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Abstract - In work environments, the identification and correct use of Personal Protective Equipment (PPE) is essential to avoid 

incidents and safeguard employees' health.  In this paper, an innovative strategy for the automatic identification of PPE using 

computer vision techniques and Convolutional Neural Networks (CNN) is presented. The method uses a specially trained CNN 

to interpret images of the equipment and a labeled dataset that was developed especially for PPE detection. Standard item 

detection criteria were used to evaluate the system's performance, and they were shown to be effective in correctly identifying 

Personal Protective Equipment (PPE) in photographs of industrial environments. The results of this study show a great degree 

of sensitivity and accuracy in the identification of several kinds of Personal Protective Equipment (PPE), indicating that the 

development of this technology can improve automated inspection tasks and safety in the industrial workplace, avoiding 

dangerous circumstances by providing better control. 
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1. Introduction 
In industrial and building contexts, safety at work is of 

utmost importance [1].  It is essential to prevent accidents and 

safeguard the health of employees to ensure a safe and 

productive working environment.  In this situation, Personal 

Protective Equipment (PPE) plays a vital role in establishing 

a barrier between employees and the possible risks existing in 

their work environment, such as mechanical impacts, 

exposure to harmful chemicals or electrical hazards [2]. PPE 

can be difficult to use properly and monitor worker 

compliance in complex and changing industrial environments 

despite their importance. It can be challenging for safety teams 

and managers to ensure that all workers consistently use the 

right equipment [3]. Because traditional visual detection 

procedures are subjective, extensive and prone to human error, 

their effectiveness can be compromised, which is why 

workplace accidents are often seen. The use of state-of-the-art 

machine vision and deep learning technology in this 

framework creates new possibilities to maximize autonomous 

and accurate tracking and identification of PPE [4, 5] and 

eliminate the human factor altogether. Computer vision is a 

branch that belongs to artificial intelligence and focuses on 

creating systems capable of interpreting and understanding 

digital images and videos thanks to its algorithms. 

Convolutional neural networks (CNNs), on the other hand, 

have shown remarkable success in tasks involving object 

identification and visual recognition, important issues when 

wanting to develop this system, and due to its ability to 

immediately learn hierarchical representations of visual 

information from the input, it has allowed to increase the 

accuracy of detection [6].  

This paper provides a new approach using CNN and 

machine vision to identify personnel not wearing Personal 

Protective Equipment (PPE) in industrial environments. This 

study focuses on creating and implementing an automated 

system that can recognize and confirm that PPE is not present 

in real-time video frames. This technology has great potential 

to improve the safety of personnel and those around them at 

work by providing an objective and accurate tool for 

monitoring and enforcing safety regulations related to the 

mandatory use of PPE in industrial environments and high-

risk situations, such as working at heights or with hot material.  

In this work, Convolutional Neural Networks (CNNs) are 

combined with contemporary computer vision and deep 

learning technologies to promote both technical innovation 

and worker safety in an industry that performs PPE inspection 

manually and visually. This allows automation of inspection 

tasks and continuous improvement of safety procedures in 

industrial environments, thus avoiding any type of work-

related mishap related to the non-use of Personal Protective 
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Equipment (PPE) when required. The distribution of the 

information in this document is divided as follows: The work 

related to this research is presented in Section 2. Subsequently, 

Section 3 develops and explains the complete methodology of 

this proposed system. Section 4 details the design and 

construction of the hardware and software system and its 

implementation in a real agricultural environment. The 

analysis of the results and discussions obtained are presented 

in Section 5. Finally, the conclusions of this research are found 

in Section 6. 

2. Related Works 
Automated detection of Personal Protective Equipment 

(PPE) in industrial environments has been the subject of 

several investigations in recent years due to the growing need 

to improve occupational safety through advanced computer 

vision and deep learning technologies, highlighting their most 

significant approaches, methodologies and findings. In this 

part, the use of computer vision and Convolutional Neural 

Networks (CNN) is emphasized, so some of the most relevant 

research in this area is reviewed. Authors Hayat et. Al. 

presented a real-time, computer vision-based automatic safety 

helmet detection system, "You Only Look Once" (YOLO), at 

a construction site [7]. They showed that their experimental 

results with the YOLO architecture achieved the best mean 

average accuracy of 92.44%, thus showing excellent results in 

safety helmet detection.  

