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Abstract - Advanced strategies for data management are necessary because of the rapid growth of data produced by Internet of 

Things (IoT) devices in women's safety applications. Within the VigilNet system, this research recommends a combined approach 

of Adaptive Context-based Lossless Data Compression (ACLDC) and Dynamic Data Stream Simplification (DDSS) to refine the 

storage and processing of extensive sensor data. ACLDC efficiently lowers the demands on storage by compressing data based 

on contextual patterns, all whilst preserving important information to uphold the integrity of its threat detection. As a parallel 

process, DDSS chooses to filter and preprocess data at the source using edge computing methodologies and only sends key 

information to the system for thorough analysis. This dual methodology minimizes the requirements for bandwidth and storage, 

cuts latency, and boosts system responsiveness. In trials, the unified methodology of ACLDC and DDSS maintained a 96.8% 

Critical Data Retention Efficiency (CDRE) and 98% Data Reconstruction Integrity (DRI), significantly enhancing real-time 

threat detection accuracy and system responsiveness with optimal storage potentials. This approach improved scalability and 

reliability in diverse safety monitoring applications for women. 

Keywords - Compression, Data Streaming, Safety Applications, Sensor Data, Retention. 
  

1. Introduction  
The IoT domain [1] that involves connecting devices and 

systems has extended radically across several sectors, such as 

health, transport, and security. For example, in the area of 

safety for women, smart wearable devices that are 

incorporated in jewellery, including earrings, rings, and shoes, 

have sensors that are effective in providing information on the 

physiological and environmental conditions around the human 

body [2]. Nevertheless, IoT-based solutions have a number of 

drawbacks, which have caused the rate of data generation to 

increase significantly, leading to a large storage, processing, 

and communication need.  
 

Continuous sensor data integration is currently a problem 

for current architectures, as kinetic data does not work well in 

large-scale sensor networks [3] with centralized processing 

where response time is a factor and in wearables that cannot 

support complex data processing all of the time and end up 

depleting their batteries very quickly. Furthermore, the sheer 

volume of such data flow overpowers the underlying 

processing architecture, causing delays in threat identification 

and, in some cases, the inability to present timely prevention 

mechanisms. Each of these challenges must be overcome for 

better performance and stability of IoT systems based on 

women’s safety. 

For this reason, this research is important in enhancing the 

safety efficiency of IoT-based safety systems by solving 

inherent problems in data management and processing. The 

application of ACLDC and DDSS as extensions to available 

systems such as VigilNet presents a revolutionary way of 

handling big sensor data without compromising real-time 

accuracy or reliability. The former maintains that the immense 

sensor data is pre-processed in a manner that does not 

eliminate the inputs and is important for identifying threats 

from any potential scenarios. On the other hand, the DDSS 

system has a way of depopulating data streams in a manner 

that prevents an overload of input data that may slow down 

computation and delay response times. These changes are vital 

for increasing the real-time capabilities of safety systems and 

for long-term, large-scale solutions to IoT data management. 

In this respect, the present work provides significant 

advancements in creating smarter, faster, and more reliable 

IoT systems that respond to the needs of vulnerable women in 

today’s world. 

1.1. Research Gaps and its Significance 

Current IoT safety systems that use traditional data 

compression [4] and processing techniques do not adequately 

handle the vast volume and rapidity of data produced by 
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contemporary wearable devices. These shortcomings cause a 

delay in threat recognition, a high energy demand, and 

wasteful use of stored resources. Although various data 

reduction strategies have been proposed, none completely 

meets the demand for lossless compression and real-time 

processing in safety systems designed for women. This work 

fills the blank by developing a hybrid methodology that 

combines ACLDC and DDSS, designed particularly to 

harness the management of continuous and high-volume data 

streams. In order to maintain data integrity, ACLDC analyzes 

real-time redundancies and patterns, effectively compressing 

data while still preserving key data important for machine 

learning-based threat detection algorithms. In addition to that, 

DDSS [5] boosts this by filtering and distilling the data at the 

source, making use of edge computing to send only the most 

pertinent data for analysis. Unified, these approaches 

markedly decrease storage and bandwidth requirements, 

permitting accelerated processing and lower latency during 

important events. The present study reveals that incorporating 

ACLDC and DDSS into VigilNet strengthens system 

performance and addresses the data management challenges 

that have slowed the scalability and accuracy of earlier IoT 

safety systems. 

Thus, data compression optimisation and data streaming 

simplification are essential to improve the efficiency, 

scalability, and responsiveness of safety systems based on the 

IoTs, including VigilNet. In relation to the safety of women, 

these refinements support real-time sensor data processing at 

scale without overburdening system assets or sacrificing the 

robustness of threat detection algorithms. The system can 

substantially cut down storage needs while preserving 

essential data as a result of implementing ACLDC, ensuring 

that each necessary information point is secured for analysis. 

Simultaneously, the filtering and pre-processing of sensor data 

done by DDSS at the source leads to the conveyance only of 

important information, thus lessening bandwidth requirements 

and minimizing latency. This advances not only the longevity 

of battery life for wearable devices but also the responsiveness 

of the system to possible dangers. In the end, bettering these 

processes improves VigilNet's capability to sustainably 

manage high volumes of data efficiently, hence providing a 

more reliable and scalable safety solution that can navigate 

diverse, real-world conditions. 

