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Abstract - Accurate and real-time hand gesture detection is crucial for advancing Human-Computer Interaction (HCI) 

applications. However, conventional methods often struggle with dynamic gestures due to factors such as motion blur, varying 

lighting conditions, and complex hand shapes. This research delves into developing a robust CNN-based hand gesture detection 

system to overcome these limitations. Trained and tested on real-life static and dynamic gesture datasets, the proposed model 

exhibits significant accuracy improvements over existing methods, achieving average precisions of 92.87% and 95.17%, 

respectively. This research presents a novel multi-layered CNN for accurate 3D hand poses estimation in real-time. By 

leveraging the power of CNNs and incorporating 3D key points, the proposed model achieves significant accuracy improvements 

over existing methods while maintaining real-time performance. This opens up new possibilities for hand gesture-based HCI 

applications, paving the way for more natural and intuitive interactions between humans and computers. 
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1. Introduction  
Hand gesture recognition has emerged as a crucial 

component in Human-Computer Interaction (HCI) 

applications, facilitating natural and intuitive communication 

between humans and machines. Real-time hand gesture 

detection, however, poses significant challenges due to factors 

such as motion blur, varying lighting conditions, and complex 

hand shapes [1, 2].  

 

Conventional methods have achieved promising results in 

static hand gesture recognition, but their performance often 

deteriorates when dealing with dynamic gestures [3, 4]. 

 

Existing hand gesture detection methods face several 

limitations. Firstly, they often rely on handcrafted features that 

require extensive domain knowledge and may not generalize 

well to diverse hand postures [5]. Secondly, they often lack 

robustness against lighting, background, and hand pose 

variations, leading to decreased accuracy in real-world 

scenarios [6, 7].  

 

Finally, many methods struggle to handle complex hand 

shapes and occlusions, limiting their applicability in practical 

applications [8, 9]. This research proposes a novel multi-

layered Convolutional Neural Network (CNN) architecture 

for real-time 3D hand pose estimation to address these 

limitations.  
 

The proposed model utilizes a combination of palm 

detection and 3D key point estimation to track hand 

movements and identify gestures accurately. The model is 

trained and tested on two real-life gesture datasets, 

demonstrating significant accuracy improvements over 

existing methods. 
 

1.1. Contributions of the Proposed Research  

1.1.1. Accurate and Robust Palm Detection 

The proposed method incorporates a dedicated palm 

detection module that effectively identifies and localizes the 

palm in real time, even under challenging lighting conditions. 

This robust palm detection serves as the foundation for 

subsequent hand pose estimation tasks. 

 

1.1.2. High-Precision 3D Key Point Projection 

The proposed method utilizes advanced techniques to 

project 3D key points onto monocular RGB frames, enabling 

accurate hand pose estimation even in low-light environments. 

This capability enhances the reliability of gesture recognition 

in real-world scenarios. 
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1.1.3. Real-time 3D Joint Estimation for Gesture Recognition  

The proposed method employs a multi-layered CNN 

architecture to perform 3D joint estimation for gesture 

recognition. The CNN’s lightweight and efficient design 

facilitates real-time performance, enabling seamless gesture 

recognition in interactive applications. 

 

1.1.4. Comprehensive Comparison with Existing Models 

The proposed method is evaluated against existing hand 

gesture recognition techniques, demonstrating significant 

improvements in accuracy and robustness. This comparison 

highlights the effectiveness of the proposed approach in real-

time hand pose estimation. 

 

2. Related Work  
2.1. Skeletal Models 

Researchers have explored using skeletal models to 

represent hand movements for gesture recognition. One 

approach combines Recurrent Neural Networks (RNNs) and 

Long Short-Term Memory (LSTM) cells to capture the 

temporal dynamics of hand movements for action 

classification. This method effectively utilizes the sequential 

nature of hand gestures, enhancing gesture recognition 

accuracy. Without a depth image, this model relies heavily on 

hand-skeletal data. Furthermore, as illustrated in Figure 1, a 

3D hand skeletal joint using key points is generated using an 

Intel RealSense camera. 

