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Abstract - The article systematically explored the application of deep learning for lung sound classification in three popular 

scientific databases – PubMed, ScienceDirect and IEEE Xplore, for articles published between 2015 and 2024. Using 

specific keywords combined with deep learning terms, we identified 1428 articles. Based on their titles, abstracts and 

content, 33 articles were deemed relevant and selected for review. The article’s thorough analysis revealed that deep 

learning algorithms have outperformed traditional machine learning techniques in lung sound classification. 
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1. Introduction 
Auscultation is a method used by physicians to evaluate 

pulmonary conditions by listening to patients’ breathing 

sounds through a stethoscope. During this process, the 

physician listens to the patient’s chest and diagnoses based 

on the patient’s medical history. Pulmonary diseases can 

generally be categorized into two main types based on sound 

characteristics: normal and adventitious sounds. However, 

distinguishing these sounds often requires precision that 

depends on the physician’s training. An automatic breathing 

sound classification system could, therefore, be a valuable 

alternative. 

Traditional machine learning algorithms for detecting 

anomalies in respiratory signals involve two steps: feature 

extraction and pattern classification. These methods have 

been used to differentiate between continuous adventitious 

sounds like wheezes and discontinuous sounds like crackles. 

Digital stethoscopes are commonly used for lung sound 

acquisition and save audio data for further analysis. 

Wheezes and crackles are clinically significant symptoms of 

pulmonary diseases. Wheezes, high-pitched continuous 

sounds, occur in the 200 Hz to 2 kHz frequency range and 

last longer than 250 ms. Crackles, shorter discontinuous 

sounds, are detected during inspiratory and expiratory 

cycles and last less than 100 ms. Normal lung sounds range 

from 37.5 Hz to 1 kHz. 

Pulmonary diseases are the third leading cause of death 

globally, with acute lower respiratory tract infection, 

asthma, lung cancer, tuberculosis, and Chronic Obstructive 

Pulmonary Disease (COPD) being the most prevalent, 

according to the World Health Organization (WHO). Recent 

research has focused on developing automated systems for 

classifying abnormal lung sounds using feature extraction 

techniques such as spectrograms, entropy, and Mel-

Frequency Cepstral Coefficients (MFCC). Machine 

learning algorithms, including Hidden Markov Models 

(HMM), Gaussian Mixture Models (GMM), and logistic 

regression, have been employed for this purpose. 

However, these methods face significant challenges. 

Most systems use binary classification to distinguish 

between crackles and wheezes, which is inadequate for 

multi-class classification. Additionally, the reliance on 

handcrafted features and the lack of freely available datasets 

hinder the evaluation and comparison of proposed 

algorithms. These limitations reduce the applicability of 

these methods in real-world scenarios. 

Deep learning has emerged as a powerful solution, 

particularly when large datasets are available. Unlike 

traditional machine learning, deep learning does not require 

handcrafted feature extraction, as the model learns features 

directly from the data during training, as shown in Figure 1. 

This has made deep learning prominent in fields such as 

biomedical engineering.  

Machine Learning (ML) and Deep Learning (DL) 

methods have been used for lung sound classification. 

However, to the best of our knowledge, few literature 

reviews have explored the application of machine learning 

algorithms in lung sound classification. Furthermore, the 

use of deep learning for lung sound classification has not 

been thoroughly studied, and a related research agenda has 

not been defined. Therefore, this systematic review aims to 

fill this gap by exploring the recent literature describing the 

use of DL to classify lung sounds. In this context, we 

identified several future research directions that could guide 

researchers when conducting future work. These include 
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exploring the most promising research goals, investigating 

the effectiveness of transfer learning, and utilizing large 

datasets in research. Using both 1D raw audio data and 2D 

time-frequency images in lung sound classification using 

deep learning algorithms presents significant opportunities 

for improving the early detection and diagnosis of 

respiratory diseases. By identifying the most effective 

techniques and evaluating the results of various studies, this 

review could help streamline the field, enabling researchers 

to build upon previous work and develop more robust and 

effective models for lung sound classification. Ultimately, 

this could lead to improved patient outcomes and a reduced 

burden of respiratory diseases on global health.