1.2. Scope and Motivation 

The range of this research includes impacts that reach 

further than prompt improvements in data management for 

women’s safety systems. This research paves the way for 

future growth in IoT applications throughout various sectors 

by optimizing data compression and processing technologies. 

The trigger comes from the immediate requirement to increase 

safety solutions in an environment where personal security 

dangers are growing. Wearable technology, packed with 

sophisticated sensors, has great promise in the safety of 

people, but the quality of its performance relies on the 

processing ability of the data it draws from. This research is 

motivated by the aim to establish a more nimble, reliable and 

scalable safety system for women, permitting timely action in 

urgent circumstances. 

1.3. Contribution of the Study 

This investigation makes a number of important 

contributions to the area of IoT systems focused on women’s 

safety. It kicks off by showcasing a pioneering hybrid 

methodology that joins ACLDC and DDSS to better manage 

data. The second point is that incorporating these techniques 

into the VigilNet system greatly improves real-time threat 

detection, cutting down on data storage while sustaining an 

excellent accuracy rate in identifying possible threats. The 

research, ultimately, shows that edge computing techniques 

can be viable for improving latency and processing load, 

consequently readying the environment for future 

advancements in IoT system performance and scalability. The 

contributions made are critical to enhancing the state of the art 

in wearable safety technology. 

2. Relevant Methodologies and Their Review  
In sparse data sources under Additive White Gaussian 

Noise (AWGN) conditions, the authors in [6] introduced a 

methodology for evaluating data compression efficiency. The 

key contribution is a sparseness measure used to predict 

compression potential and assess performance in a sparse data 

source. Bit Error Rate (BER) bounds under AWGN and sparse 

source coding are derived here. Simulation results also 

indicate that the compression algorithm can substantially 

reduce the transmission of redundant data and that BERs 

significantly decrease from 0.5493 to 0.0202 as Eb/No in 

AWGN channels travel from 0-7 dB. The main limitation is 

the increased error propagation from AWGN on compressed 

data streams, which decreases BER performance for some 

particularly sparse sources. 

In [7], the focus is on developing adaptive micro 

batching techniques to optimize streamed data compression on 

GPUs that focus on the Lempel–Ziv–Storer–Szymanski 

(LZSS) algorithm. A second core contribution is a latency-

aware system that dynamically reconfigures the micro-batch 

size to find the best balance between latency and throughput 

changes for different workloads. It is shown that adaptive 

algorithms with elastic factors work well for given workloads, 

whereas those with more sophisticated control schema better 

handle unbalanced workloads.  

The proposed techniques are shown to provide 

significant latency reductions, especially when faced with 

varied data streams with significant differences in the stream 

processing performance. One important limitation lies in the 

fact that the algorithms can take a long time to stabilize the 

latency around the acceptable limits, especially for severe 

workload fluctuations. 
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In [8], the researchers put forward a technique called 

Compression-Based Data Reduction (CBDR) to improve data 

transmission in IoT sensor networks. The CBDR approach 

first reduces the dynamic range of sensor data readings 

through a lossy Symbolic Aggregate approXimation (SAX) 

Quantization, followed by a lossless Lempel-Ziv-Welch 

(LZW) compression. This method significantly reduces the 

volume of data transmitted, saving energy and extending the 

lives of the IoT networks. Simulation results show that the 

CBDR technique can reduce transmitted data volume at 74–

80%, compression ratios above 95%, and energy reduction by 

78%. The major limitation identified is reduced data accuracy 

with the lossy nature of SAX quantization, thereby potentially 

losing some information. 

The work in [9] presented a novel multimedia storage 

system for video surveillance applications. The system 

incorporates blockchain and decentralized compression 

storage architecture into the system to efficiently manage the 

large amount of data involved in the video stream. Proof of 

Work Store (PoWS) consensus is an innovative mechanism 

that enables miners to work and validate the blockchain 

simultaneously (video compression). The compression and 

storage of video frames are computationally intensive, and the 

system sacrifices immutability and reduces storage overhead. 

Through experimental results, we demonstrate that miners can 

compactly store data while preserving system security. 

However, the biggest downside of the system is scalability and 

bandwidth consumed, mainly when dealing with large 

amounts of video data, as this comes to network congestion 

and reduced throughput. 

The authors in [10] introduce a new framework for 

image compression based on optimizing the rate-distortion 

performance via data-dependent transforms. The essence of 

the idea lies in creating such a neural data-dependent 

transform that will generate the transform parameters on a 

dynamic basis for each individual image, thereby improving 

the flexibility and efficiency of the image compression 

process. The authors propose architecture with two streams 

with neural-syntax-based compression to achieve more 

compact image data representations. The model key 

experimental results are a 20.1% bitrate reduction on the 

Kodak dataset and a 29.7% on the Challenge on Learned 

Image Compression (CLIC) dataset compared to the Better 

Portable Graphics (BPG) standards codec. Furthermore, the 

model outperforms other end-to-end learned compression 

frameworks for compression efficiency. Overall, its 

complexity from the neural-syntax post-processing prohibits 

it, introducing unnecessary computational overhead. 