However, the technology presented shortcomings in 

partial occlusions in different illumination situations. Lema 

[8] developed a cost-effective solution for real-time 

monitoring of PPE use. Their work seeks to improve worker 

safety by verifying its use. Their proposed methodology 

achieves a 6% improvement in the average accuracy of PPE 

detection. Their system facilitates continuous monitoring of 

safety parameters in industrial facilities, immediately 

notifying management when these parameters exceed 

predetermined thresholds. Moreover, their system was 

designed to work on really inexpensive devices, which 

facilitates its application in a variety of companies and 

industries. To detect and categorize EPPs in high-resolution 

photographs, Wang et al. [9] proposed a new novel method 

based on semantic segmentation approaches. They identified 

different types of EPPs with an accuracy of 90,3 % using a 

modified U-Net network.  

This approach worked quite well, but due to the 

complexity of the required processing, real-time 

implementation is still difficult. This work demonstrates the 

potential of computer vision and deep learning technologies 

for automated EPP detection. However, there are still issues 

with system robustness in hostile environments common in 

industry sectors and optimization for low-cost, real-time 

devices. By developing a CNN-based PPE detection system 

designed for use in a variety of dynamic industrial 

environments, this study aims to overcome these limitations in 

the state of the art and achieve a system that ensures the safety 

of personnel in an industry or company where Personal 

Protective Equipment (PPE) is used. 

The application of artificial intelligence has been 

fundamental for developing systems to monitor the use of 

personal protective equipment (PPE) in real time and with 

high accuracy. For example, during the time of the COVID-

19 pandemic (the year 2020), a web application was created to 

monitor the use of protective masks in work environments, 

employing artificial vision and deep learning techniques to 

automatically detect the presence of masks on workers [10]; 

this action significantly helped healthcare workers to detect 

people without face masks automatically. Likewise, computer 

vision algorithms for PPE detection have been developed, 

such as the one presented by a group of researchers in 2024, 

which employs image processing and deep learning 

techniques to identify the correct use of masks and gloves in 

industrial environments [11]. The availability of specific 

datasets is crucial and fundamental to training models and 

systems for automatic detection of EPP equipment. Ahmad 

and Rahimi [12] presented the SH17 dataset, which contains 

more than 8000 annotated images with 17 classes of PPE 

collected in various industrial environments, which is 

important data for starting the training of a system. They 

trained object detection models and achieved an accuracy of 

70.9 % in PPE detection [12], a high and relevant value in 

research. On the other hand, Sandru et al. [13] proposed the 

SuPEr-SAM model, which uses a supervisory signal from a 

pose estimator to train a spatial attention module, which 

improves the accuracy of EPP recognition in images. This 

innovative approach combines pose estimation with object 

detection to improve the accuracy of EPP identification [13].  

In another investigation, authors Ahmed et al. [14] used a 

deep convolutional neural network to recognize various PPE, 

such as gloves, vests and helmets. On a dataset labeled 

especially for this use, their model, which is based on the 

YOLO architecture, obtained an acceptable mean average 

precision of 96%, improving the accuracies of other related 

studies.  The system's high computational resource 

requirements prevented it from being implemented on devices 

with little computing power, even if the findings were 

encouraging.  The application of CNN for real-time EPP 

identification in videos was investigated by Lo et al. [15]. The 

model the research's authors developed was based on the 

Faster CNN architecture.  The company provided the dataset 

of industrial surveillance videos used to train and evaluate the 

algorithm.   At a processing speed of 25 frames per second and 

97% accuracy, the system successfully detected EPP very 

instantly. However, the system faced challenges detecting 

PPE in highly dynamic environments with high worker 

density. Massiris et al. [16] proposed using the YOLO neural 

network to monitor the use of PPE, such as gloves, helmets 

and high-visibility clothing, in industrial environments. They 

used a collection of movies taken using sports cameras to train 
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the algorithm, and it has shown encouraging results in 

identifying these objects.  Honggang presented a computer 

vision-based method in [2] for identifying safety helmets on 

building sites.  The researchers in that paper identified helmets 

in static photographs with 95% accuracy by combining image 

processing methods with support vector machine (SVM) 

classifiers, achieving a high accuracy value. However, their 

proposed system was challenging for partial occlusions and 

fluctuating illumination conditions. A related study created an 

automated system using machine vision techniques to produce 

indicators of the correct use of safety equipment to monitor 

PPE use in the construction industry. This approach allowed 

for more efficient and accurate monitoring in work 

environments [2], thereby reducing workplace accidents. 