 

 
Fig. 1 Hand skeleton with 22 joints [11] 

 

2.2. CNN-Based Approaches 

Convolutional Neural Networks (CNNs) have gained 

popularity in hand gesture recognition due to their ability to 

learn complex features from image data. An approach 

employs a 3D-ResNet network for feature fusion to extract 

local spatiotemporal features, followed by a variant 

ConvLSTM for obtaining global spatiotemporal data [9]. This 

method effectively captures both local and global features 

from hand skeletons, which is crucial for recognizing complex 

gestures. A two-level hierarchical structure consisting of a 

detector and a classifier has been proposed for a CNN 

architecture that operates efficiently using the sliding window 

approach for real-time gesture detection [10]. This approach 

demonstrates promising results in efficient and accurate real-

time gesture recognition. 

 

2.3. Depth Estimation 

Achieving accurate 3D hand pose estimation necessitates 

depth information from the input image. Monocular depth 

estimation, which estimates depth from a single image, poses 

a challenging task. However, it is essential for reconstructing 

the 3D hand pose. A Gated Multi-Scale Network has been 

proposed for monocular depth estimation, achieving state-of-

the-art accuracy on benchmark datasets [11]. This approach 

contributes to improving the accuracy of 3D hand pose 

estimation. 

 

2.4. Google’s Hand Tracking Solution 

Google’s hand-tracking solution exemplifies integrating 

different techniques for accurate hand-tracking in real-time. It 

employs an ML pipeline consisting of two models: a palm 

detector and a hand landmark model. The palm detector 

locates palms in the image, while the hand landmark model 

extracts 2.5D landmarks from the palms. This combination 

enables precise hand tracking in real-world applications. 

 

These related works collectively address the challenges of 

hand gesture detection by employing various techniques, 

including skeletal models for movement representation, CNN-

based approaches for feature learning, depth estimation for 3D 

pose reconstruction, and the integration of multiple techniques 

for real-time hand tracking. 

 

3. Methodology 
3.1. Palm Detector   
 

 

 

 

 

 

 

 

 

 

 

 

                             
                      Fig. 2 Palm detector pipeline       

      

As palms and fists are much easier than identifying 

hands featuring moving fingers, a palm detector is chosen 

rather than a hand detector, as shown in Figure 2. 

Furthermore, the non-maximum suppression technique 

works well for two-hand self-occlusion scenarios such as 

handshakes because palms are smaller objects. 

Furthermore, palms may be described as only cubic 

bounding boxes, including a Single-Shot Multibox 

Detector (SSD) [12]. 

 

 

Single Shot Multibox 

Detector 

Non-Maximum 

Suppression Algorithm 

Feature Pyramid Network 



Rameez Shamalik  et al. / IJECE, 12(4), 142-147, 2025 

144 

3.2. CNN Training for Keypoint Estimation 

The two-layered CNN for keypoint estimation is 

trained on a combination of static and dynamic hand 

gesture datasets. 
 

3.2.1. Static Gestures 

      The FabDepth I dataset provides exceptional images 

for 21 hand gestures, totaling 2100 images. To enhance 

variability and foster a deeper understanding of hand 

gestures, a scaled version of the same gestures in real-world 

settings is also included, expanding the dataset by another 

2100 images bringing the total to 4200 images. 

3.2.2. Dynamic Gestures 

The EgoGesture dataset [15] provides real-world 

dynamic hand gesture sequences with 21 key point 

annotations per frame. These dynamic gestures help the 

CNN learn the temporal dynamics of hand movements and 

their relationship to keypoint positions. 

 

By combining static and dynamic gesture data, CNN 

can learn a more comprehensive representation of hand 

poses, enhancing its ability to accurately estimate key 

points in both static and dynamic scenarios. 

