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Abstract - In this paper, a Machine Learning (ML) based design methodology is presented for the cell-based Variable Gain 

Amplifier (VGA). The designed unit cell consists of the Gilbert Cell configuration, with two cells stacked over each other for the 

current reuse and multiple channels for recording. The design can be reused for multiple recording channels to successfully 

record a large number of low-frequency signals. Furthermore, the Gilbert Cell design includes the integration of gm/Id 

Transconductance Efficiency Factor (TEF) with the k-nearest neighbor (k-NN) based searching algorithm for obtaining the 

geometry of the cell. The k-NN algorithm analyzes a precomputed look-up table generated by the TEF methodology for the 

design. The k-NN algorithm, implemented to optimize the VGA's transistor width-to-length (W/L) ratios, demonstrates 

exceptional precision. With an accuracy of 0.96 in selecting optimal geometric configurations, the k-NN approach significantly 

enhances the VGA's performance under varied operational conditions, reflecting its robustness and efficacy in real-time design 

adaptation. The unit cell so configured using the integrated approach is stacked over one another to give two channels for signal 

acquisition. The VGA gives a gain ranging from -20 dB to 54 dB with 10mW of power consumption. 

Keywords - Variable gain amplifier, Machine Learning, Gilbert Cell, Transconductance Efficiency Factor, K-nearest neighbor, 

Look-up Table, etc., 

1. Introduction  
In the evolving landscape of signal acquisition, the 

demand for highly adaptable and efficient electronic devices 

is ever-increasing [1, 2]. Among the pivotal components of 

signal acquisition systems are Variable Gain Amplifiers 

(VGA), which are integral in applications ranging from audio 

processing to sophisticated radar systems to bio-medical 

signal acquisition. In conditions where signal amplitudes vary 

and the amplifier must dynamically change the gain to ensure 

optimal performance of the system, VGAs are absolutely 

essential [3]. The conventional method uses either basic 

adaptive algorithms that change the gain depending on pre-

defined criteria or manual tuning. These techniques are not 

without restrictions, though; usually, they call for 

sophisticated circuitry or fail to react fast to any rapid change 

in signal conditions. Furthermore, incorporating these VGAs 

into contemporary digital systems usually requires extra 

components, which might complicate the design and raise 

power consumption [4]. 

Traditionally, the VGAs are designed with a closed-loop 

configuration to provide a varied gain over a large range. 

However, these systems are limited by the bandwidth 

specifications, and further, a large number of ramp signals are 

required to provide continuous gain tuning. Again, the use of 

Metal Oxide Semiconductor Field Effect Transistors 

(MOSFETs) in the design of the VGA requires exponential 

approximation to get an accurate dB-linear characteristic. 

Many designs have been proposed to achieve linearity.  

In [3], the VGA uses the folded cascode structure to 

achieve linearity but does not have good bandwidth and power 

consumption. Similarly, in [5], though the circuit provides an 

exponentially large gain, noise creeps into it, which affects the 

design process of the VGA. The VGA discussed in [6] works 

using the cell-based structure, and stacking the unit cell can 

lead to a design with multiple channels for signal acquisition. 

This work uses the Gilbert cell-based design for the VGA cell 

to provide a varied gain for multiple signal acquisitions [7-9]. 

The basic block diagram of the Gilbert cell is illustrated in 

Figure 1. Further, this work focuses on the design 

methodology of the VGA cell. Equation 1 shows the output 

produced by the VGA. 

 Vout = A1Vin + A2Vin (1) 
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Where A1 and A2 are gains of the differential amplifiers 

and controlled by  VControl1 and VControl2, respectively.  

The Gilbert-Cell, well-known for its balanced 

architecture and intrinsic linearity, forms the cornerstone of 

the cell-based VGA design. [10] uses the Gilbert-cell 

configuration as a mixer with the source degeneration 

technique. [11] uses the Gilbert structure as a VGA with a 

double heterojunction bipolar transistor. The VGA design 

boasts a gain control range of 44 dB, a noise figure of 6.2 dB, 

an output third-order intercept point of 17 dBm, and a total 

power consumption of 350 mW from a single power supply. 