More recent state-of-the-art studies have investigated the use 

of preferred models for PPE detection. Using the YOLOv4 

object detector, Karlsson et al. [17] built a system that can 

recognize various types of PPE in photographs of industrial 

workers, including hard hats, safety vests, gloves, and safety 

glasses, among other PPE worn by industrial personnel. By 

recognizing these items with high accuracy, the system helped 

increase worker safety [17]. Islam et al. [18] introduced a 

YOLOv7-based method to identify construction workers 

wearing all necessary safety equipment, such as hard hats, 

safety glasses, jackets, gloves, and shoes, among other 

mandatory PPE. With an average mean accuracy (mAP) of 

94%, the model proved to be successful at recognizing 

personal protective equipment (PPE) in construction settings 

[18].  

Despite significant advances in automatic PPE detection, 

some challenges need to be addressed. Variability in lighting 

conditions, partial occlusions, and the diversity of industrial 

environments can affect the accuracy of the models. To further 

improve the generalizability of the models, it is clear that 

larger and more diverse datasets are needed as training 

databases. To improve detection in hard-to-reach locations 

and augment optical data, future research can use other 

sensors, such as LiDAR systems or infrared cameras, to 

support conventional cameras in detecting workers without 

PPE. Similarly, implementing more sophisticated deep 

learning methods, such as attention models or Generative 

Adversarial Neural Networks (GANs), could improve 

automated detection systems and increase the accuracy of 

current PPE detection systems. 

3. Methodology 
In this system, a specially labeled dataset was used for 

this work to build the Personal Protective Equipment (PPE) 

detection system. The video frames, which were taken in 

current industrial environments, show a variety of lighting 

configurations, perspectives, and PPE usage, for example, 

helmet, gloves, safety glasses, reflective vests, and face 

masks, which were the five main categories into which the 

protective components were divided. The block diagram of the 

created system is shown in Figure 1. 

 

 

 

 

 

 

Fig. 1 Block diagram of the developed system 

3.1. Image Capture 

In this section, high-resolution cameras are used to 

capture images of industrial environments and personnel. To 

ensure their quality and speed up the detection procedure, the 

acquired photographs must have the appropriate lighting and 

location; in this way, the system avoids false positives due to 

lighting changes. Various viewpoints and situations are 

chosen to illustrate the unpredictability of the industrial 

environment. An example of a video frame of the workplace 

prior to the system is displayed in Figure 2. 

 
Fig. 2 Video frame before processing 

3.2. Preprocessing 

In this second stage, the collected images undergo a series 

of preprocessing steps necessary in image processing to 

improve the quality and adjust them to the detection model. 

These methods include normalizing pixel values to a range of 

0 to 1, resizing images to 224x224 pixels, the standard 

resolution most frequently used in scientific papers, and 

employing data augmentation methods like lighting 

adjustments, rotations, and reflections. When these methods 

are combined, improved post-processing is ensured, and 
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increased model resilience to environmental changes is 

observed. 

3.3. CNN Model 

In the built CNN model, several convolutional layers are 

used to extract features, and then pooling layers are used to 

reduce dimensionality; this was done after proving that it 

performed better when training the model. The output layer 

groups the photos into the specified PPE categories, while the 

dense layers allow the analysis of the extracted features. For 

multiclass classification, activation functions such as ReLU 

are used in the hidden layers, and softmax is used in the output 

layer. Accuracy, sensitivity, F1-score and mAP are among the 

quantitative measures used to evaluate the performance of the 

trained model. Sensitivity evaluates how well the model can 

identify PPE items in the photos, while accuracy calculates the 

percentage of accurate predictions. While mAP provides a 

summary of the model’s performance across multiple classes, 

the F1-score integrates both metrics, and these measures will 

be evaluated and discussed in section 5 of this paper. 

3.4. Detection of Lack of PPE 

Following training and evaluation, the methodology 

suggested in this study is put into practice for automatically 

identifying Personal Protective Equipment (PPE) on workers 

in industrial settings.  After analyzing the input photos, the 

system produces a result that shows whether PPE was found.  