 

Fig. 1 Differences among traditional classification methods based on machine learning algorithms and deep learning algorithms 
 

The main objectives of this review paper and its novelty 

which set it apart from other similar works in the literature 

are the following – 1) We evaluate various techniques for 

classifying lung sounds, not images of the lung (such as x-

rays); 2) Lung sound classification is typically processed as 

either a one-dimensional audio signal or a two-dimensional 

image (time-frequency representation), 3) Our focus is 

specifically on lung sounds related to breathing, and we do 

not consider other sounds from the lungs, such as coughing, 

and 4) Our review specifically examines deep learning 

techniques for lung sound classification, rather than other 

machine learning approaches. The remainder of this 

manuscript is organized as follows – Section 2 provides a 

detailed description of the characteristics of lung sounds, the 

stethoscope used for recording them, and the available 

databases. Section 3 describes our search methodology, the 

process we used for selecting studies, and the data analysis 

presented in our review. Section 4 outlines the results of our 

study. We then discuss our findings and report on future 

work in Section 5. Finally, in Section 6, we present our 

conclusion. 

 

2. Background on Lung Sounds 
During the phases of respiration (inspiration and 

expiration), lung sounds are produced by airflow within the 

pulmonary system and can be heard over the chest wall. 

These sounds, characterized by their non-linear and non-

stationary nature, pose challenges for clinicians in 

identifying abnormal and adventitious respiratory sounds, 

thereby complicating accurate diagnoses. Table 1 delineates 

the characteristics and types of lung sounds, correlating each 

type of respiratory pathology with specific breath sounds 

[39]. Lung sounds exhibit dominant frequencies ranging 

from 150 to 2000 Hz, while heart sounds predominantly fall 

below 150 Hz, enabling their differentiation. A variety of 

stethoscopes, including the Welch Allyn Meditron Master 

Elite Electronic Stethoscope, the 3M Littmann 3200 

Electronic Stethoscope, the AKG C417L Microphone, and 

the 3M Littmann Classic II SE Stethoscope, are 

commercially available and employed for recording lung 

sounds. These devices are adept at capturing lung sound 

recordings and filtering out heart sounds, facilitating the 

processing and analysis of computerized lung signals. The 

development of the Computerized Respiratory Sound 

Analysis (CORSA) [37] standard has established guidelines 

for sensor placement, enhancing the quality of recorded 

patient sound data. The advent of electronic stethoscopes 

has significantly improved the collection of high-fidelity 

lung sound data from both healthy and diseased individuals, 

leading to the creation of extensive databases. These 

datasets are crucial for developing automated classification 

systems utilizing deep learning algorithms to identify 

pulmonary diseases. 

 

Currently, two prominent databases are widely utilized 

in research, especially for deep learning applications – the 

International Conference on Biomedical Health Informatics 

(ICBHI) database [34], which is freely accessible, and the 

Respiration Acoustics Laboratory Environment (R.A.L.E.) 

repository [38], available commercially. Despite the 

availability of the R.A.L.E. database, recent studies 

predominantly employ the ICBHI dataset due to its public 

accessibility. The ICBHI database is notably unbalanced 

and contains a high noise level, presenting a challenging 

dataset for validating deep learning models under difficult 

conditions. In 2021, Fraiwan et al. [35] contributed lung 

sound data recorded from the chest wall to a publicly 

accessible database, further enriching resources available 

for respiratory sound analysis research. This comprehensive 

review underscores the importance of high-quality lung 

sound recordings and the role of electronic stethoscopes and 

standardized databases in advancing pulmonary diagnostics 

through deep learning algorithms.
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Table 1. Characteristics of lung sounds  

Lung 

sound 

types 

Sub-types of lung 

sound 
Symptom 

Dominant 

frequency 

range 

Duration 
Related 

Disease 

Sensor 

location 

Breath 

sound 

N
o

rm
al

 

Tracheal / / / / / 
High 

Pitch 

Vesicular / / / / / 
Low 

Pitch 

Bronchial / / / / / 
High 

Pitch 

Bronchovesicular / / / / / 
Low 

Pitch 

A
b

n
o

rm
al

 Decreased normal 

lung sound 
/ / / / / / 

Bronchial sounds / / / / / / 

A
d

v
en

ti
ti

o
u

s 

Continuous 

Wheeze 
400 Hz or 

more 
>  250 ms Asthma 

Over the 

lungs/trachea 

and most of the 

chest wall 

High 

Pitch 

Rhonchi 
200 Hz or 

less 
>  250 ms COPD 

Over the 

lungs/trachea 

and most of the 

chest wall 

Low 

Pitch 

Discontinuous Crackles 
200 to 2000 

Hz 

Coarse 

Crackles < 

100 ms 

Fine 

Crackles < 

100 ms 

Pneumonia 

Pulmonary 

fibrosis 

CHF 

IPF 

Anterior and 

posterior chest 

wall for coarse 

crackles 

 Posterior lung 

base for fine 

crackles 

Low 

Pitch for 

coarse 

crackles  

High 

Pitch for 

fine 

crackles 

 