In [11], an Adaptive Rate Compressive Sensing (ARCS) 

method was specifically introduced for video surveillance 

applications. The method estimates signal blocks and 

dynamically adjusts each block's Compressive Sensing (CS) 

rate without prior knowledge of the signal. Such a technique 

significantly lowers memory usage, computational 

complexity, and power consumption. It is also an application 

suitable for resource-constrained environments like Wireless 

Video Sensor Networks (WVSN) and Single-Pixel Cameras 

(SPC). Outcomes exhibit that the proposed method 

outperforms state-of-the-art runtime approaches by reducing 

sampling rates while maintaining high reconstruction quality, 

and the proposed method achieves better PSNR than existing 

techniques. One main limitation of this method is the 

possibility of misclassifying the block type, which may waste 

resources in some sparse blocks to a negligible extent. 

In [12], a new compression technique, BUFF (BoUnded 

Fast Floats), is presented for bounded, low-precision numeric 

data representing a typical aspect of modern applications like 

IoT devices, server monitoring, and smart cities. In this thesis, 

BUFF stores and accesses datasets using a decomposed 

columnar format, fast ingestion, effective compression, and 

high-speed in situ queries utilizing SIMD (Single Instruction, 

Multiple Data) support. Our technique yields up to a 35x 

speedup in low-selective filtering and up to a 50x speedup in 

aggregation while preserving competitive compression ratios 

to the state-of-the-art, like Gorilla and ByteSlice. However, a 

primary drawback of BUFF is its treatment of outliers, which 

sometimes slows down certain datasets where the data 

distribution is quite different. 

CDP, introduced in [13], is a protocol for Wireless 

Sensor Networks (WSNs) that addresses energy and 

bandwidth limitations. The protocol integrates lossless and 

lossy compression algorithms in a flexible system in order to 

save both energy consumption and data transmission 

overhead. We show via simulations of real-world sensor data 

that CDP substantially reduces energy consumption (up to 

26.2%) and the number of packets that must be transmitted for 

data (over 35%) compared to conventional protocols such as 

CTP. The main limitation, however, is the complexity that this 

brings with additional computational overhead on resource-

constrained sensor nodes for supporting a wide range of 

compression algorithms. 

In [14], an AdaSpring framework is introduced to 

perform self-adaptive and self-evolutionary Deep Neural 

Network (DNN) compression for mobile applications. The 

focus is on breaking through the limitations of DNN 

deployment on resource-constrained mobile devices capable 

of compression in a matter of real-time, without requiring 

retraining as opposed to an application-specific adaptation. 

Through various mobile tasks, we show that AdaSpring 

reduces overall latency by a factor of 3.1x and reduces energy 

consumption by a factor of 4.2x while limiting runtime 

evolution latency to below 6.2 milliseconds. The major 

limitation is that rapid context changes may reduce 

compression performance in highly dynamic mobile 

environments. 
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In [15], data streams in IoT-based healthcare systems 

were handled by introducing a method called Proportionate 

Data Analytics (PDA). The PDA technique, however, pertains 

to healthcare data and will differentiate healthcare data based 

on variations and errors, ensuring timely and accurate service 

response. The method enhanced data stream processing 

precision by means of spontaneous regression learning, which 

yields high accuracy with lower errors. The analysis of 

performances shows that PDA can improve the response ratio 

by up to 6.75% and reduce the error percentage by up to 

3.43%. That is far better than other methods-data analytics 

model using deep learning (DAM-DL) from [16] and Iterative 

Golden Section Deep Belief Network (IGDBN) from [17]. A 

major restriction of the PDA, however, is its more 

cumbersome complexity in classification processes, thus 

adding to higher processing time in large-scale 

implementation. Table 1 represents quantitative comparisons 

with a few vital points for better perception.

Table 1. Quantitative comparison of existing techniques 

References Focused Work Attainments Limitation 

[6] 
Sparse data compression 

under AWGN 
BER reduction from 0.5493 to 0.0202 Error propagation in sparse data 

[7] 
Adaptive micro batching 

for LZSS compression 
Latency-aware dynamic reconfiguration Slow latency stabilization 

[8] 
CBDR for IoT sensor 

data transmission 

74-80% data reduction, 78% energy 

savings 
Lossy SAX reduces accuracy 

[9] 
Blockchain-based 

multimedia storage 

Efficient PoWS consensus for video 

storage 
Scalability and bandwidth congestion 

[10] 
Neural transform-based 

image compression 

20.1% and 29.7% bitrate reduction 

(Kodak, CLIC) 
High computational overhead 

[11] 

Adaptive rate 

compressive sensing 

(ARCS) 

Lower memory and power use, high 

PSNR 
Misclassification in sparse blocks 

[12] 
BUFF compression for 

numeric data 

35x speedup in filtering, 50x in 

aggregation 
Outlier handling slowdown 

[13] 
CDP protocol for WSN 

compression 

26.2% energy and 35% packet 

reduction 
High computational overhead 

[14] 
AdaSpring DNN 

compression for mobile 
3.1x latency, 4.2x energy reduction Performance drop in dynamic contexts 

[15] 

Proportionate Data 

Analytics (PDA) for IoT 

healthcare 

6.75% response ratio, 3.43% error 

reduction 

Complex classification increases 

processing time 

 

3. Methodology 
To optimize IoT data performance and efficiency in a 

systematic way, Adaptive Context-based Lossless Data 

Compression (ACLDC) and Dynamic Data Stream 

Simplification (DDSS) techniques are developed. 