Supervisors can be notified using this data, and automated 

reports on safety rule compliance can be produced.  

4. Experimental Development 
The experimental development of the system was carried 

out in a controlled environment that simulated real industrial 

conditions, and some other data sources were taken from a real 

industrial environment. Exhaustive tests were carried out in 

various scenarios to evaluate the accuracy and robustness of 

the model. The results obtained in each phase of the process 

were documented, from image capture to model evaluation, 

ensuring data traceability and reproducibility of the 

experiments. In addition, processing times and the capacity of 

the system to operate in environments with limited computing 

resources were analyzed; for this reason, the video images 

were reduced to a small resolution of 224x224 pixels. 

4.1. Preparing the Work Environment 

Implementing a Personal Protective Equipment (PPE) 

identification system based on artificial vision and 

Convolutional Neural Networks (CNN) was the main 

objective of the experimental development of this project, 

especially this research. A robust computing environment 

suitable for processing video images was initially established 

to provide efficient training and reproducible results. The 

advanced hardware elements of this environment included an 

NVIDIA RTX 3090 GPU, along with an Ubuntu 20.04 

operating system configured to maximize compatibility with 

necessary libraries and frameworks. Software-wise, CUDA 

11.4 was utilized to speed up processing using the GPU, while 

PyTorch served as the primary foundation for model 

construction.  In addition, tools such as OpenCV for image 

preprocessing and Matplotlib for results visualization and 

analysis were integrated, ensuring a well-structured workflow 

for the training and validation stages of the system. 

4.2. Developed Algorithm 

Convolutional Neural Networks (CNNs), in particular the 

YOLOv5 model, are the basis of the algorithm designed for 

the identification of personal protective equipment (PPE). 

This model has been modified to recognize various types of 

PPE in real-time or previously recorded photographs, both of 

which were evaluated in this paper. The flow diagram of the 

process is shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Algorithm flowchart 
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The logical flow of the algorithm is described below: 

 Image Acquisition: The system captures images from 

video cameras in real time or processes previously stored 

images. 

 Preprocessing: Images are resized to 640x640 pixels and 

normalized to meet the requirements of the YOLOv5 

model. Quality improvement techniques are also applied 

in case the images present lighting deficiencies. 

 Inference with YOLOv5: The model analyzes the image 

to identify and classify objects of interest (helmets, 

glasses, vests, etc.) within the predefined class 

framework. 

 Post-processing: The model outputs are evaluated to filter 

predictions with low confidence and to identify possible 

false positives. 

 Alert Generation: In case the absence of PPE is detected, 

the system issues visual and auditory alerts and records 

the events in a database for later analysis. 

 Visualization and Registration: The results are presented 

to the system operator in a graphical interface and are 

stored for future audits. 
 

4.3. Building the Dataset 

One of the most crucial stages in the development of this 

proposed system was the creation and use of the dataset for 

training the learning model, which was specifically created for 

the PPE identification challenge and included nearly 5,000 

images of industrial environments, such as factories, 

construction sites, assembly plants, among other sources 

collected by the research team. These images, which were 

edited to meet the project's specific needs, were collected from 

public databases and real-time security camera records. The 

cameras were placed in various industries.  The images were 

painstakingly tagged with YOLO-friendly remarks.  The 

labels included categories like helmets, vests, glasses, and an 

extra class to indicate a lack of PPE to aid the model in 

learning to differentiate between various items. To improve 

the robustness of the model to variations in the environment, 

data augmentation techniques such as rotation, brightness and 

contrast changes, and random scaling were applied, thus 

increasing the diversity of the training images and making 

them versatile against sudden changes in lighting. 
 

4.4. Model Architecture and Training 

Since speed and accuracy are essential factors for real-

time applications of this nature, YOLOv5 was selected as the 

model architecture for this system. The final layers of the 

network were tuned to match the number of EPP classes in the 

dataset, thus adapting it to the specific purpose required for 

this research. In addition, a transfer learning strategy was 

applied, speeding up the process and improving convergence 

by starting the training with a model previously trained on the 

COCO dataset. The hyperparameters were carefully tuned to 

optimise the performance: a learning rate of 0.001, a batch size 

of 16, and a total of 50 epochs were achieved. The Adam 

optimizer and a weight regularization 0.0005 were used to 

ensure stable training. 