In [12], the VGA's development is described, featuring a 4-

stage fully differential cascaded amplifier architecture in a 180 

nm CMOS process, achieving a current-controlled gain from 

-39.4 dB to +20.2. Despite its advantages, traditional Gilbert 

Cell configurations struggle with scalability and power 

efficiency under varying operational conditions. Further, all 

the literature so discussed above utilizes either a conventional 

methodology for the design of the VGA cell or a hit-and-trial 

method for the design. Again, with the reduction in the 

technology node, an overdependence on human expertise may 

lead to failure in the Integrated Circuit (IC) design [13]. This 

work focuses on using Machine Learning (ML) at the design 

level. With its robust data-driven decision-making 

capabilities, ML not only complements Gilbert-Cell's 

architecture but dynamically optimizes it, ensuring efficiency 

and adaptability across a broad spectrum of conditions. Also, 

the utilization of ML in the design can help in using 

automation at the schematic level for any analog design. 

 
Fig. 1 Block diagram representing the variable gain amplifier using the 

gilbert cell configuration blocks 

The advent of ML in hardware design presents a unique 

opportunity to overcome these challenges. By incorporating 

ML algorithms directly into the design process, unprecedented 

levels of precision and flexibility can be achieved. This paper 

introduces ML-based methodology along with the gm/Id 

technique popularly known as the transconductance efficiency 

factor (TEF) for designing a Gilbert cell-based VGA. A look-

up table is constructed using the TEF data collection method 

in the design. Later, using the K-nearest neighbour (k-NN) 

search algorithm along with the spline interpolation to find the 

appropriate geometry of the Gilbert cell is obtained. Using the 

k-NN leads to the optimum values of cell geometry, leading to 

better circuitry performances. The design is particularly 

notable for its ability to efficiently handle low-frequency 

signals, which is common in medical imaging, audio 

technology, and seismic data analysis.  

The preliminary results show that ML-enhanced Gilbert 

Cell-based VGA not only satisfies but surpasses conventional 

performance criteria, providing significant gains in gain range 

and power economy, which is discussed in the following 

sections. Section 2 of the document reviews various VGA 

architectures and the design methodologies of the amplifiers. 

Section 3 explains the method of the work, stressing an 

integrated approach to improve the design process by 

combining the TEF approaches with the k-NN search 

algorithm. Spice simulations show how this ML-enhanced 

approach enables more exact geometry of performance 

measures and design parameter optimisation. In section 4, data 

analysis is carried out, illustrating that k-NN techniques 

integrated with the TEF significantly enhance traditional 

techniques. Section 5 contains a brief conclusion highlighting 

the benefits obtained in VGA design through the proposed 

approach, marking a progressive step away from traditional 

analog circuit design practices. 

2. Literature Review 
VGAs are instrumental in systems requiring dynamic 

range adjustments, particularly in environments where signal 

strengths are unpredictable and vary widely. Automatic Gain 

Control (AGC) circuits are integral functions of VGAs to 

ensure the optimal signal amplitude, enhancing the overall 

system performance and efficiency. This functionality is 

crucial in applications ranging from audio processing in 

hearing aids to signal management in communication 

satellites or auto gain controlling in bio-medical signals, 

highlighting their broad applicability and necessity in modern 

technology. Recent studies have emphasized the importance 

of sophisticated VGA designs that cater to both open-loop and 

closed-loop configurations, each serving distinct purposes 

across various applications. In [14], the gain of the CMOS 

open-loop VGA is regulated by a variable gm or load resistance 

(RL). Regarding GM, the primary techniques for its 

adjustment include calibrating the bias current, partitioning 

the output current, optimising the source degeneration resistor, 

and employing a weighted switched MOS array to get a 

tuneable aspect ratio. Although the design exhibits 

commendable linearity, fluctuations in its output current 

adversely impact its performance. An open-loop architecture 

is favoured for high-frequency applications due to its low 

power consumption and minimal noise; however, it suffers 

from inferior linearity compared to closed-loop amplifiers 

operating at the same frequency [14, 15]. The gain in an open-

loop VGA can be regulated, for instance, by variable 

transconductance or output-load impedance. Further, in [16], 

Song et al. use resistor arrays to generate the control signals, 
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where the performance is affected by the high resistive load. 

[17] uses the Gilbert-cell configuration to control voltage 

generated by changing the tail current. Again, in [3], this 

Gilbert-cell design is used in designing a 4-stack VGA. The 

Gilbert cell is used in a wide range of applications due to its 

high linearity output in varied gain. The gain-control 

mechanism of Gilbert-cell is a popular choice due to its 

simpler design and high-speed merits.   