3.1. ACLDC 

Contextual Model: Objectives are aligned with the 

identification and exploitation of contextual patterns within 

incoming data to reduce data size while preserving essential 

data. The technique evolves dynamically by reshaping the 

compression model according to the properties of the 

incoming data for real-time optimization. Data from IoT 

sensors is inspected for patterns and duplications across 

spatial and temporal axes in ACLDC. A distribution of 

probabilities for some data points arises from analyzing their 

surrounding context. 

 

The raw sensor data is modeled as D, and ₵(D) 

symbolizes information from preceding data points. To 

achieve the purpose of compression is to formulate D with a 

simpler compact representation, �̂� = 𝑓[𝐷, ₵(𝐷)]. The 

primary objective of f is to shrink data to lower redundancy. 

 

3.1.1. Prediction Model 

Based on historical data, ACLDC forecasts the 

subsequent data points. In this case, only the variation of 

predicted and actual data is recorded if the prediction is precise 

enough. Typically, the process uses entropy coding 

techniques. Huffman coding is implemented in the study. 

In the ACLDC framework, the prediction method entails 

predicting the subsequent value in the stream using past data 

and saving only the difference between the forecast and real 

number (delta) if the forecast meets an acceptable level. At 

time t, the deviation (error) in the prediction can be 

represented as, 

 

                    ∆𝑡= [𝐷𝑡 − �̂�𝑡]         (1) 
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From (1),  and  signifies the actual and predicted 

values, and here, whenever the condition  (usually 

φ is predefined) happens, the compressed information is 

stored  at t. This exhibits the lower entropy. The 

following case study d e m o n s t r a t e s  t h e  s t e p -by-

step computation of the prediction model using 

hypothetical instances. 

This study assumes that each sensor accumulates 

temperature records (in Celsius) at regular intervals. Here, the 

data stream at a given time t is depicted as Dt (t = 1, 2, 3…). 

The previous data points  were used for 

predicting , (the temperature record at t). For more 

simplification, computations of moving average prediction is 

applied, which is expressed as, 

 

(2) 

 

From (2), N denotes the total count of data points utilized 

for prediction. 

Instances: For five-time intervals in Celsius, the 

following temperature readings are considered through which 

the newer data point  is predicted. D1 = 25.0, D2 = 25.2, 

D3 = 25.4, D4 = 25.6, D5 = 25.8. The primary computation 

involved in predicting D ̂_6 is expressed as, 

 

(3) 

 

Thus, the computation process from (3) tends to predict 

. Next, a margin of error (tolerance) φ is laid out that 

depicts the acceptable range for accuracy. An error margin of 

0.3 degrees Celsius remains unchanged in this scenario. 

Supposed the actual temperature recording is 25.8 at t = 6 (i.e. 

D6 = 25.7), then the deviation found between actual and 

predicted is computed as, 

(4) 

 

From (4), it is confirmed that , which is less 

than the predefined value of φ, the prediction accuracy is 

considered more appropriate, and the error value (0.2) is 

stored instead of the actual value (25.8). 

Using Huffman coding (a lossless entropy encoding 

method) efficiently compresses small deltas to store the 

identified error. The ultimate compressed result  at 

any given t is conveyed as, 

(5) 

From (5), ի indicates the entropy encoder from Huffman 

coding. With an increasing input of data, the system 

maintains predictive accuracy by reworking its compression 

model on a constant basis. As patterns in the data change over 

time, the system evolves and adjusts accordingly. 

3.2. DDSS 

DDSS intends to clarify the data channel by thoughtfully 

selecting and processing sensor data in real time at the edge of 

the system prior to reaching the core CPU (central processing 

unit). This system works on the idea that not all sensor data 

offers equal significance for making decisions; therefore, non-

critical data are excluded from communication and archival. 

There are four key phases of DDSS, which include critical 

data identification, selecting features with edge computing, 

edge summarization, preprocessing, and transmission 

optimization. 

3.2.1. Critical Data Identification 

DDSS applies decision algorithms using thresholds to 

find which data points are key for alerting against threats or 

critical occurrences. Establishing limits for key sensor 

metrics (like temperature) is the usual approach that is 

implemented. 

For any given Dt form ith sensor, the proposed approach 

estimates the exceeding factors (like threshold, τ) for 

criticality check, which can be expressed as, 

 

(6) 

 

From (6)  denotes the transmission of  based 

on the exceeding condition against the criticality threshold 

factors, whereas  i t  signifies the execution of  
discarding action. Moreover, T varies according to situations 

involving routine (day) time, location and previous data 

events (recent data histories). 

3.2.2. Selection of Features with Edge Computing 

In the edge preprocessor, sensor nodes compute only the 

most essential features of the data. It is about minimizing the 

amount of data being transmitted by running lightweight 

algorithms directly on wearable devices or IoT nodes. The set 

of all available features (e.g., sensor data attributes such as 

body temperature, pulse rate, proximity) collected from the 

system is represented as . A 

contribution function  is defined for each feature 

 to evaluate its relevance or importance to threat 

detection. 

Now, δ is utilized to represent a predefined τ for 

significant contribution. A feature fi is considered to 

contribute significantly if . Thus, the set  
indicates the critical features, which is the subset of  
that satisfies this criterion. 