 

3.3. Datasets and Annotations 

The datasets used for CNN training and evaluation are: 

 

3.3.1. FabDepth I Dataset   

This dataset contains 4200 frames of static hand 

gestures, each with 21 keypoint annotations, including 

exceptional Foreground-Background (FGBG) Separation 

Images and Depth map predicted frames of the same 

gestures. The gestures represent a wide range of hand 

poses, including pointing, waving, and counting. 

 

3.3.2. EgoGesture Dataset 

     This dataset contains over 11,500 video clips of real-

world dynamic hand gestures, each with 21 key point 

annotations per frame. The gestures represent everyday 

interactions and activities, such as reaching, grasping, and 

manipulating objects. The keypoint annotations in both 

datasets provide precise 2D coordinates for the 21 key 

points, including fingertips, knuckles, and wrist landmarks. 

These annotations are essential for training the CNN to 

estimate keypoint positions and recognize hand gestures 

accurately. 

 

The first layer of CNN is in charge of allocating 2D 

key points over the identified palm and fingers, as shown 

in Figure 3. A convex hull is built around them for this 

purpose, and the absolute distance between the extreme 

dimensions of a whole hand is measured. Depth map data 

is required to transform these important points into 3D, 

together with feature maps provided by the palm detector.  

 

The former is supplied via a CNN trained on depth data 

from the EgoGesture dataset. Depth maps of captured 

hands aid in understanding the discrepancy. Delta maps, a 

mix of feature maps and depth maps, are important for the 

culminating operation of 3D joint estimation. Delta Maps 

are coupled with location maps to train a second CNN on 

3D annotated data. As illustrated in Figure 3, adding these 

two maps yields accurate 3D coordinates of joints and key 

points. Equation 1 may be utilized to obtain a 3D 

representation of joints during the final stage. 

 

                 Ɵ = ∑ 𝐽 × 𝑃 ± 𝑀                                 (1) 

 

Where Ɵ, a measure of regeneration of maximal joints, 

𝐽 suggests optimal joint coefficients, 𝑃 is the total number 

of principal components involved, and 𝑀 is a mean vector 

constant. In this study, 21 key points are proposed to create 

a skeletal structure of a hand motion utilizing a basic 

monocular RGB camera rather than the typical 22 key 

points using a stereo camera. The second module is 

explained in a stepwise manner in algorithm 1. 

 

Algorithm 1: 3D Key points & Joints estimation    

1) Initialize: Collect feature maps from the palm detector 

2) Project a convex hull around the palm and fingers 

3) Calculate the absolute distance between extreme points 

4) Assign 2D key points over selected frames 

5) Process 2D key point images with Depth images 

6) forming Delta maps 

7) Add Delta maps with 3D Location maps 

8) Extract 3D key points and joints from the given data 

9) Return the gestures with the final output    

 

4. Experimentation 
This section discusses instrumentation, 

hyperparameters implemented, and datasets and their 

preprocessing steps for proposed research. 

 

4.1. Instrumentation 

As all the modules operate in real-time, a machine with 

an I5 processor with 8 GB of RAM is employed. The 

proposed method is implemented on a machine with an 

Intel Core i5-8250U processor running at 1.60 GHz with 

8GB of RAM and an integrated Intel UHD Graphics 620 

GPU. The operating system is Ubuntu 18.04 LTS. A 

Graphics Processing Unit (GPU) is not essential because 

the CPU with the requirements given works well enough 

with runtime performance of 30 Frames Per Second (fps).  

 

A GPU can surely assist in speeding up model training 

and testing, as well as real-time processing, saving time. 

The input is a monocular RGB video stream from a basic 

webcam. The software for the proposed hand gesture 

recognition system is developed using TensorFlow, 

OpenCV, and MediaPipe. 