Even though VGAs have different configurations with 

wider capabilities, the design mechanism is still widely based 

on traditional approaches. The main part of the VGA is the 

design methodology of the operational transconductance 

amplifier (OTA), which is based on conventional methods like 

square law [18], bias point simulation approach [19], iterative 

simulation, etc. These methods do not properly adapt to the 

newer technology nodes; hence, the designer goes for the hit 

trial methods. This causes the design time to increase. In [20], 

Silveria et al. introduced the gm/Id or TEF methodology, 

which is quite capable of using different technology nodes. 

The TEF method basically uses the characteristics graph of the 

transistors and utilizes it for the design. This method has been 

properly discussed in [21, 22]. But still the method lacks a 

data-driven approach for completely making the design 

process robust. With the advent of ML, the optimization and 

design of the OTA have seen a shift. In [23], the author 

employed precomputed tables to design a Bandgap voltage 

reference circuit. Subsequent to this research, Wolfe et al. [24] 

and Lberni et al. [1] employed machine learning approaches 

in two-stage OTA design, demonstrating the efficacy of 

machine learning in managing the nonlinearities intrinsic to 

transistor models. In this work, VGA is designed by 

combining the TEF method with the k-NN algorithm. The 

detailed method is discussed in the following sections. 

3. Materials and Methods 
This section delineates the systematic approach 

undertaken to design and optimize the VGA using 180nm 

Semiconductor Lab (SCL) CMOS technology. The 

methodology is characterized by meticulous transistor-level 

analysis and the integration of machine learning techniques for 

parameter optimization. The details of the methodology are 

described in the following subsections. 

 

3.1. Transistor Characterization 

The design process starts with an extensive 

characterization of NMOS and PMOS transistors, 

meticulously capturing the different device parameters across 

transistor channel lengths ranging from 180nm to 10.8 µm. 

Critical parameters such as transconductance (gm), output 

conductance (gds), drain current per unit width (Id/W or J), 

gate-source voltage (Vgs), drain-source voltage (Vds), 

threshold voltage (Vth), and drain current (Id) were collected 

through SPICE simulation. This detailed collection of data 

lays the groundwork for understanding the varied behaviors of 

transistors at different dimensions, proving invaluable for the 

detailed transistor-level analysis required in subsequent 

phases of the circuit design [7-9]. As the data collected during 

transistors are large numbers, proper visualization and very 

few values of channel lengths were chosen for the transistors. 

The plots for NMPOS and PMOS are shown in Figures 2 and 

3, respectively.

 

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 
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Fig. 2  Different plots plotted with respect to gm/Id for NMOS transistor (a) gm/Id Vs gm/gds, (b) gm/Id Vs J, (c) gm/Id Vs Vgs, (d) gm/Id Vs Vdsat, and 

(e)Vgs Vs Id. 

 

 
(a)  

(b) 

 
(c) 

 
(d) 

Fig. 3 Different plots plotted with respect to gm/Id for PMOS transistor (a) gm/Id Vs gm/gds, (b) gm/Id Vs J, (c) gm/Id Vs Vgs, and (d)Vgs Vs Id. 
 

3.2. Creation of Lookup Table for Transistor 

Characterization 

Using the extensive data gathered from the detailed 

characterization of NMOS and PMOS transistors, a 

comprehensive lookup table (LUT) is created. This LUT 

consists of critical transistor parameters such as gm/Id, gm/gds, 

Id/W, Vgs, Vds, and Vth for varying channel lengths (L). The 

LUT serves as an important resource, enabling swift and 

precise parameter selection that adapts flexibly to different 

operational needs, thus streamlining the design iterations and 

enhancing the optimization process for OTA designs [21, 22]. 

The LUT so obtained is created using a Python 3.11 

environment. The different plots for the data obtained are 

shown in Figures 2 and 3 for NMOS and PMOS, respectively. 

Around 92k data were collected, and LUT was created with 

the transistor characterization data. 

 

3.3. k-NN Algorithm Application on LUT 

In the design process, the k-NN algorithm is used 

precisely to determine the suitable values of ‘L’ that meet the 

design criteria. This ML algorithm effectively uses the LUT 

to identify the 'L' value that aligns closely with the targeted 

parameters, such as desired gm/gds ratios for a given TEF 

value. By analyzing proximity within the feature space, the k-

NN algorithm predicts appropriate 'L' values, ensuring high 

accuracy in component selection even in scenarios where an 
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exact match is unavailable in the LUT. The LUT is later used 

to design the differential pair, current mirror, and tail current 

source, which is later used in the design of the Gilbert cell. 