 

(7) 
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From (7),  indicates the clarification on those 

selected features whose contributions are highly significant in 

the threat detection process. For this reason, F_c is the set of 

features considered important for accurate threat detection (as 

given by the feature evaluation function and significance 

threshold). In DDSS, since the system simplifies data 

transmission, it discards or summarizes the data for data points 

in normal ranges and concentrates only on the critical data 

points (Θ) for detecting these threats, thus optimizing the data 

processing for threat detection 

3.2.3. Edge Summarization and Preprocessing 

Data summarization processes are employed to compress 

similar data points that don't veer too far away from each other 

in window size. This results in a smaller data load and 

preserving relevant information. Here, let Dw be the 

windowed data over a predefined interval, w. Thus, the 

summarized value  can be computed as, 

 

(8) 

In (8), only  is transmitted on the conditions 

of allowable σ (variance). 

3.2.4. Transmission Optimization 

DDSS limits bandwidth consumption by preventing the 

transmission of non–critical data. Non‐alarming values are 

discarded or stored locally in the case where the data points 

fall within the normal operating range. This simplified data 

stream minimizes latency and minimizes power consumption, 

so system responsiveness is still possible in real-time 

scenarios. 

The system only transmits the necessary data points 

𝑇(𝐷𝑡), reducing the number of overall transmissions between 

the sensors, network, server, and client. This means that the 

total transmission bandwidth (β) can be modeled as 

proportional to the number of critical data points (Θ) within a 

given time frame (Ʈ). 

                 (𝛽 ∝ 𝛩) ↦ ∑ Ǐ(𝐷𝑡 ≥ Ʈ)
Ʈ
𝑡=1 ∙ 𝜅1           (9) 

 

From (9) Ǐ(𝐷𝑡 ≥ Ʈ) represents the indication of the 

occurrence of critical data, and the system optimizes the β 

usage by minimizing Θ.  

 

Latency is also reduced by the simplified data stream. The 

data processing queue is shortened because only the critical 

data points are transmitted; thus, the system is capable of 

responding more quickly to potential threats. The amount of 

data being processed holds a direct relationship with the 

latency (L), which is expressed as, 

      

            𝐿 ∝ 1
𝛩⁄ ∙ 𝜅2                   (10) 

From (10), it is proved that by optimizing the Θ, the 

system minimizes L and ensures timely response. 

 

Likewise, the number of transmissions in IoT devices 

heavily affects power consumption (ρ). The system reduces 

the ρ overall by reducing the number of data points 

transmitted, which can be expressed as, 

      

              𝜌 ∝ 𝛩 ∙ 𝜅3      (11) 

 

Therefore, the lower power consumption of the system 

is a result of the lesser number of critical data points to be 

transmitted. In the expressions of (9), (10), and (11), κdenotes 

the scaling constant, which normalizes the bandwidth usage, 

latency and power consumption in terms of combined 

importance in the overall system performance.  

 

Ultimately, this entire process decreases the volume of 

non-critical data transmission, consuming less bandwidth, less 

latency, and less power, yet the system is still quick to react to 

real-time threat detection. 

 

4. Performance Evaluation 
4.1. Dataset Utilized 

The data used for evaluating the proposed study was 

drafted from the IEEE Data port and comprises 1000 

simulated data entries drawn from wearable IoT devices 

(earrings, rings, shoes) suitable for women’s safety 

monitoring. The attributes covered include user ID, 

timestamp, device type, pulse rate, body temperature, 

proximity to unfamiliar devices, ambient noise level, 

movement patterns, stress indicators, and user behavior 

profiles.  

Realistic data variations (outliers, random fluctuations, 

and various user behaviors) are then introduced to the dataset 

to improve its generality when applied towards building 

machine learning models for real-time distress detection. It 

is anonymized, ethically compliant, and privacy-preserving 

for training safety technology algorithms, IoT applications, 

and predictive analytics. By providing a dataset for research 

in proactive risk detection, the dataset acts as the prototype 

basis for the enhancement of personal safety and helps the 

researchers further the research and advancement of IoT and 

wearable technologies. 

4.2. Empirical Configuration 

For the empirical implementation of ACLDC and 

DDSS, the software stack consists of Python v3.9 for data 

stream management and the development of compression 

and filtering algorithms.  

 

For deploying our machine learning models, which 

evaluate the performance of ACLDC and DDSS in real time, 

TensorFlow v2.6 and Keras v2.6 are utilized. These 



P. Divya et al. / IJECE, 12(4), 174-184, 2025 

180 

numerical computations and data manipulation methods are 

supported along with machine learning utilities for 

determining how well the compression and data stream 

simplification techniques performed as of Pandas v1.3.3, 

NumPy v1.21, and Scikit-learn v0.24. The visualization of 

compression performance and data flow analysis uses 

Matplotlib v3.4.  
 

A high-performance computing environment based on 

multi-core processors is used to support an implementation 

platform with high throughput in the case of large IoT data 

streams and real-time compression with minimal latency. 

Similarly, the prominent hyperparameters of the model’s 

implementation and execution are listed in Table 2. 

 

Table 2. Significant hyperparameters for the empirical 

implementation of ACLDC and DDSS 

Hyperparameter Values/Specifications 

Learning Rate 0.001 

Threshold for Critical 

Data (τ) 

Varies per sensor (e.g., 100 

bpm for pulse rate) Batch Size 32 

Compression 

Tolerance (∆) 

0.05 

Regularization 

Parameter (L2) 

0.001 

Activation Function ReLU [18] 

Dropout Rate 0.2 

Data Summarization 

Frequency 

5 

Epochs 100 

Window Size (ws) 10 

 

Approaches such as PDA, DAM-DL, and IGDBN are 

considered when evaluating ACLDC performance in data 

compression. The performance of DDSS is analysed in the 

context of simplifying data streaming using techniques like 

LZSS, CBDR, ARCS, BUFF, and AdaSpring. These 

approaches assure complete benchmarking for storage, 

bandwidth and real-time responsiveness of IoT-based 

systems. 

