and structures match these 

dominating frequencies. DFT highlights periodic patterns or 

repeated structures in the picture, such as textures or grids, by 

displaying comparable peaks in the frequency domain. The 

image’s sharp edges and changes in intensity across distinct 

regions are highlighted in the frequency domain shown in 

Figure 10. In the DFT, these edges appear as high-frequency 

components. 

𝒇(𝒙, 𝒚) =
𝟏

√𝑴𝑵
∑ ∑ 𝑭(𝒖, 𝒗)𝒆𝒋𝟐𝝅(

𝒖𝒙
𝑴

+
𝒗𝒚
𝑵

)

𝑵−𝟏

𝒗=𝟎

𝑴−𝟏

𝒖=𝟎

 

 

 
Fig. 10 Sinusoidal waves, pixel index, magnetic spectrum and restored 

image using DFT and IDFT analysis 

 

IDFT emphasizes recovering fine-grained data and 

picture features that could have been DFT-encoded in the 

frequency domain. Although Fourier techniques can improve 

some aspects, such as spatial resolution and frequency 

content, their usefulness differs depending on the imaging 

modality and task. However, the computational complexity 

may be rather high, particularly when dealing with big 
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datasets; therefore, real-time processing calls for effective 

algorithms and powerful computers. Overall, the needs and 

limitations of the current medical imaging job should be 

carefully considered when comparing their efficacy and 

computing demands. 

 

3.8. Low Pass Filters and High Pass Filters 
In this session, Low-pass filters attenuate or eliminate 

high-frequency components of a signal or picture while 

permitting low-frequency components to flow through. High-

pass filters attenuate or eliminate low-frequency components 

of a signal or picture while permitting high-frequency 

components to flow through. When pictures are smoothed or 

blurred with LPF, noise and detail are efficiently reduced, yet 

low-frequency information like general brightness and large-

scale structures are preserved [12]. In Figure 11, HPF is 

utilized to selectively highlight high-frequency information 

and suppress low-frequency content to improve edges and 

fine details. 

𝑯(𝒖, 𝒗) =
𝟏

𝟏 + [𝑫𝟎/𝑫(𝒖, 𝒗]𝟐𝒏
 

 

 

𝑯(𝒖, 𝒗) = {
𝟏, 𝑫(𝒖, 𝒗) ≤ 𝑫𝟎

𝟎, 𝑫(𝒖, 𝒗) > 𝑫𝟎
 

 

𝑫𝟎 represents the radius, D(u,v) is the distance between 

the two points. 

 

 
Fig. 11 Different Low & High Pass Filters 

 

Nevertheless, a number of variables, including the 

imaging modality, picture properties, and filter design and 

parameter selection, affect how effective these filters are. The 

best filter combinations must be determined by careful 

thought and testing. 

 

3.9. Homographic Filter 
In this area, discussing about separating the components 

of light and reflectance [13] in a picture to improve the 

contrast and details. Normalizing illumination changes 

throughout a picture while maintaining the features seen in 

the reflectance component is the main objective of 

homomorphic filtering, shown in Figure 12. The visibility of 

objects and structures in photos taken in different lighting 

situations is improved by this normalization shown in Figure 

13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 12 Structure of homomorphic filter 

 

𝑔(𝑥, 𝑦) = log (1 + 𝑓(𝑥, 𝑦) 

 

𝑔𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑥, 𝑦) = exp (𝑔𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑥, 𝑦)) − 1 

 

 
Fig. 13 Homomorphic filter applied on the kvasir data 

 

In medical image processing, homomorphic filtering 

works well for improving contrast and adjusting for uneven 

lighting. Through the process of splitting an image into its 

illumination and reflectance components, homomorphic 

filtering can help reduce the effects of shadowing and 

enhance the visibility of fine features and structures in the 

picture. It helps improve diagnosis and analysis by boosting 

characteristics in photographs taken in different lighting 

situations or with uneven illumination. 