 

The k-NN algorithm is a flexible and efficient method for 

both classification and regression tasks in supervised ML [25]. 

In this work, the k-NN technique is utilized to search for tasks. 

It determines outcomes based on the mean values from the 

nearest data points in the training dataset. Notably, the k-NN 

algorithm demands no preliminary training phase, making it 

swift as it relies solely on the incorporation of data. The 

process begins by measuring the Euclidean distances (ED) 

between data points, a crucial step for employing the k-NN 

algorithm in regression models, as depicted in equation 2.  

d(x,y), is the ED [26]. 

 

 

(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 

 

 

(2) 

 
𝑦̂(𝑥𝑛𝑒𝑤) =

∑ 𝑓𝑖𝑦𝑖
𝑘
𝑖=1

∑ 𝑓𝑖
𝑘
𝑖=1

 
(3) 

 

On determining the distance metrics, the k-NN process 

searches for the k closest neighbours to the fresh data point, 

referred to as xnew within the training dataset. Typically, xnew is 

calculated as the mean of the dependent variable y from these 

nearest neighbours. The anticipated value is presented in 

Equation (3) with 𝑓𝑖 =
1

𝑑(𝑥𝑛𝑒𝑤,𝑥𝑖)𝑝 and p=2 [27]. The Scikit-

learn [28] toolkit in Python is utilized to provide various 

functionalities for the k-NN prediction tasks. The following 

sections detail the data collection, preprocessing, and training 

procedures, all aimed at accurately predicting the aspect ratio 

for the Gilbert-cell configuration. 

  

3.3.1. Searching the Data from the LUT 

The requisite data is produced for the SCL 180 nm CMOS 

technology node utilising the SPICE simulator. The 

simulations were conducted within a Python framework, with 

results confirmed through Cadence’s SPICE or Spectre 

simulator for accuracy. The data handling and training 

processes were executed on a system powered by an AMD 

Ryzen 3 3200G processor at 3.20 GHz, integrated with 

Radeon Vega Graphics and equipped with 16GB of RAM, 

using Python version 3.11. The scikit-learn library is utilized 

in this work, and it is highly regarded for its extensive set of 

tools that support data normalization, model training, and 

detailed evaluation. This library is selected due to its 

proficiency with a range of machine learning algorithms, 

which is crucial for achieving the objectives of the analog 

design. The performance of the models is thoroughly assessed 

using established metrics like Mean Absolute Percentage 

Error (MAPE) and R-squared (R2), which are given in 

equations 4 and 5. These metrics are vital as they offer a robust 

quantitative basis for assessing the models' accuracy and 

predictive power, thereby confirming the reliability and 

efficacy of the analytical methods used in this design process. 

 

 
𝑀𝐴𝑃𝐸 = (

1

𝑛
∑ |

𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖

|

𝑛

𝑖=1

) × 100 
(4) 

 

 
𝑅2 = 1 −

∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 
(5) 

 

3.3.2. Spline Interpolation in the Data Search 

In the methodology, when the k-NN algorithm sweeps the 

LUT and encounters absent data points, it generally yields a 

null value. This can derail any analog design process. To 

effectively manage these gaps, spline interpolation is 

incorporated into the data retrieval process from the LUT. The 

method can significantly improve the accuracy of the k-NN 

algorithm. The missing data points are obtained by integrating 

interpolated values encountered during the design. Within the 

framework of this design methodology, cubic spline 

interpolation is utilized. This technique constructs a smooth 

curve through existing data points, ensuring each query 

produces a meaningful and precise outcome. Such 

enhancements strengthen the robustness of the analytical 

models and also broaden their practical applications, making 

the datasets more effective for addressing real-world design 

challenges [29]. The curve is formed by combining a sequence 

of cubic polynomial segments between each pair of 

consecutive data points. Mathematically, for a set of data 

points (xi, yi) where i = 1, 2,..n, the cubic spline C(x) on the 

interval [xi, xi+1] is given in equation 6:   

 