The training process was divided into two phases. In the 

first, the upper layers of the network were fine-tuned with a 

portion of the dataset, which took approximately six hours of 

intensive computation. Utilizing the data set that had 

previously been collected by the cameras and the movies, the 

entire model was enhanced in the second phase, which 

required an additional training day. Cross-validation was used 

in both phases to avoid overfitting. The accuracy of the 

technique developed, and the loss at each epoch was used to 

monitor the performance of the model developed by the 

research team. This method allowed training problems to be 

identified and real-time adjustments to be made to improve the 

performance of the proposed model, thus eliminating the need 

to stop the system for optimization whenever improvements 

were made and with increasing data. 
 

4.5. Real-Time Testing 

Extensive testing was conducted in controlled, real-world 

industrial environments to evaluate the system's effectiveness 

developed by the research team in this paper. Test photographs 

taken under optimal lighting and camera angles were used to 

evaluate the model in controlled testing. On the other hand, in 

real scenarios, such as active factories and construction sites, 

the system faced additional challenges, such as variable 

lighting, partial occlusion of workers, and rapid movement. 
 

4.6. Integration with the Security System 

Finally, an additional module was developed that 

integrates a real-time alarm system with the detection system. 

When PPE use is not detected, this module records the 

incidents in a database for later analysis and generates visual 

and audible alerts. This additional feature worked well in an 

industrial setting by automating the monitoring of workers to 

automatically detect PPE, greatly reducing the need for human 

intervention and thus decreasing human error. While the 

model had several drawbacks, such as reduced accuracy in 

extremely low lighting conditions, the overall results show 

how this technology has the potential to revolutionize 

workplace safety by automating crucial activities and reducing 

losses due to workplace accidents. 
 

5. Results and Discussion 
5.1. Model Performance Evaluation 

Standard metrics for object detection systems, such as 

false positive rate (FPR), inference time per image, and mean 

average precision (mAP), were used to evaluate the 

performance of the proposed model. The results demonstrated 

the system's excellent accuracy in recognizing personal 

protective equipment (PPE), such as helmets, vests, and 

goggles, achieving an average accuracy of 89.3% on the test 

set. The model demonstrated a remarkable ability to reliably 

distinguish between different classes, even in complex cases 

when multiple workers were present in the same image. Its 

effectiveness in reducing false positives, which is crucial in 

systems where errors could generate unnecessary alarms or 

interfere with real-time operation, was further demonstrated 

by the false positive rate, which was less than 4%. In terms of 
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processing speed, the model-averaged 45 Frames Per Second 

(FPS) on high-performance hardware, making it ideal for 

deployments in dynamic industrial environments requiring 

real-time analysis. 

Table 1. Summary of the model's performance 

Metric Value Description 

Mean 

Average 

Precision 

(mAP) 

89.3% 

Measures the model's 

accuracy in detecting PPE, 

calculated as the area under 

the precision-recall curve. 

False 

Positive Rate 

(FPR) 

< 4% 

Percentage of incorrect 

predictions where non-

existent PPE was detected. 

Inference 

Speed 
45 FPS 

Number of frames processed 

per second on high-

performance hardware. 

 

Further tests were also carried out to assess the model's 

performance under more difficult circumstances, including 

fast motions, partial worker occlusion, and changes in 

illumination.  The accuracy of the suggested model remained 

above 90% under optimal illumination.  However, accuracy 

dropped a little in poor light, only reaching about 80%. Poor 

visual quality affected PPE identification by 10%, 

highlighting system deficiencies and paving the way for 

improving the system for unfavorable lighting conditions. 

The model demonstrated an acceptable level of accuracy 

in identifying partial occlusions, such as when workers were 

partially obscured by equipment or other objects, depending 

on the visibility of the PPE. These results suggest that an 

approach based solely on computer vision could benefit from 

incorporating other technologies, such as LiDAR or heat 

sensors, to improve identification in challenging 

circumstances. Figure 4 includes some images taken from the 

PID detection system, made in a real environment of an 

industry dedicated to manufacturing mechanical parts and 

structures. 