Input (f(x, y)) 

log f (x,y) = g(x,y)  

Spatial Domain 

DFT(g(x,y)) = G(u, v)  

Frequency Domain 

F(u, v) 

f(x, y) = ef(x,y) 

H(u, v) = 1-L(u, v) 

Discrete Fourier Transform 
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4. Compare and Analyze the Noise Cancelling 

Algorithms 
In this session, [14] discusses and comparing about the 

various noise cancelling algorithms. 

 

4.1. Arithmetic Mean Filter 

The degree of smoothing is determined by the 

neighbourhood’s size or kernel size. While smaller areas 

preserve more information and somewhat decrease noise, but 

larger neighborhoods exhibit more noticeable smoothing 

effects. Because they might blur borders and features in the 

image, they might not be appropriate for all kinds of photos 

or situations when keeping little details is essential. 

 

𝑓(𝑥, 𝑦) =
1

𝑚𝑛
∑ 𝑔(𝑠, 𝑡)

(𝑠,𝑡)∈𝑠𝑥𝑣

 

 

4.2. Geometric Mean Filter 

It places less weight on extreme values in the 

neighbourhood, and the geometric mean filter maintains 

edges and fine features better than the arithmetic mean filter. 

It may still, however, reduce noise and provide a beautiful 

image. 

𝒇(𝒙, 𝒚) = [ ∏ 𝒈(𝒔, 𝒕)

𝒇(𝒔,𝒕)∈𝑺𝒙,𝒚

]

𝟏
𝒎𝒏

 

 

4.3. Alpha-trimmed Mean Filter 

“Alpha-trimmed” is a procedure whereby a certain 

percentage of extreme values are eliminated from a dataset to 

prepare it for statistical calculations like mean or median. The 

proportion of extreme values to be removed from each 

neighbourhood before calculating the mean is denoted by 

“alpha”. The alpha-trimmed mean filter is one nonlinear 

image filtering method for lowering noise in photos while 

keeping edge details. 

𝒇(𝒙, 𝒚) =
𝟏

𝑴𝑵 − 𝟐𝒅
∑ 𝒈(𝒔, 𝒕)

(𝒙,𝒚)∈𝑺𝒔𝒕

 

 

4.4. Adaptive Mean Filter 

In contrast to conventional mean filters, which compute 

the mean using a fixed kernel size, an adaptive mean filter 

dynamically modifies the neighbourhood’s size according to 

local picture characteristics.  

 

As a result, it can reduce noise and better retain picture 

features. A comparison of various noise cancellation analyses 

is shown in Figure 14. 

 

Although it might blur edges, the arithmetic mean filter 

is straightforward and efficient for reducing noise. The 

Geometric Mean filter is better at preserving edges, but it 

might not be able to deal with sudden noise well. Alpha-

trimmed filters combine edge preservation with resistance to 

outliers, but selecting the right parameters is crucial. The 

Adaptive Mean filter works well for fluctuating noise levels 

and keeping fine features since it modifies filter parameters 

locally. 

 

 
Fig. 14 Analyse and comparing of noise cancellation filters along with 

PSNR values 

 

5. Compare and Analyze the Edge Detection 

Techniques 
In this area [15], discussing and comparing about the 

various edge detection techniques. 

 

In image processing, a straightforward edge detection 

approach is called the Roberts operator. It uses two 2x2 

convolution masks to compute the image’s gradient. These 

masks are applied to the image independently to identify the 

vertical and horizontal edges of the image. 

 

𝐺𝑥 = [
1 0
0 −1

] , 𝐺𝑦 = [
0 1

−1 0
] 

 

𝐺(𝑥, 𝑦) = √𝐼𝑥(𝑥, 𝑦)2 + 𝐼𝑦(𝑥, 𝑦)2 

Prewitt computes the image’s gradient to identify edges, 

just like the Roberts operator does. But Prewitt uses bigger 

convolution masks (3x3) than Roberts (2x2), which could 

produce edge detection results that are smoother. 