 𝐶𝑖(𝑥) = 𝑝𝑖 + 𝑞𝑖(𝑥 − 𝑥𝑖) + 𝑟𝑖(𝑥 − 𝑥𝑖)
2

+ 𝑠𝑖(𝑥 − 𝑥𝑖)3 

(6) 

 

Where 𝑝𝑖 , 𝑞𝑖 , 𝑟𝑖 , 𝑎𝑛𝑑 𝑠𝑖  are coefficients that are 

determined for each sub-interval based on the boundary 

conditions. The capability of cubic splines to construct a 

smooth curve through any sequence of data points ensures that 

each interpolation not only bridges the gaps in sparse data but 

also maintains the natural flow of the dataset's underlying 

trends. As a result, the application of cubic spline interpolation 

in k-NN-based systems broadens their utility in searching the 

OTA's geometry, which is later used in designing the 2-stack 

Gilbert-cell for the VGA application. 

3.4. Gilbert Cell Design 

The design of the Gilbert cell unit, as illustrated in Figure 

4, depends on the 'L' values fine-tuned using the k-NN 

algorithm. This configuration lays the groundwork for 

designing the subsequent VGA configuration. The unit cell 

design integrates key components such as a differential pair, a 

current mirror, and a tail current source. The Gilbert cell meets 
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the required specifications by applying these optimized 

parameters obtained. The detailed geometry of the Gilbert cell 

is presented in Table 1. 

 

 
Fig. 4 Schematic of VGA using the gilbert cell configuration 

  

Algorithm: Gilbert Cell Design Utilizing Integrated Method 

of KNN Search and TEF Technique 

1. Design of Differential Pair (M11, M12 and M9, M10): 

o Input Specifications: Retrieve essential parameters 

such as TEF, gm/gds, and drain current (Id) from the 

dataset. 

o Length Prediction: 

 Use the k-NN search to determine the ‘L’ of the 

transistors. Input the TEF and gm/gds values into 

the k-NN algorithm to find the nearest set of data 

points in the dataset that match these 

specifications. 

 The algorithm should return the 'L' values from 

the dataset closest to the desired TEF and gm/gds 

ratios. 

o Width Calculation: 

 Calculate the width (W) for transistors using the 

formula W=Id/(Id/W), where Id/W is retrieved 

from the nearest neighbours found by the k-NN 

search. 

2. Current Mirror Load Design (M5, M6): 

o Conductance Parameters: Determine the gm/gds 

values required for M5 and M6 from the design 

specifications. 

o Transconductance Prediction: Use the retrieved 

gm/gds ratio for both M5 and M6. 

o Geometric Estimation: 

 Apply the k-NN algorithm to a PMOS dataset to 

predict the lengths of M5 and M6. Input the gm/gds 

and ‘L’ values to find the nearest matches. 

 Calculate their widths based on the geometric 

parameters (like W=Id/(Id/W) obtained from the 

nearest neighbour results in the dataset. 

3. Tail Current Source Optimization (M2, M3 and M1): 

o CMRR Alignment: Based on the desired Common 

Mode Rejection Ratio (CMRR) values, calculate the 

gm/gds values for the transistors. 

o Geometry Determination: 

 Employ the k-NN search to estimate the 

geometric dimensions (length and width) for the 

transistors. This step involves inputting gm/gds 

values into the k-NN algorithm and retrieving 

the closest matching geometric parameters from 

the dataset. 

 

3.5. VGA Simulation 

The final phase involved simulating the VGA under 

varying control voltage conditions to validate and refine the 

design. In the VGA, apart from the Gilbert cell, it has the 

common source amplifier (CSA) (M7 and M8) in the complete 

schematic.  

 

The design steps for the CSA used the same steps as used 

for the cell design. This resulted in the increase of the 

maximum gain from 30 dB to 54 dB. Figure 5 shows the flow 

chart for the design of the CSA.  

 

These simulations are crucial for verifying that the VGA 

meets the desired performance metrics across different 

operational states and identifying potential areas for further 

optimization. Figure 6 shows the complete VGA structure 

along with the common source amplifier.  