 
(a) 

 
(b) 

 

 
(c) 

Fig. 4 Video frame of PPE detection system 

 

5.2. Comparative Analysis with Traditional Methods 

The Convolutional Neural Network (CNN)-based system 

was compared with traditional computer vision methods, such 

as Support Vector Machine (SVM)-based classifiers and 

Histograms of Oriented Gradients (HOG), to understand the 

proposed system better. The comparative findings illustrated 

the outstanding advantages of the YOLOv5-based model in 

this study developed by the research team. In detecting PPE, 

the CNN-based method performed 19.3% better than 

traditional methods, which had an average accuracy of 70%.  

This suggests that when implementing this system in a 

current industrial setting, the CNN-based method can better 

handle complex situations, such as the presence of multiple 

people and changes in environmental conditions. In addition, 

traditional methods showed a higher susceptibility to false 

positives and false negatives, making them less reliable for 

real-time applications, again demonstrating that the developed 

system is better suited for this type of testing. For example, in 

environments with changing lighting, the HOG+SVM 

methods recorded a false positive rate close to 15%, in contrast 

to the 4% achieved by YOLOv5. These findings highlight the 
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impact of modern neural network architectures in improving 

critical tasks such as safety monitoring in the workplace. Table 

2 presents the comparison between the CNN model and the 

traditional method. 

Table 2. Significant advantages of the CNN-based model over 

traditional methods 

Method 
Mean Average 

Precision (mAP) 

False Positive 

Rate (FPR) 

HOG + SVM 70.0% ~15% 

YOLOv5 

(Proposed CNN-

based Model) 

89.3% <4% 

5.3. Discusión 

The results of this study show how convolutional neural 

networks can be used to recognize personal protective 

equipment (PPE) in commercial and industrial environments 

with several people present. Compared to manual or semi-

automated approaches used in many industries, the high 

accuracy and speed of the model allow its use in real-time, 

improving plant safety. However, to maximize the system's 

utility, certain obstacles were observed that need to be 

addressed in future research. For example, limitations in 

partial occlusion scenarios and dependence on image quality 

indicate the need to investigate hybrid approaches that 

integrate computer vision with other sensor technologies. 

Implementing these future improvements will be essential to 

increasing the system's effectiveness in various industrial 

contexts dedicated to fabricating steel structures. Another 

crucial research component is the system's ability to adapt to 

diverse industrial conditions. While the model performed well 

in factories and construction sites, it may not perform well in 

sectors such as mining or chemical facilities, which have 

distinctive visual characteristics. Testing in other 

environments is essential to validate the proposed system 

further. This emphasizes the importance of using data sets 

representing various situations during model training. Last but 

not least, although the system efficiently automates PPE 

detection, its use in real-world environments must also 

consider elements such as worker privacy and compliance 

with regional laws, which may require additional system 

architecture and functionality modifications. 

6. Conclusion 
Based on computer vision methods and Convolutional 

Neural Networks (CNN) using the YOLOv5 model, this study 

presents a revolutionary system for identifying Personal 

Protective Equipment (PPE). The suggested approach 

demonstrated remarkable effectiveness in the automated 

identification of various types of PPE in industrial 

environments during tests conducted under controlled 

conditions simulating real scenarios. The results showed that 

the system is robust and reliable for testing in real situations, 

with an average accuracy (mAP) of 89.3% and a false positive 

rate of less than 4%. One of the main achievements of this 

research is the incorporation of an optimized workflow 

covering image preparation and real-time alert generation. By 

automating the control of proper PPE use, this technology 

increases workplace safety and reduces the need for human 

intervention in repetitive and error-prone operations. 

Furthermore, by processing up to 45 frames per second 

(enough for most dynamic industrial environments), the 

model’s implementation on high-performance hardware 

provided its viability for real-time applications. However, the 

survey also highlighted crucial areas for improvement. 

The need to investigate complementary alternatives, such 

as incorporating more sensors or improving learning strategies 

for adverse situations, is highlighted by the model's 

dependence on illumination and its poor performance in 

partial occlusion environments. To improve the generalization 

and flexibility of the system, it is also recommended that the 

training dataset be extended to cover a wider range of 

industrial environments and types of PPE. In terms of 

application, the technology has the potential to revolutionize 

safety monitoring in sectors such as mining, manufacturing 

and construction. 
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