3. Materials and Methods 
We systematically conducted a comprehensive 

literature search of the PubMed, ScienceDirect, and IEEE 

Xplore databases to identify journal articles on lung sound 

classification using deep learning published between 2015 

and 2023. Conferences, books, letters, and clinical reports 

were excluded from this review. We screened the results 

based on predefined inclusion and exclusion criteria.  

An initial selection process involved checking research 

titles to identify studies relevant to lung sound classification 

using deep learning. This step helped remove unreliable and 

duplicate articles. Research articles with unclear 

methodologies were also excluded. As depicted in Figure 2, 

our search strategy identified 1428 articles. After individual 

eligibility screening, 1335 articles were excluded because 

they were unrelated, duplicates, or lacked sufficient 

information. 

Additionally, 66 articles were removed after reviewing 

their titles and abstracts, as they did not align with the scope 

of our review. These excluded articles either evaluated 

pulmonary pathologies without including lung sound 

classification, discussed respiratory sounds without 

performing lung sound analysis, did not evaluate pulmonary 

pathologies or lung sound classification, or were review 

articles. Further screening removed studies with unclear 

methodologies or those not focusing on the biomedical field 

and not using deep learning. The final stage identified 27 

original research articles for this systematic review. An 

additional 6 articles, identified from other resources using 

similar eligibility criteria, provided supporting information 

on lung sound classification using deep learning.
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Fig. 2 Summary of the search process on lung sound classification from the literature 

 

4. Results  
The retrieved articles were sourced from three distinct 

databases, with the majority being published within the last 

three years. This trend highlights the increasing significance 

and interest in applying deep learning to lung sound 

classification. The reviewed papers, as summarized in Table 

2, can be broadly categorized based on the type of input data 

used for deep learning networks: 1D input data (raw audio 

signals) and 2D input data (time-frequency images). 

4.1. Raw Audio Signals (1D Input Data) 

Fraiwan et al. in [1] explored the use of deep learning 

architectures, specifically Convolutional Neural Networks 

(CNNs) and Bidirectional Long Short-Term Memory units 

(BDLSTM), to recognize pulmonary diseases from 

respiratory sounds. Their study utilized data from 213 

patients, with 103 patients’ data collected by the authors and 

110 patients’ data from the ICBHI database. To eliminate 

noise and artefacts, the dataset underwent preprocessing 

steps such as z-score normalization, displacement artefact 

removal, and wavelet smoothing. Evaluation metrics 

included accuracy, F1-score, Cohen’s kappa, sensitivity, 

specificity, and precision, with the CNN + BDLSTM model 

achieving an accuracy of 99.62% and a precision of 98.85%. 

Despite these high-performance metrics, the study noted 

that preprocessing, although common in traditional machine 

learning, might not be suitable for clinical applications 

where real-time, raw data analysis is required, such as 

telemedicine during the COVID-19 pandemic. 

Khodabakhshi et al. [2] 2017 introduced a dynamic 

modelling method for lung sound characterization using an 

Adaptive Recurrent Neural Network (ARNN) based on 

fuzzy functions, evaluated with Recurrent Quantification 

Analysis (RQA). Their study classified healthy, COPD, and 

asthma conditions, achieving a 91% accuracy using the 

fuzzy functions ARNN with RQA features. However, the 

study was limited by a small sample size (27 COPD patients, 

31 asthma patients, and 25 healthy individuals), highlighting 

the need for data augmentation and further validation before 

clinical application. 