 

𝐺𝑥 = [
−1 0 1
−1 0 1
−1 0 1

] , 𝐺𝑦 = [
−1 −1 −1
0 0 0
1 1 1

] 

 

Sobel provides superior edge localization and noise 

reduction compared to both the Roberts and Prewitt 

operators. 
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𝐆𝐱 = [
𝟏 −𝟐 −𝟏
𝟎 𝟎 𝟎
𝟏 𝟐 𝟏

] , 𝐆𝐲 = [
−𝟏 𝟎 𝟏
−𝟐 𝟎 𝟐
−𝟏 𝟎 𝟏

] 

 
Fig. 15 Analyse and compare edge detection operators along with AUC 

values 

 

The AUC may be calculated mathematically in a number 

of ways, including the Mann-Whitney U statistic and the 

trapezoidal rule. When evaluating an edge detector’s capacity 

to accurately detect edges while reducing false positives, the 

AUC is a useful statistic. Better performance in 

differentiating between edges and non-edges is shown by 

higher AUC values shown in Figures 15 and 16. 

 

 
Fig. 16 Analysis using area under the curve with different edge 

detection operators 

 

The Sobel filter is frequently regarded as useful for the 

Kvasir dataset, consisting of gastrointestinal endoscopy 

pictures, because of its capacity to detect edges efficiently, 

particularly in images with intricate textures and structures 

like those present in endoscopic images. The gradient-based 

method used in the Sobel filter can successfully draw 

attention to significant characteristics seen in the 

gastrointestinal system, such as lesions, polyps, or anomalies. 

 

6. Analyzing the Kvasir Dataset with 

Interpolation Methods 
This session discusses and analyses the various 

Interpolation methods [16] by applying them in image 

processing. 

 

6.1. Adaptive Mean Filter 

A straightforward interpolation method called linear 

interpolation is used to estimate values along a straight line 

between two known data points. The assumption is that there 

is a linear relationship between the data points. 
 

𝑦 = 𝑦1 +
(𝑥 − 𝑥1)

(𝑥2 − 𝑥1)
∗ (𝑦2 − 𝑦1) 

Particularly for big datasets or real-time applications 

with constrained computer resources, linear interpolation 

entails less complex computations, resulting in quicker 

execution times. The linearity between neighboring data 

points is maintained using linear interpolation. It is often less 

prone and more steady. 

 

6.2. Bicubic Interpolation 

The process of fitting a smooth surface to each pixel’s 

neighborhood and using that surface to estimate the pixel’s 

value at the target position is known as cubic interpolation. 

This estimate is normally carried out using bi-cubic 

interpolation, shown in Figure 17, using a 4x4 neighborhood 

of pixels. 

 
Fig. 17 Bi-cubic interpolation 

 

7. Discussions 
Coming to the discussion part, when applying an image 

to a picture that results in a false classification, the arithmetic 

and median filters, out of all the filters and approaches I 

covered, eliminate information from the image while 

smoothing it out. When certain pixel lines are missing, the 

image becomes jagged and blurry with smoother edges, 

increasing the image size but not improving its clarity in 

image reduction and enlargement. By removing the fuzzy 

(dark and bright portions) and highlighting the photos, 

gamma correction—a nonlinear color editing technique—

alters the contrast of the photographs while still being 

effective. However, the computational complexity was quite 

high, and the datasets would vary in how the gamma value 

variance is changed. In a histogram enlargement, the image’s 
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pixels are uniformly distributed and tend to occupy the whole 