4.3. Outcome Analysis and Discussions 

A compression-oriented metric for evaluating ACLDC is 

essential to provide unique insight into how the compression 

algorithms perform and consume in terms of compression 

complexity. The outcome analysis of the following three is 

vital, compression-specific metrics along with descriptive 

explanation. 

Of all the metrics used to judge how well a compression 

algorithm decreases the data size, the Compression Ratio (CR) 

[19] is probably the most important. So, it is a measure of the 

performance of a compression scheme by comparing the size 

of the compressed data with its original. In the case of high-

volume IoT sensor data, it’s especially important since a 

higher compression ratio means better storage and bandwidth 

utilization. 

 
Fig. 1 Evaluation and analysis of ACLDC’s CR performance across 100 

epochs 

 

As ACLDC learns how to compress data more efficiently 

from previous iterations, CR records mirror this upward 

growth trend starting from the 25th to 100th epochs (Figure 

1). The model achieves incremental compression, starting 

from a CR of 3.2 at epoch 25. Yet already by epoch 50, the 

CR reaches 3.8, which evidences that the model is using more 

sophisticated representations and reducing the data size. At 

epoch 75, we see the CR reaches 4.1, and at epoch 100, we 

have the CR peak at 4.5, which indicates ACLDC has been 

successfully achieving a highly optimized compression 

process.  

 

The fact that this CR steadily increases suggests that the 

model is fine-tuning itself to compress our data more 

effectively with each training phase, which is crucial in IoT-

based safety monitoring where storage and bandwidth are 

limited. Compression Deviation (CD) [20] is a measure of the 

difference that happens between predicted data and actual data 

during compression. This metric assesses the effectiveness of 

the compression model (such as ACLDC) in predicting the 

data without losing relevant information needed for real-time 

threat detection. This metric is used to evaluate the quality of 

compression based on prediction before compression, as is the 

case in ACLDC and the compression algorithms PDA, DAM-

DL, and IGDBN. 
 

The outcome of CD measures of ACLDC is shown in 

Figure 2. The metrics for predicting error for compression are 

strikingly better as the model proceeds by the epochs. The CD 

is at a reasonable level at epoch 25, 0.45, but at this point, the 

discrepancy between predicted and actual data values is much 

larger during compression. At epoch 50, the CD is 0.35 due to 

the better prediction, which is reduced to 0.25 at epoch 75.  

 

ACLDC performs best at predicting data points with the 

least amount of error at epoch 100, where the CD assumes its 

value of only 0.18. Throughout these epochs, we see the 

reduction in CD, which, in this case, highlights the model’s 

learning curve where the model progressively tightens its 

grasp of compressing data without causing significant 

deviation from the original.  
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Fig. 2 Evaluation and analysis of ACLDC’s CD performance across 100 

epochs 

 

The Data Reconstruction Integrity (DRI) [21] metric 

compares original or decompressed/reconstructed data versus 

compressed data. Whenever data integrity is essential, such as 

in real-time threat detection applications, compression 

methods like ACLDC become increasingly important. The 

metric measures how much of the original data is kept after 

the compression and decompression procedure but still does 

not introduce any damage to detection accuracy. 

ACLDC results in DRI, as seen in Figure 3, increased 

steadily (translating to increasing model ability to reconstruct 

the original data after compression) as epochs increased. The 

DRI is 91.2% at epoch 25, meaning there is some data 

integrity loss during the first stages of compression. As 

expected, the DRI rises up to 94.5% at epoch 50 and finally to 

96.3% at epoch 75, which indicates a significant quality of 

data preservation. By epoch 100, DRI reaches 98.0%, ensuring 

a highly accurate reconstruction of the original data. Through 

this progression, it is shown that ACLDC compresses data 

with high efficiency and preserves virtually all of the required 

data to reconstruct with high accuracy, making it ideally suited 

for real-time systems where such accuracy is essential. 
 

 
Fig. 3 Evaluation and analysis of ACLDC’s DRI performance across 

100 epochs 

Table 3. Comparative outcome analysis of the three metrics for PDA, 

DAM-DL, IGDBN, and ACLDC across 100 Epochs 

Metric ACLDC PDA DAM-DL IGDBN 

CR 4.5 3.8 4.2 4 

CD 0.18 0.25 0.22 0.2 

DRI 0.98 0.958 0.97 0.963 

 

As Table 3 shows, PDA and DAM-DL achieved a CR of 

4.2 and 4.3, respectively, whereas most previous approaches, 

such as IGDBN and DAM-DL, obtained a CR of 4.1. It 

appears that ACLDC’s context-based approach effectively 

exposes patterns and redundancies in the data during 

compression so that critical information is not necessarily lost. 

This is due to the fact that ACLDC’s CR is 2.8, with clearly 

greater efficiency than that of the adaptive learning-based 

techniques employed in DAM-DL, resulting in a CR of 4.2. 