Altan et al. in [3, 4] quantified lung sounds in 3D space 

using deep learning models with data from the 

Exclude by abstracts & 

unrelated contents 

(n = 66) 

 

Reasons:  

 Not lung sounds 

classification studies 

 Other review articles 

 Unclear methodology 

 Not biomedical studies 

 Not deep learning based 

 

Records screened 

 (n = 93) 

 

Exclude by titles 

(n = 1335) 

 

Reasons:  

 COVID-19 CT scans  

 and X-ray studies  

 Lung nodules detection 

 Duplicates 

 Insufficient information  

 

Initial search articles from 

ScienceDirect using query 

 (n = 309) 

 

Total records from 3 

electronic database 

using query  

(n = 1428) 

Initial search articles from 

IEEE Xplore using query 

(n = 140) 

Query: 

[(lung sound OR lung 

disease OR 

respiratory sound) 

AND (deep learning 

OR deep neural 

network OR 

convolution neural 

network OR recurrent 

neural network OR 

deep belief network 

OR autoencoder) 

AND (classification)] 

Range of years 

2015 – 2024 

 

Articles from other 

sources  

(n = 6) 
 

Total records selected 

for review  

(n = 33) 
 

Studies included after 

exclusion criteria 

 (n = 27) 
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RespiratoryDatabase@TR, which included 12 channels of 

lung sounds. Their approach requires validation with 

diverse datasets to confirm its clinical applicability.  

These studies collectively emphasize that while 

preprocessing aids in classification accuracy, it contradicts 

the objective of deep learning to learn from raw, 

unprocessed data, which is essential for real-world clinical 

applications. Jayalakshmy et al. [5] examined using RNN-

based stacked BiLSTM and Gammatone Cepstral 

Coefficients (GTCC) for lung sound classification. They 

used Empirical Mode Decomposition (EMD) to process 

respiratory signals from the ICBHI and R.A.L.E. databases. 

Their method, Stacked BiLSTM-IMF 3 with GTCC, 

achieved a specificity of 0.88 and a sensitivity of 0.78. The 

study used a 70/30 train/test split but lacked a validation set, 

which is crucial for model training and evaluation in deep 

learning. 

A related study [6] evaluated three different deep 

learning models: CNN, LSTM, and a hybrid CNN-LSTM, 

applied to raw lung auscultation sounds without 

preprocessing. This study used data augmentation 

techniques to enhance model accuracy and utilized a large 

dataset from two online sources, classifying 11 categories of 

lung sounds, including ten diseases and healthy sounds. The 

findings demonstrated the potential for real-time 

classification of pulmonary diseases using deep learning on 

unprocessed data, a significant contribution to the field. 

However, further research is necessary to validate these 

methods across different datasets and real-time applications, 

which could ultimately provide valuable tools for clinicians 

in diagnosing and treating pulmonary diseases. In summary, 

these studies highlight the potential of deep learning models 

for pulmonary disease classification from respiratory 

sounds. Despite the high accuracy achieved through 

preprocessing, the ultimate goal is to develop models 

capable of handling raw data for real-time applications, 

especially in telemedicine and other clinical settings. 

Further research and validation across diverse datasets are 

essential to realize the full potential of these deep learning 

approaches in practical, clinical scenarios. 

4.2. Time-Frequency Images (2D Input Data) 

Aykanat et al. [7] designed an electronic stethoscope, 

introducing a Convolutional Neural Network (CNN) instead 

of traditional machine learning techniques such as Support 

Vector Machines (SVM). They validated their CNN model 

using data collected with their device. However, this 

validation is insufficient for such systems; different CNN 

deep learning-based models should be tested with various 

datasets to accurately assess their device’s effectiveness. 

Additionally, there is no information on the 

hyperparameters tuning for CNN configurations or the 

optimization algorithm used. The article also lacks details 

on positive predictive value, negative predictive value, the 

Area Under the Receiver Operating Curve (AUROC), and 

the confusion matrix. However, the authors did not compare 

their results with existing works to highlight the system’s 

advantages. 

Bardou et al. [8] compared CNN with traditional 

methods like SVM, kNN, and GMM for lung sound 

classification using a 70/30 train/test data partition. 

However, they did not mention any data validation. The 

dataset should be split into three sets: training, validation, 

and testing, using the validation data to stop model training 

and testing data for evaluation. The study did not use other 

texture features like LPQ and BISIF or time-frequency 

representations. Jácome et al. [9] demonstrated Breathing 

Phase Detection (BPD) using CNN-based deep learning 

from respiratory sound recordings. Their approach should 

be validated with larger databases like the ICBHI challenge 

database. The method used in the detection process was not 

applied to other time-frequency representations to test its 

effectiveness. Chen et al. [10] introduced a modified time-

frequency representation called Stockwell transform (S-

transform) for lung sound classification using ResNets and 

Optimized S-Transform (OST). The accuracy reached 

98.79%, with sensitivity and specificity at 96.27% and 

100%, respectively. However, the wheeze + crackles class 

was not included, and the model’s generalization during the 

learning process was not described. 