grayscale. As a result, the picture contrast is improved 

following processing since the grey details tend to be rich, 

and the dynamic range is wide. However, the event-based 

distribution of the pixels has changed the pixels in this 

instance. When evaluating DFT and IDFT, the algorithm’s 

time complexity increases, and its execution speed becomes 

quite sluggish when working with big datasets. After the 

picture is inverted and Fourier transformed, it is confirmed 

that the original image is recovered. Completely reject all 

frequency signals over the cut-off frequency on the low-pass 

and high-pass filters, and vice versa. So, the picture becomes 

hazy. Two different sorts of activities occur when anything 

enters the homomorphic filtering: the illumination 

component and the 2. reflectance part. It quickly modifies the 

portion and focuses on the high-frequency pictures, and vice 

versa, adjusting the images on their own. However, there are 

pixel-by-pixel alterations and features lost. Compared to 

other filters, the adaptive mean filter performs best, although 

alpha-trimmed filtering removes noise from photos 

contaminated by salt and pepper. However, you would want 

to change the k_size and alpha_size settings. Enhancing the 

alpha size improves the image score (PSNR). The margins of 

the pictures in Roberts will become closer to either +45 or -

45 degrees.  

On the edges, it has a great positioning precision. The 

Prewitt operator works well for detecting grayscale gradients 

and pictures with higher noise; however, it is inappropriate 

for edges. Finding edges based on how close an edge is to its 

extreme value based on the weighted difference (Sobel) of its 

neighbor’s intensity. Sobel is superior to all other edge 

detection and noise reduction filters because it combines the 

noise resistance and Gaussian smoothening outcomes. 

 
Fig. 18 Comparative Analysis of Gamma Correction + Adaptive Filter 

and Bi-cubic Interpolation 

 

A comparison between a combined filter and bicubic 

interpolation is shown in Figure 18. Better outcomes were 

obtained with a 3x3 kernel for the adaptive filter, a kernel size 

of 15, and a Gamma value of 0.98. The combined filter’s 

PSNR values were significantly higher-49.44 than those of 

the bicubic interpolation method, which was 42.06. 

Furthermore, the MSE values showed a notable 

improvement, with the combined filter receiving a score of 

0.73 as opposed to 4.04 for Bicubic Interpolation. This 

implies that the combined filter technique fared better than 

bicubic interpolation in terms of improving picture quality. 

8. Conclusion 
By modifying the parameters, the Gamma Correction 

works well in the setting of the Kvasir dataset, which includes 

gastrointestinal endoscopic pictures for various disorders 

such as polyps, ulcerative colitis, and esophagitis. The 

Adaptive Mean Filter may successfully minimize such noise 

while maintaining the clarity of edges and features in the 

picture. Sobel edge detection is important in recognizing 

edges and boundaries within endoscopic images. Sometimes, 

it leads to complexity when dealing with complex datasets. 

Our investigation shows that sophisticated mathematical 

methods may effectively improve Lower Gastrointestinal 

(GI) tract photographs, such as those showing pylorus, 

normal-cecum, and ulcerative colitis. We significantly 

improved the image quality by integrating Gaussian 

functions, Fast Fourier Transform (FFT), Inverse Fast 

Fourier Transform (IFFT), and numerous statistical filters. 

Notably, the classic bi-cubic filter was significantly 

outperformed by combining Gaussian correction and 

adaptive mean filtering. In contrast to the bi-cubic filter’s 

42.06 PSNR and 4.04 MSE, this combined technique 

produced a Peak Signal-to-Noise Ratio (PSNR) of 49.44 and 

a Mean Squared Error (MSE) of 0.73. These results 

demonstrate how the adaptive mean filter and Gaussian 

correction technique may work together to improve 

classification and detection accuracy by producing more 

clarity and detailed images.  

 

Future developments will see SRRNet and SRGAN 

surpass standard filters in producing higher-resolution 

pictures with more precise details, better perceptual quality, 

fewer artifacts, and versatility to accommodate different 

image content and styles. They mark a major advancement in 

image-enhancing methods, especially for fields like satellite 

imagery, medical imaging, and photography, where crisp 

images are crucial. 
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