 
Table 1. Summary of the transistor properties derived for the VGA cell 

through k-NN analysis 

Transistors W/L 

Channel Width 

(in m) with 

Lmin=0.18m 

Input Pair  

Differential Amplifier 
3 0.54 

Current Mirror 15 2.7 

Tail Current Source 4.5 0.81 

CSA(M8) 36 15 

CSA(M7) 36 5 
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Fig. 5 The flow diagram illustrates the various stages of the k-NN methodology in designing the common source amplifier circuit

 

 
Fig. 6 Schematic of VGA using the gilbert cell configuration and 

common source amplifier 

 

4. Results and Discussion 
The LUT obtained from the SPICE simulations for both 

NMOS and PMOS transistors plays a crucial role in aiding the 

k-NN models in accurately determining the precise 

dimensions of the transistors. After extensive training and 

evaluation, the k-NN model displayed impressive accuracy. 

For the NMOS transistor data, the model demonstrated a 

remarkable R2 score of 0.9603 and a Mean MAPE of 4.7%, 

showing its robustness and reliability in closely approximating 

the true data points. Meanwhile, for PMOS transistors, the 

model achieves an R2 score of 0.9617 and a MAPE of 7.8%, 

which, although slightly higher, still demonstrates a reliable 

level of accuracy in predictions. 

 

Figure 7 shows the AC analysis performed on the VGA. 

The gain varies from -20 dB to 54 dB. This variance is 

gm 
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controlled by adjusting the voltage from 0.1V to 0.9V, 

demonstrating the VGA’s responsiveness to control voltage 

adjustments. The k-NN approach resulted in a power 

consumption of 10 mW. Figure 8 shows the Fast Fourier 

Transform (FFT) simulation results for the k-NN-based 

method, which achieves a third-order Harmonic Distortion 

(HD3) of -78.79 dB. These simulation outcomes were recorded 

at 298K under typical corner conditions. Table 1 shows all the 

parameters of the VGA compared against the previous 

literature. 

 

 
Fig. 7 Schematic of VGA using the gilbert cell configuration 

 

 
Fig. 8 Fast fourier transform analysis of the VGA in k-NN-based design 

approach 

 

The integration of the k-NN algorithm, along with cubic 

spline interpolation, into the design of a VGA using a Gilbert 

Cell configuration marks a notable evolution in the field of 

analog circuit design. This research highlights how machine 

learning can enhance the process of selecting transistor 

dimensions, greatly improving the functionality and efficiency 

of VGAs designed for low-noise environments. Using k-NN 

to search through the precomputed LUT to select the transistor 

dimensions proves effective against the traditional methods. 

Further, this method utilizes the TEF calculations to satisfy the 

specification, which stands out as particularly effective. This 

method greatly simplifies the design process, cutting down on 

the need for repetitive manual tuning and the usual hit-and-

trial method in analog circuit design, thus making the design 

process more data-centric. The initial results, which show high 

R2 scores and MAPE for both NMOS and PMOS datasets, 

verify the k-NN model's effectiveness in making precise 

predictions that closely mirror the real data points. 

 
Table 2. Comparative analysis between k-NN based design of gilbert cell 

with respect to literature 

Parameters 
This 

Work 
[10] [11] [12] 

Technology 

(in nm) 
180 180 250 65 

Range of 

Gain (in dB) 

-20 to 

54 
13.2 31 

-39.4 to 

20.2 

Power 

Consumption 

(in W) 

10m 700 350m 26m 

Phase 

Margin (in 

degrees) 

70 NA NA NA 

Bandwidth 

(in Hz) 
1M 2.4G 40G 4G 

HD3 (in dB) -78.79 NA NA 27 

 

Moreover, by interpolating missing data points, this 

technique ensures the continuity and integrity of the ML 

model’s output, thereby enhancing the utility and applicability 

of the k-NN algorithm in real-world design scenarios. This 

method ensures that the model's utility is not compromised by 

the lack of direct matches in the LUT, thus maintaining the 

integrity and continuity of the data analysis process. 

 

5. Conclusion 
This work presents the process of integrating ML and 

TEF into the design and fine-tuning of Gilbert Cell-based 

VGAs. By utilizing the k-NN algorithm together with cubic 

spline interpolation, significant improvements have been 

made in the precision and adaptability of VGA designs. This 

enhancement has streamlined the design process considerably. 

The introduction of ML techniques has also advanced 

automation in analog circuit design, leading to workflows that 

are both more efficient and more cohesive. Finally, this 

method can offer designers the tools to achieve precision and 

efficiency. It paves the way for creating more intelligent, 

adaptable, and energy-efficient electronic systems, which are 

both robust and driven by data. 
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