Shi et al. [11] improved lung sound recognition using a 

VGGish-BiGRU system, discussing the effects of heart 

sounds, different time-frequency analyses, transfer learning, 

and retraining methods. However, the study did not report 

results from different epochs for assessing model learning. 

Demir et al. [12] used 6898 respiratory cycles from the 

ICBHI 2017 database for lung sound classification with a 

CNN and SVM. Their first method achieved 65.5% 

accuracy, while the second method achieved 63.09%. The 

use of transfer learning and SVM for deep learning is not 

novel, and the main contributions were not clarified. 

Acharya et al. [13] presented a hybrid CNN-RNN model for 

classifying breathing cycles using the ICBHI dataset. They 

did not report hyperparameters such as batch size, 

optimization algorithm, learning rate values, or the number 

of epochs. They plan to develop an embedded 

implementation for telemedicine, which might require a 

lightweight CNN model. 

Rocha et al. [14] used the ICBHI dataset to introduce 

an automatic lung sound classification method. They 

employed Linear Discriminant Analysis (LDA), SVM, 

boosted trees, and CNNs for model learning. The best 

results were achieved with a dual input CNN, but further 

discussion was not provided. García-Ordás et al. [15] 

addressed data imbalance using variational autoencoders for 

data augmentation with the ICBHI dataset. The accuracy 

was not reported, and further evaluation without 

preprocessing techniques was suggested. Shuvo et al. [16] 

presented a lightweight CNN architecture for classifying 

respiratory diseases using a hybrid scalogram time-

frequency representation. The study achieved high accuracy 

but noted that long computation times could be a bottleneck 

for real-time implementation. Demir et al. [17] introduced a 

parallel pooling CNN-based model for lung sound 

classification. They achieved 71.15% accuracy but should 

report the number of epochs and use different time-
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frequency representations for further validation. Messner et 

al. [18] used a convolutional RNN for multi-channel lung 

sound classification. Data augmentation was necessary due 

to a small dataset, and a large number of data samples were 

needed for training and testing. Jayalakshmy et al. [19] used 

a pretrained CNN-based model AlexNet with EMD and 

scalogram representations for lung sound classification. 

They achieved 83.78% accuracy but should validate their 

system against the ICBHI database for a more reliable 

comparison. 

Pham et al. [20] used various time-frequency 

representations for lung sound classification with a deep 

learning C-DNN model. They introduced a mixture of 

expert techniques to enhance performance but did not 

compare it with other well-established representations. 

Sharan et al. [21] used different time-frequency 

representations for CNNs to classify lung sounds in children 

with pertussis. They achieved 90.48% accuracy but should 

use data collected according to the CORSA standard and 

report confusion matrices. Jung et al. [22] investigated three 

features for a DS-CNN model-based lung sound 

classification, reporting accuracy for STFT and MFCC. 

However, they did not provide information on 

hyperparameters. Jayalakshmy et al. [23] used deep learning 

for respiratory signal classification with the ICBHI dataset, 

Thinklabs Lung Sounds Library, and R.A.L.E. respiratory 

data. They achieved high accuracy but should report 95% 

confidence intervals for performance metrics. 

Kim et al. [24] developed an automatic breath sound 

classification system using CNN-based deep learning. They 

achieved 86.5% accuracy and an AUC of 0.93 but should 

clarify their research aim and visualize learned features on 

the Mel-spectrogram. In [25], the authors introduced a 

preprocessing technique using Variational Mode 

Decomposition (VMD) for denoising respiratory signals 

and generating gammatonegram images for classification 

using deep convolution neural networks. They achieved 

high performance but should compare VMD with other 

techniques like Empirical Mode Decomposition (EMD) and 

test other Intrinsic Mode Functions (IMFs). In [26], the 

authors used cochleograms to enhance CNN models in 

respiratory adventitious sound classification. However, they 

did not compare cochleograms with other time-frequency 

representations to validate effectiveness. The authors in [27] 

made a comparison with several time-frequency 

representations as input data. They showed that different 

standard CNN architectures produce different experimental 

results for the various types of input data representation. The 

authors used the ICBHI database as the input data source in 

that work. 