IGDBN and PDA have a lower CR value of 4.0 and 3.8, 

respectively, which suggests that IGBDN and PDA are not 

quite as able to compress the data to the same extent as at 

ACLDC. When evaluating CD, the actual minus the predicted 

data points during compression, ACLDC still outperforms the 

other methods with the lowest CD value of 0.18. This implies 

that the accuracy of prediction mechanisms of ACLDC 

involving contextual pattern recognition can result in 

minimum error between the compressed and original data. 

Since its Bayesian network-based approach allows 

dependency modelling of IGDBN, it is followed closely with 

a CD of 0.20. Although closer to the optimal CD of the DAM, 

its deep learning-based predictions share a marginally larger 

error of only a CD of 0.22. We notice the highest deviation in 

PDA by a value of 0.25, which indicates less accurate 

predictions among other methods. The results of DRI exhibit 

the attainment of the highest achieved integrity at 98.0% for 

ACLDC, where the decompressed data retains almost all of 

the original information, making this data very trustworthy for 

applications where data reliability is paramount, such as real-

time threat detection in IoT systems. The DRI of DAM-DL is 

97.0%, with high data retention compared to ACLDC but 

slightly lower accuracy because of the higher prediction error. 

The DRI of the reconstruction of IGDBN is 96.3%, which is 

solid, but our dependency modelling may slightly sacrifice 

data fidelity permanently. Its DRI is 95.8%, which means it 

still reduces data as much as other techniques but does so with 

more data loss when compared to the other techniques. 

Combined, ACLDC delivers the best compression efficiency 

and data integrity. 

It is important to measure the efficiency of simplifying a 

data stream while retaining the essential features to compare 

DDSS to other known data stream simplification techniques 

(LZSS, CBDR, ARCS, BUFF, and AdaSpring). The 

simplification technique's Critical Data Retention Efficiency 

(CDRE) [22] metric quantifies the ability of the simplification 

technique to retain critical data points (in the context of real-

time decision-making, such as threat detection) while 
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discarding or compressing non-critical data. Similarly, the 

Stream Simplification Efficiency (SSE) [23] metric gauges the 

effectiveness of a technique in reducing the amount of data to 

be processed (the data stream size) while retaining the same 

ability to trigger alarms or detect anomalies based on retained 

data points. The combination of reduction in data volume and 

final event identification accuracy in this metric is important 

when evaluating stream simplification techniques like DDSS 

that attempt to simplify data without relinquishing useful 

information. 

 

As shown in Figure 4, the CDRE values (Blue) for 

evaluating DDSS trend upward upon each epoch, indicating 

its success at retaining critical data points while simplifying. 

At 88.5% in epoch 25, DDSS also shows notable improvement 

to 96.8% at epoch 100. This progression represents the 

system's increasing ability to select and retain the critical data 

points, thereby progressively increasing the ability of DDSS 

to keep track of pertinent information while training the 

system through more epochs and reducing the amount of loss 

of key information. We compare this performance to other 

methods (e.g., LZSS 79.1% at the same epoch) and 

demonstrate that DDSS has a higher CDRE while providing 

greater critical data retention capability. This makes DDSS 

very attractive for real-time systems where valuable data must 

be preserved, such as in safety monitoring and IoT, where data 

quality determines whether or not it's extracted for decision-

making and threat detection.  

 
Fig. 4 Evaluation of the DDSS approach using CDRE and SSE 

On the other hand, DDSS also attains an effective 

compromise between data reduction and maintaining the 

capacity to trigger accurate alerts or detections, resulting in 

optimal SSE values (Green) for DDSS. DDSS shows a 

significant relative increase in the simplicity of the data stream 

with a corresponding relative increase in detection accuracy, 

from 72.3% in epoch 25 to 85.4 % in epoch 100. This 

increasing trend implies that DDSS effectively decreases data 

volume without losing meaningful information for real-time 

anomaly detection. Hence, it keeps critical data and discards 

non-critical data. DDSS shows superior simplification 

capabilities compared with other methods using LZSS and 

ARCS with SSE values below 70%. Together, these high SSE 

and the CDRE values of DDSS make it an ideal platform when 

bandwidth and storage constraints are severe but are not 

detrimental to maintaining the reliability and accuracy of the 

system. 

While time efficiency is an important factor, it is 

inherently addressed through the reduction in data volume and 

the prioritization of critical data, which implicitly reduces 

processing latency and computational overhead. Additionally, 

edge-based filtering in DDSS minimizes the need for 

continuous data transmission, leading to an overall 

improvement in system responsiveness. Since the study 

primarily validates storage and bandwidth optimizations, 

temporal performance is not explicitly the focal metric but is 

inherently improved through the proposed methodologies. 

Future studies can further incorporate detailed runtime 

analysis and execution time comparisons to complement the 

existing evaluations. 

4.4. Discussions 

The research shows that ACLDC, along with DDSS, 

improves the functionality of IoT-based women's safety 

systems because they optimize data processing and enhance 

both speed and instant response time. The examination 

confirmed that ACLDC properly compresses high-volume 

sensor data between 3.2 and 4.5 with transformed CD values 

between 0.45 to 0.18. At the same time, DRI rose from 91.2% 

to 98.0%, which proves that critical threat detection data 

remains intact post-compression. The DDSS system proves its 

effectiveness with 96.8% CDRE and 85.4% SSE. It 

demonstrates its ability to allow required threat-relevant 

information through the system by eliminating redundant data 

contents while conserving energy and maximizing network 

bandwidth capacity.  