 



Rameez Shamalik  et al. / IJECE, 12(4), 142-147, 2025 

145 

4.2. Training Details 

The hyperparameters are chosen for a tradeoff between 

potential results and model complexity. The CNNs are 

trained using the Adam optimizer with a learning rate 0.001 

and a sigmoid activation function. The batch size for the 

first module is 64, and the batch size for the second module 

is 32. Both modules have 50 iterations. The annotations for 

both datasets are preprocessed to extract a maximum of 21 

key points to describe the skeletal hand geometry. The data 

is split into 70% training, 15% validation, and 15% testing 

sets. 

 

4.3. Frameworks 

 These three libraries or frameworks play crucial roles in 

implementing the proposed method: TensorFlow provides the 

foundation for building and training the neural networks, 

OpenCV facilitates image and video processing tasks, and 

MediaPipe enables the construction of a real-time pipeline for 

hand gesture recognition. 

5. Results and Discussion 
5.1. Quantitative Results 

A collection of state-of-the-art models also produces 

their results on the jester dataset [16] to present a 

comparison, as shown in Table 1. The proposed model 

stands apart from all other models, focusing on real-time 

palm detection and feature extraction. 
 

Table 1. Comparison of accuracy taken on jester dataset for static 

gestures with the proposed model 

Model Accuracy 

HO-CP ConvNet-S [17] 85.4 

ResC3D [18] 90.3 

BN-Inception [19] 92.9 

3D-MobileNetV2 [20] 94.59 

Proposed Model 95.17 
 

Table 2 provides a similar kind of comparison table of the 

latest techniques’ performance on the EgoGesture dataset 

along with the proposed model. 
 

Table 2. Comparison of accuracy taken on the egogesture dataset for 

dynamic gestures with the proposed model 

Model Accuracy 

VGG-16 [15] 62.4 

VGG-16+LSTM [15] 76.2 

C3D [10] 87.66 

MTUT [21] 92.22 

Proposed Model 92.87 

 

5.2. Qualitative Results 

Figures 3 (a) and (b) show how the proposed model 

detects the palm in the given video frame while subtracting the 

complex background, especially in low light. Although it is 

unable to track the exact key points on the index finger in 3 

(a), it still provides a superior representation in the 3D graph.  

In this case, joint estimation is crucial in projecting a 

skeletal figure of a palm and fingers, while its 3D key points 

clearly highlight the geometry and depth of gesture in a given 

space.                
     

 
(a) 

 
(b) 

Fig. 3 (a) & (b)  key points on the palm, in different gestures with its 

skeletal representation in XYZ axis 

It also shows improved accuracy and precision in real-

time gestures. The XYZ axis representation of hands can be 

rotated to analyze the gesture in a given video frame from 

multiple angles. Another approach to quantifying the hand 

gesture key points and joint estimation is the Percentage of 

Correct Key-points (PCK). If the difference between the 

anticipated and the genuine joint is less than a certain 

threshold, the detected joint is said to be accurate.  

 

 
Fig. 4 PCK comparison between different datasets 

The pixel lengths in each instance are normalized by 0.7 

times the matching person’s hand size to produce the distances 

with respect to the threshold used to create the PCK curves. 

The blue and green dotted lines represent the PCK on the local 

and synthetic hand gesture datasets, respectively, while the red 

line represents the PCK on the mixture of both datasets, as 
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shown in Figure 4. Thus, the tradeoff is clearly highlighted in 

terms of the practical application of hand gesture datasets. 

6. Conclusion 
The proposed method achieves high accuracy on both 

static and dynamic gesture datasets. On the Jester dataset 

for static gestures, the method achieves an accuracy of 

95.17%, surpassing existing methods. For dynamic 

gestures on the EgoGesture dataset, the method achieves an 

accuracy of 92.87%.  

These results demonstrate the effectiveness of the 

proposed approach, which utilizes palm detection and 3D 

key point estimation for efficient and accurate gesture 

recognition. The method’s simplicity and real-time 

performance make it suitable for various applications, 

including virtual reality, augmented reality, and human-

computer interaction.Future research might result in an 

effective method for foreground-background separation 

and 3D reconstruction of hand gestures for innovative 

applications. 
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