The study in [28] utilized CNN and SVM for multi-

class respiratory sound classification. The authors should 

compare their approach with techniques like 

gammatonegram and scalogram for a more comprehensive 

evaluation. The authors in [29] introduced a hybrid CNN-

RNN model for classifying lung sounds into normal, 

crackle, wheeze, and both categories. They should evaluate 

the CNN model’s performance before combining it with 

RNN and conduct further experiments for validation. In 

[30], normal and abnormal respiratory sounds were 

collected by specialists and classified using a dense, 

lightweight CNN-bidirectional GRU model. Future work 

should explore eXplainable Artificial Intelligence (XAI) to 

understand correlations between diseases and symptoms. In 

[31], a hybrid neural model with focal loss function 

addressed data imbalance, using CNN and LSTM networks 

for lung sound classification. The authors should compare 

their standard time-frequency representation with others 

like scalograms and gammatonegram. The work in [32] 

classified abnormal respiratory sounds using CNN and 

artificial noise addition. The authors used five different 

networks with various settings and achieved a best 

performance of 100%. The research in [33] proposed a new 

preprocessing technique and CNN architecture for lung 

sound diagnosis. They should isolate and analyse the effects 

of each stage separately before combining them to establish 

a baseline performance.

Table 2. Summary of findings on lung sound classification from selected literature 

R
E
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E
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R

 

D
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Y
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E

 

D
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A
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A

S
E

 

N
O

. 
O

F
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L
A

S
S

E
S

 

1
D

 /
 2

D
 D

A
T

A
 

R
E

S
U

L
T

S
 

[1] 2021 1D CNN + BDLSTM 
Self-collected dataset + 

ICBHI dataset 
6 1D raw data 

Accuracy 99.62% 

Precision 98.85% 

[2] 2017 Attractor RNN (ARNN) Self-collected dataset 3 1D raw data Accuracy 91% 

[3] 2018 
Deep Belief Networks 

(DBN) 
Self-collected dataset 2 1D raw data 

Accuracy 93.67% 

Sensitivity 91% 

Specificity 96.33% 

[4] 2019 
Deep Belief Networks 

(DBN) 
Self-collected dataset 2 1D raw data 

Accuracy 95.84% 

Sensitivity 93.34% 

Specificity 93.65% 

[5] 2021 RNN-based stacked ICBHI dataset 4 1D raw data Sensitivity 0.78 
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BiLSTM Specificity 0.88 

[6] 2022 CNN–LSTM KAUH + ICBHI 8 1D raw data 

99.6%, 99.8%, 82.4%, and 99.4% for 

datasets 1, 2, 3, and 4 (w/o data 

augmentation) 

100%, 99.8%, 98.0%, and 99.5% for 

datasets 1, 2, 3, and 4 (with data 

augmentation) 

[7] 2017 CNN Self-collected dataset 78 
Spectrogram 

(STFT) 

healthy vs. pathological 86% 

rale, rhonchus, and normal 76% 

singular respiratory 80% 

all audio types 62% 

[8] 2018 CNN RALE database 7 
Spectrogram 

(STFT) 
Accuracy 95.56% 

[9] 2019 CNN Self-collected dataset 2 
Spectrogram 

(STFT) 

Sensitivity of 97% 

Specificity of 84% 

[10] 2019 ResNet ICBHI Database 3 OST-spectrogram 

Accuracy 98.79% 

Sensitivity 96.27% 

Specificity 100% 

[11] 2019 VGGish-BiGRU Self-collected dataset 3 Mel-spectrogram 

Asthma 83.33% 

Pneumonia 86.75% 

Normal 91.94% 

[12] 2020 VGG16 + SVM ICBHI Database 4 
Spectrogram 

(STFT) 

Accuracy of 65.5% for the first 

Method Accuracy of 63.09% for 

the second method 

[13] 2020 CNN-RNN ICBHI Database 4 
Spectrogram 

(STFT) 

66.31% of the 4 classes on overall data 

71.81% of the 4 classes on patient-

specific data 

[14] 2021 CNN ICBHI Database 3 
Spectrogram 

Mel-spectrogram 

3 class fixed durations tasks, best 

classifier accuracy 96.9% 

3 class variable durations tasks, best 

classifier accuracy 81.8% 

[15] 2020 
CNN & Variational 

Autoencoders 
ICBHI Database 

3, 

6 
Mel-spectrogram 

0.993 F-Score in 3 class 

0.990 F-Score in 6 class 

[16] 2020 CNN ICBHI Database 6 
Scalogram 

(STFT) 