 

Both ACLDC and DDSS deliver superior results to PDA, 

DAM-DL, IGDBN (for ACLDC) and LZSS, CBDR, ARCS, 

BUFF and AdaSpring (for DDSS) as shown in Table 2 due to 

their enhanced compression efficiency and data retention 

capabilities together with reduced computational overhead. 

The proposed framework presents complete performance 

improvements, which result in shorter system delays while 

improving real-time detection performance alongside longer 

wearable safety device battery life, thus facilitating practical 

deployment. The study validates that blending context-aware 

compression with adaptive data filtering makes IoT safety 

setups handle extensive sensor data quickly and precisely with 

lightweight systems, which creates a reliable safety solution 

for diverse locations. 
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ACLDC and DDSS demonstrate reduced performance at 

the early stage because the system goes through an adaptation 

period, which enables it to discover optimal data patterns and 

filtering procedures. During the initial 25 epochs, ACLDC 

achieves a lower compression rate of 3.2 and a higher 

compression difference of 0.45 due to its incomplete ability to 

reduce sensor data redundancies. The system requires time to 

recognize context-dependent relationships before it can 

optimize its compression efficiency because the data entropy 

at the beginning is high. Initially, when trained, the DDSS 

system shows 88.5% CDRE performance and 72.3% SSE 

results because it has not learned to identify critical from 

superfluous information correctly. By receiving continuous 

feedback along with training sessions, ACLDC improved 

compression techniques, reaching a high compression ratio of 

4.5 through CD reduction to 0.18, while DDSS perfected its 

decision-making mechanism to obtain a final CDRE of 96.8% 

coupled with SSE of 85.4%. The development of enhanced 

refinement happens through three mechanisms: parameter 

adjustment according to system needs, historical data learning, 

and recognition of patterns within contexts. The observed 

bandwidth efficiency rise, together with latency reduction 

during later epochs, demonstrates that the system 

automatically reaches its most effective operating point while 

decreasing unnecessary data signals. The discussion depth is 

determined through a performance shift analysis at each epoch 

because these direct changes indicate how the system learns in 

real-time. 

Despite insufficient training data in early epochs, which 

makes it hard for the model to detect significant compression 

patterns and redundant data for filtering, the performance 

remains lower at the beginning. This improved effectiveness 

of reinforcement-based entropy encoding from ACLDC 

combined with DDSS threshold optimization enables the 

system to transmit only essential data. At first, the operational 

system consumes elevated amounts of energy from numerous 

un-optimized data transfers until DDSS implements data 

reduction, thus lowering operational energy requirements for 

redundant input data processing. The performance evaluation 

method demonstrates its ability to improve resource efficiency 

through its initial data compression and simplification goals, 

directly leading to reduced bandwidth use and CPU resource 

footprint over time. The lack of direct measures for runtime, 

power usage and resource utilization does not invalidate the 

evaluation process because ACLDC and DDSS improve real-

time efficiency, subsequently affecting system performance. 

Future investigations should expand this analysis by directly 

measuring system computational cost and runtime duration 

together with energy consumption savings, which will 

confirm the performance-strengthening capabilities of the 

adaptive storage solution, but the current assessment 

demonstrates sufficient evidence of system efficiencies. 

4.5. Limitation 

Despite this, there are also some smaller limitations as 

examples of possible suboptimal performance during early 

training. However, the simplicity process may neglect some 

potentially beneficial data onto lower retention efficiency in 

early epochs (88.5% CDRE at early epoch 25). Furthermore, 

fine-tuning of parameters might be needed in the event of 

highly dynamic environments where the nature of critical data 

is changing from time to time [24]. Although these limitations 

are minor, they indicate that real-time adaptability and 

optimization can improve DDSS performance in complex and 

diverse settings. 

5. Conclusion  
 The results of this study demonstrate the interoperation of 

the ACLDC and the DDSS to enhance IoT data management 

for real-time safety monitoring, especially in women's safety 

applications. Data into ACLDC is compressed without loss, 

with a CR of 4.5 at epoch 100 and a DRI of 98%, ensuring 

data integrity yet reducing storage and transmission demands. 

This is complemented by DDSS in selectively using non-

critical data, achieving a CDRE of 96.8% and an SSE of 

85.4% using the same epoch. Together, these techniques allow 

for efficient data handling while maintaining crucial 

information for decision-making as little resource is 

consumed. Nevertheless, though both ACLDC and DDSS 

initially have lower efficiency, dynamic environments will 

require some further parameter optimization to reach peak 

performance. In general, combining ACLDC and DDSS 

provides a reliable and reasonable approach for the real-time 

IoT system; meanwhile, the system can tackle a massive 

amount of data streams while maintaining accuracy and speed. 

Future work can focus on developing more advanced 

algorithms for real-time parameter optimization in order to 

improve the adaptability of ACLDC and DDSS to highly 

dynamic environments. Moreover, these methods may be 

easily integrated with emerging machine learning methods 

(such as reinforcement learning) that would boost their 

capacity to dynamically reconfigure themselves according to 

different data patterns [25]. This can further explore the 

possibilities of combining these approaches with edge 

computing frameworks for distributed IoT systems in order to 

make scalability and efficiency of real-time applications. 
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