99.20% for ternary chronic 

classification 

99.05% for six-class pathological 

classification 

[17] 2020 CNN ICBHI Database 4 
Spectrogram 

(STFT) 
Accuracy 71.15.% 

[18] 2020 GRNNs & CNN Self-collected dataset 2 
Spectrogram 

(STFT) 
F1-score 92% 

[19] 2020 AlexNet RALE database 4 
Scalogram 

(STFT) 
Accuracy 83.% 

[20] 2021 CNN-MoE ICBHI Database 8 
4 Spectrogram 

types 
Sensitivity 99% 

[21] 2021 2D CNN 
Dataset constructed 

from YouTube 
5 

Mel-spectrogram 

Wavelet scalogram 

Cochleogram 

Accuracy 90.48% 

[22] 2021 
Depthwise Separable 

CNN (DS-CNN) 
Self-collected dataset 4 

Spectrogram 

(STFT) 
Accuracy 85.74% 

[23] 2021 cGAN ICBHI dataset 4 
Scalogram 

Spectrogram 
Accuracy 92.68% 

[24] 2021 VGG16 & CNN Self-collected dataset 4 Mel-spectrogram Accuracy 86.50% 

[25] 2021 CNN Self-collected dataset 3 Gammatonegram 

Accuracy 98.8% 

Precision 97.7% 

Sensitivity 100% 

Specificity 97.6% 

[26] 2023 CNN ICBHI Database 4 Cochleogram 85.1% in wheezes 
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73.8% of crackles 

[27] 2022 CNN ICBHI Database 4 

Scalogram 

Spectrogram 

Mel-spectrogram 

Gammatonegram 

Gammatonegram and scalogram 

produced the best classification results 

[28] 2023 CNN + SVM Self-collected dataset 3 
Spectrogram 

(STFT) 
Accuracy 83% 

[29] 2021 CNN + RNN ICBHI Database 4 
Spectrogram 

(STFT) 

Sensitivity 0.63 

Specificity 0.83 

Average score 0.73 

Harmonic score 0.72 

[30] 2022 CNN and BiGRU 
Self-collected 

dataset 
6 Mel-spectrogram 

Accuracy of 92.3% 

Sensitivity of 92.1% 

Specificity of 98.5% 

F1-score of 91.9% 

[31] 2022 CNN-LSTM ICBHI Database 4 
Spectrogram 

(STFT) 

60/40 split - Sensitivity 47.37%, 

Specificity 82.46%, F1-Score 64.92%, 

Accuracy 73.69% 

10 Fold CV -  Sensitivity 52.78%, 

Specificity 84.26%, F1-Score 68.52%, 

Accuracy 76.39% 

LOO CV - Sensitivity 60.29%, 

Accuracy 74.57% 

[32] 2021 ANA + CNN 
Datasets from multiple 

internet sources 
7 

Spectrum 

analysis 

VGG-B1 = 0.95%, VGG-B3 = 0.95%, 

VGG Drop = 0.95%, VGG-V1 = 

0.84%, VGG-V2 = 0.84%, AlexNet = 

100%, InceptionNet = 0.95%, 

ResNet = 0.95%, LeNet5 = 0.89% 

[33] 2022 CNN ICBHI Database 8 
Mel- 

spectrogram 

Recall of 0.991, F1 score of 0.993 

and precision of 0.994 

 

5. Discussion  
We systematically analysed 33 articles that explore the 

application of deep learning to lung sound classification. 

The studies reviewed not only contribute to the field of lung 

sound analysis but are also significant across various health 

domains. Deep learning, a prominent technique in artificial 

intelligence, is particularly prevalent in the biomedical field. 

The majority of studies included in this work were 

conducted within the last two years, indicating that 

technology-based deep learning is a recent research hotspot. 

Current lung sound applications, including eHealth 

embedded system diagnosis, require improvements, 

especially for diagnosing lung conditions. Digital lung 

sound recordings, widely collected by electronic 

stethoscope systems and uploaded to cloud repositories, are 

expected to see increased efficiency in healthcare 

applications due to the rapid development of the Internet and 

5G networks, which will enhance data variability and 

volume, particularly in pulmonary care. 

The increasing availability of data is well-suited for 

deep learning algorithms. Currently, we find two publicly 

available databases [34, 35]. These data, coupled with tools 

like TensorFlowLite, can be used to deploy deep learning 

applications on inference systems such as smartphones for 

real-time diagnosis and classification of pulmonary 

pathologies. To integrate deep learning technologies into 

healthcare, several initiatives in artificial intelligence aim to 

enhance model functionality and transparency. For instance, 

the Shapley Additive Explanations (SHAP) framework 

demonstrates how input data features contribute to the final 

output, which has been validated by many healthcare 

applications. 

Spirometry, a fundamental measure of pulmonary 

function, plays a crucial role in diagnosing conditions like 

asthma and COPD early. These conditions have similar 

symptoms, making differential diagnosis challenging. 

Traditionally, a spirometer, which uses a threshold for the 

forced air applied by the patient, helps determine the 

condition. Developing an automatic pulmonary disease 

classification system using deep learning on lung sound 

signals could offer an alternative strategy for earlier 

diagnosis and serve as a validated tool alongside spirometry. 

Current studies focus on diagnosing and classifying various 

pulmonary diseases, but no previous study has developed an 

automatic system to distinguish between asthma and COPD. 

For example, Trivedy et al. [36] developed an automatic 

disease classification system using a CNN for a smartphone-

enabled spirometer, achieving an accuracy of 98.98%. 

Future research should focus on classifying lung sounds 

from asthma and COPD to aid doctors in early diagnosis, 

even those not well-trained. 

Deep learning technologies have shown advantages 

over traditional machine learning algorithms. Designing a 
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real-time lung sound classification system must consider 

real-world hospital settings, where background noise, 

patient movement, and conversation are common. The 

literature review reveals that researchers typically perform 

preprocessing steps, facilitating deep learning-based 

classification and improving accuracy.  

However, deploying these algorithms on Single-Board 

Computers (SBCs) for real-time use may reduce accuracy in 

actual diagnoses. To address this, exploring the direct use of 

raw audio recordings with deep learning algorithms without 

preprocessing could reveal the true power of deep learning 

and aid in developing SBC-based hardware systems for 

hospital use.Nearly all reviewed studies (99%) utilized the 

ICBHI challenge database, employing preprocessing steps 

like slicing, resampling, and feature extraction. No study has 

examined classifying ICBHI audio data without these steps, 

indicating a need for further evaluation to ensure the 

robustness and effectiveness of deep learning methods. 

Researchers should address challenges such as noise and 

artefact inclusion in input data and feature selection 

difficulties.  

The review also highlighted that transfer learning often 

used models pretrained on ImageNet, which may not be 

suitable for time-frequency representations of lung sounds. 

Future research should explore transfer learning using lung 

sound spectrogram data to improve accuracy and reliability, 

enhancing deep learning performance in clinical diagnosis 

and treatment. There is a critical need to collect and share 

diverse lung sound datasets, such as those for asthma, 

COPD, and lung cancer, to support related research. This 

would facilitate the development of accurate diagnostic 

tools such as and improve the reproducibility and 

comparability of research findings. Despite challenges like 

background noise and patient movement in real-world 

settings, deep learning models trained on large, diverse 

datasets can identify complex patterns in lung sounds. 

Future research should focus on developing robust deep 

learning models, possibly using generative models for data 

augmentation and techniques to handle missing or 

imbalanced data. 

6. Conclusion 
This manuscript systematically summarizes and 

reviews various deep-learning studies on lung sound 

classification. The relevant research has been evaluated 

based on the data, algorithms, and models utilized. The 

studies are assessed for using deep learning algorithms in 

lung sound classification, focusing on their capabilities to 

distinguish various time-frequency inputs. While applying 

deep learning in lung sound classification has shown 

promising performance, certain challenges and limitations 

remain unresolved.  

The review’s contributions are twofold – (1) it 

highlights the limitations of current studies and identifies 

future research opportunities, and (2) it provides a 

systematic and comprehensive review of deep learning 

studies on lung sound classification. Further research is 

needed to explore the potential of deep learning in 

enhancing the diagnosis and management of respiratory 

diseases in clinical settings. This review can serve as a 

valuable reference for future research in this field. 
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